
Business-Intelligence Queries in DB2 with Order Dependencies

Jaroslaw Szlichta, Parke Godfrey, Jarek Gryz, Wenbin Ma, Weinan Qiu
and Calisto Zuzarte

Technical Report CSE-2012-04

July 24 2012

Department of Computer Science and Engineering
4700 Keele Street, Toronto, Ontario M3J 1P3 Canada

Business-Intelligence Queries in DB2

with Order Dependencies

Jaroslaw Szlichta∗,†,1 Parke Godfrey∗,†,2 Jarek Gryz∗,†,3 Wenbin Ma‡,4 Weinan Qiu‡,5 Calisto Zuzarte†,‡,6

∗York University

Toronto, Canada
†Centre for Advanced Studies

IBM Toronto

Toronto, Canada
1
jszlicht@cse.yorku.ca
2
godfrey@cse.yorku.ca
3
jarek@cse.yorku.ca

‡IBM Toronto Laboratory

Toronto, Canada
4
wenbinm@ca.ibm.com

5
davidqiu@ca.ibm.com
6
calisto@ca.ibm.com

Abstract— Business-intelligence queries often involve SQL
functions and algebraic expressions. There can be clear semantic
relationships between a column’s values and the values of a
function over that column. A common property is monotonicity:
as the column’s values ascend, so do the function’s values. This
has come to be called an order dependency (OD). Queries can be
ran faster when the query optimizer uses order dependencies.
They can be ran even faster when the optimizer can also reason
over known ODs to infer new ones.

Order dependencies can be declared as integrity constraints,
and they can be inferred automatically for many types of SQL
functions and algebraic expressions. We present optimization
techniques using ODs for queries that involve join, order by,
group by, partition by, and distinct. Essentially, ODs can further
exploit interesting orders and eliminate or simplify potentially
expensive sorts in the query plan. We evaluate these techniques
over our implementation in IBM R© DB2 R© V10 using TPC-DS R©

benchmark. Our experimental results demonstrate a significant
performance gain. We additionally devise an algorithm for testing
logical implication for ODs, which is polynomial over the size of
the set of given ODs. We show that the inference algorithm is
sound and complete over sets of ODs over natural domains. This
enables the optimizer to infer useful ODs from known ODs.

I. INTRODUCTION

A. Motivation

As business-intelligence (BI) applications become more

complex, so do the analytic queries needed to support them.

The increasing complexity raises performance issues and nu-

merous challenges for query optimization. Worse, traditional

optimization methods often fail to apply when logical sub-

tleties in the database schemas and in the queries circumvent

them. Data-warehouse schemas will use surrogate keys, while

predicates in analytic queries will use natural values (sale date
= ’2010-07-01’). Real world queries will use SQL functions

(year(date)) and algebraic expressions (d date + 30 days).

These subtleties cause the optimizer to miss opportunities

to use indexes and pipeline operations, and to add potentially

expensive operations such as sort even when the data is already

sorted appropriately. This is because semantic relationships

between the functions and expressions the queries use and

the data in the database—and between data themselves in the

schema, as between surrogate and natural keys—are opaque.

If these relationships could be discovered and used, more

efficient query plans would result.

The relationship on which we focus is order. If the rows of

a table were ordered by its date column d date, they would

also necessarily be ordered by d date + 30 days. Indeed, the

function (over d date) of d date + 30 days is monotonically

increasing with respect to d date. For this, we say d date
orders d date + 30 days. (In this case, d date + 30 days
orders d date also. We then say the two are order equivalent.

However, “orders” is not inherently symmetric.) If an index

on d date could be used to provide results ordered by d date,

then the same index would provide the results ordered by

d date + 30 days, since this is the same order. This semantic

relationship of order is a type of dependency, and we call

it an order dependency (OD). It is akin to the well-known

concept of functional dependencies (FDs) [1]. (In fact, any

OD is inherently also an FD, but not vice versa.)

While it will be readily obvious to any reader that d date
and d date + 30 days are the same order-wise—the order

dependency that d date and d date + 30 days are order

equivalent—this observation is not for free for the optimizer. It

would need explicit mechanisms to recognize the equivalence.

While this particular order equivalence rightfully seems trivial,

we shall see there are many that are not. Then when and how

to exploit such equivalences in query planning is far from

trivial too. This work is about that.

Consider then the SQL query in Query 1 over the TPC-

select D.d_date + 30 days,
max(S.ws_ext_sales_price) as most

from date_dim D, web_sales S
where S.ws_sold_date_sk = D.d_date_sk and

D.d_date between
date(’1998-01-01’) and
date(’2002-01-01’)

group by D.d_date + 30 days
order by D.d_date + 30 days;

Query 1: Plus thirty days.

DS [2] schema. In the schema, date dim is a dimension

table with the primary key d date sk with one row per day.

The table has columns d month, d quarter, and d day, and

additional columns that qualify the day (such as whether

it is the weekend, a holiday, and, if so, the name of the

holiday). The table web sales is a large fact table recording

all individual sales, with ws sold date sk as a foreign key

referencing date dim.

Let there be a tree index for date dim on d date. The

optimizer will miss that the index could be used in evaluating

Query 1 to accomplish both the group-by and the order-by.

How might the query be rewritten manually to resolve this?

• group by d date + 30 days and order by d date:

This is not legal SQL; the attribute in the order-by is not

listed in the group-by (as such).

• group by d date and order by d date + 30 days:
This is accepted by DB2; derived attributes—functions

and algebraic expressions derived over the attributes listed

in the group-by (which may include derived attributes

itself)—can be used in the select and order-by clauses.

However, this does not resolve the inefficiency. The query

plan still explicitly sorts to “satisfy” the order-by.

• group by d date and order by d date:

This does work! The index can now be employed to

implement the group-by and to satisfy the order-by.

Of course, it is not the responsibility of the SQL program-

mer to write queries painstakingly—or of an automated BI

report system that generates SQL queries in the back-end—

in such a way to assure the optimizer will handle it well.

This would violate the declarative principle of SQL. Even if

we tried to put the onus on programmers to be careful, they

cannot be expected to know what is problematic and what

is not. While a clever SQL programmer can sometimes skirt

such pitfalls by careful composition (as here), more often it

is not possible. So, we have to fix it. The optimizer needs to

recognize that d date and d date + 30 days are semantically

equivalent for order, thus skipping the superfluous sorting step,

regardless of how the query was written.

Next, consider Query 2. In SQL, date and time are complex

data types. These are central to BI applications, and provide

for rich drill down and roll up. In TPC-DS in table date dim,

some of date’s hierarchy is materialized in columns: d year,
d quarter, d month, and d day.

Let there be a tree index for date dim on d year, d month,

d day. Unfortunately, this index would not help in a query

plan, even for the group-by: d quarter intervenes. Note that

select D.d_year, D.d_quarter,
D.d_month, D.d_day
sum(S.ws_sales) as total

from date_dim D, web_sales S
where S.ws_date_id = D.d_date_id and

D.d_year between 2001 and 2004
group by D.d_year, D.d_quarter,

D.d_month, D.d_day
order by D.d_year, D.d_quarter,

D.d_month, D.d_day;

Query 2: Eliminating quarter.

d month functionally determines d quarter. The query’s au-

thor cannot eliminate mention of d quarter in the group-by,

however, as it appears in the select. Fortunately, by the work in

[3], DB2 can eliminate it internally from the group-by, based

on the recognition of the functional dependency (FD). The

index can then be used to implement the group-by operation.

