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ABSTRACT 
Dependencies have played a significant role in database design for 

many years. They have also been shown to be useful in query 

optimization. In this paper, we discuss dependencies between 

lexicographically ordered sets of tuples. We introduce formally 

the concept of order dependency and present a set of axioms 

(inference rules) for them. We show how query rewrites based on 

these axioms can be used for query optimization. We present 

several interesting theorems that can be derived using the 

inference rules. We prove that functional dependencies are 

subsumed by order dependencies and that our set of axioms for 

order dependencies is sound and complete.  

1. INTRODUCTION 
Consider the following SQL query (in Example 1). 

EXAMPLE 1. 

select D.year, D.quarter, D.month, 

 sum(S.sales) as total 

from Dates D, Sales S 

where D.date_id = S.date_id 

 and D.year between 2001 and 2004 

group by D.year, D.quarter, D.month 

order by D.year, D.quarter, D.month 

In the schema, Dates is a dimension table with a row per day, 

and Sales is a very large fact table recording all individual sales. 

Each has a surrogate-valued column date_id, which is the 

primary key for Dates. In the Dates dimension table, each row 

describes a given day with explicit columns as year, quarter, 

month, and day that describe the natural date values (and 

additional columns that qualify that day, such as whether it is a 

weekend day or holiday). 

Assume we have a tree index for Dates on year, month, day. 

This index cannot help in a query plan, however, to accomplish 

the group-by because quarter intercedes. Of course, quarter 

is logically redundant here, as month (which follows it in the 

group-by) functionally determines quarter. (First quarter 

encompasses the months of January, February, and March, second 

quarter, the months of April, May, and June, and so forth.) The 

query’s author could not leave quarter out of the group-by – 

even if he realizes it would be better to – because it is stated in the 

select. The query optimizer could, however, use an index scan 

to have the tuple stream in year, month order to accomplish the 

group by on year, quarter, month, if it recognizes that 

year, month and year, quarter, month offer the same 

partition. This is done by query optimizers today – given the 

functional dependency (FD) information that month → 

quarter is available to the optimizer – by rewrite. 

For the query above, the rewrite might still not be applied, since 

the query specifies the answers to be ordered by year, 

quarter, month. The FD that month → quarter is not 

logically sufficient to eliminate quarter from the order-by, as it 

was to eliminate it from the group-by. Since a query plan must 

guarantee the order-by, it likely will include a sort operator for 

year, quarter, month, after all. 

To see that the functional dependency does not suffice to 

eliminate quarter from the order-by, imagine the values for 

quarter were the strings first, second, third, and fourth. Data 

would be lexicographically ordered as first, fourth, second, then 

third! Of course, we intend that values of quarter are, say, 1, 2, 

3, and 4, so the data would order naturally as by date. It is 

unfortunate, then, that quarter is, in fact, redundant (in this 

query) in the order-by also, but that the optimizer does not have 

the means to eliminate it. 

What is missing is the semantic information that month orders 

quarter, which is more than just that month functionally 

determines quarter. This states that as values rise from one 

tuple to another on month, they must rise, or stay the same, from 

the one tuple to the other on quarter (that is, the values do not 

descend from the one tuple to the other on quarter). These 

have been called order dependencies (ODs), in contrast to 

functional dependencies. 

Our objective is to bring reasoning about order dependencies into 

the query optimizer. A query plan for the query above could then 

eliminate quarter from both the order-by and the group-by 

clauses, and the index on year, month, day might then provide 

for an efficient plan with no need for a sort operator. 

The notion of order dependencies can be greatly generalized, and 

the potential use of them in query optimization shown to be vast. 

The relationships between ordered sets have been explored in the 

past and several different notions of order have been considered. 

In this work, we consider just lexicographical ordering of tuples, 

as by the order-by operator in SQL, because this is the notion of 

order used in SQL and within query optimization for tuple 

streams. 

The contribution of this paper is to present an axiomatization for 

order dependencies, analogous to Armstrong’s axiomatization for 

functional dependencies [1]. This provides a formal framework 

for reasoning about ODs. There are two reasons for one to pursue 

an axiomatization. 

1. The axioms provide insight into how dependencies 

behave – and patterns for how dependencies logically 

follow from others – that are not easily evident 

reasoning from first principles. 



 

 

 

 

2. A sound and complete axiomatization is the first 

necessary step to designing an efficient inference 

procedure. 

Our axioms for order dependencies help us explore beneficial 

query rewrites.  We show how they can be cast as a new type of 

integrity constraint to be used in query optimization. We derive 

theorems based on our axioms, which illustrate surprising 

inferences and equivalences over order dependencies, and which 

can provide for powerful query rewrites. 

While order dependencies for databases have been explored 

before, we present the first general axiomatization for them. We 

prove the soundness of the axioms. We demonstrate that 

Armstrong’s axiomatization for functional dependencies is 

subsumed within our axiomatization for order dependencies. (In 

this sense, order dependencies can be thought of as a 

generalization of functional dependencies.) We then prove the 

completeness of the set of axioms. Working with order 

dependencies is more involved than with functional dependencies 

because the order of the attributes matters. Thus, we must work 

with lists of attributes instead of with sets. This necessarily 

complicates our axioms – compared with Armstrong’s axioms for 

FDs – and the proofs of our theorems. 

Outline. In Section 2, we present order dependencies (ODs) 

formally. We provide background, our notational conventions, 

and definitions for ODs (Section 2.1). We show from where ODs 

in databases naturally arise (Section 2.2). We demonstrate a 

number of effective ways ODs may be used in query optimization 

(Section 2.3). We discuss a query optimization technique with 

ODs that we have implemented as a prototype in IBM DB2 [18], 

and our ongoing work with these techniques. In Section 3, we 

introduce the axiomatization for ODs (Section 3.1), and we prove 

the soundness of the axioms (Section 3.2). We derive a collection 

of theorems using our axioms – which we use in the proof of 

completeness – which illustrate the utility of our axioms (Section 

3.3). In Section 4, we prove the completeness of the 

axiomatization. We sketch our proof of completeness (Section 

4.1). We demonstrate how functional dependencies are subsumed 

within order dependencies (Section 4.2). With the requisite pieces 

in place, we present the formal proof of completeness of the 

axiomatization (Section 4.3). In Section 5, we discuss related 

work. In Section 6, we present plans for future work and make 

concluding remarks. This work, we feel, opens exciting venues for 

future work to develop a powerful new family of query 

optimization techniques in database systems. 

2.  ORDER DEPENDENCY 
We first set out formal definitions for order dependencies that we 

need later in proofs. Next, we illustrate ODs in databases and how 

they arise. We then show the use-case scenarios for ODs for query 

optimization. 

2.1 Formal Definitions 
We adopt the notational conventions in Table 1. We consider a 

relation � with a schema set of attributes	�. Let � be an arbitrary 

table instance over	�;	 thus	a	set	of	 tuples under	�’s	schema with	
attributes	�. We limit table instances to sets in our definitions, to 

keep our definitions simpler and easier to follow. However, this 

could be changed to multi-sets easily, with no consequences to our 

axiomatization. 

Table 1. Notational conventions. 

Relations - a capital letter in bold italics represents a relation: R, 

while A small letter in bold represent a relational instance 

(a table): r. We use capital letters to represent single attributes: 

A, B, C. Lastly, tuples are marked with small letters in italics: s, t. 

Sets - calligraphic letters	stand for sets of attribute:	�, �, �. We 

use proximity for union of sets: �� is shorthand for	� ∪ �. 

Likewise, A� or	�A, where � is a set of attributes and A a single 

attribute, stands for	� ∪ {A}. Also �� denotes the projection of the 

tuple t on the attributes of �, while �� is the shorthand for �{�}. 

Lists - bold letters	stand for lists of attributes: �,	�, �. Note list X 

could be the empty list, []. We use square brackets to denote a list: 

[A, B, C]. The notation [A | T] denotes that A is the head of the 

list, and T is the tail of the list, the remaining list with the first 

element removed. Proximity is used for concatenation of lists of 

attributes: �� is shorthand for	� ∘ �. Likewise, A� and �A stands 

respectively for [A] ∘ � and	� ∘ [A], where � is list of attributes 

and A is a single attribute. AB	 denotes [A,	 B]. Also, �′ denotes 

some other permutation of elements of list �. 

 Definition 1. (operator ≼) Let X be a list of attributes, s and t be 

two tuples in relation instance r. Operator ≼ is defined as follows: 

 � ≼ �� where X = [A | T] 

if ( � < ��) 

             or if (( � = ��) and (T = [] or  # ≼ �#))  

In this paper, we assume ascending (asc) order in the 

lexicographical ordering. (This is SQL’s default.) We do not 

consider descending (desc) orders, mixing of asc and desc 

(e.g., order by X desc, Y asc), or use of functions in the 

order directives (e.g., order by -1*X asc, Y asc). 

 Definition 2. (operator ≺) Let X be a list of attributes, s and t be 

two tuples in relation instance r.  The operator ≺ is defined as 

follows:  � ≺ �� iff  � ≼ �� and �� ⋠  �. 

 Definition 3. (s� = ��) Let X be a list of attributes, s and t be two 

tuples in relation instance r,  � = �� iff  � ≼ �� and �� ≼  �. 

 Definition 4. (order dependency) Let X and Y be list of attributes. 

