
Fundamentals of Order Dependencies

Jaroslaw Szlichta, Parke Godfrey and Jarek Gryz

Technical Report CSE-2012-01

February 2012

Department of Computer Science and Engineering
4700 Keele Street, Toronto, Ontario M3J 1P3 Canada

FUNDAMENTALS OF ORDER DEPENDENCIES

Jaroslaw Szlichta1,2, Parke Godfrey1,2, Jarek Gryz1,2

1 York University, Computer Science & Engineering, Toronto, Canada

 2 IBM Center for Advanced Studies, Toronto, Canada

{jszlicht, godfrey, jarek}@cse.yorku.ca

ABSTRACT
Dependencies have played a significant role in database design for

many years. They have also been shown to be useful in query

optimization. In this paper, we discuss dependencies between

lexicographically ordered sets of tuples. We introduce formally

the concept of order dependency and present a set of axioms

(inference rules) for them. We show how query rewrites based on

these axioms can be used for query optimization. We present

several interesting theorems that can be derived using the

inference rules. We prove that functional dependencies are

subsumed by order dependencies and that our set of axioms for

order dependencies is sound and complete.

1. INTRODUCTION
Consider the following SQL query (in Example 1).

EXAMPLE 1.

select D.year, D.quarter, D.month,

 sum(S.sales) as total

from Dates D, Sales S

where D.date_id = S.date_id

 and D.year between 2001 and 2004

group by D.year, D.quarter, D.month

order by D.year, D.quarter, D.month

In the schema, Dates is a dimension table with a row per day,

and Sales is a very large fact table recording all individual sales.

Each has a surrogate-valued column date_id, which is the

primary key for Dates. In the Dates dimension table, each row

describes a given day with explicit columns as year, quarter,

month, and day that describe the natural date values (and

additional columns that qualify that day, such as whether it is a

weekend day or holiday).

Assume we have a tree index for Dates on year, month, day.

This index cannot help in a query plan, however, to accomplish

the group-by because quarter intercedes. Of course, quarter

is logically redundant here, as month (which follows it in the

group-by) functionally determines quarter. (First quarter

encompasses the months of January, February, and March, second

quarter, the months of April, May, and June, and so forth.) The

query’s author could not leave quarter out of the group-by –

even if he realizes it would be better to – because it is stated in the

select. The query optimizer could, however, use an index scan

to have the tuple stream in year, month order to accomplish the

group by on year, quarter, month, if it recognizes that

year, month and year, quarter, month offer the same

partition. This is done by query optimizers today – given the

functional dependency (FD) information that month →

quarter is available to the optimizer – by rewrite.

For the query above, the rewrite might still not be applied, since

the query specifies the answers to be ordered by year,

quarter, month. The FD that month → quarter is not

logically sufficient to eliminate quarter from the order-by, as it

was to eliminate it from the group-by. Since a query plan must

guarantee the order-by, it likely will include a sort operator for

year, quarter, month, after all.

To see that the functional dependency does not suffice to

eliminate quarter from the order-by, imagine the values for

quarter were the strings first, second, third, and fourth. Data

would be lexicographically ordered as first, fourth, second, then

third! Of course, we intend that values of quarter are, say, 1, 2,

3, and 4, so the data would order naturally as by date. It is

unfortunate, then, that quarter is, in fact, redundant (in this

query) in the order-by also, but that the optimizer does not have

the means to eliminate it.

What is missing is the semantic information that month orders

quarter, which is more than just that month functionally

determines quarter. This states that as values rise from one

tuple to another on month, they must rise, or stay the same, from

the one tuple to the other on quarter (that is, the values do not

descend from the one tuple to the other on quarter). These

have been called order dependencies (ODs), in contrast to

functional dependencies.

Our objective is to bring reasoning about order dependencies into

the query optimizer. A query plan for the query above could then

eliminate quarter from both the order-by and the group-by

clauses, and the index on year, month, day might then provide

for an efficient plan with no need for a sort operator.

The notion of order dependencies can be greatly generalized, and

the potential use of them in query optimization shown to be vast.

The relationships between ordered sets have been explored in the

past and several different notions of order have been considered.

In this work, we consider just lexicographical ordering of tuples,

as by the order-by operator in SQL, because this is the notion of

order used in SQL and within query optimization for tuple

streams.

The contribution of this paper is to present an axiomatization for

order dependencies, analogous to Armstrong’s axiomatization for

functional dependencies [1]. This provides a formal framework

for reasoning about ODs. There are two reasons for one to pursue

an axiomatization.

1. The axioms provide insight into how dependencies

behave – and patterns for how dependencies logically

follow from others – that are not easily evident

reasoning from first principles.

2. A sound and complete axiomatization is the first

necessary step to designing an efficient inference

procedure.

Our axioms for order dependencies help us explore beneficial

query rewrites. We show how they can be cast as a new type of

integrity constraint to be used in query optimization. We derive

theorems based on our axioms, which illustrate surprising

inferences and equivalences over order dependencies, and which

can provide for powerful query rewrites.

While order dependencies for databases have been explored

before, we present the first general axiomatization for them. We

prove the soundness of the axioms. We demonstrate that

Armstrong’s axiomatization for functional dependencies is

subsumed within our axiomatization for order dependencies. (In

this sense, order dependencies can be thought of as a

generalization of functional dependencies.) We then prove the

completeness of the set of axioms. Working with order

dependencies is more involved than with functional dependencies

because the order of the attributes matters. Thus, we must work

with lists of attributes instead of with sets. This necessarily

complicates our axioms – compared with Armstrong’s axioms for

FDs – and the proofs of our theorems.

Outline. In Section 2, we present order dependencies (ODs)

formally. We provide background, our notational conventions,

and definitions for ODs (Section 2.1). We show from where ODs

in databases naturally arise (Section 2.2). We demonstrate a

number of effective ways ODs may be used in query optimization

(Section 2.3). We discuss a query optimization technique with

ODs that we have implemented as a prototype in IBM DB2 [18],

and our ongoing work with these techniques. In Section 3, we

introduce the axiomatization for ODs (Section 3.1), and we prove

the soundness of the axioms (Section 3.2). We derive a collection

of theorems using our axioms – which we use in the proof of

completeness – which illustrate the utility of our axioms (Section

3.3). In Section 4, we prove the completeness of the

axiomatization. We sketch our proof of completeness (Section

4.1). We demonstrate how functional dependencies are subsumed

within order dependencies (Section 4.2). With the requisite pieces

in place, we present the formal proof of completeness of the

axiomatization (Section 4.3). In Section 5, we discuss related

work. In Section 6, we present plans for future work and make

concluding remarks. This work, we feel, opens exciting venues for

future work to develop a powerful new family of query

optimization techniques in database systems.

2. ORDER DEPENDENCY
We first set out formal definitions for order dependencies that we

need later in proofs. Next, we illustrate ODs in databases and how

they arise. We then show the use-case scenarios for ODs for query

optimization.

