
The Complexity of Order Dependency Inference

Jaroslaw Szlichta, Parke Godfrey, Jarek Gryz and Calisto Zuzarte

Technical Report CSE-2012-05

August 27 2012

Department of Computer Science and Engineering
4700 Keele Street, Toronto, Ontario M3J 1P3 Canada

The Complexity of Order Dependency Inference

Jaroslaw Szlichta
York University in Toronto &

IBM Toronto
Center for Advanced Studies
jszlicht@cse.yorku.ca

Parke Godfrey
York University in Toronto &

IBM Toronto
Center for Advanced Studies
godfrey@cse.yorku.ca

Jarek Gryz
York University in Toronto &

IBM Toronto
Center for Advanced Studies

jarek@cse.yorku.ca

Calisto Zuzarte
IBM Toronto Laboratory
calisto@ca.ibm.com

ABSTRACT
Dependencies play an important role in database theory. We
study order dependencies (ODs)—and unidirectional order
dependencies (UODs), sub-class of ODs—which describe the
relationships among lexicographical orderings of sets of tu-
ples. We investigate the inference problem for order de-
pendencies. We establish the following: (i) a sound and
complete chase procedure for ODs for testing logical impli-
cation demonstrating its decidability, but prove the unde-
cidability of the inference problem for ODs with inclusion
dependencies; (ii) a proof of co-NP-completeness for the in-
ference problem for the subclass of UODs; (iii) a proof of
co-NP-completeness for the inference problem of functional
dependencies (FDs) from ODs in general, but demonstrate
linear time complexity for the inference of FDs from UODs;
and (iv) a sound and complete inference algorithm for sets
of UODs over a natural domain.

1. INTRODUCTION
Understanding the semantics of data is important, both

for data quality analysis and knowledge discovery. While the
relational data model is set based and does not concede the
concept of order, ordered streams nonetheless play impor-
tant roles in relational systems. SQL allows one to specify
by its order-by clause the answer “set” to be returned in
the specified order. Ordered streams are prevalent in query
plans between operators to provide efficient evaluation. A
query optimizer must reason extensively over interesting or-
ders, while building efficient query plans [17].

Order for a tuple stream can be semantically specified via
the attributes as by SQL’s order-by clause. The order spec-
ification order by year desc, name asc requires that the tuple
stream be sorted by year in descending order and, within
each year group, by name in ascending order. This is a lex-
icographical ordering, a nested sort. (Note there could be
many total orders that satisfy this specification: the tuples
within any year-name partition may be ordered freely.)

.

Order dependency is the semantic relationship amongst
order specifications. An order dependency states a relation-
ship between two order specifications. Say that we knew the
OD that id asc orders year asc, name asc. Then we would be
assured that any tuple stream ordered by id asc would also
necessarily be ordered by year asc, name asc. (Note the con-
verse is not necessarily assured: if the stream were ordered
by year asc, name asc, it still might not be ordered by id asc.
This is because the tuples in a given partition of year-name
might fail to be ordered by id asc.)

The concept of order dependency is closely related to that
of functional dependency. Indeed, we shall show that order
dependency subsumes functional dependency. If id asc orders
year asc, name asc, then the functional dependency (FD) that
id functionally determines year and name must hold. ODs
convey additional semantic information, of course: that of
order. Furthermore, working with ODs is more complex
than working with FDs, because the sequence of the at-
tributes in order specifications matters. ODs are specified
with respect to lists of attributes, whereas FDs are specified
with respect to sets of attributes.

Order dependency has been studied before with respect
to lexicographical orders [15, 19], and with respect to other
order definitions [9, 10]. We restrict our focus to order de-
pendencies over lexicographical orders. While lexicograph-
ical order depencency has been studied before, it has not
been well understood. The inference problem is to answer
whether an OD is logically entailed by a set of ODs. The
decidability and the complexity of the inference problem for
(lexicographical) order depencency have heretofore not been
known. We address this in this work.

select D.year, D.trimester, D.quarter,
D.month, D.day
sum(S.sales) as total
count(*) as quantity

from date_dim D, sales S
where S.date_id = D.date_id and

D.year between
2001 and 2004

and sum(S.sales) > 10000
group by D.year, D.trimester, D.quarter,

D.month, D.day
order by D.year, D.trimester, D.quarter,

D.month, D.day;

Query 1: Eliminating trimester and quarter.

Consider the SQL query in Query 1 over a data ware-

house schema as in [12]. The fact table sales has a foreign
key S.date id which references the dimension table date dim.
Date is captured in a hierarchical manner by attributes year,
quarter or trimester, month, and day. The values of the at-
tribute quarter divides year into four three-month periods,
while those of trimester divides it into three four-month pe-
riods.

Let there be a B+ tree index for date dim on year, month,
day. The query optimizer may not employ this index to
evaluate either the group-by or the order-by for the query
in Query 1, because their specifications do not match the
index’s search key.

Of course, it is clear that month functionally determines
quarter and trimester. So partitioning by year, trimester, quar-
ter, month, day is the same as just by year, month, day. In
fact, optimizers today would eliminate trimester and quar-
ter from the group-by via the relevant FDs [17], and then
employ the index for the group-by operation.1

The FD that month → quarter, trimester is not logically
sufficient to optimize the order-by operation, however. One
would need the additional semantic information of an OD
that year, month, day orders year, trimester, quarter, month,
day. This and similar subtleties cause the optimizer to miss
opportunities to use indexes and to pipeline operations. Ex-
pensive operations as sort are added to a query plan, even
when the data is already sorted properly. By incorporat-
ing reasoning over ODs into the optimizer—as has already
been done for reasoning over FDs—many new optimizations
would be possible [20, 21]. The ordered stream by year,
month, day then could satisfy both the group-by and the
order-by operations on-the-fly.

The contributions of this work are as follows.
1. Fundamentals. (Section 2.)

(a) Introduce a theoretical framework for ODs.
(b) Unidirectional ODs and Axiomatization.

i. Introduce a prevalent sub-class of ODs, uni-
directional order dependencies (UODs), and
prove the sub-class is proper.

ii. Present a sound and complete axiomatization
for UODs [19], sound for ODs.

(c) Demonstrate how ODs can be used effectively in
optimization, by putting ODs into a canonical
form to enable reasoning over ODs in the query
optimizer.

2. Decidability. (Section 3.)
(a) Demonstrate the decidability of the OD inference

problem via a sound and complete chase proce-
dure for ODs. (Preliminary work appears in [18].)

(b) Prove that the inference problem for ODs with
inclusion dependencies is undecidable.

3. Complexity. (Section 4.)
(a) Establish that the inference problem for UODs is

co-NP-complete.
(b) Establish that the inference problem of inferring

FDs from ODs is also co-NP-complete, but that
it is only linear for the case of FDs over UODs.

4. Inference Procedures. (Section 5.)
(a) Identify a restricted, natural domain, the order-

compatible transitive domain, which makes rea-
soning over ODs simpler.2

(b) Devise an efficient, polynomial inference proce-

1IBM DB2 incorporates such rewrites.
2A domain is restricted if an additional order property is

Table 1: Notational conventions.

• Relations
– R denotes a relation.
– r denotes a specific relation instance (table).
– A, B and C denote attributes.
– s and t denote tuples.
– tA denotes the value of attribute A in tuple t.

• Sets
– X , Y, and Z denote sets.
– tX denotes the projection of tuple t on X .
– XY is shorthand for X ∪ Y.

• Lists
– X, Y and Z denote lists.

(Note X could represent the empty list, [].)
– [A, B, C] denotes an explicit list.

[A |T] denotes a list with head A and tail T.
– XY is shorthand for X ◦ Y (X concatenate Y).
– set X denotes the set of elements in list X.

Anyplace a set is expected but a list appears, the
list is cast to a set; e.g., tX denotes tX .

dure for testing implication of ODs over the tran-
sitive domain that is sound and complete.

In Section 6, we discuss related work. In Section 7, we
conclude and consider future work.

2. FUNDAMENTALS
We first set the notational conventions and definitions

of ODs and UODs. Then we introduce an axiomatization
which is sound and complete for UODs and sound for ODs.
In the end, we present where ODs arise and how they can
be used for optimization.

2.1 Framework
We adopt the notational conventions as in Table 1. We

model order specification as provided by SQL’s order-by
clause for specifying lexicographical orderings.

Definition 1. (order specification) An order specification
is a list of directionality-marked attributes (or marked at-
tributes, for short).

There are two directionality operators: asc and desc, in-
dicating ascending and descending, respectively. Each op-
erator is unary, applies over an attribute, and is written
postfix; e.g., A asc and B desc. As shorthand notation, we

write
−→
A and

←−
A for A asc and A desc, respectively. As further

notational shorthand, we merge the top arrows for adjacent
attributes that are marked with the same directionality; e.g.,

[
−→
AB

←−
C] denotes [

−→
A
−→
B
←−
C].