This FD, d month → d quarter, is not logically suffi-

cient likewise to remove d quarter from the order-by clause.

The optimizer must still apply a sort operator to “satisfy”

the order-by directive. Because d month orders d quarter—
which says more than just that d month functionally deter-

mines d quarter—d quarter can be removed from the order-

by clause also, to result in a semantically equivalent query.1

In this work, we show how this is accomplished.

B. Contributions and Outline

In Section II, we provide background on order

dependencies—notational conventions and definitions—

as we use in this paper, and considerations that arise in

data-warehouse schema design. In Section III, we address

how to use order dependencies in query optimization.

There are two aspects to this: how and where the optimizer

makes use of OD information; and how OD information is

discovered.

1) Optimizing with Order Dependencies.

In Section III-A, we go into further depth how ODs are

used to optimize.

2) Declaring Order Dependencies.

In Section III-B, we consider how OD information can be

declared, and what types of natural ODs occur in today’s

schemas.

a) Order dependencies can be declared in our implemen-

tation in DB2 as a type of integrity constraint.

b) We demonstrate how ODs between surrogate and nat-

ural keys can be used for strong performance improve-

ment. (This was some of our preliminary work in this

area, and a full version of this appears in [4].)

3) Detecting Order Dependencies.

In Section III-C, we show how ODs between columns

and functions over columns (user-defined functions and

algebraic expressions) can be automatically detected by

the optimizer.

a) These techniques have been implemented within DB2.

1The values for d quarter are 1, . . . , 4 and for d month, 1, . . . , 12.

b) We present a suite of real-world IBM customer queries

over TPC-DS that illustrate the issues, which are then

used in Section IV for an experimental performance

evaluation. The optimizer automatically infers the as-

sociated OD information and uses it to produce the

improved query plans.

4) Inferring Order Dependencies.

In Section III-D, we show how the optimizer can infer

new ODs from known ODs. The known ODs may not

match interesting orders in query planning, while ODs

that logically derive from them would. Thus, such an

OD-inference facility is ultimately needed to take fuller

advantage of these techniques.

a) We discuss a general, efficient (polynomial) inference

procedure which we have implemented and which is

sound and complete over a natural domain. We define a

database to be natural if given order properties over its

attributes can be guaranteed. (All real-world domains

we have encountered have these properties, and thus

are natural.)

b) We present two inference algorithms and show where

and how they are invoked in the optimizer, and the

advantages they can confer: Reduce Order* which puts

ODs into a canonical form for matching against inter-

esting orders; and Homogenize Order* which discovers

equivalent columns, order-wise.

In Section IV, we present results of a performance study

over queries over TPC-DS.

5) Experimental Results.

All nine of the test queries show a significant performance

gain using the OD-extended optimizer, with an average

30% time improvement on ten-GB database. (The average

benefit on a one-TB database is >50%)

In Section V, we discuss related work, both previous applied

work that used dependencies in optimization (upon which we

build), and theoretical work on order dependencies which has

provided critical foundations for our current implementation.

In Section VI, we outline next steps for this work, and

conclude.

II. BACKGROUND

We adopt the notational conventions in Table I. We are

interested in lexicographical ordering, or nested sort, as is

provided by SQL’s order-by directive. Given order by A0, . . . ,
An−1 in a query, the answer tuples are first sorted by A0; then,

within any group (partition) of tuples with the same value for

A0, the tuples are sorted by A1; within groups with the same

A0 value and A1 value, by A2; and so on.

Definition 1: (operator ‘�X’) Let X be a list of attributes,

X = [A |Z], and s and t be two tuples in relation instance

r. Define the binary operator (“relation”) ‘�X’ as s �X t iff

sA < tA or (sA = tA and (Z = [] or s �Z t)).

The default direction of the order for SQL’s order-by is

ascending. That is, order by A0, . . . , An−1 is equivalent

to order by A0 asc, . . . , An−1 asc. In this work, we do

not consider order-by’s with all descending (desc) directives,

TABLE I

NOTATIONAL CONVENTIONS.

• Relations

– R represents a relation, and r represents a specific

relation instance (table).

– A, B and C represent attributes.

– s and t represent tuples.

– tA denotes the value of attribute A in tuple t.

– tX denotes the projection of tuple t on X .

• Sets

– calligraphic letters denote X , Y , and Z represent sets

of attributes.

• Lists

– bold letters represent lists of attributes: X, Y and Z.

Note list X could be the empty list, [].
– square brackets denote an explicit list: [A,B,C].
– [A |T] denotes that A is the head of the list, and T

is the tail of the list (the remaining list when the first

element is removed).

TABLE II

AN INSTANCE OF TABLE D DATE.

d date sk d date d year d month d day d quarter

7300 20111230 2011 12 30 4

7301 20111231 2011 12 31 4

7305 20120105 2012 01 05 1

7306 20120106 2012 01 06 1

7333 20120201 2012 02 01 1

without loss of generality. We also do not consider order-by’s

that mix asc and desc directives; e.g., order by A asc, B desc.2

Definition 2: (Order Dependency) An order dependency

(OD) is a dependency between two lists of attributes. We

write an OD as [A0, . . . ,Am−1] 7→ [B0, . . . ,Bn−1]. A table—

with attributes A0, . . . , Am−1 and B0, . . . , Bn−1—satisfies

the OD iff any list of the table’s tuples that satisfies order
by A0 asc, . . . , Am−1 asc also satisfies order by B0 asc,
. . . , Bn−1 asc. That is, given table r, X = [A0, . . . ,Am−1],
Y = [B0, . . . ,Bn−1], then ∀s, t ∈ r. s �X t→ s �Y t.

For X 7→ Y, we say X orders Y. X ↔ Y iff X 7→ Y and

Y 7→ X. For X↔ Y, we say X and Y are order equivalent.

Example 1: (ODs over an instance of the d date table)

Order dependencies

[d date sk] 7→ [d year, d month, d day] and

[d year, d month, d day] 7→ [d date]
are satisfied in Table II. On the other hand, order dependencies

[d year, d month] 7→ [d date] and

[d date sk] 7→ [d year, d day, d month]
are falsified by Table II.

Date and time are richly supported in the SQL standards.

The widely-used benchmark standard TPC-DS [2] contains 99

queries. Of these 99, 85 involve date operators and predicates

and five involve time operators and predicates. If the idea

2The inference problem for ODs with mixed directives is more computa-
tionally complex. So this restriction is not “without loss of generality”.

of order dependency were only applicable to date and time,

they could confer great benefit on query optimization.3 The

TPC-DS benchmark is for decision-support, and its schema

typifies that of data warehouses (DWs) designed to aid analysis

of business over a historical period. (The schema description

can be found in [2].) Our observations with IBM customers

has borne this out. The vast majority of their queries over

data warehouses do involve date and time attributes, and SQL

functions and algebraic expressions over them.