2.1 Formal Definitions
We adopt the notational conventions in Table 1. We consider a

relation � with a schema set of attributes	�. Let � be an arbitrary

table instance over	�;	 thus	a	set	of	 tuples under	�’s	schema with	
attributes	�. We limit table instances to sets in our definitions, to

keep our definitions simpler and easier to follow. However, this

could be changed to multi-sets easily, with no consequences to our

axiomatization.

Table 1. Notational conventions.

Relations - a capital letter in bold italics represents a relation: R,

while A small letter in bold represent a relational instance

(a table): r. We use capital letters to represent single attributes:

A, B, C. Lastly, tuples are marked with small letters in italics: s, t.

Sets - calligraphic letters	stand for sets of attribute:	�, �, �. We

use proximity for union of sets: �� is shorthand for	� ∪ �.

Likewise, A� or	�A, where � is a set of attributes and A a single

attribute, stands for	� ∪ {A}. Also �� denotes the projection of the

tuple t on the attributes of �, while �� is the shorthand for �{�}.

Lists - bold letters	stand for lists of attributes: �,	�, �. Note list X

could be the empty list, []. We use square brackets to denote a list:

[A, B, C]. The notation [A | T] denotes that A is the head of the

list, and T is the tail of the list, the remaining list with the first

element removed. Proximity is used for concatenation of lists of

attributes: �� is shorthand for	� ∘ �. Likewise, A� and �A stands

respectively for [A] ∘ � and	� ∘ [A], where � is list of attributes

and A is a single attribute. AB	 denotes [A,	 B]. Also, �′ denotes

some other permutation of elements of list �.

 Definition 1. (operator ≼) Let X be a list of attributes, s and t be

two tuples in relation instance r. Operator ≼ is defined as follows:

 � ≼ �� where X = [A | T]

if (� < ��)

 or if ((� = ��) and (T = [] or # ≼ �#))

In this paper, we assume ascending (asc) order in the

lexicographical ordering. (This is SQL’s default.) We do not

consider descending (desc) orders, mixing of asc and desc

(e.g., order by X desc, Y asc), or use of functions in the

order directives (e.g., order by -1*X asc, Y asc).

 Definition 2. (operator ≺) Let X be a list of attributes, s and t be

two tuples in relation instance r. The operator ≺ is defined as

follows: � ≺ �� iff � ≼ �� and �� ⋠ �.

 Definition 3. (s� = ��) Let X be a list of attributes, s and t be two

tuples in relation instance r, � = �� iff � ≼ �� and �� ≼ �.

 Definition 4. (order dependency) Let X and Y be list of attributes.

Call �	 ↦ 	� an order dependency (OD) over the relation � if, for

every pair of admissible tuples s and t in relation instance � over

�, � ≼ �� implies � ≼ ��.

Whenever �	 ↦ 	�, we say that � orders �. � and � are order

equivalent iff �	 ↦ 	� and �	 ↦ 	�. We denote this by �	 ↔ 	�.

A B C D E F

3 2 0 4 7 9

3 2 1 3 8 9

Figure 1. Relation instance r.

EXAMPLE 2. Note that [A, B, C]	↦				[F,	E,	D] is consistent with r,

but [A, B, C]	↦				[F,	D,	E]	is falsified by r in Figure 1.

The OD �	 ↦ 	� means that �’s values are monotonically non-

decreasing with respect to �’s values. Thus, if a list of tuples are

ordered by �, then they are also necessarily ordered by �, but not

necessarily vice versa. That is to say, if one knows	�	 ↦ 	�, then

one knows that any ordering of the tuples of �, for any �, that

satisfies order by � also satisfies order by	�.

There is a clear relationship between ODs and FDs. Any OD

implies and FD (modulo lists and sets), but not vice versa.

LEMMA 1. (relationship between ODs and FDs). For every

instance r of relation R, if OD �	 ↦ 	� holds, then FD � → �	 is
true.	

PROOF. Let s, t ∈	rrrr,				such	that	 � = ��. Therefore, � ≼ �� and

�� ≼ �. By the definition of OD � ≼ �� and �� ≼ �, hence as

 � = ��, � = ��. □

Definition 5. (order compatible) Two lists � and � are order

compatible, denoted as	�	~	� iff ��	 ↔ 	��.

EXAMPLE 3. Note that [A, B]	~				[F,	C] is consistent with r, but

[A, C]	~				[F,	D]	is falsified by r in Figure 1.

2.2 Order By
The concept of functional dependencies has come to have

profound importance in databases, especially in schema design.

While functional dependencies are a simple notion in some ways,

reasoning over them is, somewhat surprisingly, not nearly as

simple. To gain insight into how sets of FDs behave, and to

simplify the reasoning process over them, Armstrong provided an

axiomatization for them [1]. Beyond layout and indexes, FDs play

additional important roles in query optimization. Knowledge

about prescribed FDs on the schema are used in the query-rewrite

phase of optimization potentially to eliminate predicates. They are

used in the cost-based phase to do better cardinality estimation.

They are used also to recognize partitioning equivalences of tuple

streams within query plans.

We have introduced ODs in analogy to FDs: functional

dependencies are to group-by as order dependencies are to order-

by. On the one hand, order is not important in the pure relational

model on the logical side of the fence. Relational instances are

sets of tuples. (Implemented systems allow for multi-sets of

tuples, but again, there is no notion of order.) A schema is a set of

attributes. SQL concedes a single order-by clause to be appended

to a query to order the result set, as a convenience, given that

people often want to see the results sorted in a given way. (This

said, there are many places where order is semantically

meaningful. Data stream extensions to the relational model make

order a part of the model. For other data models such as XML –

and XQuery over it – order is an integral part of the model.)

On the other hand, order plays pivotal roles on the physical side,

in the physical database and in query optimization. Data is often

stored sorted by a clustered (tree) index’s key. In a query plan, an

operator that takes as input the output stream of another operator

can benefit in cases when the stream is sorted in a particular way.

Aggregation queries (group-by) can be evaluated on-the-fly if the

stream is ordered already in a way compatible with the requested

group-by partition, rather than needing to do a partitioning

operation that could involve heavy I/O expense.

Given �	 ↦ 	�, if one has an SQL query with order by �, one

can rewrite the query with order by	� instead, and meet the

intent of the original query. However, the rewritten query is not

semantically equivalent the original (unless �	 ↔ 	�)! One could

not legally rewrite the query with order by	� with order by �

instead. Strengthening the order-by conditions is permitted, but

weakening them is not. (This is true too inside query plans for

ordered tuple streams.)

One does not need order equivalences then to accomplish useful

query rewrites. Directional order dependencies (e.g., �	 ↦ 	�, but

not �	 ↦ 	�) suffice. This makes ODs that much more versatile for

rewrites. Notice this differs from the use of FDs for query

rewrites, for instance, to simplify group-by’s. To replace year,

quarter, month by year, month in the group-by for the

query in the example in Section 1, one should know the two are

functionally equivalent. One could not replace it by year,

month, day, for example, even though {year, month, day}

→ {year, quarter, month}.