In any context an order specification is expected but a
list of (unmarked) attributes appears, the list is cast to the
order specification with each attribute marked as asc; e.g.,

[A, B, C] is cast to [
−→
A ,

−→
B ,

−→
C].3

The order specification X defines an algebraic relation
‘�X’. The operator ‘�X’ defines a weak total order over
any set of tuples.

guaranteeed over the schema. The order-compatible transi-
tive domain is quite natural in that it is intuitive, it holds for
all real-world business domains that we have encountered,
and it can easily be verified whether it holds.
3Ascending is the default for SQL in order-by for any at-
tributes for which directionality is not explicitly indicated.

Table 2: Relational instance r.

A B C D E

s 1 4 4 6 3
t 2 3 4 6 4

Definition 2. (algebraic relation ‘�X’) Let X be a list of
marked attributes. For two tuples r and s (over a schema
containing the attributes in X), r �X s iff

• X = [
−→
A |T] and rA < sA; or

• X = [
←−
A |T] and rA > sA; or

• X = [
−→
A |T] or X = [

−→
A |T], rA = sA, and r �T s; or

• X = [].
Let r ≺X s iff r �X s but s ��X r.
We now define order dependencies.
Definition 3. (order dependency) Let X and Y be lists of

marked attributes. X 	→ Y denotes an order dependency
(OD), read as X orders Y. XY ↔ YX, read as X and Y are
order equivalent, iff X orders Y and Y orders X. Let R be
a relation (over a schema that contains the attributes that
appear in X and Y), and let r be a relation instance of R.
Table r satisfies X 	→ Y (r |= X 	→ Y) iff, for all s, t ∈ r,
r �X s implies r �Y s. The OD X 	→ Y is said to hold for R
(R |= X 	→ Y) iff, for each admissible relational instance r
of R, table r satisfies X 	→ Y.

Example 1. Let r be a relation instance over R with
attributes A, B, C, D, and E, as shown in Table 2. Note

r |= −−→
ACD 	→ −→

EB, but r �|= −−→
ACD 	→ −→

BE. Also note r |= ←−
CA 	→−→

B
←−
DE, but r �|= ←−

CA 	→ −→
EB

←−
D .

Order dependencies can be prescriptive statements on the
relation, as can be functional dependencies. That is, they
can be used as a type of integrity constraint to prescribe
which instances are admissible.

We introduce one additional order relation, order compat-
ibility, to capture the notion that if two lists X and Y are
order compatible, there is a way to order the tuples of any
table so the ordering satisfies both the order spefications X
and Y. X and Y may be order compatible without either
X 	→ Y or Y 	→ X. At first glance, this might seem surpris-
ing. A degenerate case demonstrates this quickly, however.
The empty order spefication, [], is order compatible with
any order spefication. (Any ordering of tuples satisfies the
order spefication [].)

Interestingly, order compatibility does not add expressive-
ness over order dependencies as already introduced. Indeed,
we can define it directly as an OD of specific form. Because
the concept proves invaluable, however, for reasoning about
ODs, we introduce it explicitly for this purpose.

Definition 4. (order compatible) Two order spefications X
and Y are order compatible, denoted as X ∼ Y, iff XY ↔
YX.

2.2 Unidirectional ODs and Axiomatization
We accommodate bidirectionality (asc and desc) in or-

der specifications for generality’s sake, and because SQL’s
order-by clause does. Of course, marking attributes adds
complication. It is reasonable to ask whether this bidirec-
tionality adds expressiveness, and if so, whether the added
expressiveness is useful.

One can consider a simplified version of ODs for which
we remove this bidirectionality. Call a set of ODs unidi-

1. Reflexivity.
XY 	→ X

2. Prefix.
X 	→ Y
ZX 	→ ZY

3. Normalization.
WXYXV ↔ WXYV.

4. Transitivity.
X 	→ Y
Y 	→ Z
X 	→ Z

5. Suffix.
X 	→ Y
X ↔ YX

6. Chain.
X ∼ Y1

∀i∈[1,n−1]Yi ∼ Yi+1

Yn ∼ Z
∀i∈[1,n]YiX ∼ YiZ
X ∼ Z

Figure 1: Axioms for UODs [19].

rectional in which any given attribute appears in the ODs
either marked as asc or as desc, but not both. Without loss
of generality, one can consider just sets of ODs in which all
attribute occurrences are marked as asc. Call an individual
OD in which all attributes are marked as asc a unidirectional
order dependency (UOD). This restriction to just ascending
has the advantage that one can verify that a set of ODs
is unidirectional by verifying in isolation that each OD is
unidirectional.

Definition 5. (unidirectional order dependency) An order
dependency is unidirectional when all attributes within it
are marked asc. In contrast, call an order dependency which
has attributes marked both as asc and as desc a bidirectional
order dependency (BOD).

In [19], we studied UODs and provided a sound and com-
plete axiomatization for them. The inference rules of the
axiomatization are shown in Figure 1. (They provide in-
sight in later sections.)

Theorem 1. [19] (soundness and completeness) The set
of the axioms from Figure 1 is sound and complete over
UODs.

Syntactically, UODs are a sub-class of ODs, by definition.
It is trivial to show that the axiomatization in Figure 1 is
sound for ODs.

Corollary 2. (soundness over ODs) The set of the ax-
ioms from Figure 1 is sound over ODs.

Does the addition of BODs, however, add expressive power?
If one could provide a universal translation for any set of
ODs (UODs and BODs) to a semantically equivalent set of
UODs, then one could say that bidirectionality does not add
expressiveness.4

With BODs, ODs are more expressive than UODs. No
such translation exists. We prove this by demonstrating
that the sound and complete axiomatization in Figure 1 is
not complete for ODs.5

Theorem 3. (incomplete for ODs) The set of the axioms
from Figure 1 is not complete over ODs.
Proof
Consider the set M of [

−→
A] 	→ [

−→
B] and [

−→
A] 	→ [

←−
B]. From first

principles, it is simple to show that M |= [] 	→ [
−→
B]. None

of the axioms reduce the left-hand side of an OD (besides

Normalization, which does not apply here). M |= [] 	→ [
−→
B]

4To be semantically equivalent, there would need to be a
bijection of ODs that can be inferred from the set of ODs
and UODs that can be inferred from the corresponding set
of UODs, modulo the translation.
5To find a sound and complete axiomatization for ODs is an
open question.

cannot be proved from the axioms. �

Therefore, the class of ODs are more expressive than its
sub-class, the class UODs. Semantically, UOD is a proper
sub-class of OD. The next question is the cost for this extra
expressiveness. Is the inference problem for ODs decidable?
This is resolved in Section 3. What is the complexity of the
inference problem for UODs? Assuming decidability, is the
complexity of the inference problem for ODs higher? These
questions are resolved in Section 4.

2.3 Optimization with ODs
We describe how order, and order dependencies, can be

used for query optimization. Order dependencies can be de-
clared as an integrity constraints. A database administrator
who knows well the semantics of the database could spec-
ify ODs as constraints for it. However, OD optimization
techniques are also applicable even when the database has
no declared ODs. Order dependencies can be implied by
queries’ semantics. For example, if there is a predicate A =
B, then an OD A ↔ B is satisfied within the scope of the
query. ODs also arise through SQL functions and algebraic
expressions. For instance, UODs [d date] 	→ [year(d date)]
and [d date] 	→ [d date + 30 days)] hold [21].

Order is not relevant on the logical side in the relational
model. (There are data models such as XML, for which
order is part of the model.) Order is important on the phys-
ical side. Order plays a significant role in storage, indexes,
pipelining, and keeping interesting orders [17].

We motivate order dependencies in analogy to functional
dependencies. ODs are to order-by as FDs are to group-by.
ODs might be used in query optimization [20, 21] just as
FDs have been before [17]. In [20], we showed how ODs can
provide significant performance improvement by eliminat-
ing join from query plans in a data warehouse environment.
We built a prototype in IBM DB2 V.9.7 and performed ex-
periments over the TPC-DS benchmark to demonstrate the
significant efficiency of the approach. In [21], we showed
how ODs between columns and SQL functions or algebraic
expressions over columns can bring benefits for queries that
involve join, order-by, group-by, and distinct statements.

Assume that we are aware of an OD X 	→ Y. Therefore, a
query with order by Y can be rewritten with order by X.
Note that the original and rewritten query are not seman-
tically equivalent, unless X ↔ Y. The rewritten query sat-
isfies the order of the original query, but not necessary vice
versa. That is, order equivalency is not required for correct
query rewrites. Directional order dependencies (X 	→ Y) are
sufficient to provide wide variety of query rewrites.