The TPC-DS schema is a common multi-dimensional model

based on a star schema with fact and dimension tables. Fact

tables will have many rows capturing measures or events over

time, such as sales. Dimension tables model the entities such

as the customers and products. Date is often made an explicit

dimension table, because the designers need to keep specific

data about given dates (e.g., a holiday indicator, a weekday

indicator, the name of the holiday, and the name of special

events). In the TPC-DS schema, the date dimension has a

granularity of a day. (See Figure 1.) Data kept about the

entities is factored out into the dimension tables (and out of the

fact table) based on good principles of design (normalization),

but also for practical reasons. Because the fact table will be

very large row-wise, it is important to keep the size of rows

small.

A common design question for DWs is whether to use

surrogate keys [5]. SQL’s date data type would be a good

natural key in the date table. However, it used to be common

in database systems—and still is in some—for the date data

type to take eight bytes. Given a fact table with a billion rows,

each byte per row is a gigabyte of storage. So instead, a four-

byte integer could be used as a surrogate key in the date table;

then, the fact table’s foreign-key field referencing table date

is smaller. This is the design choice in TPC-DS’s schema.

Furthermore, the date dimension table can be populated

at the time the DW is created. It does not undergo regular

updates. Its surrogate key can be generated via increment, in

the order of the date values. Therefore, there will be an order

equivalence between the surrogate key and the date’s day.

While the use of the surrogate key helps reduce the size of

the fact table, it does introduce costs at query time. Queries

will often have predicates involving (natural) date values to

access data from the fact table. This necessitates a potentially

expensive join between the fact and date tables.

IBM recommends to its business customers to use a natural

key for the date table (using the date data type). IBM DB2

manages to store the date data type in a compact four bytes.

The advantages of using a surrogate key in this case are

nullified. For this reason, we consider a variation of the TPC-

DS schema as in Figure 2 which uses the natural date key in

the date table and in the fact table for the foreign key.

3The concept behind ODs is not limited to the time domain, however! ODs
occur in other domains arising from business semantics. (We show an example
in Example 2 in Section III-A.) Of course, any OD implies a corresponding
FD, modulo lists and sets, but not vice versa. Even so, the other direction
(the vice versa) is often true; that attributes that are functionally related (as
with FDs) are also order related (as with ODs).

Date Dimension

Date Surrogate Key (PK)

Date

Date attributes...

Daily Web Sales Facts

Date Surrogate Key (FK)

Customer Surrogate Key (FK)

Other Surrogate Keys...

Measures...

Customer Dimension

Customer Surrogate Key (PK)

Customer Attributes...

Other Dimension

... Surrogate Key (PK)

Other Attrbutes...

Fig. 1. Standard TPC-DS schema.

Date Dimension

Date (PK)

Date attributes...

Daily Web Sales Facts

Date (FK)

Customer Surrogate Key (FK)

Other Surrogate Keys...

Measures...

Customer Dimension

Customer Surrogate Key (PK)

Customer Attributes...

Other Dimension

... Surrogate Key (PK)

Other Attrbutes...

Date Dimension

Date (PK)

Date attributes...

Date Dimension

Date (PK)

Date attributes...

Fig. 2. Alternative TPC-DS schema with natural date key.

For our performance study (Section IV), we test six queries

under the unmodified TPC-DS schema (Figure 1), and three

queries under the alternative schema (Figure 2). The queries

are motivated and presented in the next section. The two

schemas allow us to show different optimizations using ODs

that can be accomplished. It also shows we achieve good

performance improvements in both, so our techniques do not

require specific schema designs.

III. ORDER DEPENDENCIES IN OPTIMIZATION

In Section III-A, we delve more in depth how order, and

order dependencies, are used for optimization. Of course, for

these techniques to add benefit, ODs must exist and be known.

ODs can be declared on a database as integrity constraints.

This can be done whenever the database administrator knows

of relevant order dependencies that are essentially a part of the

semantics of the database. Declaring an OD gives a guarantee

that the database will satisfy it. In Section III-B, we address

this.

Even if a database has no declared ODs, OD-optimization

techniques are still relevant. Local order dependencies can

arise within a query’s scope, due to the query’s semantics and

constructs. For instance, if there is a predicate A = B in the

where clause, then clearly the OD [A] ↔ [B] is satisfied in

the query’s scope (but is not necessarily satisfied generally in

the database). Local ODs also arise through a query’s derived

attributes via SQL functions and algebraic expressions, as

motivated in Section I-A. The optimizer must detect local

ODs to use them. In Section III-C, we demonstrate the types

of local ODs we have instrumented DB2 to detect and use,

and we illustrate these with customer-motivated, real-world

queries over the TPC-DS schema. These queries are used in

our performance study, presented in Section IV.

Even with the ODs declared for the database and the local

ODs deduced in the scope of the query, the optimizer might

miss opportunities. There may be an OD that logically follows

from the declared and local ODs that would allow for a better

plan, while none of the declared or local ODs match directly.

For instance, again assume there is a predicate A = B in the

where clause. If we also knew the declared OD [A] 7→ [Z],
within the query’s scope, OD [B] 7→ [Z] is also satisfied (by

transitivity of ODs [6]). Therefore, the optimizer has a need

to infer ODs from others. In Section III-D, we show when and

where the optimizer would invoke OD-inference procedures,

and we develop such procedures.

To the best of our knowledge, we are the first to bring

reasoning over order dependencies into the query optimizer

of a relational database system.

A. Optimizing with Order Dependencies

We motivate order dependencies in analogy to functional

dependencies: FDs are to group-by as ODs are to order-

by. Order is an additional property over a partition that

plays important roles in databases. ODs can be used to great

advantage in query processing, just as FDs have been [3].

On the one hand, order is irrelevant in the relational model

on the logical side. Relational instances are sets of attributes,

and a schema is a set of attributes. So there is no notion of

order. (For different data models such as XML, order is an

integral part of the model itself.) SQL concedes a single order-

by clause to be appended to a query to order the result set, as a

convenience, given that people usually want to see the results

organized in a given way. (The SQL extensions of window

agreggation provide this too.)

On the other hand, order plays an important role on the

physical side, in storage, indexes, and optimization.

• indexes.

Data is often referenced by (clustered) tree indexes, which

provides ordered access.

• pipelining.

In a query plan tree, pipelining is a prevalent technique.

This is when a parent operator can pull its input streams

from its child operators as they produce their (output)

streams. The operator’s procedure may need its input

sorted in a given way, as does a merge join. An oper-

ator such as group-by or order-by can be handled very

efficiently on-the-fly when its input stream is ordered

appropriately. Pipelining between operators also saves

since the results of the child operator do not have to

be fully materialized, spilled to disk with expensive I/O

overhead.

• interesting orders.

Some access paths and procedures will result in the

operator’s output stream being ordered. It may be that

a procedure can be chosen for the parent operator which

relies on this ordered stream for input and which is less

expensive than the alternative choices.

