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Abstract

Visual search, a subproblem of vision, is computationally intractable in the

general sense. Attentional methods can be used to attain a tractable approx-

imation; the Selective Tuning (ST) model in particular provides a solution to

many challenges of visual search. ST components which address the Boundary

Problem, however, have previously not been fully implemented. This thesis im-

plements the proposed visual �xation control using a set of modules including a

Peripheral Priority Map, a Fixation History Map, and a History Biased Priority

Map. The system is tested in both a physical and a virtual environment. The

test on physical hardware demonstrates proof-of-principle performance for the

proposed method of �xational control. The virtual data-set compares �xations

produced by the system developed in this thesis with human �xational data; our

system out-performs AIM in reproducing human-like �xation patterns. Several

avenues of future research are proposed using this system as a development

platform.
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Chapter 1

Background

1.1 Introduction

Vision is widespread in the animal kingdom and is a powerful sensory tool for

interacting with the surrounding environment. Humans and other primates are

able to perform a large number of visuo-cognitive tasks with an ease that belies

their underlying computational di�culty. The �eld of computer vision seeks to

understand and replicate the capabilities of biological vision, a task generally

referred to as the vision problem. Although the vision problem itself is generally

only loosely or intuitively de�ned, there are a number of visual sub-problems

which are rigorously de�ned. Of these sub-problems, the visual search problem

is of primary importance to this study.

Wolfe intuitively described visual search as �those tasks where one looks for

something,� [91]. Tsotsos more formally de�ned the problem in [81] as:

Given a set of memory items or targets and a test display that

contains several nontarget items and may or may not contain target

items, measure the length of time a subject needs to detect a given
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number of the targets in the display.

Using this de�nition, Tsotsos shows that unbounded visual search (visual search

in which the target is explicitly unknown or not used) is computationally in-

tractable. Tsotsos proposes a number of biologically plausible methods to refor-

mulate the problem into a tractable approximation problem which uses natural

parameters to optimally guide the approximation. It is these approximation

techniques which Tsotsos posits constitute visual attention (for the detailed de-

velopment of these ideas, see [81]. For an up to date summary, see also Chapter

2 of [82]).

Hierarchical processing of an image using a pyramidal representation is a

powerful computational technique for increasing visual computation e�ciency

which also bene�ts from strong biological support. A detailed mapping of the

macaque visual cortex conducted by Felleman and Van Essen arranges visual

processing into a 14-layer visual hierarchy with the retina and lateral genicu-

late nucleus at the bottom and the entorhinal cortex and hippocampus at the

top [25]. However, hierarchical processing also introduces a number of compu-

tational challenges which must be dealt with: Blurring, Cross-talk, Context,

Boundary, Sampling, and Routing Problems.

The primary cause of these hierarchical processing challenges is that each

element of any particular layer in the hierarchy connects to an ever-widening

cone of in�uence across the layers (see Figure 1.1). The Blurring Problem refers

to the loss of spatial acuity introduced by the hierarchical structures; although

a spatially well-localized event may occur at the input layer, the activations it

in�uences as one moves through the hierarchy will progressively become less

spatially speci�c (see the left-hand connectivity cone in Figure 1.1). The con-

verse of the Blurring Problem is the Sampling Problem (represented by the

right-most connectivity cone in Figure 1.1); the top-most pyramidal layer rep-
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resents information in the most abstract sense but also with the least spatial

resolution. This represents a distinct computational challenge when recognition

requires both a high level of abstraction as well as accurate spatial localization

(such as a pedestrian recognizing and avoiding a speeding car heading toward

him). When two cones of in�uence overlap it creates the Cross-talk Problem;

the activity of any neuron within the overlapping region becomes a function of

both. The Context problem refers to the fact that higher-level visual activity

will necessarily be in�uenced not only by the target to which they are attuned

but also by any other visual elements located within the spatial reach of the

cone of in�uence. The Routing Problem is the challenge of �nding the speci�c

activation pathway through a hierarchical network which best represents a given

stimulus. The Boundary Problem is displayed in Figure 1.2, and it arises due

to the fact that for any spatial convolution, there will be a region half the width

of the convolution around the edge of an image for which the convolution result

is unde�ned. As one moves up through the layers of a pyramid, this unde�ned

region compounds and grows with each level.

Tsotsos' Selective Tuning (ST) model of visual attention seeks to deal with

these problems, though the proposed solution for the Boundary Problem re-

mains untested with respect to both performance and biological plausibility

(see Section 1.2.2.1 for an overview of ST) [82]. Implementing and testing the

ST components proposed to handle the Boundary Problem is the focus of this

work, as outlined in Section 1.3.

1.2 Review of Literature

The review of related literature will focus on three main topics related to this

work: psychophysics and neurophysiology in Section 1.2.1, computational mod-

els of attention in Section 1.2.2, and active vision in Section 1.2.3. Section
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Figure 1.1 � Abstract hierarchy demonstrating the widening cone of connectivity
both upward from a small region of neurons in the initial layer (on the left) and
downward from a similarly small region of layers in the top-most layer (�gure
modi�ed from [82]).

Figure 1.2 � Boundary Problem for pyramids: each progressive layer in the
hierarchical process increases the area which is unde�ned due to boundary e�ects
(�gure taken from [82])
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1.2.1 will provide an overview of biological research in visual search with a focus

on research in peripheral vision, inhibition of return, and covert versus overt

attention. Section 1.2.2 will concentrate primarily on saliency map models of

attention, but will also provide an overview of the Selective Tuning model of

attention. Section 1.2.3 will examine applications of active vision to computer

vision and robotic systems, with an emphasis on visual search tasks.

1.2.1 Psychophysics and Neurophysiology

Given the impressive visual capacity apparent in many animals, it is worthwhile

examining the biological literature for a more thorough understanding of the

capabilities and limitations of biological visual systems. This review will con-

centrate primarily on human visual processing, but will occasionally make use of

results from non-human animal studies, which will be explicitly noted as such.

1.2.1.1 Visual Search

As mentioned in Section 1.1, visual search is a well-researched subproblem useful

for investigating the nature of visual attention. Most psychophysical studies in

visual search make use of speeded response tasks in which subjects attempt to

locate a target in an image (or, occasionally, determine its absence) as quickly as

possible. Early characterizations of visual search separated the task into parallel

and serial regimes. This separation was based on whether the response time

of a subject to �nd a single target within a �eld of distractors stayed constant

or grew linearly with increasing numbers of distractors, respectively. A highly

in�uential model that attempted to explain this behaviour was the feature-

integration theory of Treisman and Gelade [80]. The feature-integration theory

hypothesized that there exists a set of separable visual features, such as colour

and shape, and that visual search can be accomplished nearly immediately (the
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(a) (b)

Figure 1.3 � A set of example search tasks. (a) displays an easy search task to
locate a blue L amongst red L distractors, whereas (b) displays a more di�cult
conjunction task of �nding a blue L among red L and blue T distractors.

whole image is processed in parallel) if the target can be di�erentiated from the

distractors according to a single feature. An example of such a search would be

�nding a blue letter L amongst a set of red L's (see Figure 1.3(a)). When viewing

such an image, the blue L leaps out at the viewer in a phenomenon known as

popout. According to feature-integration theory, when more than one feature is

required to di�erentiate between the target and distractors (for example, �nding

a blue L amongst red L's and blue T's as in Figure 1.3(b)) a serial search is

employed which must investigate each element of the visual �eld in turn.

Although feature-integration theory did explain many of the early psychophys-

ical results, the use of terms such as parallel and serial were perhaps premature,

as they assumed a physiological processing mechanism which still has yet to

be conclusively demonstrated. More troublesome, some conjunction searches

were found that could be performed with a near zero slope of response time

versus distractors [78]. Additionally, as more research was performed in the

area of visual search, it was realized that the slope of response time versus

number of distractors for single-target problems followed a continuous spec-

trum rather than a dichotomous parallel versus serial separation. In response,
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Figure 1.4 � Example of an image elements which can be perceived at both
global and local scale. The large letters (global scale) are formed by smaller
letters (local scale). The global and local scales can match, as with the letters on
the left in blue, or contradict, as with the letters on the right in green.

Wolfe proposed shifting the vocabulary to describe the search e�ciency [91].

Easily accomplished tasks such as the one depicted in Figure 1.3(a) would be

labeled e�cient, whereas more di�cult tasks with a steep slope would be la-

beled as increasingly ine�cient. Despite the change in terminology, Wolfe does

not abandon the idea of a set of basic features. Wolfe de�nes basic features as

stimuli that support both e�cient search and e�ortless texture segmentation,

from which he develops the following list of features: colour, orientation, cur-

vature, vernier o�set, size, spatial frequency, scale, motion, and shape. Of the

set, Wolfe ruminates that spatial frequency and size might be the same basic

feature, while scale, though related to size, is probably not identical to it and

refers to the scale at which a scene is examined. For an example of di�ering

image scales, see Figure 1.4.

Shape is also acknowledged by Wolfe to be a problematic basic feature cat-

egory. Although numerous experiments exist which utilize shape features that

are not reducible to orientation and curvature (for example, searching for O's

amidst X's in [78]), the primitives of shape perception and the layout of a shape

space is unclear. While other features such as colour lie within clear two di-

mensional (or three dimensional, if luminance is included) spaces with de�nable

metrics (even if the precise axes of the space are not always agreed upon), it is

not clear what sort of space might house shape.
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In addition to mean response times, more recent psychophysical e�orts in

single-target visual search tasks have sought to characterize the distribution over

response times by gathering very large data sets, [57, 92]. By using approxi-

mately 112,000 total trials from three visual search tasks (an e�cient colour

feature search, an intermediate colour and orientation search, and an ine�cient

search for a digital 2 among 5s), Wolfe, Palmer, and Horowitz are able to create

a large data-set for statistical analysis. Using the shape of the distributions over

the data set, they argue against the standard self-terminating model. This is

based on both the extensive overlap between target present and target absent

distributions and the apparent independence of normalized distribution shape

to set size [92]. Palmer, Horowitz, Torralba, and Wolfe return to the same data

set and attempt to �t a number of statistical distributions. They �nd that the

ex-Gaussian, ex-Wald, and Gamma distributions1 provide highly comparable

�ts to the data that are distinctly closer than those achieved by the Gaussian

distribution which is usually implicitly assumed [57].

Most single-target visual search tasks yield comparable response times when

the distractor and target are inverted. For example, it is generally as e�cient

to search for a red target amongst green distractors as it is to search for a green

target amongst red distractors. However, there are some target-distractor pairs

for which this is not true. Such pairs exhibit search asymmetries. Although

it is beyond the scope of this work to make a comprehensive list of examples,

Wolfe notes a few that are repeated here for illustrative purposes [91]. In colour

searches, it is more e�cient to �nd a magenta target amongst red distractors

than it is to �nd a red target amongst magenta distractors. Likewise, in ori-

entation searches, it is easier to �nd a slightly oblique line amongst vertical

1An ex-Gaussian distribution refers to an exponential distribution convolved with a Gaus-
sian distribution, while an ex-Wald distribution refers to an exponential distribution convolved
with a Wald (also known as an inverse Gaussian) distribution. For a more complete discussion
of the formulation of these distributions and the manner in which they �t psychophysical data,
see [72].
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distractors than it is to �nd a vertical target amongst slightly oblique distrac-

tors.

Although single-target visual search tasks are common due to their method-

ological simplicity, Thornton and Gilden argue that the results of such studies

are necessarily inconclusive regarding the serial or parallel nature of processing

in visual search [79]. Instead, they propose to extend the single-target method

to a generalized visual search task which can have multiple targets present. The

task remains for subjects to simply respond as quickly as possible whether or

not a target is present. A principle idea of multiple-target search tasks is to

include occasional instances in which all objects in a visual �eld are targets. If

processing is serial, the response time to all-target trials will obviously remain

constant with respect to set size. In contrast, a limited capacity parallel process

might display improved performance due to redundancy gain. Thornton and

Gilden tested 29 di�erent search tasks and found that most exhibited redun-

dancy gain, but a small number of tasks exhibited the constant response rate

which the authors associate with serial processing. They therefore argue that

the e�cient-ine�cient continuum advanced by Wolfe does not exist, and the

serial-parallel dichotomy originally proposed is correct (albeit with many of the

tasks originally associated with seriality being operated on by a limited-capacity

parallel process and with possible fuzzy boundaries between the two protocols).

Thornton and Gilden do not address the possibility, however, that all the tasks

are solved with a limited capacity parallel process and the redundancy gain in

some of the trials is simply o�set by dividing attention across multiple targets.

The e�ects of divided attention may di�er with the task, thus resulting in the

spectrum of redundancy gain observed.

In addition to examining the capabilities of subjects to �nd targets in visual

search tasks, it is also interesting to examine whether there are any targets that
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must be found. In a review of several studies which have sought to answer

this question, Yantis concludes that singleton elements which are capable of

producing a pop-out e�ect will only sometimes automatically capture attention,

depending on the task [93]. When singletons are entirely irrelevant to the task,

such as when searching for a speci�c letter amongst an array of many di�erent

distractor letters, it was found that they could be suitably ignored. This was true

regardless of the nature of the singleton, whether it was a unique colour, [36], or

even a form of motion, [30]. However, when subjects are themselves searching

for a singleton target, it appears that unrelated singletons can automatically

trigger attentional capture, disrupting the e�ciency of the search. Interestingly,

there appear to be asymmetries in the capacity for an unrelated singleton to

preferentially capture attention. Theeuwes found that a unique-form search

(searching for a green circle amongst green squares) was disrupted by a colour

singleton (a red square), whereas a unique-colour search (searching for a red

circle amongst green circles) was largely una�ected by a unique form singleton

(a green square) [77]. For further discussion of attentional capture, see the end

of Section 1.2.1.2.

Many of the psychophysical aspects of visual search reviewed here are beyond

the scope of the present thesis research. Nevertheless, it is hoped that this brief

overview of visual search experimentation and theory will help to frame the

current work, as well as point to future extensions and experimentation of the

developed system.

1.2.1.2 Peripheral Vision

A distinct characteristic of human vision is the rapid decrease in visual process-

ing quality as one moves away from the centre of the visual �eld. This is partly

due to the physical construction of the retina itself. As early as 1935, Øster-

berg established the heterogeneous distribution of photoreceptors in the human
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retina [72]. Cones, which come in three forms for use in chromatic vision and

require bright light to function, are concentrated in high numbers near the cen-

tral portions of the retina and then fall in number with increasing eccentricity.

Rods, which have only a single form and therefore provide achromatic vision and

which function in dim lighting, are entirely absent in a small central region of

the retina and instead dominate the periphery of the retina. In addition to the

distribution of the photoreceptors themselves, the ganglion cells which receive

input from the photoreceptors and transmit the signals on toward the brain are

themselves heterogeneously distributed through the retina with a strong central

bias [17]. There are two more distinct physical regions of the retina which a�ect

vision: the blindspot, which is a region devoid of photoreceptors in order to

allow passage of blood vessels and the optic nerve located approximately 15◦

nasally, and the foveola, which is a region located near the centre of the retina

free of blood vessels and ganglion cells in order to allow maximal light to reach

the photoreceptors [88].

When discussing vision in terms of the retinotopic coordinates, it is impor-

tant to de�ne the vocabulary which will be used, as terms such as peripheral

and central are notoriously ambiguous. Wandell de�nes the fovea as having a

diameter of 5.2◦, with a rod-free central area of 1.7◦, and the foveola with a

diameter of 1◦ [88]. These values are supplemented in Strasburger et al.'s re-

view with values for the parafovea (∼ 5◦ − 9◦) and the perifovea (∼ 9◦ − 17◦),

which altogether form the macula [72]. Because the fovea is often functionally

de�ned by its rod-free component, this work will use the term foveal vision in

the same manner as Strasburger et al. to roughly mean the central 2◦ of the

visual �eld. For the purposes of this thesis, central vision will be de�ned to refer

approximately to everything encompassed by the fovea and parafovea, < 10◦,

while peripheral vision will refer to anything outside of this eccentricity rather
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than Strasburger et al.'s use of anything non-foveal.