Call �	 ↦ 	� an order dependency (OD) over the relation � if, for 

every pair of admissible tuples s and t in relation instance � over 

�,  � ≼ �� implies  � ≼ ��. 

Whenever �	 ↦ 	�, we say that � orders �. � and � are order 

equivalent iff �	 ↦ 	� and �	 ↦ 	�. We denote this by �	 ↔ 	�.  

A B C D E F 

3 2 0 4 7 9 

3 2 1 3 8 9 

Figure 1. Relation instance r. 

EXAMPLE 2. Note that [A, B, C]	↦				[F,	E,	D] is consistent with r, 

but [A, B, C]	↦				[F,	D,	E]	is falsified by r in Figure 1. 

The OD �	 ↦ 	� means that �’s values are monotonically non-

decreasing with respect to �’s values. Thus, if a list of tuples are 

ordered by �, then they are also necessarily ordered by �, but not 

necessarily vice versa. That is to say, if one knows	�	 ↦ 	�, then 

one knows that any ordering of the tuples of �, for any �, that 

satisfies order by � also satisfies order by	�. 

There is a clear relationship between ODs and FDs. Any OD 

implies and FD (modulo lists and sets), but not vice versa. 



 

 

 

 

LEMMA 1. (relationship between ODs and FDs). For every 

instance r of relation R, if OD �	 ↦ 	� holds, then FD � → �	 is 
true.	

PROOF. Let s, t ∈	rrrr,				such	that	 � = ��. Therefore,  � ≼ �� and 

�� ≼  �. By the definition of OD  � ≼ �� and �� ≼  �, hence as 

 � = ��,  � = ��.                              □ 

Definition 5. (order compatible) Two lists � and � are order 

compatible, denoted as	�	~	� iff  ��	 ↔ 	��.  

EXAMPLE 3. Note that [A, B]	~				[F,	C] is consistent with r, but 

[A, C]	~				[F,	D]	is falsified by r in Figure 1. 

2.2 Order By 
The concept of functional dependencies has come to have 

profound importance in databases, especially in schema design. 

While functional dependencies are a simple notion in some ways, 

reasoning over them is, somewhat surprisingly, not nearly as 

simple. To gain insight into how sets of FDs behave, and to 

simplify the reasoning process over them, Armstrong provided an 

axiomatization for them [1]. Beyond layout and indexes, FDs play 

additional important roles in query optimization. Knowledge 

about prescribed FDs on the schema are used in the query-rewrite 

phase of optimization potentially to eliminate predicates. They are 

used in the cost-based phase to do better cardinality estimation. 

They are used also to recognize partitioning equivalences of tuple 

streams within query plans. 

We have introduced ODs in analogy to FDs: functional 

dependencies are to group-by as order dependencies are to order-

by. On the one hand, order is not important in the pure relational 

model on the logical side of the fence. Relational instances are 

sets of tuples. (Implemented systems allow for multi-sets of 

tuples, but again, there is no notion of order.) A schema is a set of 

attributes. SQL concedes a single order-by clause to be appended 

to a query to order the result set, as a convenience, given that 

people often want to see the results sorted in a given way. (This 

said, there are many places where order is semantically 

meaningful. Data stream extensions to the relational model make 

order a part of the model. For other data models such as XML – 

and XQuery over it – order is an integral part of the model.) 

On the other hand, order plays pivotal roles on the physical side, 

in the physical database and in query optimization. Data is often 

stored sorted by a clustered (tree) index’s key. In a query plan, an 

operator that takes as input the output stream of another operator 

can benefit in cases when the stream is sorted in a particular way. 

Aggregation queries (group-by) can be evaluated on-the-fly if the 

stream is ordered already in a way compatible with the requested 

group-by partition, rather than needing to do a partitioning 

operation that could involve heavy I/O expense. 

Given �	 ↦ 	�, if one has an SQL query with order by �, one 

can rewrite the query with order by	� instead, and meet the 

intent of the original query. However, the rewritten query is not 

semantically equivalent the original (unless �	 ↔ 	�)! One could 

not legally rewrite the query with order by	� with order by � 

instead. Strengthening the order-by conditions is permitted, but 

weakening them is not. (This is true too inside query plans for 

ordered tuple streams.) 

One does not need order equivalences then to accomplish useful 

query rewrites. Directional order dependencies (e.g., �	 ↦ 	�, but 

not �	 ↦ 	�) suffice. This makes ODs that much more versatile for 

rewrites. Notice this differs from the use of FDs for query 

rewrites, for instance, to simplify group-by’s. To replace year, 

quarter, month by year, month in the group-by for the 

query in the example in Section 1, one should know the two are 

functionally equivalent. One could not replace it by year, 

month, day, for example, even though {year, month, day} 

→ {year, quarter, month}. 

Within query plans, group-by (partitions) can be accomplished 

either by a partition operation (such as by use of a hash index), or 

by the use of an ordered tuple stream (as provided by a tree-index 

scan or by a sort operation). When rewriting the partition criteria, 

if a partition operation is employed, the criteria must be 

equivalent. However, when an ordering operation is employed 

instead, then one has the same flexibility as noted for OD 

dependencies. Strengthening the criteria suffices. For instance, 

sorting by year, month, day would suffice to accomplish the 

group-by on year, quarter, month. (Group divisions can be 

found on-the-fly in the stream.) 

An OD can be declared as an integrity constraint to prescribe 

which instances are admissible. (We have introduced this new 

type of constraint in a prototype branch of IBM DB2. See Section 

2.3.) One can reason over ODs on relations in a similar way one 

now reasons about FDs over relations. Some order dependencies 

are trivially true [19]. That is, they are (trivially) satisfied by any 

table instance. For example, consider	��	 ↦ 	�. Others are not 

trivial. If one knows a collection of order dependencies,	ℳ – 

declared as integrity constraints over relation	� – one might 

soundly infer additionally order dependencies that must be true 

for �. For example, if �	 ↦ 	� and �	 ↦ 	� are true, then �	 ↦ 	� is 

true also. (That is, ODs are transitive.) 

While order is not part of the relational model, per se, ordered 

value domains are of key importance for most databases, and most 

queries. Many types of ODs are apparent in the semantics of 

databases (even though these ODs are not declared explicitly). 

Perhaps the most important of these ordered domains in practice is 

time. Time and date (time at a coarser granularity) are richly 

supported in the SQL standards. The common benchmark TPC-

DS [20] has 99 queries. Of these, 85 involve date operators and 

predicates (and five involve time operators and predicates). This is 

common for data-warehouses. Even if we were just limited to 

ODs over the date/time domain, we could derive great benefits in 

query optimization. 

Figure 2 represents possible ODs, in which the left-hand side of a 

dependency is time and the right-hand side is one of the paths 

through the diagram. Each node is an equivalent class of the list of 

attributes leading up to it, with respect to the starting point. 

Theorem 10 proves that any list appearing on the left side can be 

suffixed by attributes appearing along an equivalent path. This is 

shown in Example 4.  

EXAMPLE 4.  

[time]				↦	[date, hour] 

[date]				↦	[year, month, day] 

It follows (from Theorem 10 below) that 

[time]				↦	[date, month, hour] 



 

 

 

 

 

Figure 2. Time diagram. 

Order dependencies are not just limited to the time domain, 

however. They arise naturally in many other domains from the 

real-world semantics associated with given data. All that is 

required is that the values of a column (or list of columns) are 

monotonically non-decreasing with respect to the values of 

another column (or list of columns). This property is fairly 

common when columns are functionally related.  

EXAMPLE 5. Consider a table Taxes that includes columns for 

taxable income, tax bracket, and taxes on the income. The 

tax brackets are based on the level on income (and so rise with 

income level). Assume taxes go up with income. Then, 

[income]				↦	[bracket] 

[income]				↦	[taxes] 

It follows (from Theorem 2 below) that 

[income]				↦	[bracket, taxes] 

Assume the table has a tree index on income. Given a query on 

the table with an order-by on bracket, taxes, with the OD 

above, it could be evaluated using the index on income. 

Instead of being columns with explicit data, bracket and 

taxes could be derived by functions or case expressions – say, if 

Taxes were a view – or generated columns in the table. In these 

cases, it would be possible for the database system to derive the 

order-dependency constraints above automatically. In [12], it was 

shown how to derive such monotonicity “constraints” from 

generated columns via algebraic expressions (in IBM DB2). Of 

course, one could prescribe the set of order dependencies as check 

constraints directly to benefit by this technique. 

Such monotonic dependencies can be derived from built-in SQL 

functions, from user-defined functions (to some degree), and from 

case expressions. The SQL function Year, for example, extracts 

the year component of a datestamp. Thus, given a datestamp 

column when, [when]				↦	[Year(when)]. 

2.3 Optimization 
In the paper entitled Fundamental Techniques for Order 

Dependencies [17], the authors expounded on the important role 

of order in query optimization. They demonstrated numerous 

examples of how better reasoning over interesting orders in the 

query optimizer could lead to significantly better performing 

query plans. They introduced query rewrites in IBM DB2 that 

could replace one labeled interesting order by another, when it is 

known the two order in the same way (that is, are order 

equivalent, as we have defined it). 