Within query plans, group-by (partitions) can be accomplished

either by a partition operation (such as by use of a hash index), or

by the use of an ordered tuple stream (as provided by a tree-index

scan or by a sort operation). When rewriting the partition criteria,

if a partition operation is employed, the criteria must be

equivalent. However, when an ordering operation is employed

instead, then one has the same flexibility as noted for OD

dependencies. Strengthening the criteria suffices. For instance,

sorting by year, month, day would suffice to accomplish the

group-by on year, quarter, month. (Group divisions can be

found on-the-fly in the stream.)

An OD can be declared as an integrity constraint to prescribe

which instances are admissible. (We have introduced this new

type of constraint in a prototype branch of IBM DB2. See Section

2.3.) One can reason over ODs on relations in a similar way one

now reasons about FDs over relations. Some order dependencies

are trivially true [19]. That is, they are (trivially) satisfied by any

table instance. For example, consider	��	 ↦ 	�. Others are not

trivial. If one knows a collection of order dependencies,	ℳ –

declared as integrity constraints over relation	� – one might

soundly infer additionally order dependencies that must be true

for �. For example, if �	 ↦ 	� and �	 ↦ 	� are true, then �	 ↦ 	� is

true also. (That is, ODs are transitive.)

While order is not part of the relational model, per se, ordered

value domains are of key importance for most databases, and most

queries. Many types of ODs are apparent in the semantics of

databases (even though these ODs are not declared explicitly).

Perhaps the most important of these ordered domains in practice is

time. Time and date (time at a coarser granularity) are richly

supported in the SQL standards. The common benchmark TPC-

DS [20] has 99 queries. Of these, 85 involve date operators and

predicates (and five involve time operators and predicates). This is

common for data-warehouses. Even if we were just limited to

ODs over the date/time domain, we could derive great benefits in

query optimization.

Figure 2 represents possible ODs, in which the left-hand side of a

dependency is time and the right-hand side is one of the paths

through the diagram. Each node is an equivalent class of the list of

attributes leading up to it, with respect to the starting point.

Theorem 10 proves that any list appearing on the left side can be

suffixed by attributes appearing along an equivalent path. This is

shown in Example 4.

EXAMPLE 4.

[time]				↦	[date, hour]

[date]				↦	[year, month, day]

It follows (from Theorem 10 below) that

[time]				↦	[date, month, hour]

Figure 2. Time diagram.

Order dependencies are not just limited to the time domain,

however. They arise naturally in many other domains from the

real-world semantics associated with given data. All that is

required is that the values of a column (or list of columns) are

monotonically non-decreasing with respect to the values of

another column (or list of columns). This property is fairly

common when columns are functionally related.

EXAMPLE 5. Consider a table Taxes that includes columns for

taxable income, tax bracket, and taxes on the income. The

tax brackets are based on the level on income (and so rise with

income level). Assume taxes go up with income. Then,

[income]				↦	[bracket]

[income]				↦	[taxes]

It follows (from Theorem 2 below) that

[income]				↦	[bracket, taxes]

Assume the table has a tree index on income. Given a query on

the table with an order-by on bracket, taxes, with the OD

above, it could be evaluated using the index on income.

Instead of being columns with explicit data, bracket and

taxes could be derived by functions or case expressions – say, if

Taxes were a view – or generated columns in the table. In these

cases, it would be possible for the database system to derive the

order-dependency constraints above automatically. In [12], it was

shown how to derive such monotonicity “constraints” from

generated columns via algebraic expressions (in IBM DB2). Of

course, one could prescribe the set of order dependencies as check

constraints directly to benefit by this technique.

Such monotonic dependencies can be derived from built-in SQL

functions, from user-defined functions (to some degree), and from

case expressions. The SQL function Year, for example, extracts

the year component of a datestamp. Thus, given a datestamp

column when, [when]				↦	[Year(when)].

2.3 Optimization
In the paper entitled Fundamental Techniques for Order

Dependencies [17], the authors expounded on the important role

of order in query optimization. They demonstrated numerous

examples of how better reasoning over interesting orders in the

query optimizer could lead to significantly better performing

query plans. They introduced query rewrites in IBM DB2 that

could replace one labeled interesting order by another, when it is

known the two order in the same way (that is, are order

equivalent, as we have defined it).

They showed how these rewrites could allow the optimizer to

consider additional query plans that process join, order-by, group-

by, and distinct operators more efficiently. By recognizing that a

tuple stream ordered with respect to some criteria is equivalently

ordered with respect to other criteria, a sort on input can be

removed for a sort-merge join. Order-by and group-by operators

can be satisfied with no need for a sorting or partitioning

operation more often, as with our Example 1. Likewise, as the

distinct operator is exchangeable with group-by, the need for a

sorting or partitioning operation to satisfy distinct can be lessened.

Our work builds upon this work. Their rewrites rely on functional

dependency information available to the optimizer, but do not

exploit any order dependency semantics, as defined by us. Our

work permits a greater range of rewrites. For example, they could

reduce an order-by year, month, quarter to an order-by

year, month, based upon the FD {month} → {quarter}.

(Likewise, they could reduce the equivalent group-by.) However,

they could not reduce the order-by year, quarter, month to

year, month, as we did in Example 1, since their techniques do

not employ the idea of ODs. (It is Theorem 8 below, called Left

Eliminate, which follows from our axiomatization, which justifies

this rewrite.)

In [17], they introduced a rewrite algorithm for order-by called

Reduce Order. It sweeps the order-by attribute list from right to

left, seeking to eliminate attributes. Each iteration through the list,

the prefix set with respect to the current attribute – that is, the set

of attributes to the left of the current – is checked to see whether it

functionally determines the current attribute. If so, the attribute is

dropped from the list.

We can augment that algorithm – call it Reduce Order* – to do an

additional step. Each iteration through the list, it can additionally

be checked whether any postfix list with respect to the current

attribute – that is, a list of attributes to the right of the current –

orders the current attribute. If so, the attribute is dropped from the

list. Given the OD [month] ↦ [quarter], both order-by year,

month, quarter and year, quarter, month would be

reduced to year, month.

Order dependencies are in terms of lists of attributes, not sets as

for functional dependencies. This makes matching in rewrites

using ODs more complex generally, but also increases the

possibilities for matches. Consider D	↦ B. Then ABD	 could	 be	
reduced	 to	 AD.	 However,	 ABCD	 cannot	 be!	 The	 attribute	 C	
intervening	between	the	B	and	D	 invalidates	 the	rewrite.	For	
the	rewrite	by	Theorem 8 to apply, the list on the right-hand side

of the OD must precede directly the list on the left-hand side. If

we knew D	↦ BC, then ABCD could be reduced to AD.

A major part of our continued work with order dependencies is to

develop a number of efficient rewrite rules for the query

optimizer, as they did in [17], to exploit ODs effectively. Our OD

axiomatization provides us the means now to pursue this. The

axioms and related theorems as in Section 3.3 provide us with

insight into the types of rewrites that are possible.

In [18], we developed query rewrites in a prototype branch of the

IBM DB2 9.7 codebase that demonstrates the effectiveness of

rewrites using order equivalences. In data-warehouses, date is

often represented explicitly as a dimension table of its own, with

the primary key of the date table made as a surrogate key [11].