This enables pipelining between the operators, and may

also be less expensive as it allows the optimizer to

forgo inserting an expensive operation in between. For

example, the operator in the tree under a group-by might

provide its output ordered in such a way the group-by’s

partitioning can be done on-the-fly. If not, an expensive

partitioning or sort operation has to be inserted into the

tree. Interesting orders can be effective for join, order-by,

group-by, partition-by, and distinct.

Say that we know the database satisfies X 7→ Y. Given a

query with order by Y, we can rewrite it instead with order
by X. Note that, unless X ↔ Y, the original and rewritten

query are not “semantically” equivalent! The rewritten query

satisfies the intent of the original (but, perhaps, not vice

versa). Strengthening the order-by conditions is allowed, but

weakening them is not.

This is an important property for query plans with ordered

tuple streams. It means order equivalences are not required

for valid query rewrites; directional order dependencies (that

is, X 7→ Y instead of X ↔ Y) suffice. This provides us with

much versatility for rewrites.

Sorting is an expensive operator. The key goal of our OD-

optimization is to optimize or eliminate sorting operations in

query plans whenever possible. Our techniques are built upon

the seminal techniques for order optimization from [3].

select year(a.y),...
from a, b
where a.x = b.x
group by year(a.y)
order by a.y;

Query 3: Template of the query.

order by

year(a.y)

group by

year(a.y)

sort

year(a.y)

index

nested-loop

a.x = b.x

index probe

b

index scan

a

sort operator

Fig. 3. Query access plan.

Query 3 is a query sketch of a common pattern seen in

analytic queries. It employs the SQL function year. Figure 3

illustrates a query plan one would expect for the query in

Query 3. Let the index employed as the access path on a
be on its column y, a date type. A sort operator is placed

under the group-by and order-by operators, regardless, as the

optimizer does not recognize that a.y orders year(a.y). Our

work is to recognize these order dependencies, to “remove”

the sort operator from access plan.

The critical role of interesting orders was recognized quite

early [7]. Because we are interested in ordered streams be-

tween operators in the query plan (to allow for pipelining,

selecting more efficient procedures, and eliminating interme-

diate sort and partitioning steps), the optimizer needs to track

which stream orders are possible to generate by alternative

sub-plans. The ones that the optimizer tracks during query

plan construction are called interesting orders.

The optimizer needs to determine which orders that sub-

plans can produce are “interesting”; an order is not interesting

if it is of no potential benefit to any other operator. This

is a complex task. Many different orders could apply for

an operation. For example, group by A0, . . . , An−1 can

be accommodated on-the-fly by an input stream ordered by

[Ap
0
, . . . ,Ap

n−1
], for any one of the n! permutations of

{p0, . . . , pn−1} ⊆ {0, . . . , n − 1}. Matching order specifica-

tions is also a complex task. For instance, group by A1, A2,
A3 can be done on-the-fly with an input stream ordered by

[A3,A1,A2,A4], but not by [A3,A1,A4,A2].
On the one hand, the number of orders deemed “interesting”

must be contained because of the sheer number of possibilities.

On the other hand, we want to label more of those orders

as “interesting” which would offer more planning options.

In particular, we should recognize any order that is order

equivalent with, or that orders, any interesting order.

In [3], they employ functional dependencies for this very

task. The group by A1, A2, A3 can be done on-the-fly with

the input A3, A1, A4, A2, if {A1,A2,A3} → {A4}. In that case,

orders [A3,A1,A4,A2], and [A3,A1,A2] are order equivalent.

We extend further on the techniques of [3] by also employing

order dependencies to recognize more order equivalences.

B. Declaring Order Dependencies

In [4], we demonstrated that dramatic gains in query

performance can be had in queries by recognizing ordering

correspondences between attributes. Our techniques looked

promising to generalize to many more types of the queries,

which lead to the work here.

Most queries in a data warehouse are over the fact table. As

discussed in Section II, and as in TPC-DS’s schema, surrogate

keys are used in the dimension tables, and so for the foreign

key columns in the fact table. A query often uses natural date

values in its predicates, however. This requires a potentially

expensive join between the fact and the date dimension tables.

When the fact table has been partitioned by date over

many nodes (as the fact table can be very large), this can be

especially expensive. Since the date range (surrogate values)

over the fact table cannot be determined from the query

(natural values), all partitions of the fact table must be scanned.

We optimize such queries involving dates by removing the

join, and choosing just the relevant partitions of the fact table.

Query 4, from the TPC-DS benchmark, requires that expen-

sive join between the fact table web sales and the dimension

select ...
from web_sales W, item I, date_dim D
where W.ws_item_sk = I.i_item_sk and

I.i_category
in (’Sports’, ’Books’, ’Home’) and

W.ws_sold_date_sk = D.d_date_sk and
D.d_date between

cast(’1999-02-22’ as date) and
(cast(’1999-02-22’ as date)

+ 30 days)
...;

Query 4: With an expensive join.

table date dim. The surrogate (date) keys in the date dimen-

sion table are ordered in the same way as natural date values

in the dimension table, however. So there is a known order

dependency between them, which can be declared as a check

constraint in DB2. Thus, two probes can be made into the

dimension table to calculate the range of the surrogate keys

in the fact table, finding the mindate and maxdate surrogate

keys. These minimum and maximum surrogate values then

replace the predicate in the where clause with the natural date

values, so no join with the date dimension table is needed.

Query 4 can then be simplified into the form shown in Query

5. (Details of when and how this rewrite can be performed in

a general case appear in [4].)

select ...
from web_sales W, item I,

(select min(d_date_sk) as mindate
from date_dim
where d_date >=

cast(’1999-02-22’ as date))
as A,

(select max(d_date_sk) as maxdate
from date_dim
where d_date <=

cast(’1999-02-22’ as date)
+ 30 days)

as Z
where ... and

W.ws_sold_date_sk between
A.mindate and Z.maxdate

...;

Query 5: Rewrite of Query 4.

We performed experiments over TPC-DS in our implemen-

tation in DB2 to demonstrate the efficiency of the approach.

Thirteen of TPC-DS’s queries matched for the rewrite. Each

benefited, with an average performance gain of 48%.

C. Detecting Order Dependencies

Analytic queries often use functions, algebraic expressions,

and case expressions. Order dependencies can be derived from

built-in SQL functions, and from case expressions. For exam-

ple, the SQL function year extracts the year component (the

leading component) of the date. Thus, [date] 7→ [year(date)].

Let the table date dim have an index on its d date column.

If it could detect the OD that d date orders year(d date), the

optimizer could accomplish order by year(d date) in a query

by using an index scan over the d date index to provide

a correct “interesting” order, with no need to employ sort

operation for it.

In this section, we describe our techniques using the mono-

tonicity property. These techniques have been implemented

in DB2. The following rewrites were performed via this

implementation. We describe how the monotonicity detection

algorithm in IBM DB2 [8] allows for rewrites in the case

of queries with order-by. We then show the value of this

technique when combined with indexing, including multi-

dimensional clustering (MDC) in DB2. (MDC allows a table

to be organized by an attribute into blocks of data, each

with the same unique attribute values.) The algorithm detects

monotonicity in algebraic expressions and SQL functions.