In psychophysical examinations of peripheral vision, an early form of inves-

tigation of peripheral vision was through the measure of minimum discernible

size, either through recognition of letters or di�erentiation of pairs of dots.

Strasburger et al., [72], report that the earliest investigation of this kind was

performed by Aubert and Foerster in 1857. They found that the minimum

discernible size is proportional to the maximum eccentricity angle within the

macula, and decreases at a faster rate outside of this region.

Physiological evidence suggests that this performance di�erence is not solely

the responsibility of photoreceptor and ganglion cell distribution in the retina,

but is rather accentuated throughout the visual processing stream based on

the degree of cortical area devoted to a particular region of the visual �eld.

Experimenting in monkeys, Daniel and Whitteridge developed the concept of

the cortical magni�cation factor, M , to represent the diameter in the primary

visual cortex onto which 1 deg of the visual �eld projects [18].

In humans, the value of M correlates well with psychophysical results for

low-level tasks, but fails to capture performance di�erences for a number of more

complex tasks such as the recognition of faces. Additionally, peripheral visual

processing appears to be much more vulnerable to crowding e�ects, requiring a

critical free space between �anking letters of approximately half the eccentricity

of the target to avoid any performance de�cits [72]. In a series of experiments,

Engel de�ned a conspicuity area in which a target stimulus could be identi�ed

within a dense �eld of distractors in a single �xation [21]. Similar to visual

search e�ciency, Engel found that the size of the conspicuity area varied de-

pending on the degree of 'conspicuity' between the target and the distractors.

Targets which were highly similar to the distractors (a horizontal line amongst

lines of various random orientations) needed to be within approximately two de-
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grees of the �xation point, whereas highly dissimilar targets (a square amongst

randomly oriented lines) could be located within a large ellipse ∼ 25◦ × 15◦ in

size. As is common to many aspects of visual processing, there is a distinction

between the capacity to perform detection tasks versus more the more di�cult

task of recognition. Strasburger and Rentschler extrapolated a maximum �eld

of recognition at ∼ 46◦ × 32◦ beyond which stimuli could not be recognized

regardless of size (though they could still be detected) [71].

Interestingly, although cortical magni�cation of the central visual �eld is con-

sistent through most visual processing regions, there is at least one physiological

region in which this is not the case. The visual area V6, located on the anterior

bank of the parieto-occipital sulcus, instead strongly emphasizes the peripheral

visual �eld [22]. Originally identi�ed as area PO in the macaque, Colby et al.

claimed that the central visual �eld was entirely lacking in representation within

the region [13]. More modern studies conducted in both macaques and humans

suggest that the area identi�ed as PO was actually a subsection of both area

V6A, a visuomotor area superior to V6, and V6 such that the full V6 region

does have marginal central �eld representation (see Figure 1.5) [22]. Area V6 is

predominantly connected to areas within the so-called �dorsal pathway� of visual

processing, and appears to respond most strongly to motion stimuli. Although

current understanding of the dorsal and ventral processing streams shows that

the two are not wholly distinct, the visual processing in regions along the dorsal

pathway is nevertheless associated more with fast responses to visual informa-

tion involved with muscular action. This would be consistent with the task of

active visual orienting, and it therefore makes sense that such an area would

place a heavy emphasis on processing the peripheral visual �eld. Although cur-

rent research exploring lesional de�cits in the area of V6 have concentrated on

disruption to patients' capacity for motion characterization, I hypothesize that
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Figure 1.5 � Diagram of V6 connectivity in the macaque brain. The upper
image summarizes the cortical connections, with the occipital pole and part of
the inferior parietal lobule removed from the right hemisphere to show the cortex
region hidden in the parieto-occipital and intraparietal sulci. The left hemisphere
is shown in grey without any regions removed. The block diagram on the bottom
summarizes the weights of the cortical connectivity to area V6 (note that the
occipital lobe connections are also comprised of neurons predominantly part of
the dorsal stream). Image reproduced from [22].
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the ability to orient attention based on exogenous peripheral cues (both dynamic

and static, see below) should likewise be impaired.

In Section 1.2.1.1 the question of whether certain stimuli must capture at-

tention was addressed for salient visual elements capable of producing a pop-out

e�ect. However, the capacity for other types of stimuli to automatically capture

attention was not addressed. John Jonides performed an early set of exper-

iments into this question using the qualities of capacity demands, resistance

to suppression, and sensitivity to expectation in order to determine how auto-

matically stimuli captured attention [35]. Jonides used two types of stimuli in

his experiments: stimuli which appeared outside the central �xation area (ex-

ogenous cues), and arrows which appeared at the central �xation and pointed

toward a target area of the visual scene (endogenous cues). Jonides found that

exogenous cues reliably captured attention even when subjects were actively

told to ignore them, whereas arrows endogenously presented at the central �x-

ation point could be capably ignored. This �nding was extended by Yantis and

Jonides, who showed that the abrupt onset of stimuli preferentially captures

attention, and is capable of doing so even when actively suppressed [94]. In-

terestingly, it was noted that the automatic capture of attention occurred over

a very fast time course, whereas attention allocated by endogenous cues was

allocated more slowly. This di�erence in time course suggests the possibility of

multiple attentional forms depending on the nature of the signal, and will be

discussed more fully in the next section.

1.2.1.3 Overt Versus Covert Attention

Although visual �xation is often used as a surrogate for the allocation of visual

attention (see Section 1.2.2.3 for further discussion on this matter), evidence

for attention independent of eye movements nevertheless has been around since

Helmholtz's comprehensive psychophysical experiments in vision in the early
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twentieth century. Helmholtz demonstrated that when he �xated his eyes on

a particular visual location in a dark room, he could nevertheless explore the

contents of an alternative region of his visual �eld following a brief �ash of light

[86]. When he attempted to continue exploration of his memory of the �ashed

stimulus, however, he was unable to reconstruct detail outside of the attended

region, suggesting that there was something special about his focus on that re-

gion. The orientation of attention independent of physical eye movement has

subsequently become known as covert attention, while attention through eye

�xation is known as overt attention. The existence of covert attention obviously

poses a di�culty when trying to evaluate a model's performance based on com-

parison to eye tracking data, and it is worth asking whether these two forms of

attentional assignment are two aspects of the same mechanism or whether they

are distinct.

Hunt and Kingstone, [32], attempted to determine the independence of

covert and overt attention through the performance of subjects on an eye move-

ment and a discrimination with �xed gaze task. By splitting subjects into two

groups and asking them to concentrate on either the eye movement or dis-

crimination task, Hunt and Kingstone found that subjects were able to display

increased speed and accuracy in validly cued trials only for the task being con-

centrated on, and thus concluded that the two attentional mechanisms operate

independently. In contrast, Hafed and Clark, [29], posit a connection between

the motor systems and covert attention by using microsaccades to predict covert

attentional shifts. It should be noted that Hunt and Kingstone provided endoge-

nous auditory cues for both trial types in their study, whereas Hafed and Clark

used exogenous peripheral �ashes of light. Thus, it may be that covert and overt

attentional mechanisms are distinct under top-down direction, but the motoric

control of the eyes is re�exively activated by exogenous cues (see the end of the
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previous section). In fact, subjects in Hafed and Clark's study had a tendency

when �rst performing the task to make overt saccades to peripheral cues, and

had to actively learn to suppress foveating saccades, suggesting the possibility

of automatic oculomotor recruitment.

Although Hafed and Clark's results might be explained by re�exive recruit-

ment of the oculomotor system, van der Stigchel and Theeuwes also found evi-

dence that endogenously cued covert attention allocation could in�uence subse-

quent unrelated saccades [84]. In their experiment, subjects �xated on a central

location and were cued via a central arrow to attend covertly to a location in

either the upper left or upper right portion of the screen. Following the cue,

either an E or an S would appear at that location, which the subjects were

directed to di�erentiate with a button press. On a small subset of the trials,

however, an audio cue was played following the stimulus display to inform the

subjects to not complete the di�erentiation task, but to instead execute a sac-

cade straight up. It was found that subject saccades had a signi�cant deviation

away from the cued stimulus, suggesting that the endogenous allocation of at-

tention in�uenced the later motor execution despite the spatial and perceptual

independence of the two locations.

It is possible that overt and covert attention are not two di�erent systems,

but rather a manifestation of the default attentional focus at the foveal region.

Attention can be consciously decoupled from this location and allocated else-

where (albeit with diminishing returns as one moves farther peripherally, see

Section 1.2.1.2), but this requires active suppression of the motor system (as

can be seen by the initial challenge of subjects in Hafed and Clark's study to

avoid making overt saccades to peripheral cues). Thus, inhibition of the motor

system would lead to the deviation seen in van der Stigchel and Theeuwes, but

would leave the oculomotor system and attentional system apparently decou-
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pled during excitatory tasks (as seen in Hunt and Kingstone). The work here

provides a �rst approximation of this interpretation, with a central region in

which attention can be allocated (with default allocation after a saccade in the

centre) and automatic recruitment of the motor system for peripheral targeting.

Future extensions could allow for greater top-down control over whether or not

a saccade is performed.

1.2.1.4 Premotor Theory of Attention

An early attempt at describing the purpose and action of biological attention

has come to be known as the premotor theory of attention. Originally put forth

by Klein as the oculomotor readiness hypothesis, [39], it suggests that atten-

tion is an outcome of preparing to move the eyes to foveate a target region.

Therefore, the primary mechanism of attention is the motoric component, and

the enhanced processing capacity is an outcome of preparing eye movements.

Klein himself rejected the hypothesis after failing to �nd either facilitation of

detection of stimuli at a location to which a saccade had been readied, or the

facilitation of eye movements to a covertly attended location [39]. Rizzolatti

et al. revived Klein's hypothesis under the name premotor theory of attention,

after rejecting Klein's �ndings based on the dual nature of the tasks Klein's

experimental participants engaged in (which, it was argued, forced participants

to wait until the task was cued to prepare motor commands, preventing the

expected facilitation) [64]. The primary evidence presented for this initial re-

vival was an unexplained increase in the response time to stimuli which required

a crossing of the horizontal or vertical meridian of the visual �eld. Using the

meridian e�ect, which does require explanation, as evidence for the premotor

theory of attention, however, is based primarily around the assumption that

saccadic programming changes which involve crossing a meridian line are more

time consuming than those which do not due to the recruitment of a di�erent
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set of muscle groups. While this may in fact be a valid assumption, preliminary

psychophysical evidence does not support it; uncertainty in the direction of a

saccade but knowledge of the expected amplitude led to virtually identical sac-

cade latencies as for those in which the direction was known but the amplitude

was unknown [3]. Also puzzling with regards to the meridian e�ect is that, while

it is consistently found with endogenous attentional cuing, it was not obtained

in studies using exogenous cuing [16, 63].

Two other lines of evidence are somewhat more promising for the premotor

theory of attention: saccadic deviations and attentional de�cits that mirror

oculomotor de�cits. Sheliga et al. conducted a series of experiments in which

subjects allocated attention to the left or the right of a �xation point, and then

were asked to make a saccade either upward or downward [68]. It was found

that saccades deviated away from a locus of attention both when attention had

been attracted to that point exogenously as well as endogenously. Stigchel and

Theeuwes replicated this �nding with endogenous cuing, extending the �nding

to show that saccadic deviation occurred away from the locus of covert attention

even in the case of an invalid cue [84]. Although these studies do suggest a link

between attentional allocation and motoric output, they do not provide any

evidence as to the direction of that link; it is entirely possible that the motoric

a�ect is a result of the attentional allocation.

Craighero et al. performed an experiment with subjects su�ering from pe-

ripheral VI nerve palsy leading to palsy in the rectus lateralis muscle of either

the right or left eye, disrupting horizontal saccades with that eye [14]. Subjects

were evaluated in monocular trials and given endogenous cues to either left or

right target positions which were accurate in 70% of trials, followed by a target

onset in one of the two target positions. It was found that when either healthy

subjects or those su�ering from palsy used their healthy eyes, the standard dif-
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ference in reaction times for valid and invalid trials was obtained. However,

when subjects performed the task with their paretic2 eyes, there was no statis-

tical di�erence in the reaction times between valid and invalid trials. Curiously,

both valid and invalid trials yielded reaction times comparable to the reaction

times of valid trials for healthy eyes. A later paper by Craighero et al. sought to

replicate these �ndings, this time in an entirely healthy cohort in which motor

control was instead constrained by forcing the starting �xation to occur in an

already eccentric temporal ocular position [15]. In this case, reaction times to

temporal stimuli for the eccentric starting position were not statistically di�er-

ent for valid and invalid trials, and were on the whole comparable to the invalid

response times to stimuli in the other experimental conditions. Although both

studies do indicate that a motoric restriction a�ects response times, it is odd

that one study found all response times to be comparible to validly cued trials,

suggesting an increase in response time due to motoric disruption, while the

other found all response times to be comparible to invalidly cued trials, sug-

gesting the more expected result based on the premotor theory of attention of

a disruption to attentional allocation following a disruption in motoric control.

Thus, although it is clear that there is a de�nite connection between some

attentional phenomena and motoric control of gaze, it does not seem that at-

tention can be entirely explained as simply a result of motoric preparation. In

fact, when Klein and Pontefract modi�ed Klein's original methods which re-

jected the oculomotor readiness hypothesis to take into account Rizzolatti et

al.'s criticisms, they again found evidence to discon�rm the hypothesis [42].

1.2.1.5 Inhibition of Return

First demonstrated by Posner and Cohen in cue-�xation tasks in 1984, [60],

Inhibition of Return (IOR) is a delay in response to a previously attended lo-

2Paresis refers to a condition of partial paralysis.
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cation of the visual �eld. Klein later extended these �ndings to show that IOR

occurs following attention allocation in visual search tasks as well, concluding

that IOR functions as a facilitator for foraging behaviour [40]. Although Klein's

interpretation was initially challenged by subsequent studies, these challenges

have themselves since been rebutted (see Box 2 of [41] for a full discussion),

indicating that IOR is indeed an important component in the cognitive toolkit

used to tackle the visual search problem. As will be discussed further in Section

1.2.2, a simple IOR mechanism was an important component in early saliency

models of attention in order to keep the system from becoming permanently

�xated on a single locus of maximal salience or oscillating between two max-

ima. Psychophysical studies have demonstrated, however, that IOR behaviour

is highly variable depending on the speci�c task factors involved. While it is

beyond the scope of this thesis to model all aspects of IOR, they are neverthe-

less reviewed here for completeness and possible future extensions. For further

discussion of how IOR has been factored into this implementation, see Sections

1.3.2 and 2.3.

Posner and Cohen's initial �ndings showed that a �xational cue improved

subject reaction times when the interval between the cue onset and target onset

(stimulus-onset asynchrony) was short, and that this facilitation decayed until

it crossed over into an inhibitory e�ect after a stimulus-onset asynchrony of

between 200 and 300 ms, [60]. When Posner and Cohen replaced the exogenous

peripheral cues with an endogenous central cue (an arrow at the central �xation

which points in the direction of the target location), however, they did not elicit

the inhibitory e�ect, generating some confusion as to the source of the inhibition.

Subsequent work was seen to con�rm and re�ne this �nding, demonstrating that

it was enough for a saccade to be prepared to elicit IOR, even if central �xation

was maintained throughout the cuing process, but when an endogenous cue was
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displayed without saccade preparation IOR was not seen, [62]. The conclusion

of these early studies into the nature of IOR was therefore that it was primarily

a motoric component of eye control.