The important role of order was examined in [17]. When
it is known that the orders are order equivalent as defined in
this work, one interesting order can be replaced by another.
However, this technique relies on FD information and does
not incorporate ODs. The authors of [17] designed the al-
gorithm Reduce Order, which scans the interesting order list
backwards to test if any of the attributes can be eliminated
using FD information. We extend this algorithm by iter-
ating through the list additionally testing whether the list
without the attribute being currently considered orders the
full list. (Call this Reduce Order OD.) If the OD holds, then
the attribute can be removed from the current list. When
sorting is required, the reduced version of an interesting or-
der I provides a smaller number of sorting columns, which
reduces cost.

Algorithm 1 Reduce Order OD

Input:
order specification I = [I0, I1, ..., In−1] and
a set of ODs M.

Output:
The normalized interesting order I.

1: Rewrite I in terms of each column’s equivalence class
head.

2: Comment: scan I backwards
3: for i ← n − 1 to 0 do
4: Let B = {I0, ..., Ii−1}
5: if B → Ii then
6: Remove Ii from I
7: else if [I0, ..., Ii−1, Ii+1, ..., In−1] 	→ [I0, ..., In−1] then
8: Remove Ii from I
9: return I

Table 3: An instance of the table date dim.

date date year month day quarter trim-
id ester

8300 20100830 2010 08 30 3 2
8301 20100931 2010 09 31 3 3
8302 20110105 2011 01 05 1 1
8303 20110106 2011 01 06 1 1
8304 20110401 2011 04 01 2 1

It is straightforward to show the correctness of Reduce
Order OD. Removing Ii from the list due to the FD B →
Ii is part of the algorithm Reduce Order presented in [17].
Assume the order dependency X 	→ Y holds, with X =
[I0, . . . , Ii−1, Ii+1, . . . , In−1] and Y = [I0, . . . , In−1]. The in-
teresting order Y can be replaced by X, as strengthening
the order-by conditions is allowed.

Example 2 and Table 3 refer to the date domain described
in Section 1.

Example 2. (ODs over an instance of the date dim.)
Order dependencies

[d year, d month, d day] 	→ [d date] and
[d date id] 	→ [d year, d month, d day]

are satisfied in Table 3. However, order dependencies
[d date id] 	→ [d year, d day, d month] and
[d year, d month] 	→ [d date]

are falsified by Table 3.
Time and date are supported in the SQL standard in a

rich manner. The popular TPC-DS benchmark consists of
99 queries. Of these queries, 85 involve date operators and
predicates and five involve time operators and predicates.
Even if the concept of ODs was only applied to date and
time, it could still be of great use for query optimization as
shown in Query 1. However, ordered domains are not lim-
ited to date and time. They arise in many other domains
from business semantics, such as sequence numbers, surro-
gate keys, measured values such as sales, stock prices and
taxes (Example 3).

Example 3. (Taxes domain) Consider the table taxes

which has columns for the taxable salary, the tax’s percent
of the salary, taxes on the salary, the tax group, and the tax
subgroup. Let the tax increase with salary and be calculated
as a percentage of salary. Tax groups and subgroups cre-
ate a hierarchy. Employees’ tax groups are calculated based

on their salaries. They increase with salary and take val-
ues from A to F. The tax subgroup increases within a group
from I to III as the salary goes up. These conditions can be
represented as ODs in the following way:

[salary] 	→ [taxes],
[salary] 	→ [percent], and
[salary] 	→ [group, subgroup].

It logically follows from these ODs that
[salary] 	→ [taxes, group, subgroup].

This OD can be derived automatically by means of the in-
ference procedure for ODs to be described in Section 5.

Let the table taxes have a clustered index on salary.
A query with order by taxes, group, subgroup given the
three ODs as declared in Example 3 could then be evaluated
using the index on salary, as

[salary] 	→ [taxes, group, subgroup].
The database administrator could have declared that OD
too. However, this is not likely to occur.

We are interested in ODs because asc and desc bidirec-
tional lexicographical orders are part of SQL standard. Con-
sider a modification of Query 1 with order by year asc,
quarter asc, month asc, day asc, sum(S.sales) desc. A
query plan could then also eliminate quarter from the order-
by clause as

[−−→year,
−−−−→
quarter,

−−−−→
month,

−→
day,

←−−−−−−−
sum(sales)] 	→

[−−→year,
−−−−→
month,

−→
day,

←−−−−−−−
sum(sales)]

is satisfied.
Consider again Example 3. Instead of increasing, however,

it may happen that tax groups decrease with salary. (This
depends on the accounting rules.) This can be expressed as
an OD, as marked attributes enable it:

[
−−−→
salary] 	→ [←−−−group,

−−−−−−→
subgroup].

By the Union inference rule, one can also infer

[
−−−→
salary] 	→ [

−−−→
taxes,←−−−group,

−−−−−−→
subgroup].

This OD, therefore, can also be used in query optimization.

3. DECIDABILITY
A goal in any dependency theory is to develop algorithms

for testing logical implication, that is, testing whether a de-
pendency is satisfied based on a given set of dependencies.
We show how to test logical implication for ODs with a chase
procedure. 6 Chase is a fixpoint procedure for testing sat-
isfaction of data dependencies in a database [1]. It is used
to reason about the consistency and correctness of data de-
sign and in query optimization. By providing a complete
chase procedure for ODs, we establish that the inference
problem for ODs is decidable. We prove that testing logi-
cal implication for ODs and inclusion dependencies (IND) is
undecidable, however.

3.1 Chasing ODs
We establish a sound and complete chase procedure for

ODs for testing logical implication.
Definition 6. (M |= X 	→ Y) The problem of testing log-

ical implication for ODs is, given a set of ODs M and an
OD X 	→ Y, to decide whether M |= X 	→ Y.

6In preliminary work [18], we focused on fixing the table
templates (Definition 9), whereas here our technique is based
on detecting the table templates which falsify the set of ODs
M. Therefore, this revised chase procedure is simpler and
more efficient. This also means the proof given here can be
much more concise.

Table 4: Table representing the split and the swap.

NV A B MW
0...0 0 1 ...
0...0 1 0 ...

Table 5: Table template.

X1 ... Xk R − {X1,...,Xk}
s b1 ... bk pk+1 ... pn

t b1 ... bk qk+1 ... qn

(a) Template r0.

X1 ... Xj−1 Xj R − {X1,...,Xj}
s b1 ... bj−1 bj pj+1 ... pn

t b1 ... bj−1 tj qj+1 ... qn

(b) Template rj .

An order dependency X 	→ Y can be falsified in two ways,
as shown by Theorem 4. We name these two ways split and
swap.

Theorem 4. (order dependency) X 	→ Y holds iff X 	→
XY and XY ↔ YX.
Proof
IF: Suppose X 	→ Y. By the Suffix rule X ↔ YX. By Prefix
and Normalization X 	→ XY and XY ↔ YX.
ONLY IF: Assume X 	→ XY and XY ↔ YX are true. By
Transitivity, X 	→ YX. By Reflexivity and Transitivity, X 	→
Y. �

Definition 7. (split) A split with respect to an OD X 	→
XY is a pair of tuples s and t such that sX = tX but sY �=
tY . This says that X does not functionally determine Y.

Definition 8. (swap) A swap with respect to an OD XY ↔
YX is a pair of tuples s and t such that: s ≺X t, but t ≺Y s;
i.e., s comes before t in any stream satisfying order by X,
but t comes before s in any stream satisfying order by Y.
Thus, the swap falsifies X ∼ Y. (Consequently, X 	→ Y is
falsified, too.)

Example 4. (split and swap) Let X = NAM and Y =
VBW. Then, there is a split in Table 4 with respect to an
OD NV 	→ NVAB and a swap in Table 4 with respect to an
OD X ∼ Y.

We define a table template over variables with respect to
a given OD. We use table templates to enumerate through
all the possible cases where an OD can be falsified by splits
and swaps.

Definition 9. (table template) Let R be a relation schema
with n attributes and m be an OD X 	→ Y, where X =
[X1, ..., Xk]. A table template for an OD m, denoted as rm,
is a table consisting of two tuples s and t, such that it is
either r0 (Table 5a) or rj (Table 5b), for j in [1, ..., k]. In r0

and rj , symbols pi and qi represent one of the following three
cases, where the ordering of variables bi and ti is defined as
bi < ti:

1. pi = bi and qi = bi;
2. pi = bi and qi = ti; and
3. pi = ti and qi = bi;
Example 5 presents how to apply a mapping (Definition

10) to a table template.
Definition 10. (mapping rm to ϕ(rm)) Let rm be a table

template from Definition 9. A mapping of rm to ϕ(rm)

Table 6: Mapping.