While this design can have compelling advantages, the surrogate

key can cause problems for efficiently evaluating queries.

A majority of queries in a data warehouse are over the fact table.

A query often uses natural date values in predicates. However,

date in the fact table is recorded by the surrogate key. This

necessitates potentially a quite expensive join between the fact

table and the date dimension table when the query is evaluated.

There is an additional problem when a fact table has been

partitioned by date in order to accommodate a very large table

(e.g., in distributed systems). Since the date range (surrogate

values) over the fact table cannot be determined from the query

(natural values), all partitions of the fact table must be scanned.

We optimize such queries involving dates by removing this join,

and choosing just the relevant partitions of the fact table when the

table is distributed.

A number of queries in the TPC-DS benchmark [20] have this

condition. Fortunately, we have a guarantee (an OD) that the

surrogate (date) keys in the date dimension table are ordered in

the same way as natural date values in the dimension table. Thus,

the query plan can make two probes into the dimension table to

calculate the range of the surrogate keys from the fact table. These

two probes into the date table find mindate and maxdate

surrogate key values. These two surrogate key values replace the

range predicate, which allows the index on the date column in the

fact table to be used.

The details of when and how this rewrite can be performed in a

general way are provided in [18]. We built a prototype

implementing such rewrites in IBM DB2 V.9.7 and performed

experiments over TPC-DS to demonstrate the efficiency of the

approach. Thirteen of TPC-DS`s queries matched the conditions

for this rewrite. Every one of these thirteen benefited, with an

average performance gain of 48%. Since this work reported in

[18], we have continued work on the prototype. We have added a

new type of check constraint which expresses an OD. We have

implemented more OD rewrite rules which now rewrite eighteen

of TPC-DS’s queries with performance gain.

Consider our technique from [18] combined with an OD rewrite

of the order-by for our query in Example 1. If we have the OD

that [date_id]				↦	[year, month], the order-by and group-by

operators in a query plan could be accomplished by an index scan

over the index for Sales, the fact table, on date_id, then

joining the results against the dimension table Dates.

3. AXIOMATIZATION
A key concern in dependency theory is developing the algorithms

for testing logical implication. Developing inference rules is an

approach to show logical implication between dependencies.

3.1 Axioms
Definition 6. (A proof of OD A from	ℳ) Let ℳ be a set of

prescribed ODs. A proof of OD A from ℳ with the set of

inference rules ℐ is a sequence A	 = 	AC, … , AE (G ≥ 1) such that

for	K	 ∈ [1, G] either AL ∈ 	ℳ, or there exists a substitution for

some rule	A ∈ ℐ	, such that AL is consequence of	M, and such that

for each order dependency in the predecessor of A the

corresponding order dependency is in the set {AN	

∣ 	1	 ≤ 	Q	 < 	K}.

The OD A is provable from ℳ using axioms ℐ	(relative to set of

attributes U), denoted	ℳ ⊢ℐ A, if there is a proof of A from	ℳ

using	ℐ. We now introduce axioms (inference rules) for ODs.

Definition 7. (OD axioms) The inference rules for ODs are as

follows.

OD1: Reflexivity

�� ↦ �

OD2: Prefix

� ↦ �

�� ↦ ��

OD3: Normalization

S���T ↔ S��T

OD4: Transitivity

� ↦ �

� ↦ �

� ↦ �

OD5: Suffix

�	 ↦ �

� ↔ ��

OD6: Chain

� ~ �U

∀W∈[U,XYU]�W ~ �WZU

�X ~ �

∀W∈[U,X]�W� ~ �W�

�				~				 �				

 				 				

Two of our axioms generate trivial dependencies [19]: Reflexivity

and Normalization. We define the closure of the set of OD ℳ,

denoted	ℳZ, to be the set of ODs that are logically implied

by	ℳ.

Definition 8. (closure of ℳ using ℐ). Let ℐ = {OD1–OD6}, then

	ℳZ = {�	 ↦ 	�	|	ℳ	 ⊢ℐ �	 ↦ 	�}.

Definition 9. (equivalents sets of OD). Let ℳ and ℳ' be sets of

ODs. We say that ℳ and ℳ' are equivalent iff

{�	 ↦ 	�	|	ℳ	 ⊨ 	�	 ↦ 	�} = {�	 ↦ 	�	|	ℳ′	 ⊨ 	�	 ↦ 	�}.

3.2 Soundness
In this subsection, we address the problem of showing that our

OD axioms are sound. This is to say, they lead only to true

conclusions.

Definition 10 (soundness of OD axioms) Let ℐ be a set of

inference rules {OD1–OD6}. Then ℐ is sound for logical

implication of ODs if �	 ↦ 	� is deduced from ℳ (ℳ ⊢ℐ �	 ↦ 	�)
using axioms	ℐ,	 then	�	 ↦ 	�				 is true in any relation in which the

dependencies of ℳ	are	true	ℳ ⊨ �	 ↦ 	�.	

Let r be a relation over R. The following Lemmas are true.

LEMMA 2. (soundness of Reflexivity) Reflexivity is sound.

PROOF. Let s, t ∈	 rrrr,				 such	 that	 �� ≼ ���. From the

recursiveness of Definition 1 of operator ≼ it follows that (1)

 � = �� and � ≼ �� or (2) � ≺ ��. (1) and (2) imply that � ≼ ��,

therefore ∀�	. ��	 ↦ 	�. □

LEMMA 3. (soundness of Prefix) Prefix is sound.

PROOF. Let s, t ∈	 rrrr, such that �� ≼ ���. This implies (1)

 � ≺ �� or (2) � = �� and � ≼ ��. For (1) �� ≼ ��� holds as

 � ≺ ��. In the second scenario (2), � ≼ �� implies � ≼ ��

(�	 ↦ 	� is given). Hence, as � = �� it is true that �� ≼ ���.

∀�	. �	 ↦ 	� implies ��	 ↦ 	�. □

LEMMA 4. (soundness of Normalization) Normalization is

sound.

PROOF. (IF) Let s, t ∈	rrrr, such that S��T ≼ �S��T. This implies

that: (1) S�� = �S�� and T ≼ �T or (2) S�� ≺ �S��. In (1)

 � = �� as S�� = �S��. Therefore we can suffix S�� by list X

and S��� = �S��� holds. Hence, S���T ≼ �S���T as we know

that T ≼ �T. Scenario (2), as S�� ≺ �S�� implies that we can

suffix list S�� by �T and S���T ≼ �S���T holds.

(ONLY IF) Let s, t ∈	rrrr, such that S���T ≼ �S���T. This implies

that: (1) S�� = �S�� and �T ≼ ��T or (2) S�� ≺ �S��. In (1)

 � = �� as S�� = �S��. Hence, T ≼ �T as we know that

 �T ≼ ��T. Therefore, S��T ≼ �S��T. Scenario (2), as S�� ≺

�S�� implies that we can suffix list S�� by T and S��T ≼
�S��T holds. ∀�	.S���T	 ↔ 	S��T. □

LEMMA 5. (soundness of Transitivity) Transitivity is sound.