They showed how these rewrites could allow the optimizer to 

consider additional query plans that process join, order-by, group-

by, and distinct operators more efficiently. By recognizing that a 

tuple stream ordered with respect to some criteria is equivalently 

ordered with respect to other criteria, a sort on input can be 

removed for a sort-merge join. Order-by and group-by operators 

can be satisfied with no need for a sorting or partitioning 

operation more often, as with our Example 1. Likewise, as the 

distinct operator is exchangeable with group-by, the need for a 

sorting or partitioning operation to satisfy distinct can be lessened. 

Our work builds upon this work. Their rewrites rely on functional 

dependency information available to the optimizer, but do not 

exploit any order dependency semantics, as defined by us. Our 

work permits a greater range of rewrites. For example, they could 

reduce an order-by year, month, quarter to an order-by 

year, month, based upon the FD {month} → {quarter}. 

(Likewise, they could reduce the equivalent group-by.) However, 

they could not reduce the order-by year, quarter, month to 

year, month, as we did in Example 1, since their techniques do 

not employ the idea of ODs. (It is Theorem 8 below, called Left 

Eliminate, which follows from our axiomatization, which justifies 

this rewrite.) 

In [17], they introduced a rewrite algorithm for order-by called 

Reduce Order. It sweeps the order-by attribute list from right to 

left, seeking to eliminate attributes. Each iteration through the list, 

the prefix set with respect to the current attribute – that is, the set 

of attributes to the left of the current – is checked to see whether it 

functionally determines the current attribute. If so, the attribute is 

dropped from the list. 

We can augment that algorithm – call it Reduce Order* – to do an 

additional step. Each iteration through the list, it can additionally 

be checked whether any postfix list with respect to the current 

attribute – that is, a list of attributes to the right of the current – 

orders the current attribute. If so, the attribute is dropped from the 

list. Given the OD [month] ↦ [quarter], both order-by year, 

month, quarter and year, quarter, month would be 

reduced to year, month. 

Order dependencies are in terms of lists of attributes, not sets as 

for functional dependencies. This makes matching in rewrites 

using ODs more complex generally, but also increases the 

possibilities for matches. Consider D	↦ B. Then ABD	 could	 be	
reduced	 to	 AD.	 However,	 ABCD	 cannot	 be!	 The	 attribute	 C	
intervening	between	the	B	and	D	 invalidates	 the	rewrite.	For	
the	rewrite	by	Theorem 8 to apply, the list on the right-hand side 

of the OD must precede directly the list on the left-hand side. If 

we knew D	↦ BC, then ABCD could be reduced to AD. 

A major part of our continued work with order dependencies is to 

develop a number of efficient rewrite rules for the query 

optimizer, as they did in [17], to exploit ODs effectively. Our OD 

axiomatization provides us the means now to pursue this. The 

axioms and related theorems as in Section 3.3 provide us with 

insight into the types of rewrites that are possible. 

In [18], we developed query rewrites in a prototype branch of the 

IBM DB2 9.7 codebase that demonstrates the effectiveness of 

rewrites using order equivalences. In data-warehouses, date is 

often represented explicitly as a dimension table of its own, with 

the primary key of the date table made as a surrogate key [11]. 

While this design can have compelling advantages, the surrogate 

key can cause problems for efficiently evaluating queries. 



 

 

 

 

A majority of queries in a data warehouse are over the fact table. 

A query often uses natural date values in predicates. However, 

date in the fact table is recorded by the surrogate key. This 

necessitates potentially a quite expensive join between the fact 

table and the date dimension table when the query is evaluated. 

There is an additional problem when a fact table has been 

partitioned by date in order to accommodate a very large table 

(e.g., in distributed systems). Since the date range (surrogate 

values) over the fact table cannot be determined from the query 

(natural values), all partitions of the fact table must be scanned. 

We optimize such queries involving dates by removing this join, 

and choosing just the relevant partitions of the fact table when the 

table is distributed. 

A number of queries in the TPC-DS benchmark [20] have this 

condition. Fortunately, we have a guarantee (an OD) that the 

surrogate (date) keys in the date dimension table are ordered in 

the same way as natural date values in the dimension table. Thus, 

the query plan can make two probes into the dimension table to 

calculate the range of the surrogate keys from the fact table. These 

two probes into the date table find mindate and maxdate 

surrogate key values. These two surrogate key values replace the 

range predicate, which allows the index on the date column in the 

fact table to be used.  

The details of when and how this rewrite can be performed in a 

general way are provided in [18]. We built a prototype 

implementing such rewrites in IBM DB2 V.9.7 and performed 

experiments over TPC-DS to demonstrate the efficiency of the 

approach. Thirteen of TPC-DS`s queries matched the conditions 

for this rewrite. Every one of these thirteen benefited, with an 

average performance gain of 48%. Since this work reported in 

[18], we have continued work on the prototype. We have added a 

new type of check constraint which expresses an OD. We have 

implemented more OD rewrite rules which now rewrite eighteen 

of TPC-DS’s queries with performance gain. 

Consider our technique from [18] combined with an OD rewrite 

of the order-by for our query in Example 1. If we have the OD 

that [date_id]				↦	[year, month], the order-by and group-by 

operators in a query plan could be accomplished by an index scan 

over the index for Sales, the fact table, on date_id, then 

joining the results against the dimension table Dates. 

3. AXIOMATIZATION 
A key concern in dependency theory is developing the algorithms 

for testing logical implication. Developing inference rules is an 

approach to show logical implication between dependencies. 

3.1 Axioms 
Definition 6. (A proof of OD A from	ℳ) Let ℳ be a set of 

prescribed ODs. A proof of OD A from ℳ with the set of 

inference rules ℐ is a sequence A	 = 	AC, … , AE (G ≥ 1) such that 

for	K	 ∈ [1, G] either AL ∈ 	ℳ, or there exists a substitution for 

some rule	A ∈ ℐ	, such that AL is consequence of	M, and such that 

for each order dependency in the predecessor of A the 

corresponding order dependency is in the set {AN	

∣ 	1	 ≤ 	Q	 < 	K}. 

The OD A is provable from ℳ using axioms ℐ	(relative to set of 

attributes U), denoted	ℳ ⊢ℐ A, if there is a proof of A from	ℳ 

using	ℐ. We now introduce axioms (inference rules) for ODs. 

Definition 7. (OD axioms) The inference rules for ODs are as 

follows. 

OD1: Reflexivity 

�� ↦ � 
 

OD2: Prefix 

� ↦ �  

�� ↦ ��  
 

OD3: Normalization 

S���T ↔ S��T 

OD4: Transitivity 

� ↦ � 

� ↦ � 

� ↦ � 
 

OD5: Suffix 

�	 ↦ � 

�  ↔ �� 

OD6: Chain 

� ~ �U 

∀W∈[U,XYU]�W ~ �WZU 

�X ~ � 

∀W∈[U,X]�W� ~ �W� 

�				~				 �				

 				 				
 

Two of our axioms generate trivial dependencies [19]: Reflexivity 

and Normalization. We define the closure of the set of OD ℳ, 

denoted	ℳZ, to be the set of ODs that are logically implied 

by	ℳ.  

Definition 8. (closure of ℳ using ℐ). Let ℐ = {OD1–OD6}, then 

	ℳZ = {�	 ↦ 	�	|	ℳ	 ⊢ℐ �	 ↦ 	�}. 

Definition 9. (equivalents sets of OD). Let ℳ and ℳ' be sets of 

ODs. We say that ℳ and ℳ' are equivalent iff 

{�	 ↦ 	�	|	ℳ	 ⊨ 	�	 ↦ 	�} = {�	 ↦ 	�	|	ℳ′	 ⊨ 	�	 ↦ 	�}. 

3.2 Soundness 
In this subsection, we address the problem of showing that our 

OD axioms are sound. This is to say, they lead only to true 

conclusions.  

Definition 10 (soundness of OD axioms) Let ℐ be a set of 

inference rules {OD1–OD6}. Then ℐ is sound for logical 

implication of ODs if �	 ↦ 	� is deduced from ℳ (ℳ ⊢ℐ �	 ↦ 	� ) 
using axioms	ℐ,	 then	�	 ↦ 	�				 is true in any relation in which the 

dependencies of ℳ	are	true	ℳ ⊨ �	 ↦ 	�.	

Let r be a relation over R. The following Lemmas are true. 

LEMMA 2. (soundness of Reflexivity) Reflexivity is sound.  

PROOF. Let s, t ∈	 rrrr,				 such	 that	  �� ≼ ���. From the 

recursiveness of  Definition 1 of operator ≼ it follows that (1) 

 � = �� and  � ≼ �� or (2)  � ≺ ��. (1) and (2) imply that  � ≼ ��, 

therefore ∀�	. ��	 ↦ 	�.                                             □ 

LEMMA 3. (soundness of Prefix) Prefix  is sound.  

PROOF. Let s, t ∈	 rrrr, such that  �� ≼ ���. This implies (1) 

 � ≺ �� or (2)  � = �� and  � ≼ ��. For (1)  �� ≼ ��� holds as 

 � ≺ ��. In the second scenario (2),  � ≼ �� implies  � ≼ �� 

(�	 ↦ 	� is given). Hence, as  � = �� it is true that  �� ≼ ���. 

∀�	. �	 ↦ 	� implies ��	 ↦ 	�.            □ 

LEMMA 4. (soundness of Normalization) Normalization is 

sound.  