The motoric interpretation of IOR was additionally bolstered by perceptual

experiments in which subjects were presented with a peripheral cue, a return

cue at �xation, and then two peripheral targets in rapid succession. When sub-

jects were instructed to make a saccade to whichever target location felt �more

comfortable�, they had a signi�cantly increased tendency to direct their gaze

to the uncued location [61]. In order to check whether this bias represented a

perceptual or motoric delay, subjects were additionally asked to make a tem-

poral order judgment of which target was the �rst to appear. Despite the bias

against �xation of the cued target, there was no e�ect on the subjects' ability to

determine the order in which the targets appeared [61]. Further study by Terry

et al. con�rmed IOR in simple detection and localization tasks, but failed to

�nd IOR in non-spatial discrimination tasks which relied on target form, colour,

or size [76].

A non-motoric and distinctly attentional manifestation of IOR was �nally

discovered when the time course under investigation was expanded. Lupiáñez et

al. found that IOR in response to a non-spatial discrimination task appeared in

the 700− 1000 ms range, much later than the IOR response previously demon-

strated in detection and spatial localization tasks [48]. These results were repli-

cated in other studies and compiled by Klein (see Figure 1.6), displaying that

task di�culty, as represented by response time, was linearly proportional to the

onset time of IOR [41]. Klein additionally points out that there are a large

number of other psychophysical factors which can impact experimental results,

stating:

Thus, when IOR is not obtained it could be that it was: (1)
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Figure 1.6 � Plot of the cross-over points, measured in stimulus onset asyn-
chrony, at which facilitation turns to inhibition verses reaction time to the target
with data from three experimental setups of paired tasks. The �gure is reproduced
from [41]. Circles represent data for localization tasks from [7]*, with open circles
representing saccadic localization and �lled circles manual localization. Triangles
represent data from [47]*, with open triangles representing manual detection and
�lled triangles discrimination. Likewise, squares represent manual detection and
discrimination (for open and �lled, respectively) data from [48].

present but the task used to measure it was not sensitive to the

inhibition; (2) present and measurable, but obscured by an accom-

panying e�ect in the opposite direction [such as facilitation or a

response-repitition advantage]; or (3) not present in the �rst place.

Discriminating amongst these alternatives is one challenge to re-

searchers of IOR.

An important aspect of IOR is not only when it begins, but also the duration

of the inhibitory e�ect. Evidence suggests that the duration of IOR is not a

straightforward property, and is instead a�ected not only by temporal compo-

nents but also by the nature of the task and the number of inhibited regions. In

the previously mentioned experiment by Lupiáñez et al. in which non-motoric

IOR was identi�ed, it is suggested that although the non-spatial discrimination

task had a much later onset of inhibition than the simpler tasks of spatial de-
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tection and localization, the cessation of the inhibitory e�ect occurred began at

nearly the same point for all tasks and thus the more di�cult task had a shorter

overall duration of inhibition [48]. When Wang and Klein compiled temporal

duration data more systematically across several studies, they again found a

more complex story [89]. In a complicated virtual reality task in which each

��xation� took approximately 1700 ms, signi�cant IOR was seen for up to two

previous �xations, suggesting a duration on the order of 3400 ms. In contrast, in

a scene search task with average inter-saccade time of 254 ms, IOR was seen at

positions two �xations previously and four �xations previously, but not at six,

thus suggesting inhibition in scene-search is either limited to maximal duration

of less than 1524 ms, or is limited to fewer than six inhibited regions. The fact

that IOR is capable of being applied to more than one previous �xation provides

evidence for an environmental encoding of IOR location rather than a retinal

encoding, as a retinal encoding would shift inhibitory localities with a saccade.

More recent evidence suggests that IOR is not only encoded in environmental

coordinates, but may in fact be scene- or object-dependent. In several covert

probe-following search experiments reviewed by Wang and Klein, it is reported

that the e�ects of IOR are only seen if the search scene is maintained, but disap-

pear if the scene is removed between �xations [89]. One such study in particular,

[56], demonstrated an IOR e�ect attached to objects moving smoothly on the

visual display. Importantly, these scene- and object-based IOR e�ects were only

noticed in di�cult search tasks, and in fact the object-based IOR was not seen

when the visual search task was e�cient.

Though stability of a visual scene appears necessary for the persistence of

IOR, the question nevertheless arises as to whether IOR persists in a stable

environment for �xations which move beyond the bounds of the visual �eld

through subsequent saccades and head movements. Although I am not aware of
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a study showing such persistence of IOR explicitly, there is nevertheless evidence

for the persistence of visuospatial information outside the bounds of the visual

�eld which indicates that this should in principle be possible. Tark and Curtis

provided aural cues to subjects using microphones placed in their ear canals,

with inter-aural sound di�erences designed to control cue spatial location [73].

Functional magnetic resonance imaging examined the activity of the frontal

eye �elds (FEF), and found that subjects displayed persistent FEF activity in

response to an aural cue even when that cue was located behind the head,

suggesting that the FEF represents both retinal and extra-retinal space.

In addition to characterizing the behavioural e�ects of IOR, there have been

numerous studies that have sought neurophysiological evidence for the source

of the inhibitory signal. As with the psychophysical characterization of IOR,

initial neurological investigation focused on a mid-brain motoric involvement.

Individuals with damage to the superior colliculus were found to have drastically

reduced or no IOR, whereas a hemianopic3 patient with cortical damage but

an intact colliculus exhibited IOR to cues located in his blind �eld [41]. How-

ever, subsequent studies showed patients with parietal damage (both with and

without spatial neglect) were found to exhibit unaltered IOR on the contrale-

sional side, but reduced IOR or even facilitation on the ipsilateral side. Sim-

ilarly, object-based IOR was found in split-brain patients provided the object

remain within the same hemi�eld but was eliminated once the object crossed

the mid�eld boundary [46]. In light of the sometimes contradictory evidence

for the nature of IOR, Taylor and Klein postulated that IOR comes in two

distinct ��avours� rather than consisting of a single cognitive tool: a motoric

�avour when the oculomotor system is engaged and an attentional and percep-

tive �avour when the occulomotor system is quiescent [75]. Taylor and Klein's

two �avours of IOR could alternatively be interpreted as IOR a�ecting overt at-

3Hemianopia refers to defective vision or blindness in half of the visual �eld.
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tention and IOR a�ecting covert attention, though to my knowledge this inter-

pretation has not been explicitly explored. Houghton and Tipper, in contrast,

do not limit themselves to two �avours, but rather postulate that inhibition

following temporally from a neurological event is a general cognitive control

strategy which happens to manifest in visual search as IOR [31]. Whether such

a general interpretation of inhibitory feedback is warranted remains to be seen,

but it does appear to explain many of the complexities that arise when trying

to treat IOR as a singular phenomenon and will therefore in�uence the designs

of the IOR mechanism included in this thesis, as described in Section 2.3.

1.2.2 Computational Models of Attention

Despite the great complexity of nuance involved in biological attention of which

Section 1.2.1 was only able to brie�y touch upon, a number of attempts have

been made at succinctly formulating attention in a well-de�ned theoretical

framework. Some of these models will be discussed here, but, as with Sec-

tion 1.2.1, the size of the �eld is beyond the scope of this thesis to adequately

cover. For a broad historical discussion of how attention is de�ned such that it

may be studied, see the opening chapter of [82].

1.2.2.1 Selective Tuning

Selective Tuning (ST) is an attention model developed over many years which

grew out of Tsotsos' work on the complexity of the vision problem and his

conclusion that an attentional mechanism was required in order to make vision

tractable [81]. A key aspect of the ST model is that it takes a predominantly �rst

principles approach to modeling attention; the model seeks �rst and foremost

to describe in general terms what aspects of attention are required from a com-

putational perspective. Although this section will attempt to give an overview
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of ST, it is a complex model which has been under development for over two

decades, and thus many of the details of this development are beyond the scope

of this thesis. For a comprehensive overview, see Chapter 4 of [82], and see the

subsequent chapters for an up-to-date exposition of the model's details.

ST utilizes a hierarchical pyramidal processing architecture; neuronal layers

increase in abstraction and complexity of selectivity as one moves higher in the

pyramid. Network neurons are modulated by task considerations, and decisions

(or visual problem solutions) are made in a competitive manner based on re-

sponse values throughout the processing network. A distinct characteristic of

ST which separates it from other population coding schemes is that the repre-

sentation of a visual item (whether it is an object, scene, or event) involves the

entire network pathway which is found to best respond to it, rather than just

some high-level subset of neurons in the hierarchy. This allows an ST represen-

tation to easily shift between high level abstractions (such as object category)

to lower level details (such as surface texture or colour).

As mentioned in Section 1.1, a number of the algorithmic details of ST are

designed to address the computational challenges introduced by a pyramidal hi-

erarchy: the Routing, Context, Blurring, Cross-talk, Sampling, and Boundary

Problems (see Chapter 2 of [82] for a detailed description of these problems). ST

utilizes a top-down, recursive pruning strategy for selecting the best representa-

tion within its network based on the classic branch-and-bound mechanism, [45].

Such a search strategy has tractable computational complexity and ameliorates

all but the Boundary Problem. Representation at all levels of the network natu-

rally links the highest levels of abstraction with the lowest levels of the hierarchy,

thereby addressing the Routing Problem. Through the pruning process compet-

ing but less desirable representations are removed. This creates an inhibitory

e�ect which isolates a given representation from surrounding context, and �rmly
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localizes the representation via its activation at the lower levels of the hierarchy

to solve both Sampling and Blurring issues. By allowing the system to hold

only one such representation at a time (there is only one locus of attention),

Cross-talk is prevented by the same inhibitory isolation of the representation

from its surround.

Due to boundary constraints, the full hierarchical structure of ST may only

be de�ned over some central portion of the visual �eld. Thus, the system de-

scribed so far corresponds most approximately with attention operating in the

central regions of the visual �eld; it is in principle capable of performing covert

allocations of attention throughout this central region in response to endoge-

nous as well as exogenous cues. The method with which the ST model deals

with the periphery is the focus of this thesis, and thus will be dealt with more

completely in Section 1.3 and Chapter 2.

1.2.2.2 Saliency Map Models

Saliency is a metric for measuring the capacity of a region in the visual scene to

capture the attention of a viewer. It is often intuitively equated to �how inter-

esting� is a given region of a visual scene. Virtually all models which make use

of saliency aim to generate a single overall saliency map, which assigns a con-

spicuity value to every location within a visual scene. Such a map can then be

quickly and e�ciently analyzed using a Winner-Take-All (WTA) computation

to generate the maximally interesting point in the image and direct the system's

attention to that location. Many salience map models possess mechanisms for

biasing the generation of salience values according to top-down goals (for exam-

ple, favouring red targets), but they are still primarily bottom-up signal-driven

methods.

The most famous saliency map model is that of Itti, Koch, and Niebur (re-

ferred to hereafter as SM for ease of reference) [34]. The model is based heavily
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on Koch and Ullman's architecture for attention selection, [43], which is itself

closely linked to the Feature Integration Theory of Treisman and Gelade, [80].

SM takes colour images as input and runs them through a Gaussian pyramid

to create a multi-scale representation of the image. Across-scale di�erences are

taken to perform centre-surround operations, creating a set of feature maps

based on di�erent intensity scales, red-green and blue-yellow colour double-

opponency, and orientation feature maps created from Gabor �lters applied to

the intensity pyramid. In the absence of top-down direction, each feature map

is normalized by performing the following operation:

1. Normalize the values in the map to a �xed range [0, ...,M ]

2. Find the map's global maximum M and compute the average m̄ of all

other local maxima.

3. Globally multiply the map by (M − m̄)2

Normalization serves to smooth out feature maps as well as reduce the impact of

maps which respond well to large portions of the scene while accentuating dis-

tinct feature peaks. After normalization, feature maps are combined into three

conspicuity maps derived from the intensity, colour, and orientation channels.

The conspicuity maps are then themselves normalized before being averaged

together to form the overall saliency map.

The SM model is relatively straightforward in construction, has clear origins

in psychophysics, and was one of the earliest formulated saliency map models.

It is thus well-known and frequently serves as a benchmark against which the

performance of other models can be compared. One of the primary drawbacks

of the feature maps used in SM is that they do not yield sparse representations

for most targets, thereby reducing the signal-to-noise ratio and degrading the

performance of the model on complex natural images. Modern attempts have
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been made with some success to modify the SM model to improve performance

by including elements such as task in�uences on attention through the use of a

symbolic working memory system, [54].

An alternative to feature maps was proposed by Bruce and Tsotsos, who

developed a model called Attention based on Information Maximization (AIM)

which measures salience based on the information content of the image [9, 10].

In particular, AIM uses the self-information, −log(p), as the primary measure of

salience (see Figure 1.7). The basic intuition behind the model is that the most

salient part of an image is that which can least easily be predicted. To achieve

this, AIM starts by seeking a sparse code for natural image statistics. This

is created by performing Independent Component Analysis (ICA) over a large

collection of randomly sampled natural image patches. The set of representative

patches found by ICA is used as the feature basis used to represent the visual

world, though alternative �lters can be used and may even be more desirable

for some tasks [8]. In the case of this thesis, log-Gabor �lters were used for most

tasks (see Section 2.2.1 for a discussion of this decision).

Using a basis set of ICA �lters, each local neighbourhood of a test image is

projected into the �lter space, whereupon each pixel is converted into a vector

of values corresponding to the individual contribution of each basis function.

The �lter space is assumed to be approximately independent, and thus the joint

probability of a given pixel vector reduces to the product of the individual prob-

abilities for observing each feature contribution. However, the likelihood of each

feature component must still be estimated. Bruce and Tsotsos use a Gaussian

kernel density estimate in the original formulation, though they acknowledge

that this choice is somewhat arbitrary and could be changed without loss of

generality (and, in fact, most subsequent implementations of AIM used the en-

tire image as the basis for this estimate). The kernel is used to compare the
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Figure 1.7 � An image displaying an intuitive sense behind the saliency measure
of the AIM algorithm. On the left the black circles labeled A and B obscure
regions which are visually similar to their surroundings and which would generally
be predicted if one were to guess their contents; the region obscured by C, on the
other hand, contains an unexpected object which is highly dissimilar compared to
the rest of the image content. It is therefore both the most interesting or salient,
as well as carries the highest degree of self-information (image reproduced from
[11]).

value of a component's contribution for that image patch with the contribution

of the same component to the surrounding image patches. Thus, a feature which

contributes equally to all image patches in a region will yield a high probabil-

ity, and therefore low self-information (it is easy to predict the content of that

region, and thus the region is less informative). A more detailed description of

AIM's operation in relation to this thesis can be found in Section 2.2.1, and of

its implementation in Section 3.4.

A similar saliency approach to AIM, called saliency using natural image

statistics (SUN), was developed by Zhang et al. [97]. SUN was motivated by

a Bayesian formulation of saliency which would allow the easy incorporation

of both top-down and bottom-up mechanisms. From this formulation, self-

information emerged as a natural measure of bottom-up saliency, and could be

combined with top-down measures to give an overall saliency measure dubbed

pointwise mutual information.

The main di�erence of the SUN approach is that the probability distributions
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for each feature are not based on the test image at all, but are entirely based on

prior statistics derived from natural images. Although this makes the algorithm

quite e�cient computationally (all intense computational steps are performed

o�ine during learning) and actually yields results which are decently comparable

to AIM for a number of test images, it causes the model to deviate greatly from

psychophysical results as it creates search asymmetries for every pair of target

and distractor. For example, if red is associated with being a more salient

feature than green, the model will do a good job �nding a red target amidst

green distractors, but will perform extremely poorly looking for a green target

amongst red distractors. Although search asymmetries do exist, as discussed in

Section 1.2.1.1, they do not measurably exist for every target-distractor pair.