PROOF. Let s, t ∈	rrrr, such that � ≼ ��. By �	 ↦ 	� which is given

 � ≼ �� which implies � ≼ �� and it ends the proof. ∀�	. �	 ↦ 	� ∧
�	 ↦ 	� implies �	 ↦ 	�. □

LEMMA 6. (Soundness of Suffix) Suffix is sound.

PROOF. (IF) Let s, t ∈	rrrr, such that � ≼ ��. Therefore � ≼ �� as

�	 ↦ 	� is given, which implies that �� ≼ ��� (�	 ↦ 	��).

(ONLY IF) Let s, t ∈	 rrrr, such that �� ≼ ���. Therefore (1)

 � = �� and � ≼ �� or (2) � ≺ �� is true. Scenario (1) directly

implies that � ≼ �� (��	 ↦ 	�). Scenario (2) where � ≺ ��

implies that � ≺ ��. This is because � ⊀ �� implies �� ≺ �

which implies �� ≺ �. Hence � ⊀ ��. This ends the proof as

 � ≼ �� (��	 ↦ 	�). ∀�	. �	 ↔ 	�� □

LEMMA 7. (Soundness of Chain) Chain is sound.

PROOF. Without loss of generality, assume that the lists in the

axiom are single attributes. Let � = A, �C = BC, … , �E = BE and

� = C This simplification makes it easier to extend the rule to

lists. The proof is by contradiction. Assume that A and C are order

incompatible. Then there are two tuples for which there is a swap

(The notion of swap is formalized in Definition 14) of the values

between A and C. Also the two tuples disagree on attribute BN for

all i. Otherwise condition number 4 would not be true. As A ~ BC,

the values for BCfollow A, so does the rest of attributes BN because

of the condition (2). This means the two rows look in the

following way:

A BC B_ … BE C

0 0 0 0 0 1

1 1 1 1 1 0

Figure 3. A order incompatible with C.

But then BE is order incompatible with C, which we assumed not

to be the case. We conclude with contradiction. □

THEOREM 1. (soundness). OD1-OD6 axioms are sound for

logical implication of ODs.

PROOF. In order to prove the soundness of ℐ we have to prove

that each of the rules is sound. This is Lemma 2 – Lemma 7. □

3.3 Theorems
We introduce additional inference rules as they will be used

throughout the paper – particularly in order to prove that ODs

axioms are complete.

THEOREM 2

(Union)

1 �	 ↦ 	�

2 �	 ↦ 	�

 �	 ↦ 	��

PROOF.

3 �� ↦ �� [Pref(2)]

4 � ↦ �� [Suf(1)]

 � ↦ �� [Trans(3, 4)]	□

THEOREM 3.

(Augmentation)

1 � ↦ �

 �� ↦ �

PROOF.

2 �� ↦ � [Ref]

 �� ↦ � [Tran(1,2)] □

THEOREM 4.

(Shift)

1 S ↔ T

2 � ↦ �

 S� ↦ T�

PROOF.

3 T� ↦ S [Aug(1)]

4 TT� ↦ TS [Pref(3)]

5 TT� ↔ T� [Norm]

6 T� ↦ TS [Tran(4,5)]

7 T� ↔ TWVX [Suf(6)]

8 TS� ↔ TWVX [Norm]

9 T� ↔ TWX [Tran(7,8)]

10 S� ↦ T [Aug(1)

11 S� ↦ TWX [Suf(10)]

12 S� ↦ TX [Tran(9,11)]

13 T� ↦ T� [Pref(2)]

 S� ↦ T� [Tran(12,13)]	□

THEOREM 5.

(Decomposition)

1 � ↦ ��

 � ↦ �

PROOF.

2 �� ↦ � [Ref]

 �	 ↦ � [Tran(1,2)] □

The following theorem is helpful to prove the Eliminate, Left

Eliminate and Drop.

THEOREM 6.

(Replace)

1 ` ↔ a

 �`�↔ XNZ

Z

PROOF.

2 � ↦ � [Ref]

3 `� ↦ N� [Shift(1,2)]

4 N� ↦ `� [Shift(1,2)]

5 �`� ↦ XN� [Pref(3)]

6 XN� ↦ �`� [Pref(4)]

 �`� ↔ XN� [Tran(5,6)] □

THEOREM 7.

(Eliminate)

1 � ↦ �

 `�a�S
 ↔

 `�aS

PROOF.

2 � ↔ �� [Suf(1)]

3 �� ↦ ��� [Pref(2)]

4 � ↔ �� [Norm]

5 �� ↔ ��� [Norm

6 � ↔ �� [Tran(3-5)]

7 `��a�S ↔ `�a�S [Rep(6)]

8 `��a�S ↔ `��aS [Norm]

9 `��aS ↔ `�aS [Rep(6)

 `�a�S ↔ `�aS [Tran(7-9)] □

THEOREM 8.

(Left Eliminate)

1 � ↦ �

 T��� ↔ T��

PROOF.

2 � ↔ �� [Suf(1)]

 T��� ↦ T�� [Rep(1,2)] □

THEOREM 9.

(Drop)

1 � ↦ T��S
2 � ↔ T

 � ↦ T�

PROOF.

3 T��S	↦	���S	 [Rep(2)]

4 �	↦	���W	 [Tran(1,3)]

5 � ↦ �� [Dec(4)]

6 ��S ↦ �� [Aug(5)]

7 ��S ↔ ����S [Suf(6)]

8 ����S ↔ ���W [Norm]

9 ��S ↔ ���S [Tran(7,8)]

10 � ↦ ��W [Tran(4,9)]

11 ��S ↦ T�W [Rep(2)]

12 � ↦ T�W [Tran(10,11)]

 � ↦ T� [Dec(12)] □

THEOREM 10.

(Path)

1 � ↦ �S
2 � ↔ VMN

 � ↦ �`S

PROOF.

3 �	↦	�	 [Dec(1)

4 �	↦	T`a	 [Tran(2,3)]

5 � ↦ �T`a [Union(3,4)]

6 �T`a ↔ �T`a` [Norm]

7 � ↦ �T`a` [Trans(5,6)]

8 � ↦ �` [Elim(2,7)]

9 � ↦ �`�S [Union(1,8)]

10 �`�S ↔ �`S [Norm]

 � ↦ �`S [Tran(1,10)] □

Chain axiom is used to prove following two theorems.

THEOREM 11.

(Partition)

1 � ↦ �
2 � ↦ �
3 set(Y) = set(Z)

 � ↔ �

PROOF.

4 �	↔	��	 [Suf(1)]

5 �	↔	�	 [Ref]

6 �	↦	��	 [Union(1,5)]

7 �	↔	���	 [Suf(6)

8 �	↔	��	 [Norm(7)]

9 ��	↔	��	 [Tran(4,8)]

10 ��	↔	��	 [2,4-9]

11 � ~ � [(9)]

12 � ~ � [(10)]

13 ��� ↔ ��� [Ref]

14 �� ↔ �� [Elim(1,2,13)]

15 � ~ � [Chain(11,12,14)]

16 �� ↔ �� [(15)]

 � ↔ � [Norm(3,16)] □

THEOREM 12.