PROOF. (IF) Let s, t ∈	rrrr, such that  S��T ≼ �S��T. This implies 

that: (1)  S�� = �S�� and  T ≼ �T or (2)  S�� ≺ �S��. In (1) 

 � = �� as  S�� = �S��. Therefore we can suffix S�� by list X 

and  S��� = �S��� holds. Hence,  S���T ≼ �S���T as we know 

that  T ≼ �T. Scenario (2), as  S�� ≺ �S�� implies that we can 

suffix list S�� by �T and  S���T ≼ �S���T holds.   

(ONLY IF) Let s, t ∈	rrrr, such that  S���T ≼ �S���T. This implies 

that: (1)  S�� = �S�� and  �T ≼ ��T or (2)  S�� ≺ �S��. In (1) 

 � = �� as  S�� = �S��. Hence,  T ≼ �T as we know that 

 �T ≼ ��T. Therefore,  S��T ≼ �S��T. Scenario (2), as  S�� ≺



 

 

 

 

�S�� implies that we can suffix list S�� by T and  S��T ≼
�S��T holds. ∀�	.S���T	 ↔ 	S��T.                     □ 

LEMMA 5. (soundness of Transitivity) Transitivity is sound.  

PROOF. Let s, t ∈	rrrr, such that  � ≼ ��. By �	 ↦ 	� which is given 

 � ≼ �� which implies  � ≼ �� and it ends the proof. ∀�	. �	 ↦ 	� ∧
�	 ↦ 	� implies �	 ↦ 	�.                                        □ 

LEMMA 6. (Soundness of Suffix) Suffix is sound.  

PROOF. (IF) Let s, t ∈	rrrr, such that  � ≼ ��. Therefore  � ≼ �� as 

�	 ↦ 	� is given, which implies that  �� ≼ ��� (�	 ↦ 	��). 

(ONLY IF) Let s, t ∈	 rrrr, such that  �� ≼ ���. Therefore (1) 

 � = �� and  � ≼ �� or (2)  � ≺ �� is true. Scenario (1) directly 

implies that  � ≼ �� (��	 ↦ 	�). Scenario (2) where  � ≺ �� 

implies that  � ≺ ��. This is because  � ⊀ �� implies �� ≺  � 

which implies �� ≺  �. Hence  � ⊀ ��. This ends the proof as 

 � ≼ �� (��	 ↦ 	�). ∀�	. �	 ↔ 	��            □ 

LEMMA 7. (Soundness of Chain) Chain is sound.  

PROOF. Without loss of generality, assume that the lists in the 

axiom are single attributes. Let � = A, �C = BC, … , �E = BE and 

� = C This simplification makes it easier to extend the rule to 

lists. The proof is by contradiction. Assume that A and C are order 

incompatible. Then there are two tuples for which there is a swap 

(The notion of swap is formalized in Definition 14) of the values 

between A and C. Also the two tuples disagree on attribute BN for 

all i. Otherwise condition number 4 would not be true. As A ~ BC, 

the values for BCfollow A, so does the rest of attributes BN because 

of the condition (2). This means the two rows look in the 

following way: 

A BC B_ … BE C 

0 0 0 0 0 1 

1 1 1 1 1 0 

Figure 3. A order incompatible with C. 

But then BE is order incompatible with C, which we assumed not 

to be the case. We conclude with contradiction.           □ 

THEOREM 1. (soundness). OD1-OD6 axioms are sound for 

logical implication of ODs. 

PROOF. In order to prove the soundness of ℐ we have to prove 

that each of the rules is sound. This is Lemma 2 – Lemma 7.       □ 

3.3 Theorems 
We introduce additional inference rules as they will be used 

throughout the paper – particularly in order to prove that ODs 

axioms are complete.  

THEOREM 2 

(Union) 

1 �	 ↦ 	� 

2 �	 ↦ 	� 

 �	 ↦ 	�� 
 

PROOF. 

3 �� ↦ �� [Pref(2)] 

4 � ↦ �� [Suf(1)] 

 � ↦ �� [Trans(3, 4)]	□ 
 

THEOREM 3. 

(Augmentation)  

1 � ↦ � 

 �� ↦ � 
 

PROOF. 

2 �� ↦ � [Ref] 

 �� ↦ � [Tran(1,2)] □ 
 

THEOREM 4. 

(Shift) 

1 S ↔ T 

2 � ↦ � 

 S� ↦ T� 
 

PROOF. 

3    T� ↦ S [Aug(1)] 

4  TT� ↦ TS [Pref(3)] 

5 TT� ↔ T� [Norm] 

6 T� ↦ TS [Tran(4,5)] 

7 T� ↔ TWVX [Suf(6)] 

8 TS� ↔ TWVX [Norm] 

9 T� ↔ TWX [Tran(7,8)] 

10 S� ↦ T [Aug(1) 

11 S� ↦ TWX [Suf(10)] 

12 S� ↦ TX [Tran(9,11)] 

13 T� ↦ T� [Pref(2)] 

 S� ↦ T� [Tran(12,13)]	□ 
 

THEOREM 5. 

(Decomposition)  

1 � ↦ �� 

 � ↦ � 
 

PROOF. 

2 �� ↦ � [Ref] 

 �	 ↦ � [Tran(1,2)] □ 
 

The following theorem is helpful to prove the Eliminate, Left 

Eliminate and Drop. 

THEOREM 6. 

(Replace) 

1 ` ↔ a 

 �`�↔ XNZ

Z  

 

PROOF. 

2 � ↦ � [Ref] 

3 `� ↦ N� [Shift(1,2)] 

4 N� ↦ `� [Shift(1,2)] 

5 �`� ↦ XN� [Pref(3)] 

6 XN� ↦ �`� [Pref(4)] 

 �`� ↔ XN� [Tran(5,6)] □ 
 

THEOREM 7. 

(Eliminate) 

1 � ↦ � 

 `�a�S  
       ↔ 

 `�aS 
 

PROOF. 

2 � ↔ �� [Suf(1)] 

3 �� ↦ ��� [Pref(2)] 

4 � ↔ �� [Norm] 

5 �� ↔ ��� [Norm 

6 � ↔ �� [Tran(3-5)] 

7 `��a�S ↔ `�a�S [Rep(6)] 

8 `��a�S ↔ `��aS [Norm] 

9 `��aS ↔ `�aS [Rep(6) 

 `�a�S ↔ `�aS [Tran(7-9)] □ 
 

THEOREM 8. 

(Left Eliminate)  

1 � ↦ � 

 T��� ↔ T�� 
 

PROOF. 

2 � ↔ �� [Suf(1)] 

 T��� ↦ T�� [Rep(1,2)] □ 
 

THEOREM 9. 

(Drop) 

1 � ↦ T��S 
2 � ↔ T 

 � ↦ T� 
 

PROOF. 

3 T��S	↦	���S	 [Rep(2)] 

4 �	↦	���W	 [Tran(1,3)] 

5 � ↦ �� [Dec(4)] 

6 ��S ↦ �� [Aug(5)] 

7 ��S ↔ ����S [Suf(6)] 

8 ����S ↔  ���W [Norm] 

9 ��S ↔  ���S [Tran(7,8)] 

10 � ↦ ��W [Tran(4,9)] 

11 ��S ↦ T�W [Rep(2)] 

12 � ↦ T�W [Tran(10,11)] 

 � ↦ T� [Dec(12)] □ 
 



 

 

 

 

THEOREM 10. 

(Path) 

1 � ↦ �S 
2 � ↔ VMN 

 � ↦ �`S 
 

PROOF. 

3 �	↦	�	 [Dec(1) 

4 �	↦	T`a	 [Tran(2,3)] 

5 � ↦ �T`a [Union(3,4)] 

6 �T`a ↔ �T`a` [Norm] 

7 � ↦ �T`a` [Trans(5,6)] 

8 � ↦ �` [Elim(2,7)] 

9 � ↦ �`�S [Union(1,8)] 

10 �`�S ↔ �`S [Norm] 

 � ↦ �`S [Tran(1,10)] □ 
 

 

Chain axiom is used to prove following two theorems. 

THEOREM 11. 

(Partition) 

1 � ↦ � 
2 � ↦ � 
3 set(Y) = set(Z) 

 � ↔ � 
 

PROOF. 

4 �	↔	��	 [Suf(1)] 

5 �	↔	�	 [Ref] 

6 �	↦	��	 [Union(1,5)] 

7 �	↔	���	 [Suf(6) 

8 �	↔	��	 [Norm(7)] 

9 ��	↔	��	 [Tran(4,8)] 

10 ��	↔	��	 [2,4-9] 

11 � ~ � [(9)] 

12 � ~ � [(10)] 

13 ��� ↔ ��� [Ref] 

14 �� ↔  �� [Elim(1,2,13)] 

15 � ~  � [Chain(11,12,14)] 

16 �� ↔ �� [(15)] 

 � ↔ � [Norm(3,16)] □ 
 

THEOREM 12.  

(Downward Closure) 

1 �� ~ �T 

 � ~ � 
 

PROOF. 