1.2.2.3 Saliency Based Models and Human Search Performance

All the saliency models discussed in Section 1.2.2.2 attempt to provide a solu-

tion to a visual search task from the perspective of �nding what is the most

salient element of an image from some objective measure. Although these mod-

els all tend to produce results which qualitatively compare to the eye �xation

patterns of human observers, they nevertheless have a di�cult time predicting

speci�c �xation sequences for a given image. An alternative perspective that

has motivated a number of modern saliency models is to instead focus on the

prediction of human eye �xations, and worry less about the underlying reasons

for those �xations. Such a pragmatic, performance-driven design lends itself

to applications in advertising design, video compression, and non-photorealistic

image rendering.

Judd et al. provide an example of a saliency map approach speci�cally

designed to reproduce human �xation patterns [38]. In order to design such

a saliency model, a large database of human �xations was generated for 1003

natural images. This �xation database was then used to create a ground-truth
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against which the developed saliency model could be compared. The salience

model itself was a classi�er learned from a mixed set of low-, mid-, and high-

level features, as well as a centre prior. Low-level features consist of steerable

pyramid �lters, the saliency channels of Itti and Koch's SM algorithm, [33], and

colour channel statistics. The mid-level features were gist features trained as

a horizon line detector. High-level features consisted of the Viola Jones face

detector, [85], and the person detector by Felzenswalb et al., [26]. Altogether, a

model of visual salience was learned from these features which provided a decent

approximation to human �xation records.

One element which all the saliency models of Section 1.2.2.2 fail to capture

in human visual search is the temporal tuning that human search undergoes

with repeated trials. In their original formulations, AIM, SUN, and SM all

fail to account for temporal shifts in visual search performance over repeated

trials. Psychophysical evidence suggests that repeated trials of the same search

task will lead humans to tune their responses to optimize the signal-to-noise

ratio of the target versus the present distractors [55]. In fact, evidence suggests

that this temporal modulation of visual search, termed priming of pop-out by

Maljkovic and Nakayama, occurred automatically and unconsciously, as the

slowest response times were recorded when the colour of target and distractor

switched every trial (something which the subjects were consciously aware of

but which were nevertheless unable to prepare their visual systems for), [49].

Thus, although the SUN algorithm appears to take too long-term a view on the

manner in which particular features in�uence saliency, it may be bene�cial for

future work to incorporate at least short-term temporal modulation of salience.

The topic of saliency model comparison with human search performance

would be incomplete without recognition of the many distinct challenges to eval-

uating saliency map models directly against human visual search data. Tatler et
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al. provide a strong critique of this practice, identifying �ve major and problem-

atic assumptions inherent in models of static scene viewing [74]. Of particular

relevance here are the fact that eye tracking only tracks overt attentional shifts

and provides no insight into covert shifts of attention, and the fact that human

subjects �nd it virtually impossible to eliminate both contextual knowledge and

intrinsic motivation. These valid criticisms of system evaluation solely against

eye �xation data have helped guide the design of the experimental review of the

thesis performance in Chapter 4.

1.2.3 Active Vision

Active vision refers to a visual system in which the image sensor moves or

otherwise transforms as part of the perceptual process. Biological vision is

highly active, executing an average of three saccades per second [58]. Although a

large portion of computer vision research tends to focus on single, static images,

active visual systems have nevertheless been explored in a number of computer

vision applications. Several such studies which relate to the work of this thesis

are discussed in this section.

1.2.3.1 Attentive Vision

The terminology with which to discuss and di�erentiate between active visual

systems is not always apparent. Bajcsy was one of the �rst researchers to

popularize the concept of active modulation of a visual system using intelligent

control based in part on the visual information acquired by the system itself in

what she termed active perception [5]. Aloimonos et al. showed that a number

of common visual problems which are ill-posed for the passive observer become

well-posed for an active observer, allowing them to be e�ciently solved [4].

The work of this thesis, however, does not explicitly seek to provide additional
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constraints for solving a speci�c vision problem, but rather seeks to provide a

framework by which a system can focus visual processing on the most important

portion of the visual scene. Clark and Ferrier referred to this style of active

vision as attentive vision, and provided one of the earliest formulations for such

a system [12]. Their system encompasses one of the fundamental aspects of this

thesis work, with its function being described as follows:

The most salient feature is found and centered on the �eld of

view. At this point a region of interest (ROI) processor may perform

more complicated visual tasks.

Therefore, based on the formulation of Clark and Ferrier, this thesis work is

fundamentally an attentive visual system. However, the focus of Clark and

Ferrier was on the motoric control of a binocular visual system, whereas the

focus of this work is at the determination and selection of a salient target.

1.2.3.2 Active Search Model

Active search is a subset of active vision in which an active visual system at-

tempts to solve a visual search task. The introduction of motor capacity to the

vision system enables the target to be placed outside the initial �eld of view, and

opens up a number of new dimensions to the visual search problem beyond the

traditional reaction time versus number of distractors. An implementation of an

active search system which has heavily in�uenced this thesis work is Zaharescu's

Active Visual Search Model (AVSM) [96]. The AVSM has many similarities to

this thesis, including a separation of the peripheral and central visual �elds

as well a saccade history map which provides an IOR mechanism; the central

�eld undergoes multi-level hierarchical processing which includes top-down task

in�uences, while the periphery operates primarily in a bottom-up, low-level fea-

ture approach (for a brief discussion of the di�erences between the current work
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and the manner in which this thesis extends AVSM, see Section 1.4).

The scope of the AVSM was heavily concentrated on low-level visual search

problems, particularly the visual search problem investigated by Motter and

Belky [53]. In Motter and Belky's experiment, monkeys were tasked with iden-

tifying a red bar with a speci�ed orientation amidst a distractor �eld of red

bars at an alternative orientation, and green bars at an identical orientation to

the target bar. It was revealed that the monkeys e�ectively ignored the green

bars and focused their search on foveating patches of red bars to investigate fur-

ther, a heuristic which was directly incorporated in the AVSM. Using a virtual

implementation of the AVSM, Zaharescu was able to replicate similar search

performance to that of Motter and Belky, providing a proof-of-principle justi�-

cation for a biologically inspired active visual search system. This thesis aims

to update, generalize, and expand upon the groundwork it laid.

1.2.3.3 Applications of Active Search

While the work in the previous section introduces motoric action to the visual

search problem, it is still focused on 2D model environments in order to incor-

porate psychophysical �ndings. Vision applications to robotics typically seek to

function in a 3D environment. Nevertheless, active search is a common problem

posed to robot systems with applications in search and rescue, automated explo-

ration and mapping, and object retrieval. Shubina and Tsotsos, [70], build on

earlier work by Ye and Tsotsos, [95], to provide a system for object localization

by a mobile robot in a 3D environment called the SYT algorithm.

A system utilizing SYT assumes knowledge of the global environment scope

(for example, the size and shape of a room) but not the internal layout, and

seeks to locate a target object within that region. The primary mechanism by

which this is accomplished is to segment the 3D environment into an even dis-

tribution of volumetric cells, which are stored in an internal map and populated
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by a probability value of containing the target object (in the absence of prior

knowledge, all cells are initialized to an identical probability value). The SYT

system then seeks to execute a series of �xations which maximize the probability

of �nding the target with that �xation. The focus of this work is on navigation

and camera movements within the environment, as well as recognition of internal

environmental obstacles (such as furniture). However, it is pointed out that the

cell probabilities could potentially be augmented with saliency information, and

it is in this manner that the work of this thesis could be used to augment this

type of active search task. A �sh-eye lens, for example, could be used to provide

a very wide angle of view, albeit with a large degree of peripheral distortion.

This peripheral region could be analyzed with a rudimentary, saliency-driven

peripheral mechanism which could be used to modulate the probabilities of the

appropriate environmental cells, while the central region performs the actual

recognition task. In this manner, a much larger set of environmental cells could

be modi�ed with each �xation, and the overall number of �xations required to

complete a task should potentially be reduced.

1.3 Objective of Work

1.3.1 Problem Statement

The Boundary Problem, explored by Wal and Burt, [87], and discussed in detail

by Tsotsos et al., [83], is an inherent aspect of processing with hierarchical pyra-

mids that makes any results requiring multiple stages of processing valid only

for central regions of the visual �eld (see Figure 1.2). Tsotsos has proposed a

solution framework to combine top-down attentional direction based on higher

order results in the central visual �eld with a bottom-up approach based on

saliency in the periphery of the visual �eld, depicted graphically in Figure 1.8,
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Figure 1.8 � Proposed solution for solving the Boundary Problem using a History
Biased Priority Map (�gure taken from [82])
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[82]. Any peripherally salient items which the system identi�es can be inspected

in greater detail by moving the camera to bring them into the central region.

The proposed framework leaves many of the speci�c model details unaddressed,

however, and it is therefore the aim of this work to develop a functional imple-

mentation of this integration of central and peripheral processing.

1.3.2 Motivation

Psychophysical evidence suggests that attention likely operates as a collection

of control mechanisms operating together rather than as a single overarching

mechanism (see Section 1.2.1.3). Prior discussion of the Selective Tuning (ST)

model of attention has concentrated on an attentive mechanism operating over

a full visual hierarchy. This aspect of ST captures many psychophysical aspects

of visual attention, and closely resembles the type of attention seen in response

to endogenous cuing. This thesis seeks to implement a peripheral component of

the ST algorithm to provide stimulus driven attentive direction from the visual

periphery, as well as a motor control mechanism to reorient �xations according

to this peripheral signal.

1.4 Signi�cance and Contributions

This thesis describes an implementation of a solution to the Boundary Problem

in a biologically plausible active vision model proposed in [82]. It extends pre-

vious work on a biologically plausible active visual model by Zaharescu, [96],

by providing implementations of several algorithmic components which are ei-

ther entirely novel or greatly extend similar structures in Zaharescu's work: the

Peripheral Priority Map, the Fixation History Map, and the History Biased

Priority Map. Additionally, a novel environment control component has been

created to encapsulate the input and output signals (either physical or virtual)
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of the saccade controller, allowing the implementation of all components to be

done in a modular and independent manner. This provides faster integration

of new hardware components a far more general development platform for a

wide variety of visual search research. Speci�c examples of research areas which

may use this thesis as a computational substrate on which to experiment in-

clude the currently unresolved aspects of IOR discussed in Section 1.2.1.5 and

improvements in active search, and are outlined in more detail in Section 5.2.

As well as providing a general active vision platform, this thesis makes sev-

eral speci�c contributions. A conceptual framework for combining salience based

on self-information from a heterogeneous distribution of �lters is presented in

Section 2.2.3. An implementation of the system on a physical pan-tilt camera

unit provides a proof-of-principle demonstration of the system's capabilities to

solve a visual search task. An additional experiment conducted in a virtual

environment on a psychophysical data-set of natural images demonstrated �x-

ation sequences more closely aligned with human �xation patterns than those

produced by the AIM algorithm.

1.5 Thesis Outline

This thesis is organized into �ve chapters:

• Chapter 1 provided an overview of related research in areas of psychophysics

and neurophysiology, computational models of visual attention, and ac-

tive vision. It describes the primary motivation and the signi�cance and

contributions of the thesis.

• Chapter 2 describes the theoretical aspects of the novel thesis components.

• Chapter 3 gives speci�c implementation details for all of the thesis com-

ponents.
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• Chapter 4 describes the experiments conducted to test the system in both

a physical demonstration as well as a virtual �xation experiment, and

presents their results.

• Chapter 5 discusses of the experimental results in Chapter 4 and provides

concluding remarks.
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Chapter 2

Bottom-up Peripheral

Saliency Model

2.1 Overview

As mentioned in Section 1.2.2.1, the Selective Tuning (ST) model of visual

attention requires a peripheral component which undergoes only a few layers of

processing in order to handle the Boundary Problem; this will necessarily be

primarily data driven as a consequence of the low levels of abstraction which

can be generated by only a few layers of processing. Such a mechanism is

outlined in Chapter 4 of [82], and it is the implementation and validation of

this mechanism which is the primary focus of this thesis work. A schematic

representation of the entire ST model can be seen in Figure 1.8. A number

of aspects of the peripheral component for ST required novel implementation.

The three main components for handling peripheral attention are the Peripheral

Priority Map (PPM), Fixation History Map (FHM), and History Biased Priority

Map (HBPM), outlined in Sections 2.2-2.4, respectively. Although this Chapter
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discusses the theoretical basis and design for these novel components, speci�c

implementation details can be found in the appropriate sections of Chapter 3.

The HBPM additionally provides output to a saccade controller; since the design

of this controller is relatively straightforward and not a theoretical focus of this

thesis, it is discussed solely in terms of its implementation in Section 3.7.

2.2 Peripheral Priority Map

2.2.1 Functional Overview

The Peripheral Priority Map (PPM) utilizes the AIM algorithm described in

Section 1.2.2.2 to provides a bottom-up measure of saliency for each point in

its region of operation (see Section 2.2.2 for a discussion of the spatial extent of

the PPM). This bottom-up calculation stream, displayed in Figure 2.1, can be

modulated by top-down task biasing in order to produce a priority signal similar

in nature to that described by Fecteau and Munoz, [24]. The priority map is then

sent to the History Biased Priority Map (HBPM) where it can be incorporated

into attentional selection and possibly trigger an overt attentional allocation

with a saccade. Although AIM is a well-developed and studied saliency map

model, it has not previously been implemented in the TarzaNN architecture

(see Section 3.3 for an overview), and thus had to be programmed largely from

scratch and adapted to its role in the system as a whole (see Section 3.4 for a

discussion of the details of this implementation).

Figure 2.1 provides an abstracted schematic of the network which generates

the bottom-up portion of the PPM. Data �ows through the network from the

bottom of the �gure to the top. The input plane represents data from the

visual �eld over which the PPM will operate; this may either be the entire

visual �eld or some subset (see Section 2.2.2). This visual input is passed to
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Figure 2.1 � Abstract representation of the bottom-up portion of the peripheral
priority map calculation stream. An input image (bottom) passes through a bank
of �lters to produce a set of �ltered image planes (second row). In the example
shown 24 log-Gabor �lters were used, but the number and type of �lters can vary
with task and implementation. The pixel response values of each �lter plane are
counted to produce a �lter response density estimation, which is subsequently
used to estimate the probability of the �lter response value for each pixel (third
row). The self-information of each pixel is summed across all the �lter channels
to produce a saliency map of the image (top image).
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a series of �lter planes; each �lter plane receives an identical copy of the input

data and operates independently and in parallel with the other �lters. The

actual �lter set used can be modi�ed to suit any particular task, environment,

or implementation needs. A range of possible �lter bases over which AIM could

operate, including ICA patches, Gabor �lters, log-Gabor �lters, and Di�erence

of Gaussians, was explored by Bruce et al. [8]. When comparing the ability of

AIM to highlight coherent objects in overhead street scenes, it was found that

log-Gabor �lters provided the best correspondence of salient regions with those

labeled by human observers. In addition to superior performance, log-Gabor

�lters are well-studied in computer vision with a relatively simple parametric

structure, [44], and have response properties very similar to those of the early

primate visual cortex, [27, 59]. Together these properties make log-Gabor �lters

the most attractive option for this thesis work.

Additionally, having a parametric set of basis functions should allow more

transparent control over the response behaviour of the system and thereby allow

extensions for short-term temporal priming of particular features, [49], or even

goal-oriented feature tuning, [28, 55]. Although top-down modulation of the

saliency signal is not yet implemented for this thesis, it is a clear next step in

producing a biologically plausible guide for visual attention. To that end, the

representation produced by the PPM is referred to as a priority map rather

than simply a saliency map in order to remain consistent with the terminology

used by Fecteau and Munoz, [24]. One of the aims of this thesis is to provide

a computational platform on which various methods of top-down control may

be tested, as the ways in which humans exert top-down control of visual search

salience remains an area of ongoing research, [49, 50, 51, 23].