A B C

s b1 b3 t4
t b1 t3 b4

(a) rm.

A B C

s 5 0 8
t 5 1 7

(b) Instance ϕ(rm).

is any instance with values that satisfy the ordering from
Definition 9.

Example 5. Consider Table 6a and 6b as one of the pos-
sible mappings from Definition 10. In fact, it can be any
relation instance which satisfies the Definition 9 for order-
ing of the variables. (The ordering of variables bi and ti is
defined as bi < ti)

Lemma 1. Let rm be a table template (Definition 9) and
ϕ(rm) be a mapping from rm (Definition 10). Then rm |=
X 	→ Y iff ϕ(rm) |= X 	→ Y.
Proof
By Definition 10 ordering of values in ϕ(rm) corresponds to
the ordering of variables in rm, respectively. �

Definition 11. (tableaux Tm) Let m be an OD X 	→ Y.
We define Tm to be the set of all table templates rm, as we
defined in Definition 9.

Note that Tm is a set of table templates, each consisting
of two rows. The chase of Tm is defined as follows.

Definition 12. (chase of tableaux Tm) The chase of Tm

over a set of ODs M denoted as CHASETm,M is defined by
CHASETm,M = {rm | rm ∈ Tm ∧ rm |= M}. Furthermore,
CHASETm,M satisfies X 	→ Y, denoted by CHASETm,M |=
X 	→ Y, iff, for all rm ∈ CHASETm,M, rm |= X 	→ Y.
CHASETm,M satisfies the set of ODs M′, which is de-
noted as CHASETm,M |= M′, iff, for all X 	→ Y ∈ M′,
CHASETm,M |= X 	→ Y.

Theorem 5. (chase procedure for ODs is sound and com-
plete) Let M be a set of ODs over R and m be an OD
X 	→ Y. Then M |= X 	→ Y iff CHASETm,M |= X 	→ Y.
Proof
IF: Assume CHASETm,M �|= X 	→ Y. By Definition 12,
there exists rm ∈ CHASETm,M such that rm �|= X 	→ Y.
By Definition, 12 rm |= M. Hence, there is a mapping ϕ to
generate a relation instance ϕ(rm). By Lemma 1, ϕ(rm) |=
M, but in addition ϕ(rm) �|= X 	→ Y. We have found a
relation instance which satisfies M but does not satisfy X 	→
Y, which implies that M �|= X 	→ Y.
ONLY IF: Assume CHASETm,M |= X 	→ Y. Let s and t
be any two tuples in any relation r such that s �X t and
that satisfies the set of ODs M. We would like to present
that s �Y t. Let rm ∈ Tm. Let rm = {p, q} be the template
relation such that ϕ(p) = s and ϕ(q) = t. It is possible
always to find such a pair of tuples rm since Tm considers
all possibilities of two tuples which satisfy condition s �X t.
Therefore, we have ϕ(rm) = {s, t} and ϕ(rm) |= M. By
Lemma 1, it follows that rm |= M. It follows by Defini-
tion 12 that rm ∈ CHASETm,M. Since we assumed that
CHASETm,M |= X 	→ Y, we have rm |= X 	→ Y. This im-
plies that ϕ(rm) |= X 	→ Y by Lemma 1. Hence, s �Y t.
�

Theorem 6. (decidable) The implication problem of ODs
is decidable.
Proof
By Theorem 5, testing logical implication problem of ODs

is decidable as the chase procedure is a sound and complete
inference algorithm for ODs. �

Theorem 7. (complexity of chase) The complexity of build-
ing templates for the ODs chase procedure is exponential.
Proof
By Definition 9 there are 3n−k templates for r0 and 3n−j

templates for each rj . Therefore, there are (3n + 3n−k)/2
templates in total by geometric progression: O(3n). �

3.2 ODs with inclusion dependencies
There is a strong relationship between ODs and FDs. Any

OD implies an FD, modulo lists and sets, but not vice versa.
Lemma 2. (relationship between ODs and FDs) For every

instance r of relation R, if an OD X 	→ Y holds, then the
FD X → Y is true.
Proof
Let rows s and t ∈ r. Assume that sX = tX . Hence, s �X t
and t �X s. By definition of an OD, s �Y t and t �Y s.
Therefore, sY = tY holds. �

Furthermore, there exists a correspondence between FDs
and ODs.

Theorem 8. (correspondence between ODs and FDs) For
relation R, for every instance r of it, X → Y iff X 	→ XY,
for any list X that order the attributes of Xand any list Y
likewise for Y.
Proof
IF: Assume an OD X 	→ XY does not hold. This means,
there exists s and t ∈ r, such that s �X t but s ��XY t by
Definition 5. Therefore, sX = tX and s ≺Y t. Also s ≺Y t
implies that sY �= tY . Therefore, X → Y is not satisfied.
ONLY IF: By Lemma 2 if X 	→ XY, then X → XY. The
FD XY → Y holds by Armstrong axiom Reflexivity [2].
Hence by Armstrong axiom Transitivity, X → Y. �

The inference problem for ODs with INDs is undecidable.
Theorem 9. (Undecidable for ODs with INDs)
Testing logical implication for ODs with INDs is undecid-

able.
Proof
Testing implication for FDs with INDs is known to be un-
decidable [1]. Therefore, testing logical implication for ODs
with INDs is undecidable, too as there is a correspondence
between ODs and FDs (Theorem 8). �

4. COMPLEXITY
We show that the inference problem for ODs is co-NP-

complete. More specifically, we show that inference problem
for UODs and the inference problem of FDs from ODs are
co-NP-complete. FD inference from UODs, a restricted case,
is polynomially decidable, however.

4.1 OD Inference
We introduce first the notation which permits us to trans-

late instances of 3-SAT into instances of the decision prob-
lem for testing logical implication for ODs. We assume the
reader is familiar with NP-completeness in general, with the
3-SAT problem, and with reducibility [8].

Definition 13. Let P = {p1, . . . , pn} be a set of propo-
sitional variables for an arbitrary finite n, and let P =
{¬p1, . . . ,¬pn}. Let F be a formula written over the propo-
sitional variables in P and their negations in conjunctive
normal form with k clauses, each a disjunction of length
three, for an arbitrary finite k.

For i ∈ {1, . . . , k}, let Vi,1 ∨ Vi,2 ∨ Vi,3 represent clause i
such that

Vi,1 ∈ (P ∪ P),
Vi,2 ∈ (P ∪ P) − {Vi,1}, and
Vi,3 ∈ (P ∪ P) − {Vi,1, Vi,2},

without loss of generality.
Call any such F a 3-SAT candidate. Call any such 3-SAT

candidate F for which there exists a truth assignment over
F ’s P which satisfies F a 3-SAT instance.

3-SAT is the collection of 3-SAT instances.
Lemma 3. [8] 3-SAT is in NP-complete.
Definition 14. Let 〈M,X 	→ Y〉 be an arbitrary pair of a

finite set M of UODs and a target UOD X 	→ Y constructed
over the attributes that appear in M.

Call any such 〈M,X 	→ Y〉 an UODI candidate. Call any
such 〈M,X 	→ Y〉 for which M |= X 	→ Y an UODI instance.

UODI is the collection of UODI instances. This is the set-
theoretic characterization of the inference decision problem
for UODs.

Theorem 10. The inference decision problem for unidi-
rectional order dependencies is coNP-complete. Therefore,
UODI is in coNP-complete.
Proof
Reduction from 3-SAT.

Given a 3-SAT candidate F (Def. 13), we construct an
UODI candidate 〈MF , [T] ∼ [F]〉 (Def. 14).
Construction.
MF is constructed as follows. For each pi, i ∈ {1, . . . , n},

from F , we introduce four attributes to appear in MF : Pi,t,
Pi,f, Qi,t, and Qi,f. (Our intent is that [Pi,t, Pi,f] will mirror
the truth value of pi from F in a given truth assigment, and
[Qi,t, Qi,f] will mirror the truth value of ¬pi in that truth
assigment.)