2 �T��	↦	�	 [Ref] 

3 ���T ↦ � [Tran(1,2)] 

4 ���T ↦ � [Ref] 

5 ���T ↦ �� [Union(3,4)] 

6 ���T ↦ �� [Union(3,4)] 

 � ~ Z [Part(5,6)] □ 
 

 

 

4. COMPLETENESS 
In Section 4.1, we sketch the important elements of the proof for 

completeness of our OD axiomatization. We establish that ODs 

subsume FDs in Section 4.2, followed by the formal completeness 

proof of our axiomatization in Section 4.3. 

4.1 Sketch of the overall proof and definitions 
Our proof is constructive. To prove the axiomatization is 

complete, it suffices to demonstrate, for any set of ODs ℳ, a table 

t can be constructed that satisfies (Lemma 14), and is complete 

(Lemma 15) with respect to, ℳ using ℐ, the axiomatization. 

Definition 11. (a table t satisfies ℳ). A table t satisfies ℳ iff no 

OD that is derivable over ℳ using ℐ (thus, in 	ℳZ) is falsified by 

the table t. 

Definition 12. (a table t is complete with respect to ℳ). A table t 

is complete with respect to ℳ iff every OD that is constructible 

over the attributes that appear in	ℳ	that is not derivable over ℳ 

using ℐ (thus, is not in 	ℳZ) is falsified by the table t.  

In Section 3.2 in Theorem 1, we proved the soundness of  ℐ. Thus, 

any table that satisfies each OD in ℳ satisfies	ℳZ, and no table 

that satisfies ℳ can falsify any OD in ℳZ. 

An OD �	 ↦ 	� can be falsified in just two ways by a table. (See 

Theorem 15.) We name these two ways split and swap. 

Definition 13. (split). A split with respect to an OD �	 ↦ 	�� is a 

pair of tuples t and s in table t, such that �� =  � but (�� ≠  �); 

that is, have the same value for X (�� =  �) but different values 

for Y (�� ≠  �). Thus, the split from t falsifies �	 ↦ 	��. 

(Consequently, �	 ↦ 	� is falsified, too.) This just says that 

set(X) does not functionally determine set(Y). 

Definition 14. (swap). A swap with respect to an OD ��	 ↔ 	�� 
is a pair of tuples t and s in table t such that �� ≺  �, but  � ≺ ��; 

i.e., there exist tuples t and s in t such that �� ≺  �, but  � ≺ ��; 

i.e., t comes before s in any stream satisfying order by X, but 

s comes before t in any stream satisfying order by Y. Thus, 

the swap from t falsifies ��	 ↔ 	��. (Consequently, �	 ↦ 	� is 

falsified, too.) 

The table t that we construct for the set of order dependencies ℳ 

will consist of two parts: split(ℳ) and swap(ℳ). We shall 

construct these two parts of t – the first half of the table, split(ℳ), 

and the second half, swap(ℳ) – in such a way that t satisfies ℳ. 

The purpose of split(ℳ) will be to falsify every OD of the form 

�	 ↦ 	�� not in 	ℳZ. The purpose of swap(ℳ) will be to falsify 

every OD of the form �	 ↦ 	�, ��	 ↔ 	�� not in 	ℳZ but for which 

�	 ↦ 	�� is in	ℳZ. (So �	 ↦ 	� not in	ℳZ by Theorem 15 appear) 

Thus, t is complete for ℳ. 

Definition 15. (split(ℳ)). Split(ℳ) is a table that demonstrates 

for each �	 ↦ 	�� which is not in 	ℳZ that �	 ↦ 	�� is falsified by 

split (and so, falsifies �	 ↦ 	�, too).  

Definition 16. (swap(ℳ)). Swap(ℳ) is a table that 

demonstrates for each ��	 ↔ 	�� which is not in 	ℳZ that 

��	 ↔ 	�� is falsified by split (and so, falsifies �	 ↦ 	�, too).  

In the table t that we construct, we shall use integer values for the 

cells. (A cell is a given column entry of a given row.) We 

construct table t by adding splits and swaps. We have to make 

sure that these pieces combined together do not interfere. That is 

why we formalize the notion of append. When we append two 

tables cC and c_, we shall ensure that the resulting table cannot 

introduce any splits (except �	 ↦ []	) or swaps beyond those that 

appear in cC and in c_ alone (Lemma 9).  

Definition 17. (append) Appending two sub-tables cC and c_ is 

accomplished by following steps: 

1. Find the minimum value, x, over all cells of	cC. Subtract x 

from all cells in cC. (Now its minimum value is zero.) Do the 

same for c_. 

2. Find the maximum value, y, over all cells of cC. Add y + 1 to 

all cells in c_. 

3. The resulting table of the append is the union of cC and c_ as 

adjusted in steps 1 and 2. 

A B C D 

0 0 0 0 
0 0 1 1 

Figure 4. 

Table cU. 

A B C D 

0 1 0 0 
1 0 0 0 

Figure 5.  

Table cd. 
 

A B C D 

0 0 0 0 
0 0 1 1 

2 3 2 2 

3 2 2 2 

Figure 6. cU append cd. 

The table t we construct will be split(ℳ) append swap(ℳ) 

(which we call split-swap form). We shall construct split(ℳ) in a 

way that is analogous to the construction in Ullman’s proof of the 

completeness of Armstrong’s axiomatization for FDs in [19]. This 



 

 

 

 

proves our axiomatization for ODs is sound and complete over 

FDs.  

We shall construct swap(ℳ) in a way to falsify each OD �	 ↦ 	� 
not in 	ℳZ (but for which �	 ↦ 	�� is in 	ℳZ). This construction 

will be more complex than for split(ℳ). For each pair of 

attributes A and B from ℳ, we determine whether there needs to 

be a swap between A and B – a pair of tuples s and t such that 

�� ≺  �, but  e ≺ �e – and, if so, the context in which swap 

between A and B need to occur.  

Definition 18. (constant). An attribute A is called a constant 

with respect to ℳ iff  [] ↦ A is in 	ℳZ. Call an attribute a non-

constant, otherwise. 

If an attribute is a constant, it means in any table that satisfies ℳ, 

it can have only a single value occurring in the table.  

 Definition 19. (context). A set of non-constant attributes �	
with	respect	to	ℳ is a context of a swap t, s iff �� =  �. We say 

swap t, s is in the context of � iff �� =  �. (Note that a context 

for a swap t, s is not unique.) 

By identifying the right contexts for swaps for each pair A and B, 

swap(ℳ) will falsify each �	 ↦ 	� not in ℳZ (but with �	 ↦ 	�� in 

ℳZ), while not falsifying anything in ℳZ (Lemma 13). This step 

is the cornerstone of our proof for completeness. 

Constructing table swap(ℳ) is not straightforward. We are able to 

simplify the construction via structural induction. The hypothesis 

is as follows. 

HYPOTHESIS 1 (hypothesis). For some fixed integer K, for any 

set of ODs ℳ composed over attributes {gC, … , gh}, there exists a 
table t in split-swap form that satisfies, and is complete with 

respect to, ℳ. 

We prove the base case of this for i ≤ 2 (in Lemma 11). We 

hypothesize this is true for any ℳ with a fixed i number of 

attributes. We then prove that for any ℳ with i + 1 attributes 

that the hypothesis remains true (Theorem 18). Proof of the 

induction hypothesis in essence completes the overall proof.  

Induction provides us a powerful mechanism within the 

proof. Consider any ℳ with i + 1 attributes. In the first case, if 

any of the attributes are constants with respect to ℳ, we can 

reduce the problem. We effectively project out those constant 

attributes from ℳ. This means we simply remove all occurrences 

of the attributes in the ODs. For example, if we are projecting out 

B and E, ABC ↦ DEF becomes AC ↦ DF. Call the result ℳ'. 

Then, ℳ' is over K or fewer attributes. By the induction 

hypothesis there is a table t' which is satisfies, and is complete 

with respect to, ℳ'. We can show easily how to construct a table t 

from t' which must satisfy, and be complete with respect to, ℳ. 

This is established by  Lemma 8. 

LEMMA 8. Let r be a table that satisfies, and is complete with 

respect to,  ℳ. Let Z be an attribute not in  ℳ. Construct table r' 

as r with an extra colum Z,	  and the same single value for Z in 

each row.  Then r' satisfies, and is complete with respect to,   

ℳ ∪ {[]	 ↦ 	Z}.            

PROOF. It is straightforward that r' satisfies ℳ ∪ {[]	 ↦ 	Z} 
because Z	is	a	constant	in	 r' and Z does not appear in ℳ. 

Clearly, r' falsifies each  �	 ↦ 	� that does not mention Z that r 

falsifies. For any  �	 ↦ 	� that mentions Z, it is equivalent to some 

OD that does not mention  Z by the Replace rule, which has 

already been established. Thus  r'  satisfies, and is complete with 

respect to,  ℳ ∪ {[]	 ↦ 	Z}.                 □    

In the second case, we may assume ℳ contains no constant 

attributes. When considering the pair A and B, if we find they 

require a swap in non-empty context �, we can "freeze" the 

attributes of � to a single value. This is true, for any table that 

satisfies ℳm = ℳ ∪ {[]	 ↦ 	XC, … , []	 ↦ 	XE}, where � =
{XC, … , XE}. Now, we have an instance with i or fewer non-

constants attributes. By our induction hypothesis, there exists a 

table cm in split-swap form that satisfies and is complete with 

respect to ℳm. Note that ℳ′Z ⊇ 	ℳZ. Thus, cm does not falsify 

any ODs in 	ℳZ. We append cm to the table t that we are 

constructing. (Appending these is safe, since ℳ has no constants.) 