(Downward Closure)

1 �� ~ �T

 � ~ �

PROOF.

2 �T��	↦	�	 [Ref]

3 ���T ↦ � [Tran(1,2)]

4 ���T ↦ � [Ref]

5 ���T ↦ �� [Union(3,4)]

6 ���T ↦ �� [Union(3,4)]

 � ~ Z [Part(5,6)] □

4. COMPLETENESS
In Section 4.1, we sketch the important elements of the proof for

completeness of our OD axiomatization. We establish that ODs

subsume FDs in Section 4.2, followed by the formal completeness

proof of our axiomatization in Section 4.3.

4.1 Sketch of the overall proof and definitions
Our proof is constructive. To prove the axiomatization is

complete, it suffices to demonstrate, for any set of ODs ℳ, a table

t can be constructed that satisfies (Lemma 14), and is complete

(Lemma 15) with respect to, ℳ using ℐ, the axiomatization.

Definition 11. (a table t satisfies ℳ). A table t satisfies ℳ iff no

OD that is derivable over ℳ using ℐ (thus, in 	ℳZ) is falsified by

the table t.

Definition 12. (a table t is complete with respect to ℳ). A table t

is complete with respect to ℳ iff every OD that is constructible

over the attributes that appear in	ℳ	that is not derivable over ℳ

using ℐ (thus, is not in 	ℳZ) is falsified by the table t.

In Section 3.2 in Theorem 1, we proved the soundness of ℐ. Thus,

any table that satisfies each OD in ℳ satisfies	ℳZ, and no table

that satisfies ℳ can falsify any OD in ℳZ.

An OD �	 ↦ 	� can be falsified in just two ways by a table. (See

Theorem 15.) We name these two ways split and swap.

Definition 13. (split). A split with respect to an OD �	 ↦ 	�� is a

pair of tuples t and s in table t, such that �� = � but (�� ≠ �);

that is, have the same value for X (�� = �) but different values

for Y (�� ≠ �). Thus, the split from t falsifies �	 ↦ 	��.

(Consequently, �	 ↦ 	� is falsified, too.) This just says that

set(X) does not functionally determine set(Y).

Definition 14. (swap). A swap with respect to an OD ��	 ↔ 	��
is a pair of tuples t and s in table t such that �� ≺ �, but � ≺ ��;

i.e., there exist tuples t and s in t such that �� ≺ �, but � ≺ ��;

i.e., t comes before s in any stream satisfying order by X, but

s comes before t in any stream satisfying order by Y. Thus,

the swap from t falsifies ��	 ↔ 	��. (Consequently, �	 ↦ 	� is

falsified, too.)

The table t that we construct for the set of order dependencies ℳ

will consist of two parts: split(ℳ) and swap(ℳ). We shall

construct these two parts of t – the first half of the table, split(ℳ),

and the second half, swap(ℳ) – in such a way that t satisfies ℳ.

The purpose of split(ℳ) will be to falsify every OD of the form

�	 ↦ 	�� not in 	ℳZ. The purpose of swap(ℳ) will be to falsify

every OD of the form �	 ↦ 	�, ��	 ↔ 	�� not in 	ℳZ but for which

�	 ↦ 	�� is in	ℳZ. (So �	 ↦ 	� not in	ℳZ by Theorem 15 appear)

Thus, t is complete for ℳ.

Definition 15. (split(ℳ)). Split(ℳ) is a table that demonstrates

for each �	 ↦ 	�� which is not in 	ℳZ that �	 ↦ 	�� is falsified by

split (and so, falsifies �	 ↦ 	�, too).

Definition 16. (swap(ℳ)). Swap(ℳ) is a table that

demonstrates for each ��	 ↔ 	�� which is not in 	ℳZ that

��	 ↔ 	�� is falsified by split (and so, falsifies �	 ↦ 	�, too).

In the table t that we construct, we shall use integer values for the

cells. (A cell is a given column entry of a given row.) We

construct table t by adding splits and swaps. We have to make

sure that these pieces combined together do not interfere. That is

why we formalize the notion of append. When we append two

tables cC and c_, we shall ensure that the resulting table cannot

introduce any splits (except �	 ↦ []) or swaps beyond those that

appear in cC and in c_ alone (Lemma 9).

Definition 17. (append) Appending two sub-tables cC and c_ is

accomplished by following steps:

1. Find the minimum value, x, over all cells of	cC. Subtract x

from all cells in cC. (Now its minimum value is zero.) Do the

same for c_.

2. Find the maximum value, y, over all cells of cC. Add y + 1 to

all cells in c_.

3. The resulting table of the append is the union of cC and c_ as

adjusted in steps 1 and 2.

A B C D

0 0 0 0
0 0 1 1

Figure 4.

Table cU.

A B C D

0 1 0 0
1 0 0 0

Figure 5.

Table cd.

A B C D

0 0 0 0
0 0 1 1

2 3 2 2

3 2 2 2

Figure 6. cU append cd.

The table t we construct will be split(ℳ) append swap(ℳ)

(which we call split-swap form). We shall construct split(ℳ) in a

way that is analogous to the construction in Ullman’s proof of the

completeness of Armstrong’s axiomatization for FDs in [19]. This

proves our axiomatization for ODs is sound and complete over

FDs.

We shall construct swap(ℳ) in a way to falsify each OD �	 ↦ 	�
not in 	ℳZ (but for which �	 ↦ 	�� is in 	ℳZ). This construction

will be more complex than for split(ℳ). For each pair of

attributes A and B from ℳ, we determine whether there needs to

be a swap between A and B – a pair of tuples s and t such that

�� ≺ �, but e ≺ �e – and, if so, the context in which swap

between A and B need to occur.

Definition 18. (constant). An attribute A is called a constant

with respect to ℳ iff [] ↦ A is in 	ℳZ. Call an attribute a non-

constant, otherwise.

If an attribute is a constant, it means in any table that satisfies ℳ,

it can have only a single value occurring in the table.

 Definition 19. (context). A set of non-constant attributes �	
with	respect	to	ℳ is a context of a swap t, s iff �� = �. We say

swap t, s is in the context of � iff �� = �. (Note that a context

for a swap t, s is not unique.)

By identifying the right contexts for swaps for each pair A and B,

swap(ℳ) will falsify each �	 ↦ 	� not in ℳZ (but with �	 ↦ 	�� in

ℳZ), while not falsifying anything in ℳZ (Lemma 13). This step

is the cornerstone of our proof for completeness.

Constructing table swap(ℳ) is not straightforward. We are able to

simplify the construction via structural induction. The hypothesis

is as follows.

HYPOTHESIS 1 (hypothesis). For some fixed integer K, for any

set of ODs ℳ composed over attributes {gC, … , gh}, there exists a
table t in split-swap form that satisfies, and is complete with

respect to, ℳ.