Once a �lter response image has been calculated as the output of each �lter

plane, an estimate is formed for the distribution of that �lter's response over a
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(a) (b) (c)

Figure 2.2 � Demonstration of oriented log-Gabor �lter responses to an example
image with many horizontal edges and few vertical edges. (a) The original image
being run through the �lters. (b) The result from a horizontally aligned log-
Gabor �lter. (c) The result from a vertically aligned log-Gabor �lter. In both
�lter response images darker colours correspond to a strong negative response of
the �lter, lighter colours to a strong positive response, and grey to a zero response.

Figure 2.3 � Filter output (middle row) and the corresponding probability esti-
mates (bottom row) for log-Gabor �lters with the same orientation tuned to three
di�erent spatial scales. The �lter responding to the highest spatial frequencies is
on the left, and the �lter responding to the lowest is on the right.

46



given image. For example, an image with many horizontal edges but few vertical

edges when passed through a horizontally oriented log-Gabor �lter would have a

number of regions with a large �lter response. A good estimate for the probable

response of a pixel randomly selected from that image would therefore re�ect

this, and give a high probability score for a large response. Likewise, that same

image passed through a vertically oriented log-Gabor �lter would produce few

regions with a large response, and therefore the probability density estimate for

that �lter response would be high for a low response (see Figure 2.2). Estimating

the probable response of each pixel allows the self-information of that pixel to be

calculated, which can in turn be used to calculate the saliency value according

to the AIM algorithm (see Figure 2.3).

Using the probability density estimate for each �lter, we evaluate the prob-

ability of obtaining the value for each pixel in the �lter response image. These

probability estimates are then combined across all the �lters to produce the

salience of each pixel in the saliency output plane according to the AIM saliency

equation:

SALIENCYx = − log(
∏
i∈F

pi) = −
∑
i∈F

log(pi) (2.1)

where SALIENCYx represents the saliency of an arbitrary pixel x, F is

the set of all �lters, and pi is the probability estimate for the response of pixel

x to the ith �lter.

2.2.2 Spatial Extent

The PPM produces a priority score for a de�ned proportion of the visual �eld

which defaults to eccentricity greater than ten degrees, but which can be cus-

tomized to any appropriate value (including the entire image, in which case the

PPM operates in much the same way as any bottom-up saliency map algorithm
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discussed in Section 1.2.2.2). Even though the central visual �eld is not given a

bottom-up salience value by the PPM, it could nevertheless provide important

contextual image statistics in the generation of the probability density estimates

for the peripheral region in which the PPM does generate a salience value. Thus,

it is important that the PPM analyzes the entire visual �eld with virtually the

same concentration of �lters (see Section 2.2.3 for a possible exception to this).

This necessary representation of the entire scene can be seen physiologically

in area V6 in the human visual system, which represents the whole scene in a

roughly equivalent manner rather than incorporate the rapid drop-o� in cor-

tical magni�cation with increasing eccentricity of most other visual areas (see

Section 1.2.1.2) [22]. It should be noted that the computation shown in Figure

2.1 completes the saliency calculation over the entire image, rather than just

over the periphery for which the priority signal will ultimately be utilized. This

was done both for display purposes and because it was convenient to mask out

the central saliency values at the level of the History Biased Priority Map (see

Section 2.4) rather than at the level of the PPM. It would be unlikely that a

biological system would perform excess calculations which are never passed on,

however, so a future system seeking better biological �delity would most likely

shift the central masking to the level of the PPM.

In addition to addressing where the PPM applies its �lters, however, the

visual neighbourhood from which the density estimates are created must also

be examined. As mentioned in Section 1.2.2.2, the original formulation of AIM

applied a Gaussian window from which it drew the �lter responses to create

the density estimate, e�ectively resulting in an individual regional density es-

timate centered at each individual pixel. However, published implementations

up to now have, for computational simplicity, all relied on a de�nition for the

surrounding neighbourhood in which each pixel in the entire image contributes
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equally to the density estimate, creating a single histogram density estimate

equivalent for all pixels. Although the psychophysical evidence for spatial dis-

tribution of context in human visual search is not well explored, it is clear that

humans are not constrained to just a single level of spatial context (see Figure

2.4). The TarzaNN framework is designed to handle parallel computation over

a feature plane, and thus more limited local neighbourhoods should in principle

become computationally feasible, thereby allowing the exploration of alterna-

tive de�nitions of local neighbourhood in the future. To facilitate this, the PPM

was designed to be extensible in the manner with which it calculates density

estimates.

2.2.3 Entropy-based Heterogeneous Filter Relation

Under the standard formulation of AIM, each pixel has its saliency determined

according to equation 2.1. However, it is possible that some subset β of the

�lter set cannot be executed over a given image region. An example of when

this might occur is for a �lter set which varies in size (higher spatial frequencies

can be measured with smaller �lter sizes), which therefore introduces a strip of

pixels around the image periphery over which only the smaller �lters are de�ned.

In the case of a pixel which only has some �lters de�ned, a measure of salience

based on self-information can still be derived from the observed �lters, but it

is not readily apparent how this measure can be compared to the saliency of

elements over which all �lters have been executed.

An obvious mechanism, and the simplest option to implement, would be to

simply replace the sum of the self-information over all �lters with the sum of

self-information over the executed �lters. Thus, equation 2.1 becomes:

SALIENCYx = −
∑
i∈α

log(pi) (2.2)
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(a) (b)

(c)

Figure 2.4 � Several demonstrations of the e�ect that neighbourhood size has
on the saliency calculation. (a) Hard conjunction search reproduced from Figure
1.3. (b) A conjunction search with identical elements to (a), but which is made
easier by the spatial grouping of objects. If only the global neighbourhood is
considered in a saliency calculation, however, the target blue L will have identical
salience in both (a) and (b). (c) An image in which the global spatial context
is necessary for locating the distinctly salient hole in the candle coverage (image
reproduced from [9]).
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where α ⊆ F, α is the set of �lters which are de�ned over pixel x, and all

other elements of the equation are as de�ned in equation 2.1. This e�ectively

penalizes the salience measure of a pixel for any missing �lters by setting the self-

information measure from that �lter to zero. Although this is easy to implement,

for any region which has a large number of unde�ned �lters it will become quite

di�cult to generate the maximum salience value in the salience map even with

a very high self-information score from the de�ned �lter set.

Another relatively simple option would be to normalize the salience measure

based on the number of components the measure is based upon. Thus, equation

equation 2.1 becomes:

SALIENCYx = − 1

N

∑
i∈β

log(pi) (2.3)

where N is the size of set α, α ⊆ F, and all other elements of the equation

are as de�ned in equation 2.1. Although this ensures that regions with fewer

de�ned �lters still have a decent chance of capturing attention, it leaves those

regions more vulnerable to noise and reduces the overall e�ect of the �lters

which are not de�ned over the whole image.

A third, novel, option is proposed here as entropy-based heterogeneous �l-

ter relation (EBHF). In this formulation, entropy is used as a measure of the

expected self-information for the unde�ned �lters:

−
∑
k∈Y

pjk log(pjk) (2.4)

where Y is the full set of elements in each probability distribution Pj(Y ) and

pjk denotes the probability Pj(Y = k). Therefore, inserting equation 2.4 into

equation 2.1 in place of the self-information component for all �lters β which

are unde�ned over pixel x, we get:
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SALIENCYx = −
∑
i∈α

log(pi)−
∑
j∈β

∑
k∈Y

pjk log(pjk) (2.5)

where α ⊆ F, β ⊆ F, α ∩ β = ∅ and α ∪ β = F.

Although the entropy calculation adds some increased computational com-

plexity to the saliency calculation, it is a constant value over each probability

distribution and therefore needs to simply be calculated once at the time of the

density generation. The addition of an entropy component will allow one to

essentially guess at the self-information contribution of an unresolved �lter, and

thereby directly compare saliency measures across an image even when the im-

age has been run through a heterogeneous �lter set. It may be useful to modify

equation 2.5 with a weight term applied to the entropy elements, in order to

adjust the impact of the entropy term:

SALIENCYx = −
∑
i∈α

log(pi)− c
∑
j∈β

∑
k∈Y

pjk log(pjk) (2.6)

where c is a constant weight.

EBHF was not implemented as part of this thesis work, as the �lters were all

made equal in size. However, in the future it may be a worthwhile mechanism

to explore, particularly if a larger and more diverse �lter set is required for a

PPM implementation.

2.3 Fixation History Map

The Fixation History Map (FHM) provides a record of prior �xations over a

region greater than the current visual �eld. This allows IOR to extend beyond

the visual �eld of a current �xation, and prevent an oscillatory cycle of �xations

between a set of three or four widely spaced points of interest. It provides a

�rst approximation for the psychophysical evidence reviewed in Section 1.2.1.5;
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as with the PPM described in Section 2.2, the FHM implemented in this thesis

currently functions in a bottom-up manner. It is meant to serve as a compu-

tational tool which can be used to test top-down control strategies in future

implementations.

2.3.1 Functional Overview

The FHM provides a short-term inhibitory mechanism based on prior �xation

locations. Previous �xations are stored in a retinotopic map, with spatial lo-

cations relative to the current �xation. The FHM is two dimensional; if future

work extends the FHM to provide object-based IOR or other more complex

behaviour seen in human psychophysics, it is unclear if this will require an

extension of the FHM into three dimensions or if it will still be best served

by recording two dimensional projections of inhibitory locations in retinotopic

coordinates.

Locations stored in the FHM begin to decay with each subsequent �xation,

whether that �xation is a covertly allocated central �xation or an overt move-

ment of the camera. The duration of this memory can be customized, but it

defaults to a linear decay which completely ceases after �ve subsequent �xations

(see Section 1.2.1.5 for a discussion of the temporal persistence of IOR). Since

the memory of prior �xation locations are stored relative to the current �xa-

tion, they must be updated with each camera movement. This is performed for

computational simplicity by directly translating the stored values in the FHM

based on the magnitude of motor commands, but Zaharescu suggests a method

by which this translation could be accomplished in a more biologically plausible

manner through neuronal interactions, [96].

Neurophysiological evidence has been found for a similar update mechanism

in the posterior parietal cortex of both humans and monkeys, [52, 20]. Inter-

53



estingly, Duhamel et al. additionally found evidence in the parietal cortex for

neurons to �re in response to a saccade bringing the location of a previously

�ashed stimulus into their receptive �elds, even though that stimulus was no

longer active [20]. This was interpreted as parietal cortex cells anticipating the

appearance of the visual �eld in response to an eye movement. It could alterna-

tively be evidence that the �ashed stimulus elicited an attentional allocation (as

sudden onset stimuli often will, see the end of Section 1.2.1.2 for a discussion of

attentional capture) which is now being remembered as part of an IOR mech-

anism. It is worthwhile noting that the neurophysiological evidence presented

here implicates regions of the parietal cortex as part of an IOR e�ect, whereas

evidence reviewed in Section 1.2.1.5 suggested instead that IOR is controlled

by the frontal eye �elds (FEF). It is possible that both areas have a role in

the implementation of IOR, as some research has posited that the regions are

functionally linked as part of an interconnected oculomotor network, [24].

The original interpretation of Duhamel et al.'s �ndings raises an interesting

question about the nature of short term visual memory. In this thesis, the only

form of visual persistence between �xations is an IOR mechanism; however,

it is possible that other forms of low-level information might be bene�cial to

hang onto as well. For example, if two peripheral elements on opposite sides of

the visual �eld have high saliency values which are nearly identical, it could be

worthwhile for the system to remember the location of the slightly lower one as

it �xates on the winner. This value could then be compared against the saliency

values of the now current peripheral visual �eld, allowing the system the option

of saccading all the way back to this other highly salient element. A saliency

modulated set of probability cells described in Section 1.2.3.3 would e�ectively

operate in this manner, as information from a current �xation would have the

ability to both inhibit or enhance the probability of a future �xation to a region.

54



2.3.2 Spatial Extent

Evidence for short-term memory regarding an attended location outside of the

visual �eld was demonstrated by Tark and Curtis using an auditory-visual task

which presented auditorally cued points of interest both behind and in front of

subjects' heads [73]. While human subjects were able to keep track of regions

of interest located fully behind their heads, for the purposes of this thesis it

was deemed unlikely that a solely visual system would need to support an FHM

extending beyond twice the size of the visual �eld. This is due to the fact that

an auditory cue might cause a person to jump from one �xation to another

directly behind, whereas a solely visual system is only able to turn itself around

by following a chain of �xations which can be no farther apart than half the

width or height of a single visual �eld. Thus the inhibition of a point which is

farther than two visual �elds away from a current target is likely to have worn

o� by the time �xation once again returns to its general vicinity unless a speci�c

task implementation requires an unusually long inhibitory persistence.

In addition to deciding the extent of the FHM, the resolution is also impor-

tant. The lower the resolution of the map, the fewer computational resources

it will require. Nevertheless, reducing the resolution too greatly will adversely

a�ect performance, as the inhibition of one target could potentially inhibit the

ability of the system to attend to another nearby yet distinct target. Since mem-

ory optimization was not a primary concern in this thesis, the FHM was left at

the same resolution as the visual �eld itself. Future implementations which are

more resource limited, however, may need to explore more space e�cient sizes

of FHM resolution.
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2.4 History Biased Priority Map

The History Biased Priority Map (HPBM) integrates the information coming

from the central attentional �eld with that of the FHM and PPM in order to

determine an overall attentional decision. Although the aim of this thesis is

to utilize the Selective Tuning (ST) model to guide attention in the central

attentional �eld, the full implementation of ST is beyond the scope of this

work, and therefore an implementation of ST from previous work will be used

[65]. There is nothing in the nature of the HBPM which requires attentional

direction from the central �eld to be provided by the central ST mechanism

(and one should in principle be able to use the �xation controller developed

here with another attentional model). However, since the development of this

model was driven by the view of attention as a set of interacting mechanisms

rather than a single overarching algorithm, a view which is integral to the nature

of ST, it is natural to concentrate on integrating the system within the overall

ST architecture.

2.4.1 Functional Overview

The primary challenge of the HBPM design is in balancing the priority of the

next central �xation (NCF) signal from the computations of the central atten-

tional �eld with input from the PPM. The NCF and the saliency-based signals

found within the PPM are derived from quite di�erent calculations, and it is

thus di�cult to directly compare the two. In previous work which has looked

at a separate overt and covert attentional system, the central and peripheral

attentional signals were still driven by the same algorithm, and could thus be

compared directly in an �Eye Movement Bias� term as the di�erence between

the average neuronal activation in the centre �eld minus the average neuronal

activation in the periphery [96]. In this thesis, selection between the NCF and
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PPM signal is instead a winner-take-all comparison of the two signals. The

HBPM is intentionally structured to be �exible in the manner with which it

integrates the two elements depending on how the NCF signal is generated.

2.4.2 Spatial Extent

The HBPM covers the entire visual �eld, although it will only activate the

saccade controller if a peripheral signal is selected to have the highest priority.

Future implementations, however, may bene�t by extending the HBPM beyond

the size of the visual �eld if the system seeks to integrate �xational cues from

memory (see Section 2.3.1 for a brief discussion), world knowledge, or other

sensory modalities.

2.5 Summary

This chapter introduced an overview of the conceptual aspects for the main

algorithmic components of this thesis: the Peripheral Priority Map (PPM), the

Fixational History Map (FHM), and the History-Biased Priority Map (HBPM).