For i ∈ {1, . . . , n}, add the following order dependencies
for Pi,t and Pi,f to MF :

1. [Pi,t] ∼ [T]
2. [Pi,f] ∼ [F]
3. [Pi,t] ∼ [Pi,f]
4. [Pi,t, Pi,f, T] ∼ [Pi,t, Pi,f, F]

Likewise, for i ∈ {1, . . . , n}, symmetrically add the “same”
order dependencies for Qi,t and Qi,f to MF :

5. [Qi,t] ∼ [T]
6. [Qi,f] ∼ [F]
7. [Qi,t] ∼ [Qi,f]
8. [Qi,t, Qi,f, T] ∼ [Qi,t, Qi,f, F]

For i ∈ {1, . . . , n}, add to MF :
9. [Pi,t, Qi,t, T] ∼ [Pi,t, Qi,t, F]

10. [Pi,f, Qi,f, T] ∼ [Pi,f, Qi,f, F]
Next, we encode the clauses. For each clause, i ∈ {1, . . . , k},

from F , we introduce three attributes: Vi,1, Vi,2, and Vi,3.
For i ∈ {1, . . . , k}, j ∈ {1, . . . , 3}, add one OD to MF as
follows. If Vi,j = pl (for a given l ∈ {1, . . . , n}) in F , add
to MF :

11. [Vi,j] ∼ [Pl,t, Pl,f]
Else, Vi,j = ¬pl (for a given l ∈ {1, . . . , n}) in F ; add to
MF :

12. [Vi,j] ∼ [Ql,t, Ql,f]
Finally, for each clause i ∈ {1, . . . , k} in F , we introduce

an attribute Ci, and we add to MF :
13. [Ci] 	→ [T]
14. [Ci] 	→ [Vi,1, Vi,2, Vi,3, F]

Polynomial reduction.
The translation procedure above of a 3-SAT candidate

into an UODI candidate is clearly polynomial in the size of
F .
Witness.

We can build a counter-example for a given UODI can-
didate to demonstrate that it is not an UODI instance, in
UODI.

A pair of tuples is necessary and sufficient to falsify [T] ∼
[F]. Therefore, MF �|= [T] ∼ [F] iff we can construct a
two-tuple table t over the attributes appearing in MF that
falsifies [T] ∼ [F], but that does not falsify any order depen-
dency in MF (thus satisfies MF). Between the two tuples
in t, T will have different values, F will have different values,
and the values of T and F will be anti-monotonic. Let the
two values for T and for F in t be 0 and 1, without loss of
generality. We write the tuples in t in a fixed order in our
discussion such that tT,F = [0 1

1 0], without loss of generality.
Conceptually, a transition from 0 to 1, as in tT = [0

1], en-
codes true; a transition from 1 to 0, as in tF = [1

0], represents
false.

We can always build a two-tuple table t such that tT,F =
[0 1
1 0] (which is necessary and sufficient to falsify [T] ∼ [F])

which satisfies ODs 1–13 of MF . Let us construct such a t.
Because of OD 1, tPi,t

= [0
0] or [0

1]. (If only a single value
appears in t for an attribute, we can assume that value is
0, without loss of generality.) Because of OD 2, tPi,f

= [0
0]

or [1
0]. Because of OD 3, tPi,t,Pi,f

�= [0 1
1 0]. Because of OD 4,

tPi,t,Pi,f
�= [0 0

0 0]. (Otherwise, OD 4 would be falsified by t,

since tT,F = [0 1
1 0].) Therefore, tPi,t,Pi,f

= [0 1
0 0] or [0 0

1 0].
From ODs 5–8, it symmetrically follows that tQi,t,Qi,f

=

[0 1
0 0] or [0 0

1 0].
From ODs 9–10, it further follows that

tPi,t,Pi,f,Qi,t,Qi,f
= [0 0 0 1

1 0 0 0]
or

tPi,t,Pi,f,Qi,t,Qi,f
= [0 1 0 0

0 0 1 0] .

Thus, t |= [Pi,t, Pi,f] �∼ [Qi,t, Qi,f].
For any Vi,j such that Vi,j = pl for a given l in F , so OD

11 is in MF for i, we know the following:
• if tPl,t,Pl,f

= [0 0
1 0], then tVi,j

= [0
0] or [0

1];

• else tPl,t,Pl,f
= [0 1

0 0] and tVi,j
= [0

0] or [1
0].

For any Vi,j such that Vi,j = ¬pl for a given l in F instead,
so OD 12 is in MF for i, we know the following:

• if tPl,t,Pl,f
= [0 0

1 0], then tQl,t,Ql,f
= [0 1

0 0] and tVi,j
= [0

0]

or [1
0];

• else tPl,t,Pl,f
= [0 1

0 0], tQl,t,Ql,f
= [0 0

1 0] and tVi,j
= [0

0] or

[0
1].

To satisfy ODs 13, for i ∈ {1, . . . , k}, it must be that
tCi

= [0
1] since tT = [0

1].
In coNP.

It is not always possible further to set values for the Vi,j ’s
in such a way that t also satisfies the ODs 14, for i ∈
{1, . . . , n}, j ∈ {1, . . . , 3}, and so satisfies MF completely.
When we can also set values for the Vi,j ’s so that t also
satisfies the ODs 14 too, then t suffices as a witness that
〈MF , [T] ∼ [F]〉 �∈ UODI.
Correspondence.
F ∈ 3-SAT iff 〈MF , [T] ∼ [F]〉 �∈ UODI.

Consider two-tuple tables t that satisfy the ODs 1–10 and
13 from MF , but that falsify [T] ∼ [F]. There is a one-
to-one mapping between truth assigments over the pi, for
i ∈ {1, . . . , n}, in F and settings for Pi,t in such t. For
i ∈ {1, . . . , n}, if pi = true in the truth assignment, set

tPi,t,Pi,f,Qi,t,Qi,f
= [0 0 0 1

1 0 0 0] ;

else (pi = false), set
tPi,t,Pi,f,Qi,t,Qi,f

= [0 1 0 0
0 0 1 0] .

IF: There is some truth assigment over p1, . . . , pn that sat-
isfies F .

We construct a two-tuple table t based on this truth as-
signment that satisfies MF for ODs 1–13, and that falsifies
[T] ∼ [F], as above (in the Witness part). For i ∈ {1, . . . , n},
assign values for Pi,t, Pi,f, Qi,t, and Qi,f according to the
truth assignment mapping above.

To satisfy further ODs 14, we must be able to assign values
to the Vi,j ’s that suffice. For i ∈ {1, . . . , n}, j ∈ {1, . . . , 3},
if Vi,j = true, set tVi,j

= [0
1]. This satisfies the OD 11 or 12

added to MF for i, given how we assigned Pi,t, Pi,f, Qi,t,
and Qi,f based on pi’s truth value. Otherwise (Vi,j = false),
set tVi,j

= [0
0]. This satisfies either the OD 11 or 12 for i, j,

vacuously.
Since, for each i ∈ {1, . . . , k}, at least one of Vi,1, Vi,2,

and Vi,3 is true in the truth assignment, at least one of
tVi,1 , tVi,2 , or tVi,3 is [0

1]. Thus, t as constructed satisfies
ODs 1−14, and so all of MF .
ONLY IF: There is no truth assignment that satisfies F .

For any arbitrary truth assignment, we can build a two-
tuple table t that falsifies [T] ∼ [F] based on the truth as-
signment mapping that satisfies ODs 1–13, as done in the
if part. We next try to assign values to the Vi,j ’s in such a
way that t satisfies ODs 14.

Since the truth assignment does not satisfy F , there is
some clause i such that Vi,1, Vi,2, and Vi,3 are each false.
The OD 14 for i will be falsified. For each Vi,j , as either the
OD 11 or 12 is satisfied accordingly, tVi,j

= [0
0] or [1

0].

If, for any Vi,j , tVi,j
= [1

0], OD 14 is falsified since tCi
=

[0
1]. If instead, for all Vi,j , tVi,j

= [0
0], OD 14 is still falsified,

since tF = [1
0].

No two-tuple table t that falsifies [T] ∼ [F] can be con-
structed that satisfies MF . Any table t therefore either
satisfies [T] ∼ [F] or falsifies MF . �

4.2 FD inference over ODs
Definition 15. Let 〈M,X 	→ Y〉 be an arbitrary pair of a

finite set M of ODs and an target UOD X 	→ Y constructed
over the attributes that appear in M.

Call any such 〈M,X 	→ Y〉 an ODI candidate. Call any
such 〈M,X 	→ Y〉 for which M |= X 	→ Y an ODI instance.

ODI is the collection of ODI instances. This is the set-
theoretic characterization of the inference decision problem
for ODs.

Corollary 11. The inference decision problem for order
dependencies is coNP-complete. That is, ODI is in coNP-
complete.
Proof
Follows directly from Theorem 10 as UODI is a proper
sub-problem of ODI (Definition 15). �

Functional-dependency inference for UODs is polynomial.
In fact, it can be done in linear time (Theorem 12). This
does not contradict Theorem 10; the type of inference that
is hard for unidirectional ODs is order compatiblity, X ∼ Y
(as employed in Proof 10).