Our table swap(ℳ) therefore is a recursive appending of 

(sub)tables. 

There is the case of attributes A and B such that ℳ dictates they 

must have a swap, but in the empty context {}. This time, we 

cannot use the induction hypothesis to construct the tuples for us 

(cm) that do the job. For this case, however, we can construct two 

tuples directly that introduce a swap for A and B, but that do not 

introduce swaps between any other pair of attributes that would 

falsify any OD in 	ℳZ. (The soundness of this step is established 

in Lemma 12.) 

For the latter, we must show that, for each �	 ↦ 	� not in 	ℳZ 

such that �	 ↦ 	�� is in 	ℳZ, some sub-table in swap(ℳ) by our 

construction does falsify it. This is done by proving there always 

is an attribute A in X, an attribute B in Y, and a swap between A 

and B in some context p, which falsifies	�	 ↦ 	�. (This is part of 

Lemma 15.) 

That completes the proof. These pieces are formally proved in the 

next two sections.       

4.2 ODS subsume FDS 
In this section we show completeness of our axiomatization over 

FDs. This result is then used toward showing completeness over 

ODs. The axiom schema Chain, is not needed for a proof of FDs 

being subsumed by ODs. 

THEOREM 13. (FD and OD correspondence) For every instance 

r of relation R, �	→	� iff �	 ↦ 	��, for all lists � that order the 
attributes of � and all lists � likewise for �.  

PROOF. (IF) If	�	 ↦ 	�� holds by Lemma 1 � → ��	is true. By 

Armstrong axiom, Reflexivity ��	 → �	 holds. Therefore by 

Armstrong axiom, Transitivity � → �	is true. 

(ONLY IF) If �	 ↦ 	�� does not hold, there exists s, t ∈	 rrrr, such 

that  � ≼ �� but  �� ⋠ ���. This implies that  � = �� and �� ≺  �. 

Therefore  � ≠ �� and  � = �� and � → �	is not true.          □ 

THEOREM 14. 

(Permutation)  

1 � ↦ �� 

 �′ ↦ �′�′ 
 

PROOF. Let � = [YC, Y_, … , YE], ∀K ∈ [1, G] 

2 � ↦ �YC …YL [Dec(1)] 

3 �′�	 ↦ �′	�YC…YL [Pref(2)] 

4 �′� ↔ �′ [Norm] 

5 �′	�YC…Ys ↔ �′	YC …YL [Norm] 

6 �′	 ↦ �′	YC …YL [Tran(3-5)] 

7 �′ ↔ �′ [Ref] 

8 �′ ↦ �′Ys [Drop(6,7)] 

 �′ ↦ �′�′ [Union(8)]	□ 

□
 

An OD �	 ↦ 	� can be falsified in two ways by a table (Theorem 

15). That is why we introduced split and swap (Section 4).  

THEOREM 15. (order dependency) �	 ↦ 	� holds iff �	 ↦ 	�� and 
��	 ↔ 	��. 



 

 

 

 

PROOF. (IF) If �	 ↦ 	� holds then Suffix rule tells us, that 

�	 ↔ 	��. �	 ↦ 	� follows from Reflexivity, therefore �	 ↦ 	�� by 

Union and ��	 ↔ 	�� by Replace, Suffix and Normalization.  

(ONLY IF) Suppose ��	 ↔ 	�� and �	 ↦ 	�� hold. Hence, by 

Transitivity �	 ↦ 	��, which by Reflexivity and Transitivity tell us 

that �	 ↦ 	�.             □ 

THEOREM 16. (ODs subsume FDs). OD axioms are sound and 

complete over functional dependencies given set of ODs ℳ.   

PROOF. Soundness is by Theorem 1, because of the 

correspondence between FDs and ODs (Theorem 13). The 

remaining step is to prove completeness over FDs, if ℳ ⊨
�	 → 	� then ℳ	 ⊢ℐ �	 → 	�. This is equivalent to say if ℳ ⊨
�	 ↦ 	��, then ℳ	 ⊢ℐ �	 ↦ 	�� for all lists � that order the 

attributes of � and all lists � likewise for �	by	Theorem 13 and 

Permutation.	

Firstly, we show that axioms for ODs imply Armstrong's axioms 

for FDs. We can do it because of soundness of axioms. 

FD1 Reflexivity: �	⊆ �	implies �	→	�. 

1. We are given that � is a subset of �.  

2. Therefore, the normalization rule implies that an order 

dependency	�	 ↔ 	�� holds, for some list � that order 

the attributes of � and some list � likewise for �. 
3. Hence, Permutation and Theorem 13 implies that 

FD	� → 	� holds. 
 

FD2 Augmentation: �	→	�	implies ��	 → 	��. 

1. Since we are given	�	 → 	�, Theorem 13 tells us	�	 ↦
	��, for all lists � that order the attributes of � and all 

lists � likewise for �. 

2. By Reflexivity we can interfere	�	 ↔ 	�, for all list � that 

order the attributes of �. Hence, by Prefix 

rule	��	 ↦ 	��� holds.  

3. By Suffix	��	 ↔ 	�����. ����� may be normalized 

(�����	 ↔ 	����).  

4. By transitivity ��	 ↦ 	����  
5. Therefore by Permutation and Theorem 13 FD 

�� → 	�� holds. 
 

FD3 Transitivity: �	→	� and �	→	�	implies �	→	�.  

1. We are given	� → 	�, and	� → 	�, so we may get 

�	 ↦ 	�� and �	 ↦ 	�� for all lists � that order the 

attributes of � and all lists � likewise for � and some 

list � likewise for �	by Theorem 13. 

2. It follows by Reflexivity that	�	 ↔ 	�, so by Prefix rule 

we can infer that	��	 ↦ 	���.  

3. Since �	 ↔ 	�� follows by Suffix, Normalization and 

Transitivity, �	 ↦ 	��� follows from Transitivity.  

4. Hence by Decomposition, Permutation and Theorem 13 

FD � → 	� is true.                             

However, this proves that axiom system comprising of inference 

rules ℐ is sound and complete for the set of FDs	ℱ. We would like 

to show it is true for set of ODs ℳ.  

Let ℳ′= {�	 ↦ 	��, ��	 ↔ 	�� | �	 ↦ 	� ∈ ℳ}. Based on Theorem 

15 ℳ and ℳ′ are equivalent (Definition 9). Also let 

ℱ = {�	→	� | �	 ↦ 	�� ∈ ℳ′}. Based on Permutation rule and 

Theorem 13 we know that any relation instance satisfying 

dependencies in ℱ satisfies dependencies in ℳ′ and vice versa.  

Let �Z [19], the closure of � (with respect to ℱ) be the set of 

attributes A such that �	 →	 A can be deduced from ℱ by 

Armstrong's axioms. We consider the relational instance r with 

the two rows shown in figure below.  

�Z attributes Other attributes 

0 0 … 0 0 0 … 0 

0 0 … 0 1 1 … 1 

Figure 7. A relation instance r showing that v ⊭ �	 ↦ 	��. 

Based on Ullman’s [19] proof of soundness and completes of 

Armstrong’s axioms, relation instance r shows that if ℱ is the 

given set of dependencies, and �	 →	 �	 cannot	 be	 proved	 by	
Armstrong,	 then	r is a relation in which the dependencies of ℱ 

hold but �	→	�	does	not.	That	is,	ℱ	does	not	logically	imply	�	
→	�.	This	means	the	 inference	rules	are	sound	and	complete	
over	ℱ.	As	there	is	no	swaps	in	rrrr,	we	do	not	falsify	anything	in	
ℳ′,	therefore	ℳ,	too.	This ends the soundness and completeness 

proof for FDs over set of ℳ.                                          □ 

THEOREM 17. (testing logical implication). Testing, whether 

ℳ	 ⊨ 	�	 ↦ 	�� (ℳ ⊨ 	�	 →	 �)	 can be accomplished in O(n), 

where n is the number of dependencies in ℳ. 

PROOF. As shown in Theorem 16, ℱ = {�	→	� | �	 ↦ 	�� ∈ 

ℳ′}, where ℳ′= {�	 ↦ 	��, ��	 ↔ 	�� | �	 ↦ 	� ∈ ℳ} is a set of 

FDs which enables to compute closure for FDs over the set of 

ODs ℳ. Therefore as, testing the logical implication of FD 

�	→	� for the set of FDs has already been shown to be linear [3] 

therefore testing ℳ ⊨ 	�	→	�	can be also accomplished	in	O(n). 

The same applies to ℳ	 ⊨ 	�	 ↦ 	�� by Theorem 13.  

4.3 Completeness of the OD Axiomatization 
As discussed in Section 4 an OD can be falsified by a split or a 

swap. Using this, our proof for completeness is by case. If 

�	 ↦ 	�� is not in 	ℳZ, there will be a split in the sub-table 

split(ℳ) that we construct that falsifies �	 ↦ 	��, and so that 

falsifies �	 ↦ 	� also. If �	 ↦ 	� is not in 	ℳZ, but �	 ↦ 	�� is, 

there will be a swap in sub-table swap(ℳ) that falsifies �	 ↦ 	�. 