It maintains a monotonicity state as the input expression is

traversed. Given the parse tree of the expression to be checked,

it answers whether the expression is monotonic. It employs

a transition table, scanning the left and right operands. For

example, if the left side of the operand of sum operator is

monotonic and right operator is a constant, the result is is

also monotonic. (See [8] for details.)

In [8], they show how to use this for predicate derivation,

and this is why it was implemented in DB2. They offered

no performance study, though. We demonstrate the value for

SQL queries via interesting orders. In our implementation, the

monotonicity detection algorithm is called during the query

rewrite phase, when processing statements which involve join,

order-by, group-by, partition by, and distinct. This is useful for

improving access methods (as discussed above), and also for

improving cardinality estimation.

Monotonicity can be also detected for a variety of SQL

built-in functions. Ones we demonstrate here include the

following. Each is monotonic with respect to its input.

• year(): Returns the year of the date.

• substr(1,): Returns a sub-string of the string input. (If

the starting position of the requested substring in the

string is one, the result is monotonic.)

• concat(): Returns the concatenation of two strings.

(When the second string is a constant, the function is

monotonic.)

Monotonicity is detected for a wide range of functions:

functions that refer to time dimensions, such as days() and

hour(); mathematical functions, such as log(), ceil(), and

sqrt(); and type conversions, such as int() and float().
Query 6 employs the substring function in its group-by.

Recall Query 1 in Section I. We saw that a clever programmer

could recompose it to avoid the performance problem that the

use of the algebraic expression in the group-by and the order-

by could cause. In this case, however, the programmer could

not rewrite this to avoid the issue, since the substring changes

the partition of the group-by.

Let there be an index on s zip in table store. It is obvious

that the column s zip orders the derived column substr(s zip,
1, 2). Given the optimizer detects this OD, it can choose to

do an index scan using the index on s zip to accomplish the

group-by on-the-fly, and no partitioning or sort operator would

be needed.

select substr(P.s_zip, 1, 2) as area,
count(distinct P.s_zip) as cnt,
sum(S.ss_net_profit) as net

from store_sales S, store P
where S.ss_store_sk = P.s_store_sk
group by substr(P.s_zip, 1, 2);

Query 6: Substring with group-by.

Let there be an index on d date in the date dim table.

In Query 7, the data are ordered by d date converted to

char, then concatenated with a time constant, ’12:00:00’. This

is a type of query commonly used in business-intelligence

reporting. The monotonicity detection algorithm works across

the type conversion, and then over the string concatena-

tion with a constant. This makes the OD [d date] 7→
[to char(d date,’YYYYMMDD’)||’12:00:00’], visible to the

optimizer.

select I.i_item_desc,
to_char(D.d_date,’YYYYMMDD’)

|| ’ 12:00:00’ as when,
sum(W.ws_sales_price) as total

from web_sales W, item I, date_dim D
where W.ws_item_sk = I.i_item_sk and

I.i_category = ’Children’ and
W.ws_sold_date_sk = D.d_date_sk

group by I.i_item_desc,
to_char(D.d_date,’YYYYMMDD’)

||’12:00:00’
order by to_char(D.d_date,’YYYYMMDD’)

||’12:00:00’;

Query 7: With string conversion and concatenation.

Query 8 can be effectively rewritten by the optimizer to the

form in Query 9. An evaluation of the rewritten query then

uses the index on d date. The two constants 1998 and 2002 are

used in Query 8 as a filter predicate in its where clause. The

optimizer could not use the index on d date, however, since

the predicate is over year(D.d date). In the query rewrite, the

filter is set on d date, to be on the range of date(’1998-01-
01’) and date(’1998-01-01’). Then, the optimizer uses index

on d date in the query plan.

select I.i_item_desc, I.i_category,
I.i_class, I.i_current_price,
sum(W.ws_ext_sales_price) as revenue

from web_sales W, item I, date_dim D
where W.ws_item_sk = I.i_item_sk and

W.ws_sold_date_sk = D.d_date_sk and
year(D.d_date) between 1998 and 2002

group by I.i_item_id, I.i_item_desc,
I.i_category, I.i_class,
I.i_current_price

order by I.i_category, I.i_class, I.i_item_id;

Query 8: With the predicate year.

Query 10 is similar to Query 6, but with a filter predicate

in its where clause. (This version does not contain a group-by

clause, so the order-by could be rewritten manually. If a group-

by were done on substr(H.w warehouse name,1,10) also, it

select ...
from ...
where ... and

d_date between
date(’1998-01-01’) and
date(’2002-12-31’)

group by ...
order by ...;

Query 9: Rewrite of Query 8.

could not be. It illustrates our OD techniques the same, though,

in either case.)

select substr(H.w_warehouse_name,1,10)
from web_sales W, warehouse H
where W.ws_warehouse_sk = H.w_warehouse_sk

and W.ws_quantity > 90
order by substr(H.w_warehouse_name,1,10);

Query 10: Substring variation with order-by.

Query 11 is an OLAP query that uses a partition-by clause.

The query plan can employ the index on d date, given the

optimizer detects via the monotonicity detection algorithm that

the OD

[d date] 7→ [year(ws sold date)*100
+ month(ws sold date)]

follows, which effectively partitions by year concatenated with

month.

select count(*) as count
over (partition by

year(S.ws_sold_date)*100
+ month(S.ws_sold_date))

from web_sales S;

Query 11: OLAP.

In Query 12 with a case expression, the monotonicity

detection algorithm is also triggered; it detects that

[d date] 7→ [year(d date)].
Therefore, the optimizer can then take advantage of the index

on the d date, speeding up a sort operator in the plan, to

accomplish the order-by and group-by.

select year(D.d_date), M.sm_type, S.web_name,
sum(case when

(W.ws_ship_date_sk
- W.ws_sold_date_sk <= 30)

then 1 else 0 end) as "30 days",
.
.
.

sum(case when
(W.ws_ship_date_sk

- W.ws_sold_date_sk > 120)
then 1 else 0 end) as ">120 days"

from web_sales W, warehouse H, ship_mode M,
web_site S, date_dim D

where W.ws_ship_date_sk = D.d_date_sk and ...
group by year(D.d_date), M.sm_type, S.web_name
order by year(D.d_date), M.sm_type, S.web_name;

Query 12: With a case expression.

TABLE III

TABLE TAXES.

id salary percent taxes group subgroup

100 5000 19% 950 A II

101 6000 19% 1140 A III

102 3000 19% 570 A I

103 20000 30% 6000 B I

104 50000 40% 20000 C I

D. Inferring Order Dependencies

In the sections above, we have discussed from where order

dependencies arise. They can be declared explicitly as integrity

constraints on the database. We have shown how the system

can use these. Within the scope of a query, local ODs can

arise from logical constraints in the query. We have shown

how these can be detected and used. Lastly, ODs can logically

follow from known ODs. For our techniques to be most

effective then, the optimizer needs an inference capability for

ODs.