Let the length of the representation of M, the string of
concatenated left-hand and right-hand sides of ODs, be de-
noted by |M|.

Theorem 12. (testing logical implication M |= X 	→ XY)
Testing, whether M |= X 	→ XY (M |= X → Y) can be
accomplished in O(|M|) time. (This includes finding the

closure for FDs, X+.)
Proof
Assume M′ = {X 	→ XY, XY ↔ YX | X 	→ Y ∈ M}. In
[19], we have shown that F = {X → Y | X 	→ Y ∈ M′}
is a set of FDs which enables to compute closure for FDs
X+ over the set of UODs M. Therefore, as testing logical
implication of a FD X → Y has already been shown to be
linear in [5]. This implies that testing M |= X → Y can
be also accomplished in O(|M|). The same applies to M |=
X 	→ XY. �

This is not the same case, however, for general order de-
pendencies. Both the inference problems for functional de-
pendencies (embedded within the ODs), X 	→ XY, and for
order compatibility, X ∼ Y, are hard.

We call an attribute a constant if, for any table that sat-
isfies the set of ODs M, it can have only a single value
occurring in the table.

Definition 16. (constant) A marked attribute A is called
a constant with respect to M iff M |= [] 	→ A.

Interestingly, an order specification may become empty.
We are able to express this with order dependencies. For
instance, if there is a predicate in the where clause A = 150,
which means that A is a constant in the scope of the query,
this predicate yields [] 	→ A. Given I = [A], note that I may
reduce to empty.

Theorem 13. Functional-dependency inference for order
dependencies is co-NP-complete.
Proof
It suffices to show that any 3-SAT candidate (Definition 13)
can be reduced to an ODI candidate of the form 〈M,X 	→
XY〉 (Definition 15). We reduce any 3-SAT candidate to an

ODI candidate of the form 〈M, [] 	→ [
−→
T]〉. 7

Construct an ODI candidate from a given 3-SAT candi-
date in the very way the UODI candidate—also an ODI
candidate—is constructed in Proof 10. (Recall every un-
marked attribute in ODs 1–14 is ascending, by default.) Add
one more OD to M:

15. [
−→
F] 	→ [

←−
T].

A two-tuple table t is a necessary and sufficient witness

that M �|= [] 	→ [
−→
T]. Let tT = [0

1], without loss of generality.
Then, tF = [1

0], given t satisfies OD 15.
The rest of the proof then proceeds the same as for The-

orem 10. �

5. INFERENCE PROCEDURE
We introduce an inference procedure for testing logical

implication for a restricted domain for UODs. The addi-
tional order property to be guaranteeed over the schema
is intuitive, holds for all real-world business domains that
we have encountered, and can easily be verified whether it
holds. Thus, it is a natural restriction on the domain. We
develop an inference procedure for UODs which is sound
and complete when applied over a database that satisfies the
property. Our inference procedure is efficient, with a reason-
able polynomial complexity bound with respect to schema
complexity.

7A simpler reduction from 3-SAT to ODI is possible which
suffices. A single pair of attributes can be forced to be anti-

monotonic: [
−→
P] ↔ [

←−
Q], just as with T and F. Then, Pi and

Qi can be used to encode the truth assignment of pi. Given
that we preceded with Theorem 10, however, the proof given
here is more concise.

Table 7: Showing Lack of Transitivity.

A B C

0 0 1
1 0 0
2 2 2

5.1 A Natural Domain
In [14], an axiomatization for UODs (defined as we have in

this paper) over a restricted domain is presented. The au-
thors call these temporal functional dependencies (TFDs),
focusing on the time domain, and they provide axiomatiza-
tion for TFDs. A TFD X → Y means that ∀ A ∈ Y. X 	→ [A],
in which X describes time and the attributes in Y are time
variants. The domain is too restricted, unfortunately, to
be of use to us. It effectively restricts one to ODs of the
form with just a single attribute on the right-hand side (e.g.,
X 	→ [A]). In many of our examples, in particular, in Exam-
ples 2 and 3, we need UODs with lists of multiple attributes
on the right-hand side. Thus, TFDs do not suffice. Further-
more, no inference procedure for TFDs was defined.

We can take the same tactic to find a natural property
by which we can restrict our database domains to make the
inference problem tractable, but still cover real-world do-
mains. Our axiomatization in Section 2 yields us insight
into how this can be done.

It is surprising that the order-compatibility relation ‘∼’
(Definition 4) is not transitive as shown in Example 6. (By
Transitivity axiom (Theorem 1) the order relation (‘ 	→’) is.)

Example 6. (Order compatibility is not transitive.) As-
sume M = {A ∼ B, B ∼ C}. The Table 7 satisfies the set of
UODs M. However, it falsifies A ∼ C. This demonstrates
that the order-compatibility relation is not transitive.

If we restrict our domains to have a property that guar-
antees a limited form of transitivity over order-compatibility,
then we can make an efficient inference procedure for UODs.8

The property we prescribe is transitivity of order compati-
bility over single attributes. Let us call a domain a transitive
domain if it satisfies this property.

Definition 17. (transitivity of order compatibility) A do-
main (relation schema) has the property of transitivity of
order compatibility iff it can be quaranteed that, for each
relation R in the schema, for any three attributes A, B, and
C, where B is not a constant, if A ∼ B and B ∼ C, then
A ∼ C. If a domain has this property, we call it a transitive
domain.

Example 7. (Transitivity over order compatibility.)
Order compatibilities

quarter ∼ month and
month ∼ trimester

are satisfied in Table 3 by Date domain. Also, so is
quarter ∼ trimester

Hence, the transitivity property holds over order compatibil-
ity.

All of the real-world business domains we have explored
including the TPC-DS schema, and the examples which are
used in this paper (the Date and Taxes domain) are transi-
tive, by Definition 17. One can argue that breaking the un-

8It is this lack of transitivity over the order-compatible re-
lation generally that is at the heart of the high complexity
for the inference problem over general domains.

derlying property in data can be only done by contrivance.
Thus, this restriction is quite natural, as it covers the cases
one sees in practice. Domains can be tested if they are tran-
sitive in a straightforward way, by enumeration.

5.2 An Inference Procedure for UODs
Let M = {m0, ..., mn−1} be a set of UODs defined over

the set of attributes U = {A0, ..., Am−1}. The set M is rep-
resented as a string of pairs, each pair representing an UOD
(the left-hand and right-hand sides of the dependency). Each
side is a list of attributes. Let the length of the representa-
tion of M, the string of concatenated left-hand and right-
hand sides, be denoted by |M|. Also, let (|m| = |X| + |Y|).
Since each attribute in m appears in at least one UOD of
M, we can assume that |m| ≤ |M| .

Let m be the UOD X 	→ Y, for which both X and Y are
defined over the set of attributes U . We denote the length
of X and Y as |X| and |Y|, respectively.

We first present the important elements of the algorithm
for testing logical implication for natural domains of UODs.
Lastly, we establish that the algorithm is sound and com-
plete in Theorem 14.

The algorithm TestOrderDependency (Algorithm 2) tests
logical implication for transitive domains of UODs. It in-
vokes algorithms TestFunctionalDependency and TestOrder-
Compatible (Algorithm 3). Algorithm TestFunctionalDe-
pendency performs a test if M |= X 	→ XY which by Theo-
rem 8 implies an FD, M |= X → Y. Algorithm TestOrder-
Compatible tests if M |= XY ↔ YX (M |= X ∼ Y). These
parts combine to complete the proof of soundness and com-
pleteness of our inference procedure for UODs over transitive
domains. Since by Theorem 4 X 	→ Y holds iff X 	→ XY and
XY ↔ YX.

Algorithm 2 TestOrderDependecy

Input: A set M of n unidirectional order dependencies on
attributes {A0, ..., Am−1} and an UOD X 	→ Y.
Output: “true” if M |= X 	→ Y; “false” otherwise.
Global data structures:

a. Attributes are represented by integers between 0 and
m-1.

b. UODs in M are represented by integers between 0 and
n-1.

c. LS[0:n−1], RS[0:n−1] are arrays of lists, containing
the attributes in the left and right side of each UOD.

d. DEPEND[0:m−1] is an array of attributes found to be
functionally dependent on given set of attributes.

e. OC[0:n−1; 0:1] is a two dimensional array of order
compatible dependencies with single attribute on the
left and right side.

f. LX and LY are lists of attributes represented by inte-
gers, corresponding to X and Y respectively.

1: DEPEND ← TestFunctionalDependency(M, X)
2: if exists i in LY such that DEPEND[i] = “false” then
3: result ← “false”
4: return result
5: else
6: result ← TestOrderCompatible
7: return result

Theorem 12 states that testing whether X 	→ XY, which
corresponds to an FD X → Y (Theorem 8), can be achieved
in linear time. Notice that we assume there is a TestFunc-

tionalDependency algorithm which finds a closure of a given
set of attributes X , since the authors of [5] designed a linear
algorithm for finding closure over FDs.