We prove the base case of this for i ≤ 2 (in Lemma 11). We

hypothesize this is true for any ℳ with a fixed i number of

attributes. We then prove that for any ℳ with i + 1 attributes

that the hypothesis remains true (Theorem 18). Proof of the

induction hypothesis in essence completes the overall proof.

Induction provides us a powerful mechanism within the

proof. Consider any ℳ with i + 1 attributes. In the first case, if

any of the attributes are constants with respect to ℳ, we can

reduce the problem. We effectively project out those constant

attributes from ℳ. This means we simply remove all occurrences

of the attributes in the ODs. For example, if we are projecting out

B and E, ABC ↦ DEF becomes AC ↦ DF. Call the result ℳ'.

Then, ℳ' is over K or fewer attributes. By the induction

hypothesis there is a table t' which is satisfies, and is complete

with respect to, ℳ'. We can show easily how to construct a table t

from t' which must satisfy, and be complete with respect to, ℳ.

This is established by Lemma 8.

LEMMA 8. Let r be a table that satisfies, and is complete with

respect to, ℳ. Let Z be an attribute not in ℳ. Construct table r'

as r with an extra colum Z,	 and the same single value for Z in

each row. Then r' satisfies, and is complete with respect to,

ℳ ∪ {[]	 ↦ 	Z}.

PROOF. It is straightforward that r' satisfies ℳ ∪ {[]	 ↦ 	Z}
because Z	is	a	constant	in	 r' and Z does not appear in ℳ.

Clearly, r' falsifies each �	 ↦ 	� that does not mention Z that r

falsifies. For any �	 ↦ 	� that mentions Z, it is equivalent to some

OD that does not mention Z by the Replace rule, which has

already been established. Thus r' satisfies, and is complete with

respect to, ℳ ∪ {[]	 ↦ 	Z}. □

In the second case, we may assume ℳ contains no constant

attributes. When considering the pair A and B, if we find they

require a swap in non-empty context �, we can "freeze" the

attributes of � to a single value. This is true, for any table that

satisfies ℳm = ℳ ∪ {[]	 ↦ 	XC, … , []	 ↦ 	XE}, where � =
{XC, … , XE}. Now, we have an instance with i or fewer non-

constants attributes. By our induction hypothesis, there exists a

table cm in split-swap form that satisfies and is complete with

respect to ℳm. Note that ℳ′Z ⊇ 	ℳZ. Thus, cm does not falsify

any ODs in 	ℳZ. We append cm to the table t that we are

constructing. (Appending these is safe, since ℳ has no constants.)

Our table swap(ℳ) therefore is a recursive appending of

(sub)tables.

There is the case of attributes A and B such that ℳ dictates they

must have a swap, but in the empty context {}. This time, we

cannot use the induction hypothesis to construct the tuples for us

(cm) that do the job. For this case, however, we can construct two

tuples directly that introduce a swap for A and B, but that do not

introduce swaps between any other pair of attributes that would

falsify any OD in 	ℳZ. (The soundness of this step is established

in Lemma 12.)

For the latter, we must show that, for each �	 ↦ 	� not in 	ℳZ

such that �	 ↦ 	�� is in 	ℳZ, some sub-table in swap(ℳ) by our

construction does falsify it. This is done by proving there always

is an attribute A in X, an attribute B in Y, and a swap between A

and B in some context p, which falsifies	�	 ↦ 	�. (This is part of

Lemma 15.)

That completes the proof. These pieces are formally proved in the

next two sections.

4.2 ODS subsume FDS
In this section we show completeness of our axiomatization over

FDs. This result is then used toward showing completeness over

ODs. The axiom schema Chain, is not needed for a proof of FDs

being subsumed by ODs.

THEOREM 13. (FD and OD correspondence) For every instance

r of relation R, �	→	� iff �	 ↦ 	��, for all lists � that order the
attributes of � and all lists � likewise for �.

PROOF. (IF) If	�	 ↦ 	�� holds by Lemma 1 � → ��	is true. By

Armstrong axiom, Reflexivity ��	 → �	 holds. Therefore by

Armstrong axiom, Transitivity � → �	is true.

(ONLY IF) If �	 ↦ 	�� does not hold, there exists s, t ∈	 rrrr, such

that � ≼ �� but �� ⋠ ���. This implies that � = �� and �� ≺ �.

Therefore � ≠ �� and � = �� and � → �	is not true. □

THEOREM 14.

(Permutation)

1 � ↦ ��

 �′ ↦ �′�′

PROOF. Let � = [YC, Y_, … , YE], ∀K ∈ [1, G]

2 � ↦ �YC …YL [Dec(1)]

3 �′�	 ↦ �′	�YC…YL [Pref(2)]

4 �′� ↔ �′ [Norm]

5 �′	�YC…Ys ↔ �′	YC …YL [Norm]

6 �′	 ↦ �′	YC …YL [Tran(3-5)]

7 �′ ↔ �′ [Ref]

8 �′ ↦ �′Ys [Drop(6,7)]

 �′ ↦ �′�′ [Union(8)]	□

□

An OD �	 ↦ 	� can be falsified in two ways by a table (Theorem

15). That is why we introduced split and swap (Section 4).

THEOREM 15. (order dependency) �	 ↦ 	� holds iff �	 ↦ 	�� and
��	 ↔ 	��.

PROOF. (IF) If �	 ↦ 	� holds then Suffix rule tells us, that

�	 ↔ 	��. �	 ↦ 	� follows from Reflexivity, therefore �	 ↦ 	�� by

Union and ��	 ↔ 	�� by Replace, Suffix and Normalization.

(ONLY IF) Suppose ��	 ↔ 	�� and �	 ↦ 	�� hold. Hence, by

Transitivity �	 ↦ 	��, which by Reflexivity and Transitivity tell us

that �	 ↦ 	�. □

THEOREM 16. (ODs subsume FDs). OD axioms are sound and

complete over functional dependencies given set of ODs ℳ.

PROOF. Soundness is by Theorem 1, because of the

correspondence between FDs and ODs (Theorem 13). The

remaining step is to prove completeness over FDs, if ℳ ⊨
�	 → 	� then ℳ	 ⊢ℐ �	 → 	�. This is equivalent to say if ℳ ⊨
�	 ↦ 	��, then ℳ	 ⊢ℐ �	 ↦ 	�� for all lists � that order the

attributes of � and all lists � likewise for �	by	Theorem 13 and

Permutation.	

Firstly, we show that axioms for ODs imply Armstrong's axioms

for FDs. We can do it because of soundness of axioms.

FD1 Reflexivity: �	⊆ �	implies �	→	�.

1. We are given that � is a subset of �.

2. Therefore, the normalization rule implies that an order

dependency	�	 ↔ 	�� holds, for some list � that order

the attributes of � and some list � likewise for �.
3. Hence, Permutation and Theorem 13 implies that

FD	� → 	� holds.

FD2 Augmentation: �	→	�	implies ��	 → 	��.

1. Since we are given	�	 → 	�, Theorem 13 tells us	�	 ↦
	��, for all lists � that order the attributes of � and all

lists � likewise for �.