Additionally, an implementation of the AIM algorithm in TarzaNN is discussed

in the context of serving as the bottom-up processing stream for the PPM,

and a novel method for calculating saliency based on self-information for a

heterogeneous �lter distribution is proposed. The three algorithmic compo-

nents described provide a useful computational framework which can be used

to test top-down control strategies which have previously been largely ignored

in saliency-based approaches to attention. Speci�c implementation details for

these components are discussed in Chapter 3.
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Chapter 3

Implementation

3.1 Overview

The majority of work for this thesis was implemented as an extension to the

TarzaNN neural network simulator framework, which will be described in Sec-

tion 3.3. A few minor components were performed in MATLAB or utilized

proprietary software libraries; these will be noted when appropriate. The phys-

ical hardware used will be reviewed in Section 3.2. Sections 3.4-3.6 describe

the implementation details of the corresponding sections from Chapter 2, while

Section 3.7 overviews the saccade controller. Section 3.8 overviews an additional

structure introduced to the TarzaNN framework in the course of this work which

provides a uni�ed environment controller designed to provide a virtual testing

environment for the system as well as allow easier and more reliable extension

of the elements of this thesis to future physical hardware setups.
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Figure 3.1 � Physical setup of camera and PTU.
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3.2 Physical Hardware

3.2.1 Pan-Tilt Unit

The pan-tilt unit used is a Model PTU-D46 from DirectedPerception, [2, 19]. It

provides reliable and accurate positioning controllable through ASCII or binary

formats. The PTU is connected via a serial port; the serial port address and

BAUD rate must be provided to the network through the environment control

structure (see Section 3.8).

3.2.2 Camera

The camera used is a Point Grey Flea, a miniature IEEE-1394 (FireWire) cam-

era produced by Point Grey up to January 2010, at which point it was no longer

marketed to new customers due to the availability of Flea2 and Flea3 cameras

[1]. The camera has numerous customizable operating parameters, and was op-

erated in Mode 1 (downsampling acquired images at a 2:1 ratio) Mono16 for

the purposes of this thesis. The lens is a 6mm CCTV lens f1.2.

3.3 TarzaNN Neural Network Simulator

TarzaNN is a general purpose neural network simulator implemented in the C++

programming language. Its primary design was completed by Albert Rothen-

stein and Andrei Zaharescu; descriptions and details of the design can be found

in [66, 65, 96], and an online resource is currently maintained for the project,

[67]. The discussion here will therefore simply attempt to provide a descrip-

tive overview of the TarzaNN framework, as further details may be found in

the original reference materials. Extensions to TarzaNN implemented as part

of this work are described in the appropriate sections following this section's

overview of the overall framework.
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Figure 3.2 � Diagram representation of the network used in this thesis repre-
senting the TarzaNN objects. Di�erent �lter types are colour coded. Not shown
is the environment control object, as this is a global object which is not directly
linked to any one feature plane.

TarzaNN is designed to provide a wide set of customizable tools which are

combined to create a speci�c processing network. The building blocks of these

networks come in two main forms: Feature Planes and Filters. A diagram of the

network developed for this thesis representing the TarzaNN objects is shown in

Figure 3.2.

3.3.1 Feature Planes

Feature planes are two-dimensional clusters of neurons, displayed in Figure 3.2

as the labeled black boxes. A feature plane is de�ned by the receptive �eld and
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response properties of its constituent neurons. The receptive �eld properties

of each neuron are determined by the �lters linking a given feature plane to

the rest of the network, while the response properties of the neurons are set

as an intrinsic property of the feature plane. A number of commonly desired

response properties are available, including a linear unconstrained neuron which

can take on any numerical value determined by the resulting convolutions of its

receptive �eld and a sigmoidal neuron which maps incoming responses onto a

sigmoid curve between a minimal and maximal response value. A special case

of the feature plane is the input feature plane, which has no receptive �elds to

modify its neuronal responses but instead provides input to the network through

a de�ned data source such as a camera or saved image.

Feature planes can themselves be organized into layers, allowing an addi-

tional degree of control over the network structure. A network can be set to

execute layer by layer, pausing before moving on to the next; this is useful for

debugging and explanatory purposes.

3.3.2 Filters

Filters are the links between feature planes and de�ne the receptive �elds of the

constituent neuron. Filters are displayed in Figure 3.2 as the coloured arrows

linking feature planes. Each �lter consists of a convolution kernel applied to

the output values of one feature plane which are then passed as input to a

target plane. TarzaNN itself has a number of prede�ned methods for padding

an image edge or interpolating around boundary e�ects introduced by a kernel

convolution, but these were turned o� for the purposes of this thesis. A feature

plane can receive input from multiple planes via a set of identical (such as the

Saliency Plane in Figure 3.2) or heterogeneous �lters (such as the Output Plane

in Figure 3.2); the resulting input from each individual plane is then additively
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combined according to the response properties of the feature plane neurons.

A number of common �lter types are de�ned, such as the simple identity �lter

which simply passes input unchanged between feature planes and a Gaussian

kernel. Additionally, a �le �lter is provided which was originally developed to

read in a customized kernel in the form of an image. This was extended for this

thesis to allow input either from image formats or text �les, thereby allowing

completely customizable �lter kernels (including negative values which were

precluded from image-based �le formats) to be developed outside of TarzaNN

and easily passed in as part of a network de�nition.

3.4 Peripheral Priority Map

The peripheral priority map, as mentioned in Section 2.2, provides an imple-

mentation of the AIM saliency algorithm. This required several specialized ex-

tensions of the existing TarzaNN object classes. Although these extensions were

performed speci�cally with AIM in mind, they may nevertheless be potentially

used in any future arbitrary network.

3.4.1 Filters

As described in Section 2.2 and displayed in Figure 2.1, the peripheral priority

map applies a bank of �lters to the input image from which the image statistics

necessary for the AIM algorithm may be derived. The PPM calculation cor-

responds to the feature plane set from the Input Plane to the Saliency Plane

in Figure 3.2. The �lters chosen for this implementation and used in both ex-

perimental setups described in Chapter 4 were log-Gabor �lters generated in

MATLAB, [44]. As mentioned in Section 2.2, log-Gabor �lters were chosen

for a number of positive performance reasons as well as for their similarity to

early cortical processing. They additionally have the advantage of not being
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tuned to any particular problem domain (unlike ICA �lters which are derived

by sampling image patches from within a given data-set), and thus could be

e�ectively used in both experimental setups explored in this thesis despite the

dissimilarity of the two experimental domains. Likewise, the parametric nature

of log-Gabor �lters should allow for a more straightforward approach in future

work into top-down tuning of the priority signal.

The �lters were speci�cally generated using Kovesi's gaborconvolve MAT-

LAB function, [44], on a sample image taken from the physical experiment

described in Section 4.1.1. A set of 24 �lters was generated with eight orien-

tations at three spatial scales with a minimum wavelength of 3 and a scaling

factor between spatial scales of 2. One challenge to utilizing log-Gabor �l-

ters is that most applications (including Kovesi's code) perform the convolution

calculation in the frequency domain; implementing a frequency domain calcula-

tion in TarzaNN would require a great deal of task-speci�c programming which

would have minimal biological plausibility. Therefore, the log-Gabor �lters were

necessarily subsampled kernels which provide a spatial approximation to the fre-

quency domain calculation (see Figure 3.3 for an example). A numerical check

was performed on each kernel to ensure that the spatial truncation of the �lter

kernel introduced a minimal DC-component to the calculation and maintained

the majority of the �lter information.

3.4.2 Histogram Feature Plane

The histogram feature plane is a child class of the feature plane, speci�cally

modi�ed to produce a probability estimate of the neuronal value calculated

rather output that value itself. This probability estimate is currently produced

by creating a single histogram of neuron values over the entire feature plane,

but in the future will be extended to allow localized histogram estimates as well.
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Figure 3.3 � The spatial truncation of a log-Gabor �lter. The image on the left
shows the full spatial representation of the �lter produced by the gaborconvolve
MATLAB function, while the image on the right shows the truncated kernel used
to approximate the �lter in TarzaNN. The example shown here is for the largest
spatial resolution used in this thesis.

Additionally, the implementation of a heterogeneous �lter relation as described

in Section 2.2.3 will require additional modi�cations to de�ne the region in

which an entropy-based estimation was required. It is likewise possible that

future work may want to estimate probabilities with more complex estimates

than a simple counted histogram; this should be readily possible through the

addition of tunable parameters in the feature plane constructor.

It should be noted that the network shown in Figure 3.2 includes a layer

of Filter Planes for the log-Gabor �lter responses followed by a subsequent

layer of Histogram Planes which pass probability estimates for each pixel on

to the Saliency Plane. Implementing this as two separate layers is functionally

unnecessary as each feature plane representing a log-Gabor �lter response is

linked via an identity �lter to its corresponding histogram feature plane, and a

computationally faster and more space-e�cient network could be implemented

which combines the two layers into a single layer of Histogram Planes. Since

this thesis was not focused on computational e�ciency, however, it was decided

to keep the two layers separate in order to allow visual inspection of the �lter

responses as well as the probability estimates for those responses (see Figure 3.4
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Figure 3.4 � Example of TarzaNN display after a completed pass through the
network. The input image and the saliency map are displayed in the top left.
The raw output of the log-Gabor �lter bank is shown in the upper middle, and
the resultant probability maps based on that �lter output is displayed below. In
the bottom right the target selection and translated �xational history map are
shown, along with the resultant output of the HBPM which has been scaled to
accentuate the winning saliency region.

for an example of the active output produced during network execution).

3.4.3 Saliency Feature Plane

Like the histogram feature plane, the saliency feature plane is another special-

purpose child class of the generic TarzaNN feature plane. Whereas the his-

togram feature plane introduced a hidden histogram structure in order to re-

place the standard neuronal output values with an estimate of their probability,

the saliency feature plane functions as a normal feature plane which overloads

the standard summation of incoming activations with the sum of the negative

log of those values. It is assumed that input values should be on the interval

(0, 1], and a check is included to ensure that no values explode to in�nity. After

calculating the value of the sum over the negative log of all input values for all

constituent neurons, they are linearly scaled by the maximum response value,
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Figure 3.5 � Several examples of saliency maps generated for a variety of image
types. The top image is a challenging image for bottom-up saliency due to the
many bright and varied textures, as well as the lack of contextual knowledge
about human structure and faces. The centre image displays how text tends to
produce strong salience signals due to its distinct and strong edges. The bottom
image displays a natural scene to which AIM is well-suited; the surfers stand out
from the background without requiring any contextual knowledge.

thereby casting all output to the range [0, 1]. Several example images and their

corresponding saliency maps are shown in Figure 3.5.

3.5 Fixation History Map

The �xation history map (FHM), as described in Section 2.3, provides a record

of previously �xated locations in order to provide an IOR element to the network

which prevents continuous oscillation between a small number of highly salient

regions. This is implemented via the introduction of an inhibitory �lter and an
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FHM feature plane, and is shown as the FHM Plane in Figure 3.2.

3.5.1 Inhibitory Filter

The inhibitory �lter provides a number of inhibitory kernels based on the mode

and size speci�ed. For all experiments in this thesis inhibition was provided in

the form of a negative identity �lter (a 1× 1 kernel with a value of −1), but the

option for a negative Gaussian and a negative �lter either uniformly averaged

or uniformly applied over a kernel of a speci�ed size were also implemented. All

outgoing �lter connections of the FHM feature plane are inhibitory �lters.

3.5.2 FHM Feature Plane

The FHM feature plane is a child class of the generic TarzaNN feature plane.

The FHM feature plane includes an additional memory array as a private data

structure hidden from the rest of the network. This memory array must be at

least as large as the feature plane itself, but may be arbitrarily larger. The

memory array is cocentric with the feature plane, and stores a history of all re-

membered �xations. Each time the feature plane steps, elements of the memory

array decay according to the equation:

Mt+1
i,j = max(Mt

i,j −
1

α
, 0)

where Mt
i,j represents the memory value at time step t and location (i, j),

and α is a de�ned decay constant. Linear decay appears to give acceptable

results for now, but future work will investigate other methods of inhibitory

decay (such as exponential decay). Once all memory traces have been decayed,

they are translated in order to centre the new locus of attention provided by

the HBPM, at which point the new locus of attention is added to memory. The
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output of the FHM feature plane is then taken from the central the portion of

the memory matrix which is of the same size as the feature plane.

It is important to note that the FHM feature plane is only de�ned to receive

input from a single feature plane. This contrasts with the functionality of other

TarzaNN feature planes which are capable of supporting an unspeci�ed num-

ber of input or output connections. This limitation was imposed on the FHM

feature plane since it receives as input a representation of the locus of atten-

tion, something for which multiple inputs does not make sense. In the future

when top-down task in�uences are incorporated, this will either have to be done

through intermediate feature planes or a slight modi�cation to the manner in

which the FHM feature plane is programmed to function.

3.6 History Biased Priority Map

The history biased priority map (HBPM), as described in Section 2.4, integrates

the saliency map with inhibition from the FHM to determine the peripheral

target with the highest priority. It is represented by the Output Plane in Figure

3.2. It performs its function with a special-purpose child class of the TarzaNN

feature plane called the saliency output feature plane. The input from the

saliency map is generally smoothed via a Gaussian �lter and combined with the

output of the FHM feature plane through an inhibitory �lter. The smoothing

of the saliency map is performed to increase the signal-to-noise ratio, since the

winning target is based on the largest single pixel response (see Section 4.2.1.2

for further discussion of salience smoothing).

Currently the HBPM will output its peripheral priority target directly to

the PTU controller (see Section 3.7.2) when operating with a physical environ-

ment. When operating in a virtual environment, the peripheral priority target

is instead sent to the environment controller (see Section 3.8). In the future
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this will be modi�ed such that the HBPM will always send its peripheral tar-

get information to the environment controller, which will then determine the

appropriate response based on the physical or virtual properties in which the

network is operating.

3.7 Saccade Controller

The saccade controller consists of two major components: image acquisition

and PTU control. Currently these two components are controlled separately

and directly by the specialized feature planes developed for this thesis; in the

future it is planned to move these components to be a component environment

in the environment control class (see Section 3.8).

3.7.1 Image Acquisition

Image acquisition is controlled through a specialized input feature plane called

an input camera feature plane. This feature plane receives input from the cam-

era described in Section 3.2.2, utilizing Point Grey FlyCapture development

tools. Because of this reliance on proprietary software, the network only works

on the Windows operating system, in contrast with the rest of the TarzaNN

project. Attempts were made to utilize open-source cross-platform imaging

tools from OpenCV, but it was found that the OpenCV tools did not support

the given camera model in a Windows 7 environment. In the future it is hoped

to remove this reliance on proprietary software in order to ensure full cross-

platform functionality of the TarzaNN framework.
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3.7.2 PTU Control

The active visual component of this thesis utilizes the pan-tilt unit (PTU) de-

scribed in Section 3.2.1. Control of the PTU is executed by the saliency output

feature plane described in Section 3.6, and makes use of a programming API

provided with the PTU. Unlike the proprietary software involved in the camera

control, this programming API is cross-platform, and so there is currently no

requirement to replace it with an alternative method of cross-platform control.

3.8 Environment Control

The environment control is a singleton class introduced to the TarzaNN frame-

work designed to encapsulate all necessary environmental parameters and data.

The class was introduced late in the design process of this thesis, and thus it

has been only partially integrated into the network when operating in a physical

environment (the elements described in Section 3.7 will be controlled through

environment control in the future rather than directly from the network feature

planes). The environment control class does have a fully implemented virtual

environment, however, which allows the system to simulate an active visual

system over a pre-loaded image.

3.8.1 Intent of Design

Creating a dedicated environment control class in the TarzaNN framework

is intended to simplify the process involved in designing and implementing a

TarzaNN network for a particular task setup. As a singleton class the sys-

tem will be sure that all environment calls interact with the same class, which

provides a straightforward method for parameters such as pixel-to-degree con-

version ratios to be de�ned at run-time (when the environment is set up) but
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still globally constant (in the past such parameters have been included as de-

�ned macros in TarzaNN, but this forces users to modify elements of the code

when changing between environments).