We present an efficient inference procedure for ODs which

is sound and complete over natural domains. (We define

this natural property of domains. All the domains we see in

practice and that we have used in this paper, such as the TPC-

DS schema, are natural.) We have implemented this solver in

IBM DB2 V10. We present two algorithms, Reduce Order*

and Homogenize Order*, that extend two algorithms in DB2

for matching interesting orders [3] further to accommodate

ODs.

As discussed earlier, order dependencies are not limited to

date and time. They commonly arise in many other domains.

Example 2: (Taxes) Consider table taxes in Table III, which

has columns for the taxable salary, tax group, tax subgroup,

taxes on the salary, and the tax’s percent of the salary. The tax

groups are based on the level of salary and, therefore, increase

with the salary. (The tax subgroup increases for the same group

as the salary goes up, but oscillates within a group.) Assume

that the taxes go up with income and are calculated by as a

percentage. Thus, we can declare

[salary] 7→ [taxes],
[salary] 7→ [percent], and

[salary] 7→ [group, subgroup].

It logically follows from these ODs that

[salary] 7→ [taxes, percent, group, subgroup].

This OD was derived automatically using our inference pro-

cedure for ODs described below.

Let the table taxes in Table III have a clustered index

on salary. A query with order by taxes, percentage, group,
subgroup given the three ODs as declared in Example 2 could

then be evaluated using the index on salary, as the inference

procedure could infer that

[salary] 7→ [taxes, percent, group, subgroup].

Obviously, the database administrator could have declared that

OD too; but that is unlikely.

In Section III-B, we had assumed that [date sk] 7→ [date].

TABLE IV

SHOWING LACK OF TRANSITIVITY.

A B C

0 0 1

1 0 0

was declared. Instead, however, we may have had the

following ODs:

[date sk] 7→ [year,month, day], and

[year,month, day] 7→ [d date].
From these, [date sk] 7→ [date] can be concluded.

The optimizer needs the means to discover ODs that log-

ically follow from known ODs to benefit most from our

techniques. Our inference procedure provides a formal means

to do this.

We present an efficient inference procedure for testing

logical implication of ODs which is sound and complete over

natural domains. The details of the proofs can be found in

[10].4

Definition 3: (order compatible) Two lists X and Y are

order compatible, denoted as X ∼ Y, iff XY↔ YX.

It is perhaps surprising that the order-compatibility relation

(‘∼’) is not transitive. It is simple to show that the orders

relation (‘ 7→’) is.

Example 3: (Order compatibility is not transitive.) Assume

M = {A ∼ B,B ∼ C}. The table in Table IV satisfies the

set of ODsM. It falsifies A ∼ C, however. This demonstrates

that the order-compatibility relation is not transitive.

If we restrict our domain (the database) to have a property

that guarantees a limited form of transitivity over order-

compatibility, then we can make an efficient inference pro-

cedure for ODs.5 The property we prescribe is transitivity of

order compatibility over single attributes. We call a domain

natural if it satisfies this property. Real-world domains do.

Definition 4: (Natural Domains) Call a database natural iff,

for any three attributes A, B, and C from any given table, if

the database satisfies A ∼ B and B ∼ C, then it also satisfies

A ∼ C.

All of the schemas and domains we have explored, TPC-DS,

and used in examples in this paper, are natural, by Definition

4. To break the underlying property in data seems to be only

by contrivance. For this reason, we have named this restricted

domain natural, as it covers the cases one sees in practice.

A database can be tested for naturalness in a straightforward

way, by enumeration.

Let M = {m0, ...,mn−1} be a set of ODs defined over

the set of attributes U = {A0, ...,Am−1}. The set M is

represented as a string of pairs, each pair representing an OD

(the left-hand and right-hand sides of the dependency). Each

side is a list of attributes. Let the length of the representation of

4The OD-inference problem over general domains is harder. In [10], we
prove that the testing logical implication for ODs in general is co-NP-
complete.

5It is this lack of transitivity over the order-compatible relation generally
that is at the heart of the high complexity for the inference problem over
general domains.

M, the string of concatenated left-hand and right-hand sides,

be denoted by |M|.
Let m be the OD X 7→ Y, for which both X and Y are

defined over the set of attributes U . We denote the length of

X and Y as |X| and |Y|, respectively.

Definition 5: (M |= X 7→ Y) The problem of testing

logical implication for ODs is, given a set of ODs M and

a OD X 7→ Y, to decide whether M |= X 7→ Y.

We show a sound and complete (Theorem 1) algorithm for

testing logical implication of ODs over natural domains which

runs in polynomial time (Theorem 2) [10]. Our proof is based

on the property that X 7→ Yiff X 7→ XYand X ∼ Y. The first

part X 7→ XY is true iff the functional dependency X → Y
holds. We show that this can be verified in linear time. We

show how to test whether M implies X ∼ Y. (The proof is

based on the property of transitivity of order compatibility over

single attributes, as defines natural domains in Definition 4.)

These parts combine to complete the proof of soundness and

completeness of our inference procedure for ODs over natural

domains.

Theorem 1: (correctness) [10] The algorithm for testing

logical implication M |= X 7→ Y for ODs is correct over

natural domains.

Theorem 2: (complexity) [10] Testing logical implication

for ODs over natural domains whether M |= X 7→ Y is

solvable in polynomial time, O(|X||Y||M|).
In [9], an axiomatization for order dependencies (defined

as we have in this paper) over a restricted domain is pre-

sented. The author calls these temporal functional dependen-

cies (TFDs), focusing on the time domain, and he provides

axiomatization for TFDs. A TFD X → Y means that, ∀ A ∈
Y. X 7→ [A], in which X describes time and the attributes in

Y are time variants.

The domain is too restricted, unfortunately, to be of use to

us. It effectively restricts one to ODs of the form with just

a single attribute on the right-hand side (e.g., X 7→ [A]). In

many of our examples, as in Examples 1 and 2, we need ODs

with lists of multiple attributes on the right-hand side. Thus,

TFDs do not suffice. Furthermore, no inference procedure for

TFDs was defined.

In [3], the authors explored the important role of order for

optimizing queries. They introduced query rewrites in IBM

DB2 that could exchange one interesting order by another,

when it is known that the orders were order equivalent (as

defined in this work). Their rewrites rely on FD information

available to the optimizer, but do not use order dependencies,

which are the subject of our work.

They introduced an algorithm, Reduce Order, which tra-

verses the interesting-order list of attributes from right to

left, that checks to eliminate attributes. This is for putting

interesting orders into a canonical form. We extend this

algorithm—call it Reduce Order*—by iterating through the

list, additionally checking whether the list without the attribute

being currently considered orders the full list. If so, the

attribute can be dropped from the current list.

With this, we can optimize queries such as in Query 2 in

Algorithm 1 Reduce Order*

Input:

A set of ODs M and

order specification O = [O0,O1, ...,On−1].
Output:

The reduced version of O.

1: Rewrite O in terms of each column’s equivalence class

head.

2: //Scan O backwards

3: for i← n− 1 to 0 do

4: Let B = {O0, ...,Oi−1}
5: if B→ Oi then

6: Remove Oi from O

7: else if [O0, ...,Oi−1,Oi+1, ...,On−1] 7→ [O0, ...,On−1]
then

8: Remove Oi from O

9: return O

Section I. We infer [d month] 7→ [d quarter] from the set of

declared ODs. Then, both the order-by and group-by can be

reduced from d year, d month, d quarter, d day to just d year,
d month, d day.