Testing if X ∼ Y is more involved and complex. We ob-
serve that M �|= X ∼ Y iff we are able to construct a table
t that satisfies set of UODs M and consists of two rows
which have a swap (see Definition 8 and Example 4 in Sec-
tion 3.1) with respect to X and Y. In the table t that we
construct, we shall use integer values for the cells without
lost of generality. (A cell is a given column entry of a given
row.)

We test if X ∼ Y in the algorithm TestOrderCompatible
(Algorithm 3). For each pair of attributes A in X and B in Y,
we test in an algorithm TestSingleOrderCompatible (Algo-
rithm 4) whether we can construct a table t described above
with a swap with respect to A ∼ B with attributes prefixing
A and B, in lists X and Y, respectively, being constants (Def-
inition 16) within table t, such that table t satisfies the set
of ODs M′. (Let P be a concatenated attributes prefixing
A and B. We consider M′ = M∪{[] 	→ P}.) [] 	→ P is the
way of forcing each attribute C in list P to be a constant.
Note that any table which satisfies M′ satisfies M. Once
we find a swap, we halt in Algorithm 3.

Algorithm 3 TestOrderCompatible

Output: A result which states if X and Y are order com-
patible.

1: for i ← 0 to |X| − 1 do
2: for j ← 0 to |Y| − 1 do
3: result ← TestSingleOrderCompatible(i, j)
4: if !result then
5: return “false”
6: return “true”

Based on Definition 17, order compatibility for single at-
tributes (over the attributes which are non-constant) is tran-
sitive for transitive domains. Therefore, we test if there is a
path between A and Bin a graph consisting of the first not
constant attributes from the left-hand side and a right-hand
side of each UOD from M′. We find this graph in Algorithm
FindOrderCompatibleGraph (Algorithm 5). Finding a path
by transitivity property over order-compatibility means that
A ∼ B holds.

We assume the Algorithm TestExistPath which tests if
there exists a path between two nodes. The problem of
testing if there exists a path is simple. One can track the
visited edges during the process of traversing the nodes. We
can guarantee that each edge is visited only once. Hence,
we can check the existence of the path in linear time. Note
there is an edge per OD in M′, so the number of edges (plus
number of nodes) is O(|M|).

Theorem 14. (soundness and completeness) Algorithm
2 for testing logical implication M |= X 	→ Y for natural
domains of UODs is sound and complete.
Proof
Theorem 4 states that order dependency X 	→ Y holds iff
X 	→ XY and XY ↔ YX.

Case 1 M |= X 	→ XY. We have already proven that
testing X 	→ XY is sound and complete (Theorem 12).

Case 2 M |= X ∼ Y. This step is tested in algorithm
TestOrderCompatible (Algorithm 3). If M |= X ∼ Y is
falsified, then we show that we are always able to construct
a two-tuple table t which satisfies set of UODs M and has

Algorithm 4 TestSingleOrderCompatible

Input: Attributes indexes i and j.
Output: “true” if single attributes LX[i] and LY[j] are order
compatible, “false” otherwise.

1: if LX[i] = LY[j] then
2: return “true”
3: else
4: List P is a concatenation of lists LX.subList(0, i − 1)

and LY.subList(0, j − 1)
5: M′ ← M ∪ {[] 	→ P}
6: DEPEND ← TestFunctionalDependency([], M′)
7: if DEPEND[LX[i]] ‖ DEPEND[LY[j]] then
8: return “true”
9: else

10: OC ← FindOrderCompatibleGraph
11: return TestExistPath(LX[i], LY[j], OC)

Algorithm 5 FindOrderCompatibleGraph

1: initialize two dimensional array OC with [0; 0]
2: for l ← 0 to n − 1 do
3: for k ← 0 to LS[l].size() − 1 do
4: if DEPEND[LS[l][k]] = “false” then
5: a ← DEPEND[LS[l][k]]
6: for s ← 0 to RS[l].size() − 1 do
7: if DEPEND[RS[l][s]] = “false” then
8: b ← DEPEND[RS[l][s]]
9: OC[l][0] ← a, OC[l][1] ← b

10: break
11: break

a swap (Definition 8) with respect to an UOD X ∼ Y. The
main body of this algorithm is a double-nested for-loop runs
|X||Y| times (and terminates). Inside, it invokes Algorithm
4 each time.

Algorithm 4 tests for each pair of attributes A and B from
X and Y, respectively, if it is possible to construct the de-
scribed table t which has a swap between A and B, and
which also satisfies M′. M′= M ∪ {[] 	→ P}, where P is
a conjunction of lists prefixing A and B from lists X and Y,
respectively. Note that any table which satisfies M′ satis-
fies M. Therefore, by Definition 8 we enumerate through
all the possible cases in the columns where an UOD X ∼ Y
can by falsified by a swap. (It cannot be falsified by a split,
Definition 7.)

We construct the table t (see Table 8) with values 0 and 1
only if both A and B are not constants. Attributes are par-
titioned into three groups: those that have the same values
as A (and consequently swapped values to B), those that are
constants; and the remaining attributes which have swapped
attributes to A. Group A is the set of attributes which have
a path with A in a data structure OC (in Algorithm 2.e.,
assigning the values in Algorithm 5). We use transitivity
property for single attributes over order-compatibility. Al-
gorithm ExistPath tests if there exists a path.

Table 8: Table t.

Constants A B Group A Remaining attributes

0 0 1 0 ... 0 1 ... 1
0 1 0 1 ... 1 0 ... 0

Table t satisfies M′. Assume otherwise: for M 	→ N ∈
M′, t falsifies it. We do not introduce splits in table t that
falsify M 	→ MN because by Theorem 12 the algorithm is
sound and complete for inferring FDs. (Note that it applies
also to constants which can be expressed as FDs.)

Consider M ∼ N. Breaking this is the other way of falsify-
ing UOD M 	→ N by Theorem 4. Let E be the first element
which is not a constant from M and F from N, respectively.
If both E and F are from group A plus A or they are both
from remaining attribute group plus B, then M and N order
the tuples of t the same way. Therefore, E must be from one
group and F from the other. Since the transitivity property
holds over order-compatibility we would detect this. Con-
tradiction. �

Theorem 15. (complexity for transitive domains) Test-
ing logical implication for transitive domains of UODs, (that,
is whether M |= X 	→ Y) is solvable in polynomial time,
O(|X||Y||M|)
Proof
By Theorem 4, X 	→ Y holds iff X 	→ XY and XY ↔ YX.

Case 1 Testing the logical implication that M |= X 	→ XY
can be done in O(|M|) time by Theorem 12.

Case 2 Algorithm 3 tests logical implication, that M |=
X ∼ Y. In the main body of this algorithm, the double-
nested for-loop runs |X||Y| times invoking each time Algo-
rithm 4. Algorithm 4 tests if each A from X is order com-
patible with each B from Y. This is done by checking if there
is a path in a graph. We keep track of visited edges. Hence,
we can check if there is a path in linear time over O(|M|).
Therefore the complexity of Algorithm 3 is O(|X||Y||M|). �

6. RELATED WORK
Ordered sets and lattices have been researched in math-

ematics [6]. Our concept of ODs is equivalent to order-
preserving mapping between two ordered sets. The work
in mathematics has concentrated on investigating the prop-
erties of, and relationships between, ordered sets rather than
among the mappings. To the best of our knowledge, no com-
plexity study for investigating relationship between map-
pings of ODs has been proposed.

Sorting is at the heart of many database operations: sort-
merge join, index generation, duplicate elimination, ordering
the output through the SQL order-by operator, etc. The
importance of sorted sets for query optimization and pro-
cessing has been recognized very early on. Right from the
start, the query optimizer of System R [16] paid particular
attention to interesting orders by keeping track of all such
ordered sets throughout the process of query optimization.
In [11] authors explored the use of sorted sets for executing
nested queries. The importance of sorted sets has prompted
the researchers to look beyond the sets that have been ex-
plicitly generated. Thus, [13] shows how to discover sorted
sets created as generated columns via algebraic expressions.
(In DB2, a generated column is a column that can be com-
puted from other columns in the schema.) For example, if
column A is sorted, so is the generated column G defined as
G = A/100 + A− 3 (that is, A � G). 9 We show in [20] how
to use relationships between sorted attributes discovered by
reasoning over the physical schema.