LEMMA 9. There is no split in yC append y_ that is between rows 
from yC and y_, respectively, besides []	 ↦ 	� for any �. There is no 
swap in yC append y_ that is between rows from  yC and y_, 
respectively. 

PROOF. Let t be	a	 tuple	 in cC and s be a tuple in c_. Since all 

values in t are less than all values in s, it is impossible for there to 

be a split (except []	 ↦ 	�) or swap introduced between cC and 

c_within cC append c_	(Definition 17).                            □ 

We construct table t to satisfy, and to be complete with respect to, 

ℳ. Table t will be split(ℳ) append swap(ℳ), as introduced 

above. Note that by Theorem 15 these are the only two scenarios. 

Table split(ℳ) is constructed by appending two rows to the table, 

as in Figure 7 for each subset of attributes of � from ℳ.	

LEMMA 10. (split(ℳ) satisfies ℳ). For any ℳ with no 

constants,  split(ℳ) does not falsify any OD in	ℳ.  

PROOF. The relational instance split(ℳ) we have constructed 

contains splits, but no swaps. Therefore �	 ↦ 	� could be only 

falsified by split. (Consequently, �	 ↦ 	�� is falsified, too.) But we 

know that we are sound and complete over set over FDs by 

Theorem 16 and by Lemma 9 appending of the tables does not 

introduce additional splits (except []	 ↦ 	�) or swaps, therefore this 

is not possible.                                                                  □ 

Table split(ℳ) is based on table we constructed for ℳ in the 

proof of Theorem 16, which establishes that ODs subsume FDs; 



 

 

 

 

that is, split(ℳ) satisfies ℳ and it is complete with respect to the 

OD of the form �	 ↦ 	�� – which are equivalent to FD statement 

(Theorem 13) – in that it falsifies each �	 ↦ 	��  not in 	ℳZ but 

which is composable over the attributes in ℳ. As constructed, 

split(ℳ) introduces no swaps. 

For swap(ℳ) a natural approach would seem to be to construct 

the table incrementally, to falsify each OD not in 	ℳZ, in turn, 

while ensuring we do not also falsify any OD in 	ℳZ, in each 

step. This would be similar to how we constructed split(ℳ). 

However, how to do this by a straightforward construction is not 

apparent. When considering how to falsify �	 ↦ 	�, which 

attributes from � and from �, respectively, should have a swap 

appear in the table? And how do we ensure that this swap does not 

falsify any OD in 	ℳZ? 

Instead, we consider every pair of attributes, A and B, from	the	
set	 of	 attributes	 in	ℳ. We determine the relevant contexts, if 

any, in which a swap with respect to A and B must occur in 

swap(ℳ).  

The set(XYXYXYXY) is a context for A, B with respect to ℳ iff XA ~ Y 

and X ~ YB are in 	ℳZ, but XA ~ YB is not in 	ℳZ. If there 

exists such a context for A, B, this indicates there should be a 

swap between A and B (to falsify XA ~ YB). It also indicates the 

"context" of the swap, as the swap must not falsify XA ~ Y or 

X ~ YB. One could imagine constructing a swap – a pair of rows t 

and s for this – by having ��� =  ��. That way, the swap t, s 

would not falsify XA ~ Y or X ~ YB. But what should the values 

of t and s be outside of XY? 

We cannot construct t and s simply, ensuring the swap s, t does 

not falsify anything in 	ℳZ. Instead, we use structural induction. 

Consider for now that XY is non-empty. If we added []	 ↦ 	�� to 

ℳ – call the result 	ℳm – XY can only have a single value in any 

table that satisfies	ℳm. Recall the hypothesis from Hypothesis 1in 

Section 4. We adopt this as our induction hypothesis. Assume our 

present ℳ contains K+1 attributes. Then 	ℳm contains K or fewer 

attributes since []	 ↦ 	��. By our induction hypothesis, there is a 

table cm (see Figure 8) that satisfies, and is complete with respect 

to 	ℳm. As XA ~ YB is not in 	ℳZ, it is not in 	ℳmZ either. Thus 

cm falsifies XA ~ YB. 

Attributes of XY Other attributes 

0 0 … 0 zC,C zC,_ … zC,N 

… … … … … … … … 

0 0 … 0 z{,C z{,_ … z{,N  

Figure 8. A relation instance for K+1 non-constant attributes. 

Which context for A, B should we do this for? Not for all of them. 

It is the maximal contexts that are relevant. X, Y is a maximal 

context for A, B iff it is a context for A, B and there is no other 

context X', Y' such that set(X'Y') ⊃ set(XY). 

Since we use induction in the proof, we need to prove a base case 

of the induction hypothesis. We prove it for the cases of ℳ with 

0, 1, and 2 non-constant attributes in the following Lemma. 

LEMMA 11. (Induction base, i ≤ 2). For at most i ≤ 2 
attributes there exists a table t in split-swap form that satisfies 

and is complete with respect to ℳ.  

PROOF This can be directly shown by enumerating through all 

the possibilities.             □ 

We have assumed so far that the (maximal) contexts, if any, for A, 

B are non-empty. There is the case where A, B has a single 

maximal context {}, the empty context. In this case, we cannot 

appeal to the induction hypothesis. Fortunately, such pair A, B 

will have special properties by virtue of the fact they have 

swapped orders only in the empty context. In fact, our sixth axiom 

schema speaks directly to this very case. (We likely would never 

have had the insight for the sixth axiom (schema) Chain had we 

not encountered this case while attempting to prove 

completeness.) In this case, we will be able to construct a two-row 

swap for A, B directly that does not falsify anything in	ℳZ. 

LEMMA 12. (Empty context). There exists a swap for A, B with 

the empty maximal context that satisfies ℳ while falsifying A ~ B. 

PROOF. We construct a two-row swap with values 0 and 1 that 

falsifies A ~ B but cannot falsify anything in	ℳZ as shown in 

Figure 9. For the latter, it suffices to prove that the swap does not 

falsify any C ~ D in	ℳZ. For A and B, they have opposite values 

in each row in the swap. For any C such that A ~ C is in 	ℳZ, C 

must have the same value as A in each row. (Otherwise, A and C 

would have swapped values – 0 and 1 – between the two rows.) 

Likewise for B. And for any D such that C ~ D is in 	ℳZ, D must 

have the same value as C (and so the same as A) in each row. And 

so forth. Of course, it would be impossible to construct our two 

rows if there is a chain connecting A and B through order-

compatibility: A ~ EC~…~	EE ~ B. If there were, we would need 

to set the value of each EC~…~	EE the same as A’s value and the 

same as B’s value in each row. But A’s and B’s values differ. The 

Chain axiom schema (OD6) ensures there is no such chain from A 

to B. E}A	~	ENB is in	ℳZ, for each EN, since the maximal context 

for A, B is []. If there were a chain A ~ EC~…~	EE ~ B such that 

A ~ EC is in	ℳZ, EN~	ENZC is in	ℳZ for each i on 1, . . , G − 1, and 

EE ~ B is in	ℳZ, then A ~ B is in	ℳZ also, by the Chain axiom. 

Since we know that A ~ B is not in	ℳZ, there is no such Chain. 

Thus, our two rows are constructable. We can partition the 

attributes into three groups: those that must have the same values 

as A , those the same as B, and those for which it does no matter. 

Figure 9 shows the construction. 

A B A’s group B’s group  Remaining attributes 

0 1 0 … 0 1 1 1 0 0 … 0 

1 0 1 … 1 0 0 0 1 1 … 1 

Figure 9. Swap for A, B with the empty maximal context. 

For attributes that do not match A or B, it is important we do not 

introduce swaps between them, as this could falsify something in 

	ℳZ. It suffices to use the same value for these in each row. 

Call the two-row swap in Figure 9 r. Table r satisfies ℳ. Assume 

otherwise: for X	↦�				∊ ℳ,	 r	r	r	r	 falsifies it. Let �	 ↦ � be over non-

constants attributes, without loss of generality. Let E be the first 

element of X, and F of Y. If both E and F are from A, A’s group 

or the remaining group attributes (as in Figure 9), or they are both 

from B or B’s group attributes, then X and Y order the two tuples 

of r the same way. Therefore, E must be from one group, and F 

from the other. Since 	↦�				∊ 	ℳZ,	�	~	�				∊ 	ℳZ by Theorem 15. 

By the Downward Closure rule E	~	F				∊ 	ℳZ. Contradiction.       □  

Our proof obligation for swap(ℳ), that it does not falsify any OD 

in 	ℳZ is proved in the following Lemma.  

LEMMA 13. (swap(ℳ) satisfies ℳ). Assuming Hypothesis 1, 

for all ℳ of K or fewer non-constants attributes, swap(ℳ) does 

not falsify any OD in ℳ. 

PROOF. Hypothesis 1 is the key in proving that A, B do not 

falsify any OD in 	ℳZ. When we consider pair A and B which 



 

 

 

 

requires a swap in non-empty context � we obtain ℳm = ℳ ∪
{[]	 ↦ 	XC, … , []	 ↦ 	XE}, where � = {XC, … , XE}. By our 

hypothesis, there exists a table cm in split-swap form that is 

satisfied and complete with respect to ℳm. As ℳ′Z ⊇ 	ℳZ, 

therefore any ODs in 	ℳZ is not falsified. 