The algorithm Reduce Order* is correct because removing

Oi from the list using a FD B→ Oi is part of Reduce Order

algorithm described in [3]. Given an order dependency X 7→
Y, the clause order by Y, can be rewritten with order by X, as

strengthening the order-by conditions is allowed (as described

in Section II). (In this case, X = [O0,Oi−1,Oi+1, . . . ,On−1]
and Y = [O0, . . . ,On−1].)

Note that, when sorting is required, the simplified version

of O provides a reduced number of sorting columns. This is

important for minimizing sort costs. It may also happen that

because of reduced O, an index can be matched, eliminating

the need for a sort operator.

We call an attribute a constant if, in any table that satisfies

the set of ODs, it can have only a single value occurring in

the table.

Definition 6: (constant) An attribute A is called a constant

with respect to M iff M |= [] 7→ A.

Interestingly, an order specification may become empty, as

we are able to express it with order dependencies. For instance,

if there is a predicate in the where clause A = 150, which

means that A is a constant in the scope of the query, this

predicate yields [] 7→ A. Given O = [A], O may reduce to

empty.

In DB2, some columns might be substituted with equivalent

columns in the new context. For instance, columns can be

substituted with the ones on which an index is declared.

This process is called homogenization. The Homogenize Order

algorithm is described in [3]. It uses equivalent classes to

substitute columns in an interesting order O. We extend

the algorithm as Homogenize Order* to account for order

dependencies.

The algorithm Homogenize Order* is correct because, given

an OD A 7→ B, if the data are ordered by A, they are

TABLE V

TABLE EMPLOYEE SALARY.

id position grade hire date salary years

100 Manager 87% 20010112 80K 11

150 Secretary 90% 20050112 40K 7

200 Manager 90% 20060817 50K 6

202 Director 50% 20080817 200K 4

203 Director 95% 20080818 200K 4

also ordered by B (and vice versa), so eventually A can be

substituted by B in an interesting order O.

Algorithm 2 Homogenize Order*

Input:

A set of ODs M,

an interesting order O, and

a target order T = [T0,T1, ...,Tn−1]
Output:

O homogenized to T marked as OT or

returned ”false” indicating that OT cannot be found.

1: Reduce O

2: Using M try to substitute each column in O from T

3: if for each A in O there exists B in T such that A↔ B
then

4: return OT

5: else

6: return ”false”

We illustrate the use of ODs, and how they can be used to

support SQL functions and user-defined functions. Consider

the human-resource table employee salary in Table V.

Example 4: (Human Resource) A table employee salary has

the following attributes.

• id: employee identifier.

• position: corporate title.

• grade: employee evaluation.

• hire date: date hired.

• salary: employee’s salary.

• years: years of service.

Let there be a user-defined function ranking which takes as

input the position of the an employee, and returns a number

from 1 to 100. The higher the position, the higher the ranking.

(For example, for the secretary, the function returns 30, while

for the director, it returns 90.)

Salary rises as ranking, years of service, and grade rise, in

that lexicographical order. That is,

[ranking(position), years, grade] 7→ [salary].
Moreover, the date when the person was hired is monotonic

with respect to the identifier:

[ranking(id)] 7→ [date hire].
Assume these order dependencies are declared as check

constraints. The first constraint which expresses that

[ranking(position), years, grade] 7→ [salary]
may be used to check the consistency of the database. (It would

detect errors in assigning the salary, according to the business

logic.) Furthermore, assume the table has a clustered index on

hire date. Given a business query with order by date hire, it

could be evaluated using the index on id. Note also that an

OD

[ranking(id)] 7→ [date hire]

can be used to save disk space, since no index on date hire is

needed.

In this example, all of the inferences can be automatically

done by our OD-inference procedure.

IV. EXPERIMENTS

We have implemented and tested in DB2 V10 the query

rewrites described in Section III. This section reports the

performance of the six queries described above. Three more

queries were run against a corresponding alternative database,

based on the alternative schema (with the natural date key in

the date table) as shown in Figure 2. This included variations

of Queries 1 and 7 (Q1′ and Q7′, respectively), modified to

match the alternative schema, and Query 11.

The experiments were performed on a performance testing

machine with operating system AIX 6.1 TL6 SP5 with four

processors (Intel(R) Xeon(R) CPU) and 1GB of memory.

Results were obtained on a ten-GB TPC-DS database.

0

10

20

30

40

50

60

Q1 Q1' Q6 Q7 Q7' Q8 Q10 Q11 Q12

E
la

p
se

d
 T

im
e

 (
s)

Queries

Original

Query

Rewriten

Query

Fig. 4. Performance results.

Figure 4 shows the execution times for the nine queries

modified from the TPC-DS benchmark and expressing real

world IBM customers scenarios, executed in two modes,

with and without the OD-rewrites in the optimizer. Each

query was run three times in both modes. (We repeat the

tries in order to eliminate noise, including cold runs.) As

shown in Figure 4, the results for the OD-optimized queries

are significantly better. The performance improvement is, on

average, a 30% improvement on elapsed time. Each of the

nine queries benefited from the OD-rewrites.

IBM was reluctant to permit specific results obtained on

a one-TB TPC-DS database to be included at the time this

paper was being written. We can report that on the one-

TB database, the average performance benefit was >50%

using our techniques for the nine queries. This indicates our

techniques scale. So we are seeing performance improvements

even increase as the the database scales. This was anticipated;

these techniques eliminate and optimize expensive operations

such as sort, which are super-linear, and which begin to

dominate the execution costs as the database size increases.

V. RELATED WORK

Sorting is at the heart of many database operations: sort-

merge join, index generation, duplicate elimination, ordering

the output through the SQL order-by operator, etc. The im-

portance of sorted sets for query optimization and processing

has been recognized very early on. Right from the start, the

query optimizer of System R [7] paid particular attention to

interesting orders by keeping track of all such ordered sets

throughout the process of query optimization. [11] and [12]

explored the use of sorted sets for executing nested queries.

The importance of sorted sets has prompted the researchers to

look beyond the sets that have been explicitly generated. Thus,

[8] shows how to discover sorted sets created as generated

columns via algebraic expressions. (In DB2, a generated

column is a column that can be computed from other columns

in a table.) For example, if column A is sorted, so is the

generated column G defined as G = A/100 + A - 3 (that is,

A G). In [4] we show how ODs discovered by reasoning

over the physical schema can be used in query optimization.

Ordered sets and lattices have been a subject of research in

mathematics [13]. Our concept of ODs is equivalent to order-

preserving mapping between two ordered sets. The work in

mathematics has concentrated on investigating properties of,

and relationships between, ordered sets rather than among the

mappings. To the best of our knowledge, no inference system

for describing relationship between mappings of ODs has been

proposed.