More importantly, feature planes which must interact with the environment,

whether it is input feature planes acquiring information or feature planes out-

putting control signals to physical or virtual hardware, can be programmed with

a generic input or output function call to the environment control object. If a

new environmental setup is desired (for example, due to the acquisition of a new

camera), the only code which would have to be extended to interact with the

new hardware would be the environment class, which should greatly increase

development speed.

3.8.1.1 Virtual Environment

The environment control class grew out of the original need for a virtual en-

vironment which could run simulations of the network. Operating in a virtual

environment allows for faster and more repeatable experimentation, as well as

the use of common data sets which have been used by other systems (see Section

4.1.2). When the virtual environment is created, a speci�ed image �le is loaded;

this image constitutes the �environment� in which the network will now oper-

ate. When an image is requested by the input camera feature plane, a virtual

camera with speci�ed height and width properties will sample a portion of the

environment image based on the current �xation coordinates (these are set by

default to the centre of the environment image at the start of execution). When

a command is given to saccade to a new target in the image, the �xation coor-

dinates are updated and a new input image is sampled from the environment

image. If any portion of the desired camera image is outside the environment

image bounds, it is padded with the average value of all the environment edge

pixels.
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3.8.1.2 Data Logging

Another important element of the environment control class is the introduction

of data logging tools. Current data logging options include a history of �xation

command sequences as well as the central response network's decision regarding

the central visual �eld (if applicable). When TarzaNN �nishes execution of a

network, a call is automatically made for the environment control class to save

its recorded data in a new �le if data logging is turned on.

3.8.2 Future Work

As previously mentioned, the environment control class was introduced rela-

tively late in the thesis design process, and thus has not been completely inte-

grated into the TarzaNN framework. In addition to not yet completely encapsu-

lating control over the supported physical hardware, the use of the environment

control class is currently restricted to prede�ned networks, as support for the

environment setup has not yet been added to the Network Parser which handles

networks de�ned in XML. Likewise, the ability to modify the environment con-

trol class through the network editor in TarzaNN has not yet been implemented.

3.9 Summary

This chapter overviewed TarzaNN, the computational framework with which

this thesis was implemented, in Section 3.3. Additionally, the hardware details

of the physical camera and PTU which the system has been implemented to

control are described in Sections 3.2 and 3.7. The software contributions of this

thesis have predominantly consisted of programming a number of extensions

to the generic �lter and feature plane object classes in TarzaNN, as described

in Sections 3.4-3.6. An additional software component to extend the TarzaNN
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framework, the environment control class, is discussed in Section 3.8. The en-

vironment control class is designed to provide a generic control module for any

active visual system constructed within TarzaNN, thereby greatly increasing the

speed and ease with which new active control networks or hardware con�gura-

tions may be implemented.
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Chapter 4

Empirical Evaluation

4.1 Experimental Overview

Two experimental methodologies were used to evaluate the system developed for

this thesis: a visual search task using physical hardware, and an eye-tracking

task in a virtual environment utilizing a database of natural images. The physi-

cal experiment setup is described in Section 4.1.1, and the results are presented

in Section 4.2.1. The virtual experiment setup is described in Section 4.1.2, and

the results are presented in Section 4.2.2.

The physical task was designed to be a proof-of-principle experiment which

would demonstrate a completed ST network functioning on a physical platform.

The system should be capable of e�ciently locating a visual target among dis-

tractors, with particular interest in the case when it is faced with an experi-

mental �eld greater in size than the visual �eld of the camera. There were no

top-down strategies or considerations beyond the central �eld target recognition

to guide the search, which means that there are certain con�gurations of targets

and distractors in which the system will fail; nevertheless performance should
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be signi�cantly better than the brute force approach in the average case.

The virtual experiment was selected to explore how well peripherally guided

�xations would evaluate against psychophysical data for human �xations in

comparison to AIM. AIM was chosen as a benchmark both since it is provides

the basis on which the peripheral priority map of this thesis was developed, but

also because it was shown by Borji et al. to be among the top four saliency

detection models of the thirty four tested for predicting human �xations, [6].

Therefore, a favourable performance compared to AIM would place our system

among the top performers of this algorithm class for �xation prediction.

4.1.1 Physical Experiment Setup

The �rst test of this thesis work is to demonstrate a fully integrated ST net-

work operating in a physical environment with equipment described in Section

3.2. This experiment is meant primarily as a proof of principle for the system

behaviour, and thus uses a well-established visual search task of searching for

an �+� or �x� amongst �-�s (see Figure 4.1). For the purposes of this thesis, the

term experiment �eld refers to the region in which targets and distractors could

be placed, while the visual �eld is the portion of the acquired image over which

either peripheral or central processing is de�ned.

The target orientation was randomly determined to be either a �+� or an

�x� on each trial. Placement of all elements in the visual �eld were randomly

determined using a pseudorandom number generator in MATLAB. Any element

which was placed with its centre point within 3.5 cm of another element was

shifted to a new random location (this was roughly the length of the average

distractor). The image acquired by the camera covered a 32 × 32 cm2 region

of the experiment �eld, which was a visual �eld of approximately 32.75◦. To

facilitate processing speed, the camera was set to capture at half resolution,
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(a.) (b.) (c.)

Figure 4.1 � Example sequence of images acquired during a visual search trial.
This speci�c image sequence was from Trial 1 of Experiment 2 (see Section 4.1.1.3)
(a.) Initial �xation, the target x is visible in the upper right corner but outside
of the peripheral processing boundary. (b.) First �xation on a distractor, the
target x is now within the peripheral salience �eld. (c.) Final �xation with the
target x centered.

producing images of size 384 × 384. Convolutions in the peripheral processing

network resulted in some loss of de�ned output in the extreme periphery of

the visual �eld, which ranged in size from 20 − 47 pixels (1.7◦ − 4◦) from the

image edge depending on the degree of smoothing (see Section 4.2.1.2 for a

discussion of salience smoothing). The central region was de�ned as a square

10◦×10◦ centered on the central �xation point. The number of trials conducted

was rather low (20 overall, 10 at each experiment �eld size), largely due to

prohibitive time required to accurately set up each trial.

4.1.1.1 Target Recognition in the Central Field

A recognition network for identifying the presence of a target �x� or �+� was

produced by a two-stage network. The �rst layer consists of �W-�lter� edge

detectors at four orientations: 0◦, 45◦, 90◦, and 135◦, [90]. The outputs of

these edge detectors are then passed to a recognition layer which smooths the

output of the edge detectors via a Gaussian �lter and combines the results of the

vertical and angled edges in a spatially downsampled feature plane. A threshold

is applied to this output and the target is reported as found if any region is found

with a response above threshold.
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Figure 4.2 � Example of the masked image provided to the central �eld recog-
nition network.

This is obviously a fairly simple network to operate in a problem domain

speci�cally chosen for its straightforwardness as a proof of principle functional

demonstration. Therefore, in order to attempt to still capture the essence of

the Boundary Problem, a linear mask was applied to the input image which

gradually decreased the pixel activation outside the central �eld (see Figure

4.2 for an example). It was felt that such a mask would e�ectively capture a

sense of gradually reduced recognition capacity as one moved further from the

unmodi�ed central �eld. The mask was generally e�ective at reducing target

detection outside of the central �eld, although targets just outside the central

�eld were still occasionally detected (see Section 4.2.1 for a full discussion).

4.1.1.2 Experiment 1: Equal Dimensions of Visual Field and Exper-

iment Field

The �rst physical experiment was performed with an experiment �eld of the

same size as the visual �eld over which peripheral results were de�ned. This

was done with minimal smoothing of salience values (the salience map was run

through a 16 × 16 Gaussian �lter with a standard deviation of 3 pixels) in

order to try and minimize the boundary e�ect in the system (see Section 4.2.1.2

for a discussion of smoothing). Taking into account the minimal boundary

e�ect introduced by the log-Gabor �lters and smoothing of salience values, the

experiment �eld was 29×29 cm2. Five trials were performed with six distractors,
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and �ve trials were performed with nine distractors. If the system functions

optimally, each trial should end either on the initial �xation (if the target is

placed within the initial central �eld) or after a single saccade (which should be

targeted to bring the target into the central �eld). There should be no major

performance di�erence based on the number of distractors, since the visual

search task is an e�cient one.

4.1.1.3 Experiment 2: Visual Field Dimensions Smaller than Exper-

iment Field Dimensions

The second physical experiment was performed with an experimental �eld twice

the size of the de�ned peripheral �eld in each dimension. Following the results

of the �rst experiment, however, the size of the Gaussian smoothing kernel ap-

plied to the PPM output was increased to a 40 × 40 �lter (see Section 4.2.1.2

for a discussion of why). Due to this increase in the degree of smoothing, the

boundary e�ect of the system was correspondingly increased and the de�ned

peripheral �eld was therefore reduced in size to 26 × 26 cm2. Therefore, the

total experimental �eld was 52 × 52 cm2. Ten trials were performed with nine

distractors. The number of distractors was kept constant through all trials due

to the fact that the number of distractors visible in each frame would naturally

vary based on the random object placement, and nine targets provided a rea-

sonable probability of ensuring at least one distractor was in each quadrant of

the experimental �eld without increasing the time required to set up each trial.

Unlike the �rst experiment, the optimal number of �xations required to �nd the

target is not easily quanti�ed, but it should on average be below that required

for a brute-force search with the central �eld.
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4.1.2 Virtual Experiment Setup

A second type of experiment was run based on the public data-set provided by

Judd et al. which provides a set of 1003 images at a decently high resolution

(the longest dimension of each image was 1024 pixels, and the other dimension

ranged from 405−1024 pixels) with eye tracking �xation data for �fteen human

subjects, [38, 37]. A randomly selected subset of 50 images was taken from this

data-set on which to run our network (the full data-set will be run in the future,

but batch testing has not yet been fully implemented in TarzaNN). Each image

was loaded into the environment controller of the network (see Section 3.8), at

which point it served as the entire experimental �eld in which the system would

operate. Selecting the size of the visual �eld was somewhat challenging, since a

speci�c conversion between pixels and degrees of visual �eld was not provided

by Judd et al. Based on the experimental description provided in [38], it was

estimated that the images were presented to human viewers at a resolution

of 0.0274◦ per pixel. This meant that even the largest image dimension of

1024 pixels represented only approximately 28◦ of visual space, and thus the

maximum eccentricity of image elements was never more than 14◦ from the

initial �xation. In the future it therefore would be worthwhile to gather a data

set of human eye-tracking data in which the peripheral �eld was represented

to a much larger extent, but as a proof of concept it was decided to have the

network subsample a 480×400 subregion of the image (representing 13◦×11◦ of

visual �eld). The central 2◦ of that image would be deemed the foveal �xation

region, and thus all new �xations would represent saccades at least 1◦ degree

from the previous �xation.

The �xations produced by the peripheral saliency map model of this thesis

were compared against a set of �xations produced by the AIM algorithm run

over the entire image. To produce the AIM �xations, AIM was run using the
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same �lter set as the peripheral saliency map model and the most salient points

which were at least 1◦ apart were recorded as the �xation points. The peripheral

saliency map model should produce similar results to AIM, but the implicit

central bias introduced by operating only over a �xated subregion of the image

should yield �xation sequences which more closely resemble those of humans.

4.2 Experimental Results

4.2.1 Physical Experiment Results

4.2.1.1 Experiment 1 Results

By restricting target placement to be within the initial visual �eld, the system

should ideally �nd the target within at most two �xations (it should either be

found immediately on the initial central �xation or saccade directly to the tar-

get). However, as mentioned in the experiment description, this experiment was

performed with only a small degree of smoothing, which resulted in a fairly high

signal-to-noise ratio between the most salient points on the target and the most

salient points on the distractors (see Section 4.2.1.2 for an in-depth discussion

of smoothing). As a result, there were several trials in which the initial �xation

was made to a distractor rather than the target; these are recorded as �xation

errors. There were no recognition errors in these trials; each time the majority

of the target was located within the central �eld, the recognition network found

it.

Figures 4.3-4.7 display abstracted saccade paths for trials with six distrac-

tors, and Figures 4.8-4.12 display saccade paths for trials with nine distractors.

Each image represents the experimental �eld, with the coordinates of the plane

given in centimeters. Distractors are represented by blue rectangles while the

target is represented by a red dotted circle displaying the extent of the target
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Trial Number 1 2 3 4 5 Avg. Std. Dev.

Number of Fixations 2 3 3 2 1 2.2 0.8
Fixation Errors 0 1 1 0 0 0.4 0.5

Table 4.1 � Chart of the results for six distractors. The number of �xations for
each trial and the number of �xation errors are reported.

Trial Number 1 2 3 4 5 Avg. Std. Dev.

Number of Fixations 2 3 2 4 1 2.4 1.1
Fixation Errors 0 1 0 1 0 0.4 0.5

Table 4.2 � Chart of the results for nine distractors. The number of �xations
for each trial and the number of �xation errors are reported.

(the character in the centre of the circle is an �×� or a �+� to match the orien-

tation of the target on that particular trial). The extent of the peripheral �eld

is represented by the dashed outer square, while the inner dashed green square

represents the central recognition region. Fixations are represented by black

circles, with arrows representing the transition between each �xation target.

Table 4.1 displays the results for trials with six distractors, while Table 4.2

displays the results for trials with nine distractors. As can be seen, the target was

�xated �rst on half of the trials in which it did not start in the central �xation,

and on all other trials it was only missed by a single �xation error. Thus,

the target was being assigned the highest peripheral priority with a likelihood

signi�cantly greater than chance. Nevertheless, the occurrence of �xation errors

at all is a concern. Although the majority of �xation errors were immediately

corrected and therefore resulted only in a single extra �xation, the fourth trial

with nine distractors required an extra �xation to bring the target back within

the peripheral �eld (see Figure 4.11). It was actually a lucky occurrence that

the third �xation brought the target back within the peripheral �eld, as once

the target has moved beyond the bounds of the visual �eld there are no other

control mechanisms in the system to either recognize the complete absence of

the target nor to provide an appropriate strategy for bringing the target back
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within visual range. Thus, any �xation error has the potential to result in a

far greater number of unnecessary �xations. The detrimental e�ect of �xation

errors on system performance would likely only be exacerbated with a larger

visual �eld, and thus steps were taken to attempt to minimize these errors by

modifying the degree of salience smoothing.
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Figure 4.3 � Trial 1 with 6 distractors. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.4 � Trial 2 with 6 distractors. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.5 � Trial 3 with 6 distractors. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.6 � Trial 4 with 6 distractors. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.7 � Trial 5 with 6 distractors. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.8 � Trial 1 with 9 distractors. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.9 � Trial 2 with 9 distractors. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.10 � Trial 3 with 9 distractors. Distractors are represented by blue
bars while the target is shown as a red dotted circle. The green dotted square
displays the extent of the central recognition �eld, while the outer dotted square
displays the extent of the peripheral �eld.
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Figure 4.11 � Trial 4 with 9 distractors. Distractors are represented by blue
bars while the target is shown as a red dotted circle. The green dotted square
displays the extent of the central recognition �eld, while the outer dotted square
displays the extent of the peripheral �eld.
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Figure 4.12 � Trial 5 with 9 distractors. Distractors are represented by blue
bars while the target is shown as a red dotted circle. The green dotted square
displays the extent of the central recognition �eld, while the outer dotted square
displays the extent of the peripheral �eld.
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4.2.1.2 Smoothing of Salience Values

The number of peripheral errors in Experiment 1 was higher than would be

desirable, despite the fact that none of the errors were responsible for a drastic

number of extra �xations. Fixation errors were caused by erroneously selecting

a distractor rather than the target for a �xation; it therefore became necessary

to examine the saliency map being produced by the AIM algorithm.