None of the sub-tables falsifies any OD in 	ℳZ, by the hypothesis 

in non-empty context and soundness of base cases (empty context 

and i ≤ 2). As the table swap(ℳ) is append-normalized, 

swap(ℳ) does not falsify any OD in 	ℳZ.                          □ 

LEMMA 14. (Satisfies). Every order dependency (OD) that is 

derivable with respect to the axiomatization over ℳ is not 

falsified by the table t. 

PROOF. The sub-tables split(ℳ) and swap(ℳ), as we construct 

them, are satisfied with respect to ℳ (Lemma 10 and Lemma 13 

respectively). If neither split(ℳ) nor swap(ℳ) falsifies any OD 

in	ℳZ, then t as split(ℳ) append swap(ℳ) cannot falsify any 

OD in 	ℳZ either (See Lemma 9).            □ 

LEMMA 15. (complete). Assuming Hypothesis 1 for all ℳ 

constracted over K or fewer attributes, given any ℳ constructed 

over K+1 attributes and none is a constant with respect to 	ℳ  

(Definition 18), the table t = split(ℳ) append swap(ℳ) is 

complete with respect to ℳ. 

PROOF. Assume �	 ↦ 	� over only non-constant attributes, is in 

the complement of ℳZ (�	 ↦ 	�				∉ ℳZ). Theorem 15 tells us that 

order dependency �	 ↦ 	� holds iff �	 ↦ 	�� and ��	 ↔ 	��. 

Case 1. �	 ↦ 	�				 ∉ ℳZ. We have already proven that for the 

scenario with �	 ↦ 	�� (FD) we are always complete (Theorem 

16). 

Case 2. �	 ↦ 	�				∉ ℳZ, but X ↦ ��				∊ ℳZ. By Theorem 15 X ~ Y 

∉ ℳZ. Find longest PA prefixing X such that: 

1. P ~ Y ∊ ℳZ 

2. PA ~ Y ∉ ℳZ 

Find longest QA prefixing Y such that: 

3. PA ~ Q ∊ ℳZ 

4.  PA ~ QB ∉ ℳZ 

5.  P ~ Q ∊ ℳZ [Downward Closure (1)] 

6.  P ~ QB ∊ ℳZ [Downward Closure (1)] 

7.  �A�B	 ↔ ��AB ∊ ℳZ [Shift(3, [B ↔ B])] 

8.  �A�B	 ↔ ��AB ∊ ℳZ [Replace(5)] 

9.  �B�A	 ↔ ��BA ∊ ℳZ [Shift(6, [A ↔ A]] 

10. �A�B	 ↔ �B�A ∉ ℳZ [(4)] 

11. ��AB	 ↔ ��BA ∉ ℳZ [Transitivity(8,9,10] 

12. ��A	~	��B ∉ ℳZ [11] 

A and B have a swap within the context, p = set(PQ). In 

constructing swap(ℳ), we considered all maximal contexts for 

A, B for which a swap is needed. Hence, we considered some 

superset � ⊇ p. If � ≠ [], a sub-table that satisfies, and is 

complete with respect to ℳ ∪ {[]	 ↦ 	VC, … , []	 ↦ 	VE}, where 

� = {VC , … , VE} is appended in swap(ℳ). This falsifies WA ~ 

WB, for all lists W that order the attributes of p (thus, falsifies 

�	 ↦ 	�). Else if � = [], we appended a swap s, t as in Figure 9 

which falsifies A ~ B ([]A ~ []B).                                             □ 

THEOREM 18. (soundness and completeness). The set of the OD 

axioms ℐ ={OD1–OD6} is  sound and complete.  

PROOF. 

Base case: ℳ with i ≤ 2 attributes proved by Lemma 11. 

Assume   Hypothesis 1 for all ℳ composed over  i or fewer 

attributes. 

Induction step:  Consider an  ℳ over i + 1 attributes.     

Case 1.  ℳ contains constants attributes (Definition 18). Let ℳ' 

be ℳ with these constants attributes removed. ℳ' has i or fewer 

attributes. By the induction hypothesis  (Hypothesis 1), there is r' 

which satisfies, and is complete with respect to, ℳ'. Lemma 8 

guarantee we can construct r from r' that satisfies, and is complete 

with respect to, ℳ. 

Case 2. ℳ contains no constants attributes. Lemma 15 establishes 

there exists an r that satisfies, an is complete with respect to, ℳ.□ 

5. RELATED WORK 
Ordered sets and lattices have been a subject of research in 

mathematics [5]. In fact, our concept of order dependency is 

equivalent to order-preserving mapping between two ordered sets. 

The work in mathematics has concentrated on investigating 

properties of, and relationships between, ordered sets rather than 

among the mappings. To the best of our knowledge, no inference 

system for describing relationships between mappings has been 

proposed. 

Order dependencies were introduced for the first time in the 

context of database systems in [7]. However, the type of orders, 

hence the dependencies defined over them, were different from 

the ones we presented here. A dependency � ↝ 	� holds if order 

over the values of each attribute in � implies an order over the 

values of each attribute of	�. (For simplicity, we use the arrow ↝ 

for different type of orders.) In other words, the dependency is 

defined over the sets of attributes rather than lists. The distinction 

between these two types of dependencies was later [13] aptly 

described as pointwise versus lexicographical order dependency. 

Formally, an instance of a database satisfies a pointwise order 

dependency � ↝ 	� if, for all tuples s and t, for every attribute A 

in �,  � op �� implies that for every attribute B in �,  e op  e, 

where op ∈ {<,=,>,≤,≥}. In [8] a sound and complete set of 

inference rules for such dependencies is defined together with an 

analysis of the complexity of determining logical implication. A 

practical application of the dependencies for an improved index 

design is presented in [6]. 

Dependencies defined over lexicographically ordered domains 

were introduced in [13] under the name lexicographically ordered 

functional dependencies. Two other papers [14], [15] by the same 

author develop a theory behind both lexicographical as well as 

pointwise dependencies (the latter were somewhat simpler than 

the dependencies defined in [7]). A set of inference rules (proved 

to be sound and complete) is introduced for pointwise 

dependencies, but – interestingly – not for lexicographical 

dependencies. Only a chase procedure is defined for the latter. A 

simplified extension of relational algebra to ordered domains is 

presented in [15]. 

Sorting is at the heart of many database operations: sort-merge 

join, index generation, duplicate elimination, ordering the output 

through the SQL order-by operator, etc. The importance of 

sorted sets for query optimization and processing has been 

recognized very early on. Right from the start, the query optimizer 

of System R [16] paid particular attention to interesting orders by 

keeping track of all such ordered sets throughout the process of 

query optimization. In more recent research, [8] and [10] explored 



 

 

 

 

the use of sorted sets for executing nested queries. The importance 

of sorted sets has prompted the researchers to look beyond the sets 

that have been explicitly generated. Thus, [12] shows how to 

discover sorted sets created as generated columns via algebraic 

expressions. (In DB2, a generated column is a column that can be 

computed from other columns in the schema.) 

For example, if column A is sorted, so is the generated column G 

defined as G = A/100	 + 	A − 3	(that is, A ↝	G). We show in 

[18] how to use relationships between sorted attributes discovered 

by reasoning over the physical schema. The axiomatization 

presented here provides a formal way of reasoning (hence 

discovering) previously unknown (or hidden) sorted sets. Based 

on this work, many other optimization techniques from relational 

query processing can also be adapted. 

6. CONCLUSIONS 
Ordering permeates databases, to such an extent that we take it for 

granted. It appears in many queries and is relatively expensive to 

perform. The goal of this paper was to develop a theory behind 

dependencies over lexicographically ordered sets. To the best of 

our knowledge, this is the first attempt at an axiomatization for 

such dependencies. We present that ODs subsumes FDs. We have 

also shown our inference rules for order dependencies are sound 

and complete. Furthermore, we explored some other useful 

properties of order dependencies. 

Though now we conclude, the story of order dependency is far 

from over. There is much more that can be done, and should be. 

Future work in this area should pursue two lines of research: on 

the one hand, further investigation of the theoretical questions; on 

the other hand, applications of the theoretical framework in a 

practical database setting. These are further things we plan to do. 

• One of the major practical applications which we are currently 

working on is a theorem prover [19]. Given a set of order 

dependencies ℳ and an arbitrary dependency	�	 ↦ 	�, we 

would like to efficiently decide whether ℳ logically 

implies	�	 ↦ 	�. Such a theorem prover would be a useful tool 

for the use of ODs in query optimization.  

• Integrity constraints have been widely used in query 

optimization through query rewrites. For example, functional 

dependencies have been shown to be useful in simplifying 

queries with distinct, order by, and group by 

operations [17], whereas inclusion dependencies can be used 

to remove certain joins over primary and foreign keys [4]. We 

believe that order dependencies can be used in similar ways to 

simplify queries with order by operation.  

• We are exploring the use of ODs for database design [2]. 

functional dependencies are by far the most common integrity 

constraints in the real world. The notion of the key derived 

from a given set of FDs is a fundamental to the relational 

model. The determination of order dependencies might be an 

important part of designing databases in the relational model, 

too. It can be used in database normalization and 

denormalization. order dependencies can reveal redundancies 

that cannot be detected using Functional dependencies alone. 

It would be an interesting research topic to extend the results 

obtained there to the design of relational databases. 
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