Order dependencies were introduced for the first time in

the context of database systems in [14]. However, the type

of orders, hence the dependencies defined over them, were

different from the ones we presented here. A dependency

X Y holds if order over the values of each attribute of X
implies an order over the values of each attribute of Y . (For

simplicity, we use the arrow for different type of orders.

In other words, the dependency is defined over the sets of

attributes rather than lists.) The distinction between these two

types of dependencies was later [9] aptly described as point-

wise versus lexicographical order dependency. Formally, an

instance of a database satisfies a point-wise order dependency

X Y if, for all tuples s and t, for every attribute A in X ,

s[A] op t[A] implies that for every attribute B in Y s[B] op

t[B], where op ǫ{<,>,≤,≥,=}. In [11] a sound and complete

set of inference rules for such dependencies is defined together

with an analysis of the complexity of determining logical

implication. A practical application of the dependencies for

an improved index design is presented in [15].

Dependencies defined over lexicographically ordered do-

mains were introduced in [9] under the name lexicographically

ordered functional dependencies. Two other papers [16] and

[17] by the same author develop a theory behind both lex-

icographical as well as point-wise dependencies. (The latter

were simpler than dependencies defined in [14].) A set of

inference rules (proved to be sound and complete) is intro-

duced for point-wise dependencies, but not for lexicographical

dependencies. Only a chase procedure is defined for the latter.

In [6] we presented a sound and complete axiomatization for

ODs. Polarized order dependencies (PODS) (a mix of asc and

desc) were introduced in [18].

VI. CONCLUSIONS AND FUTURE WORK

Ordering permeates databases, to such an extent that we

take it for granted. It appears in many queries and is relatively

expensive to perform. Queries that involve order by, group by,

join, partition by and distinct statement with SQL functions

and algebraic expressions are common in real business scenar-

ios. Identifying an order dependency between the attributes of

such queries removes a potentially expensive sort operator.

The techniques described in this paper, although imple-

mented in IBM DB2 V10, are general enough to be used in

any other query optimizer. These techniques should apply to

a wide range of BI queries. Our experiments show viability

of the proposed solutions. Nine queries described in the paper

benefited, with an average gain of 30% on ten-GB database

and more than 50% on one-TB database.

In future work, we plan to pursue two lines of research:

first, in further practical applications of ODs; and second, in

the theoretical domain.

• Integrity constraints have been shown to be useful in

query optimization via query rewrites. Functional depen-

dencies are used to simplify queries with group-by op-

erations [3], while inclusion dependencies are employed

to remove redundant joins over primary and foreign keys

[19]. We would further investigate how order dependen-

cies can be useful in query optimization. This includes

monotonicity in case expressions and optimization of

the queries such as Query 13, where there is an order

dependency between customer id and the output of the

then statement.

select ..., sum(S.quantity),
(case
when S.customer_id between 1 and 10

then 1
.
.
.

when S.customer_id between 91 and 100
then 10

end)
from sales S, ...
where ...
group by (case ...)
order by(case ...);

Query 13: Categories by case.

• We believe that order dependencies can also be identified

in geo-spatial dimensions of a data warehouses. Similar

optimization techniques which we have described in the

paper can be applied there, too.

• We are trying to improve the integration of our order

constraints with the cost-based optimizer to improve car-

dinality estimation. For example, when we know there is

an order equivalence between columns, such as between

d date sk and d date, a surrogate and natural key, and

we know there is a one-to-one mapping between them,

then the cardinality of a range predicate on one could

be estimated using the other. This could improve the

performance even more beyond what we have already

gained with our query-rewrite techniques.

• We plan to work on axiomatization for polarized order

dependencies [6] which allow the mix of ascending and

descending orders. Such axiomatization might provide

insight into how polarized order dependencies behave,

and provide input for useful query rewrites.

ACKNOWLEDGMENTS

IBM, the IBM logo, and ibm.com are trademarks

or registered trademarks of International Business Ma-

chines Corp., registered in many jurisdictions world-

wide. A current list of IBM trademarks is available on

the Web as “Copyright and Trademark Information” at

http://www.ibm.com/legal/copytrade.shtml.

TPC-DS is a trademark of The Transaction Processing

Performance Council.

REFERENCES

[1] W. Armstrong, “Dependency structures of data base relationships,” in
Proceedings of the IFIP Congress, Stockholm, North-Holland 580-583,
1979.

[2] “http://www.tpc.org.”
[3] D. Simmen, E. Shekita, and T. Malkemus, “Fundamental Techniques for

Order Optimization,” in SIGMOD, 57-67, 1996.
[4] J. Szlichta, P. Godfrey, J. Gryz, W. Ma, P. Pawluk, and C. Zuzarte,

“Queries on dates: fast yet not blind,” in EDBT 497-502, 2011.
[5] R. Kimball and M. Ross, “The Data Warehouse Toolkit Second Edition.

The Complete Guide to Dimensional modeling,” in John Wiley and Sun,
2012.

[6] J. Szlichta, P. Godfrey, and J. Gryz, “Fundamentals of Order Dependen-
cies,” in VLDB, 2012.

[7] P. Selinger and M. Astrahan, “Access Path Selection in a Relational
Database Management System,” in SIGMOD, 23-34, 1979.

[8] M. Malkemus, P. S., B. Bhattacharjee, L. Cranston, T. Lai, and F. Koo,
“Predicate Derivation and Monotonicity Detection in DB2 UDB,” in
ICDE, 939-947, 2005.

[9] W. Ng, “Lexicographically Ordered Functional dependencies and Their
Application to Temporal Relations,” in IDEAS, 279-287, 1999.

[10] J. Szlichta, P. Godfrey, and J. Gryz, “The Complexity
of Order Dependency Inference,” in Technical Report,

http://www.cse.yorku.ca/techreports/, 2012.
[11] S. Ginsburg and R. Hull, “Order dependency in the Relational Model,”

Theoretical Computer Science, 149-195, 1983.
[12] R. Guravannavar, H. Ramanujam, and S. Sudarshan, “Optimizing Nested

Queries with Parameter Sort Orders,” in VLDB, 481-492, 2005.
[13] B. Davey and H. Priestley, “Introduction to Lattices and Order,” in

Cambridge University Press, 1-298, 2002.
[14] S. Ginsburg and R. Hull, “Ordered Attribute Domains in the Relational

Model,” in XP2 Workshop on Relational Database Theory, 1981.
[15] J. Dong and R. Hull, “Applying Approximate order dependency to

Reduce Indexing Space,” in SIGMOD, 119-127, 1982.
[16] W. Ng, “Ordered Functional Dependencies in Relational Databases,”

Informaiton Systems, 535-554, 1999.
[17] ——, “An Extension of the Relational data model to incorporate ordered

domains,” ACM Transactions Database Systems, 344-383, 2001.
[18] J. Szlichta, P. Godfrey, and J. Gryz, “Chasing Polarized Order Dependen-

cies,” in The Alberto Mendelzon International Workshop on Foundations

of Data Management, 2012.
[19] Q. Cheng, J. Gryz, F. Koo, T. Leung, L. Liu, X. Qian, and K. Schiefer,

“Implementation of Two Semantic Query Optimization Techniques in
DB2 Universal Database,” in VLDB, 1-298, 1999.