As can be seen in Figure 4.13, the most salient components of the image

are the corners of all the visual elements. This makes intuitive sense from the

perspective of the AIM algorithm since corners will elicit an unusual response

across a broad range of the log-Gabor �lters. However, it creates a conceptual

problem in that we would ideally like a saliency measure which is based on

objects, rather than point-based (as was mentioned in Section 1.2.1.5, there is

evidence that IOR can operate in an object-based fashion, which suggests the

possibility that the human equivalent of salience may function in a similar man-

ner). Likewise, it introduces a practical problem if the noisiness of real images

means that the corners of distractor elements begin to approach the salience

of the desired target. Despite individual distractor pixels displaying strongly

salient elements, it is clear that the target possesses a greater concentration of

these saliency �hot spots�. As can be seen in Figure 4.14, increasing the size

of the smoothing convolution not only emphasizes this greater concentration,

it draws the maximal salience in toward the centre of the object rather than

selecting the object edge.

While a larger smoothing kernel provides more reliable �xation results in

this speci�c search task, it does further increase the size of the boundary over

which peripheral results are unde�ned. Additionally, too large a kernel would

risk con�ating the saliency response of nearby objects, possibly emphasizing

two closely placed distractors over the desired target. In a more unconstrained
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Figure 4.13 � Initial image �xation from Experiment 2 Trial 3 and its corre-
sponding saliency map without smoothing.

(a.) (b.)

(c.) (d.)

Figure 4.14 � Saliency maps from Figure 4.13 with Gaussian smoothing applied
(the central visual �eld has been set to zero). (a.) Saliency output smoothed
via a 16 × 16 Gaussian kernel with a 3 pixel standard deviation. This was the
smoothing kernel used in Experiment 1. (b.) The same saliency map from
(a.) raised to the tenth power in order to visually accentuate the most salient
elements. (c.) Saliency output smoothed via a 40 × 40 Gaussian kernel with a
10 pixel standard deviation. (d.) The same saliency map from (c.) raised to the
tenth power in order to visually accentuate the most salient elements.
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environment, the size of the smoothing kernel biases the peripheral selection

to objects closest in size to the spatial scale of the kernel (in this case, both

the target and distractors were of the same spatial scale). It therefore would

be worthwhile investigating an appropriate control strategy either to �nd an

optimal smoothing parameter for natural scene viewing or, more interestingly,

seek a method to tune priority on an object-basis rather than a point-basis.

4.2.1.3 Experiment 2 Results

Figures 4.16-4.25 display abstracted saccade paths for all Experiment 2 trials.

As with the saccade paths displayed for Experiment 1, each image represents

the experimental �eld with the coordinates of the plane given in centimeters.

Distractors are represented by blue rectangles while the target is represented

by a red dotted circle displaying the extent of the target (the character in

the centre of the circle is an �×� or a �+� to match the orientation of the

target on that particular trial). The extent of the peripheral �eld is represented

by the dashed outer square, while the inner dashed green square represents

the central recognition region. Fixations are represented by black circles, with

arrows representing the transition between each �xation target.

By increasing the size of the smoothing kernel (see Section 4.2.1.2), there

were no �xation errors in the second experiment. However, because the target

was no longer guaranteed to be within the initial �xation's visual �eld, a number

of trials required several �xations to distractors to �rst bring the target into

the peripheral �eld, at which point a direct �xation was made and the trial

completed. The number of �xations required to �nd the target are reported in

Table 4.4. It should be noted that a recognition error occurred in Trial 7; the

target was actually �xated �rst on the third �xation, but the recognition score

was slightly below the necessary threshold (0.46 instead of the required 0.5) and

the network therefore continued looking for the target. After saccading away, it
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Trial Number 1 2 3 4 5 6 7 8 9 10 Avg. Std. Dev.

Number of Fixations 6 3 2 1 2 2 5∗ 6 2 3 3.2 1.8
Table 4.4 � Results for physical experiment 2. Trial 7's results (denoted with
a ∗) are the number of �xations to recognize the target; the target was �xated
�rst on the third �xation, but a recognition error prevented it from being located.
Attention returned to the target again on the �fth �xation, at which point it was
properly recognized. There were no �xation selection errors.

luckily returned to �xate a nearby distractor which was su�ciently close to the

target for it to be recognized on the second try.

As expected, the results are generally better than a systematic grid search

would be at a resolution of the central �eld but are not guaranteed to �nd the

target in all possible experimental setups. A brute force search would, assuming

some overlap between each �xation to avoid missing a target on a frame edge,

require approximately six �xations in each direction, or a total of thirty six

�xations to cover the entire experimental �eld. Given the uniform probability

of placing the target anywhere in the experiment �eld, such a naive search would

therefore be expected to take on average eighteen �xations to �nd the target.

Although the current system performs much better than the naive approach,

its reliance on what is essentially a random search between distractors until

the target enters the visual �eld means that it is possible for the system to

fail completely to �nd the target. An example of a setup in which this is the

case is shown in Figure 4.15(b.), which is a customized experimental layout

based on swapping the position of the target with an isolated distractor in the

upper right corner of the experiment �eld from the experimental setup of Trial

9 (shown in Figure 4.15(a.)). The new target position placed it outside the

peripheral �eld of the initial �xation, as well as outside the periphery of any

distractor-centered �xations. Therefore, in order to avoid failing on unusual

(but entirely possible) experimental setups such as this one, the system would
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(a.) (b.)

Figure 4.15 � Example images of a trial in which the system fails to �nd the
target. (a.) The search setup from Trial 9 for the entire experiment �eld. (b.)
The same setup as in (a.), except with the target position swapped with the upper
right distractor. Once the target is su�ciently isolated from all other elements in
the experiment �eld, it can no longer be found.

need to incorporate further contextual task information into its control, such as

by using a probability �eld similar to that used in the SYT algorithm discussed

in Section 1.2.3.3, [70].
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Figure 4.16 � Trial 1 Experiment 2. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.17 � Trial 2 Experiment 2. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.18 � Trial 3 Experiment 2. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.19 � Trial 4 Experiment 2. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.20 � Trial 5 Experiment 2. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.21 � Trial 6 Experiment 2. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.22 � Trial 7 Experiment 2. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.23 � Trial 8 Experiment 2. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.24 � Trial 9 Experiment 2. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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Figure 4.25 � Trial 10 Experiment 2. Distractors are represented by blue bars
while the target is shown as a red dotted circle. The green dotted square displays
the extent of the central recognition �eld, while the outer dotted square displays
the extent of the peripheral �eld.
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4.2.2 Virtual Experiment Results

Judd et al. evaluated the performance of several saliency algorithms on their

data-set (including AIM) using an ROC metric to compare salience values over

the entire image [38]. Such a metric was not directly applicable for evaluating

this system, however, since the important aspect of performance is the actual

�xation sequence rather than any particular distribution of salience within the

image (plus, in the case of the peripheral saliency map model, the salience of any

particular pixel is liable to di�er depending on the current �xation). However,

Judd et al. also came up with a method for evaluating human �xation data

against the other human subjects by convolving a Gaussian kernel with the

�xation points to produce a �xation-based �saliency map�. The �xation-based

saliency map was then thresholded by taking the top n% points to produce

a binary mask (see Figure 4.26 for an example). Using the binary mask, the

percent of �xation points from other subjects which fell within this mask were

calculated. This approach was repeated for our experimental data, both for the

explicit �xation sequence generated by peripheral saliency map model of this

thesis and for a �xation sequence generated by taking the �ve top-most salient

points from AIM. The results are displayed in Figure 4.27.

Not surprisingly, the results for the peripheral saliency map model are quite

close to those of AIM itself; the peripheral priority measure in this experi-

ment was derived from AIM and independent of top-down in�uences, after all.

However, the combination of an implicit central bias combined with a localized

measure of saliency based on the current �xation does appear to shift the re-

sults to be more consistent with human data. The �rst �xation of the peripheral

saliency map model includes the strongest central bias (since it is impossible for

the system to �xate beyond the bounds of the initial �xation's visual �eld), and

so it is possible that the performance bene�t of the peripheral model would de-
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(a)

(b)

(c)

Figure 4.26 � Example of the generation of a �xation based saliency map and
binary mask. (a) Fixation sequence produced by the peripheral saliency map
model. (b) The �xation points shown in (a) convolved with a Gaussian �lter to
create a �xation-based saliency map (image values have been rescaled to aid in
viewing). (c) A binary mask created by taking the top 10% of salient points from
(b).
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Figure 4.27 � The ROC curve of performances for human data, the Peripheral
Saliency Map Model (PSMM) of this thesis, and AIM. Chance is also plotted for
comparison.
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crease with an increased number of �xations. Qualitative analysis of the �xation

sequences suggests that this is not the case, but further study will be needed to

be sure (see Figure 4.28 for a speci�c example in which the peripheral model

produces a more human-like �xation sequence. In this image, AIM highlights all

surfers in the water for �xation, whereas the peripheral saliency map model con-

centrates �xations instead only on the more central �gures. Human observers

show a similar pattern in their initial �xations, overwhelmingly concentrating

their �xations on the central �gures to the neglect of the leftmost surfer).

There are a number of additional aspects of this experiment which are worth

noting. Neither system compared here has any semantic or contextual knowl-

edge of the scene content; therefore scene elements which strongly draw human

�xations (such as faces and text) were only �xated if they happened to also elicit

strongly dissimilar �lter responses from their surroundings. While this actually

worked quite well for most images with text (see Figures 4.29 and 4.30) due to

the tendency for lettering to produce unusually strong oriented edges, it was

much less consistent for faces (see Figures 4.30, 4.31, and 4.32). In addition

to the lack of contextual knowledge, all images were processed in greyscale; al-

though colour information was not highly relevant for some of the images, there

were others in which it would have aided in overcoming the systems' lack of

worldly knowledge (see Figure 4.32).
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(a)

(b)

(c)

Figure 4.28 � Fixation sequences for (a) Peripheral saliency map model and (b)
AIM. (c) Shows the human saliency map produced by Judd et al., [38], which
can be seen to neglect the leftward most surfer and therefore match the �xation
sequence of (a) more closely.
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(a)

(b)

(c)

Figure 4.29 � Example of an image displaying text. Both the peripheral saliency
map model, (a), and AIM, (b), show very similar �xation patterns which closely
mirror the �xations of humans as displayed by the human �xation-based saliency
map in (c).
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(a) (b)

(c)

Figure 4.30 � Fixation sequences are shown for (a) the peripheral salience map
model and (b) AIM. Both models �xate the elevator control panel and the sign
text, but fail to �xate the woman's face. Image (c) displays the �xation-based
saliency map for human �xations, which concentrated primarily on the woman's
face and the sign text.
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(a)

(b)

(c)

Figure 4.31 � Example in which the peripheral saliency map model, shown in
(a), �xated a face but AIM, shown in (b), did not. Despite having a single �xation
on the woman's face, however, the peripheral saliency map model, like AIM, still
predominantly �xated on the woman's torso in contrast to the vast majority of
human �xations represented by the �xation-based saliency map shown in (c).
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(a)

(b)

(c)

Figure 4.32 � Example in which both the peripheral saliency map model, (a),
and AIM, (b), both failed in a highly similar manner to replicate human �xation
patterns, represented by the �xation-based saliency map in (c). The addition
of colour channels would likely have improved performance in this image, as the
woman's face, her clothing, and the paper she is holding would all likely increase
in salience in comparison to the background.
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4.3 Summary

The system developed for this thesis was evaluated over two experimental method-

ologies: a visual search task to �nd a form-singleton utilizing physical hardware,

and an evaluation of �xation sequences for natural images utilizing a publicly

available psychophysical database.

Evaluative criteria in the physical task were based on the capacity for the

system to �nd the target and the average number of �xations required to do so.

Despite an almost entirely data-driven approach, the system was able to �nd the

target in all randomized trials with signi�cantly fewer �xations than would be

expected with a brute-force search of the experiment �eld. The lack of top-down

knowledge does mean that experimental layouts could be designed on which the

system would fail. Future avenues of research will therefore explore top-down

control strategies which may be integrated into the system's operation.

Performance of the system in the second task was evaluated by comparing

its �xation sequences to those of humans and to the �xation sequences gener-

ated by taking the top salient points from the AIM algorithm. An ROC curve

was generated based on the methodology of Judd et al., [38], which indicates an

improvement in the performance of our system with respect to AIM in gener-

ating human-like �xation sequences. Given the favourable performance of AIM

at predicting human �xations found by Borji et al., [6], it appears that the pe-

ripheral saliency map model is able to compete with the current state of the

art.
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Chapter 5

Discussion and Conclusions

5.1 Summary

This thesis presents a framework for visual �xation control based on a peripheral

priority signal, which implements a previously proposed but untested component

to the overall Selective Tuning architecture proposed by Tsotsos as a solution

to the Boundary Problem, [82]. Previous work on a biologically plausible active

visual model by Zaharescu, [96], is extended in the TarzaNN neural network

simulator architecture through novel implementations of a Peripheral Priority

Map, a Fixational History Map which provides inhibition of return functional-

ity, a History Biased Priority Map and saccade controller, and an environment

control structure which provides faster and more extensible development for fu-

ture application of active visual systems. Additionally, the AIM saliency map

algorithm has been reimplemented in TarzaNN, providing an additional pro-

gramming platform outside of MATLAB in which it can be utilized. As part

of the development of the AIM implementation, a novel method for combining

salience based on self-information from a heterogeneous distribution of �lters
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was proposed using entropy to estimate the self-information. Overall the sys-

tem implemented provides a computational substrate for the future exploration

of many areas of control of active vision.

The system has been tested in both a physical environment on real hardware

solving a visual search problem using an integrated Selective Tuning network,

and in a virtual environment on a psychophysical data-set. The system was

able to �nd a visual search target with signi�cantly fewer �xations than a brute

force method in all randomized trials, although in the current naive formulation

there remain some speci�c problem formulations which it is unable to solve.

Future avenues of research may extend the current system with top-down control

strategies to rectify this problem.

When executed over the virtual data-set, the system was able to improve on

AIM's performance in reproducing human-like �xation patterns. By �nding an

explicit �xation train over a sub-portion of the image, the peripheral saliency

map model introduced an implicit bias against large translations between �xa-

tion points, thereby providing a more organic central bias term than is typically

applied when attempting to predict eye �xation data. Given that AIM has been

ranked among the top performing saliency detection models for predicting hu-

man �xations, [6], this indicates that the system ranks among the current state

of the art.

5.2 Future Work

Much of the focus of this thesis has been in producing an active vision framework

which can most easily be extended in the future to explore a variety of aspects

of active vision. It is entirely possible that some of these research avenues

have yet to even be envisioned; nevertheless there are a number of applications

which I believe will be worthwhile exploring. The system developed in this thesis
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provides an excellent computational platform which may be used to test aspects

of attention. This includes investigating more complex IOR mechanisms such as

the possibility of multiple time courses depending on the level of scrutiny applied

to a given region of the image, and short-term priming of pop-out mechanisms.

A well-developed peripheral priority mechanism for guiding active visual con-

trol may also provide novel applications in active search platforms. One speci�c

example which seems promising would be to use the priority signal to inform

the probability map of the SYT algorithm outlined in Section 1.2.3.3. In such

a system a wide-�eld �sh-eye lens could be used which would provide extensive

coverage of the visual �eld while still limiting the higher level recognition task

to the central �eld where distortion is minimal.

One additional avenue of research which would open up many more appli-

cations would be to extend the system to function in a dynamic rather than

a static environment. Existing work exists on incorporating temporal compo-

nents into the salience measure of AIM, [69], and much of the work discussed in

Section 1.2.1.2 suggests that temporal onset cues are the strongest mechanism

for peripheral attentional capture.
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