Ordered dependencies were proposed in the context of

9We use the arrow “�” for simplicity for different type of
orders, regardless.

database systems in [9]. However, the type of orders, hence
the dependencies defined over them, were different from the
ones we presented here. A dependency X � Y holds if or-
der over the values of each attribute of X implies an order
over the values of each attribute of Y. (In other words, the
dependency is defined over the sets of attributes rather than
lists.) Formally, an instance of a database satisfies a point-
wise order dependency X � Y if, for all tuples s and t, for
every attribute A in X , sA op tA implies that for every at-
tribute B in Y sB op tB, where op ε{<, >,≤,≥, =}. In [9] a
sound and complete set of inference rules for such dependen-
cies is defined with demonstrating that determining logical
implication is co-NP-complete. A practical application of
the dependencies for an improved index design is presented
in [7]. A novel integrity constraint for ordered data, sequen-
tial dependencies which defined also over sets of attributes
was introduced in [10]. For example, a sequential depen-
dency sequence id�[5,6] time means that time gaps between
consecutive sequence numbers are between 5 and 6. The
authors present a framework for discovering which subsets
of the data obey prescribed sequential dependencies.

Dependencies defined over lexicographically ordered do-
mains were introduced in [14] under the name lexicographi-
cally ordered functional dependencies. The paper [15] by the
same author develops a theory behind both lexicographical
as well as pointwise dependencies. (The latter were simpler
than the dependencies defined in [9].) A set of inference rules
(proved to be sound and complete) is introduced for point-
wise dependencies, but not for lexicographical dependencies
in this work. Only a chase procedure is defined for the lat-
ter, for which the order dependencies are defined as we do in
this paper. (We call these UODs.) Interestingly, the com-
plexity of testing logical implication for ODs has also not
been studied, which is the subject of our work. Recently, in
[19] we presented a sound and complete axiomatization for
UODs. UODs do not consider bidirectionality (a mix of asc
and desc) as ODs which we introduced for the first time in
[18]. Many times relations prove to be nearly-sorted ; most
of tuples are close to their place in the order. An interesting
study of establishing whether a given stream is sufficiently
nearly-sorted was described in [4].

7. CONCLUSIONS
Ordering permeates databases, to such an extent that we

take it for granted. We expect it to be exploited wisely in
query plans. It is requested by many queries but is relatively
expensive to perform. The goal of this paper was to develop
a theory behind the complexity of ODs. To the best of our
knowledge, this is the first attempt to study the complexity
of such dependencies.

We devise a chase procedure for testing logical implication
for ODs and show that the inference problem for ODs and
INDs is undecidable. We present that testing logical im-
plication for UODs is co-NP-complete, as well as FDs over
ODs. Therefore, they are not amenable to fast algorithmic
solutions. However, we demonstrated that testing logical im-
plication of FDs over UODs is linear. Finally, we have also
shown a transitive domain over which the inference problem
for UODs is tractable. We designed a polynomial algorithm
for testing logical implication.

There is more that can be done, and that we plan to do.
Future work in this area should pursue two lines of research:
further investigation of the theoretical questions; and, appli-

cations of the theoretical framework in a practical database
setting. These are further things we plan to do.

• We plan to work on extending our work for axioma-
tization for UODs [19] into axiomatization for ODs,
which allow the mix of ascending and descending or-
ders. Such axiomatization might provide insight into
how ODs behave, and provide input for useful query
rewrites.

• One of the practical applications which we are cur-
rently working on is a sound theorem prover. We prove
in this work that testing logical implication for ODs is
co-NP-complete. However, it is the lack of transitivity
over the order-compatibility that is at the heart of of
the high complexity. That is why the Chain axiom is
necessary for the sound and complete axiomatization
of UODs (Figure 1). We would like to investigate if
there is a polynomial algorithm for reasoning over the
first five axioms, excluding Chain axiom (Figure 1).
Such a theorem prover would be a useful tool in query
optimization and an alternative approach to what we
proposed in this work. (We define a domain property
that makes reasoning over ODs efficient.)

• We are working on introducing a framework for dis-
covering conditional order dependencies. (Conditional
sequential dependencies were proposed in [10].) A con-
ditional order dependency can be represented as a pair
(X 	→ Y, Tr), where X 	→ Y, refereed to as the em-
bedded OD, and Tr is a range pattern tableau defining
over which rows the dependency applies. It would be a
novel integrity constraint allowing one to express that
an OD date 	→ salary holds within a given employee id.

• If ABC 	→ D holds but not AB 	→ D, is ordering by AB
useful if we need a stream sorted by D? If the stream is
sorted by AB, it may be nearly sorted on D. If it were
known that every partition of AB is small, each AB-
partition could be sorted on-the-fly in main memory,
removing the need for an external sort operator. We
believe the work of [4] and this work on order depen-
dencies could be combined to formalize the concept of
nearly sorted.

• We are exploring the use of ODs for database design [3].
The concept of functional dependency lies at the heart
of database design and the relational model. Order
dependency extends functional dependency in a quite
natural way to include also semantics of order over
the data. ODs can reveal redundancies that cannot
be detected using FDs alone. This leads one to won-
der about the concept of normalization modulo ODs.
It would be an interesting research topic to extend
the results obtained there to the design of relational
databases.

Acknowledgments.
We thank Wenbin Ma from IBM laboratory in Toronto for
his encouragement and helpful suggestions throughout the
project.

IBM, the IBM logo, and ibm.com are trademarks or regis-
tered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product
and services names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available
on the Web at ”Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. In Addison-Wesley, 157-211, 1995.

[2] W. Armstrong. Dependency Structures of Database
relationships. In Proceedings of the IFIP Congress,
580-583, 1974.

[3] C. Beeri and P. Bernstein. Computional Problems
Related to the Design of Normal Form Relational
Schemas. TODS 4(1):30-59, 1979.

[4] S. Ben-Moshe, Y. Kanza, E. Fischer, A. Matsliah,
M. Fischer, and C. Staelin. Detecting and exploiting
near-sortedness for efficient relational query
evaluation. In ICDT, 256-267, 2011.

[5] P. Bernstein. Synthesing third normal form relations
from functional dependencies. TODS, 1(4): 277-298,
1976.

[6] B. Davey and H. Priestley. Introduction to Lattices
and Order. In Cambridge University Press, 1-50, 2002.

[7] J. Dong and R. Hull. Applying Approximate order
dependency to Reduce Indexing Space. In SIGMOD,
119-127, 1982.

[8] M. Garey and D. Johnson. A Guide to
NP-completness. In Freeman, 1979.

[9] S. Ginsburg and R. Hull. Order dependency in the
Relational Model. TCS, 26(1): 149-195, 1983.

[10] L. Golab, H. Karloff, F. Korn, A. Saha, and
D. Srivastava. Sequential Dependencies. PVLDB,
2(1): 574-585, 2009.

[11] R. Guravannavar, H. Ramanujam, and S. Sudarshan.
Optimizing Nested Queries with Parameter Sort
Orders. In VLDB, 481-492, 2005.

[12] R. Kimball and M. Ross. The Data Warehouse Toolkit
Second Edition. The Complete Guide to Dimensional
modeling. In John Wiley and Sun, 217-227, 2012.

[13] T. Malkemus, P. S., B. Bhattacharjee, and
L. Cranston. Predicate Derivation and Monotonicity
Detection in DB2 UDB. In ICDE, 939-947, 2005.

[14] W. Ng. Lexicographically Ordered Functional
Dependencies and Their Application to Temporal
Relations. In IDEAS, 279-287, 1999.

[15] W. Ng. An Extension of the Relational data model to
incorporate ordered domains. TODS, 26(3) 344-383,
2001.

[16] P. Selinger and M. Astrahan. Access Path Selection in
a Relational Database Management System. In
SIGMOD, 23-34, 1979.

[17] D. Simmen, E. Shekita, and T. Malkemus.
Fundamental Techniques for Order Optimization. In
SIGMOD, 57-67, 1996.

[18] J. Szlichta, P. Godfrey, and J. Gryz. Chasing Polarized
Order Dependencies. In AMW,168-179, 2012.

[19] J. Szlichta, P. Godfrey, and J. Gryz. Fundamentals of
Order Dependencies. PVLDB, 5(11): 1220-1231, 2012.

[20] J. Szlichta, P. Godfrey, J. Gryz, W. Ma, P. Pawluk,
and C. Zuzarte. Queries on Dates: Fast Yet not Blind.
In EDBT, 497-502, 2011.

[21] J. Szlichta, P. Godfrey, J. Gryz, W. Ma, W. Qiu, and
C. Zuzarte. Business-Intelligence Queries in DB2 with
Order Dependencies. Technical report, York
University, 2012. Submitted for review in ICDE.
www.cse.yorku.ca/techreports/2012/CSE-2012-04.pdf.