2. By Reflexivity we can interfere	�	 ↔ 	�, for all list � that

order the attributes of �. Hence, by Prefix

rule	��	 ↦ 	��� holds.

3. By Suffix	��	 ↔ 	�����. ����� may be normalized

(�����	 ↔ 	����).

4. By transitivity ��	 ↦ 	����
5. Therefore by Permutation and Theorem 13 FD

�� → 	�� holds.

FD3 Transitivity: �	→	� and �	→	�	implies �	→	�.

1. We are given	� → 	�, and	� → 	�, so we may get

�	 ↦ 	�� and �	 ↦ 	�� for all lists � that order the

attributes of � and all lists � likewise for � and some

list � likewise for �	by Theorem 13.

2. It follows by Reflexivity that	�	 ↔ 	�, so by Prefix rule

we can infer that	��	 ↦ 	���.

3. Since �	 ↔ 	�� follows by Suffix, Normalization and

Transitivity, �	 ↦ 	��� follows from Transitivity.

4. Hence by Decomposition, Permutation and Theorem 13

FD � → 	� is true.

However, this proves that axiom system comprising of inference

rules ℐ is sound and complete for the set of FDs	ℱ. We would like

to show it is true for set of ODs ℳ.

Let ℳ′= {�	 ↦ 	��, ��	 ↔ 	�� | �	 ↦ 	� ∈ ℳ}. Based on Theorem

15 ℳ and ℳ′ are equivalent (Definition 9). Also let

ℱ = {�	→	� | �	 ↦ 	�� ∈ ℳ′}. Based on Permutation rule and

Theorem 13 we know that any relation instance satisfying

dependencies in ℱ satisfies dependencies in ℳ′ and vice versa.

Let �Z [19], the closure of � (with respect to ℱ) be the set of

attributes A such that �	 →	 A can be deduced from ℱ by

Armstrong's axioms. We consider the relational instance r with

the two rows shown in figure below.

�Z attributes Other attributes

0 0 … 0 0 0 … 0

0 0 … 0 1 1 … 1

Figure 7. A relation instance r showing that v ⊭ �	 ↦ 	��.

Based on Ullman’s [19] proof of soundness and completes of

Armstrong’s axioms, relation instance r shows that if ℱ is the

given set of dependencies, and �	 →	 �	 cannot	 be	 proved	 by	
Armstrong,	 then	r is a relation in which the dependencies of ℱ

hold but �	→	�	does	not.	That	is,	ℱ	does	not	logically	imply	�	
→	�.	This	means	the	 inference	rules	are	sound	and	complete	
over	ℱ.	As	there	is	no	swaps	in	rrrr,	we	do	not	falsify	anything	in	
ℳ′,	therefore	ℳ,	too.	This ends the soundness and completeness

proof for FDs over set of ℳ. □

THEOREM 17. (testing logical implication). Testing, whether

ℳ	 ⊨ 	�	 ↦ 	�� (ℳ ⊨ 	�	 →	 �)	 can be accomplished in O(n),

where n is the number of dependencies in ℳ.

PROOF. As shown in Theorem 16, ℱ = {�	→	� | �	 ↦ 	�� ∈

ℳ′}, where ℳ′= {�	 ↦ 	��, ��	 ↔ 	�� | �	 ↦ 	� ∈ ℳ} is a set of

FDs which enables to compute closure for FDs over the set of

ODs ℳ. Therefore as, testing the logical implication of FD

�	→	� for the set of FDs has already been shown to be linear [3]

therefore testing ℳ ⊨ 	�	→	�	can be also accomplished	in	O(n).

The same applies to ℳ	 ⊨ 	�	 ↦ 	�� by Theorem 13.

4.3 Completeness of the OD Axiomatization
As discussed in Section 4 an OD can be falsified by a split or a

swap. Using this, our proof for completeness is by case. If

�	 ↦ 	�� is not in 	ℳZ, there will be a split in the sub-table

split(ℳ) that we construct that falsifies �	 ↦ 	��, and so that

falsifies �	 ↦ 	� also. If �	 ↦ 	� is not in 	ℳZ, but �	 ↦ 	�� is,

there will be a swap in sub-table swap(ℳ) that falsifies �	 ↦ 	�.

LEMMA 9. There is no split in yC append y_ that is between rows
from yC and y_, respectively, besides []	 ↦ 	� for any �. There is no
swap in yC append y_ that is between rows from yC and y_,
respectively.

PROOF. Let t be	a	 tuple	 in cC and s be a tuple in c_. Since all

values in t are less than all values in s, it is impossible for there to

be a split (except []	 ↦ 	�) or swap introduced between cC and

c_within cC append c_	(Definition 17). □

We construct table t to satisfy, and to be complete with respect to,

ℳ. Table t will be split(ℳ) append swap(ℳ), as introduced

above. Note that by Theorem 15 these are the only two scenarios.

Table split(ℳ) is constructed by appending two rows to the table,

as in Figure 7 for each subset of attributes of � from ℳ.	

LEMMA 10. (split(ℳ) satisfies ℳ). For any ℳ with no

constants, split(ℳ) does not falsify any OD in	ℳ.

PROOF. The relational instance split(ℳ) we have constructed

contains splits, but no swaps. Therefore �	 ↦ 	� could be only

falsified by split. (Consequently, �	 ↦ 	�� is falsified, too.) But we

know that we are sound and complete over set over FDs by

Theorem 16 and by Lemma 9 appending of the tables does not

introduce additional splits (except []	 ↦ 	�) or swaps, therefore this

is not possible. □

Table split(ℳ) is based on table we constructed for ℳ in the

proof of Theorem 16, which establishes that ODs subsume FDs;

that is, split(ℳ) satisfies ℳ and it is complete with respect to the

OD of the form �	 ↦ 	�� – which are equivalent to FD statement

(Theorem 13) – in that it falsifies each �	 ↦ 	�� not in 	ℳZ but

which is composable over the attributes in ℳ. As constructed,

split(ℳ) introduces no swaps.

For swap(ℳ) a natural approach would seem to be to construct

the table incrementally, to falsify each OD not in 	ℳZ, in turn,

while ensuring we do not also falsify any OD in 	ℳZ, in each

step. This would be similar to how we constructed split(ℳ).

However, how to do this by a straightforward construction is not

apparent. When considering how to falsify �	 ↦ 	�, which

attributes from � and from �, respectively, should have a swap

appear in the table? And how do we ensure that this swap does not

falsify any OD in 	ℳZ?

Instead, we consider every pair of attributes, A and B, from	the	
set	 of	 attributes	 in	ℳ. We determine the relevant contexts, if

any, in which a swap with respect to A and B must occur in

swap(ℳ).

The set(XYXYXYXY) is a context for A, B with respect to ℳ iff XA ~ Y

and X ~ YB are in 	ℳZ, but XA ~ YB is not in 	ℳZ. If there

exists such a context for A, B, this indicates there should be a

swap between A and B (to falsify XA ~ YB). It also indicates the

"context" of the swap, as the swap must not falsify XA ~ Y or

X ~ YB. One could imagine constructing a swap – a pair of rows t

and s for this – by having ��� = ��. That way, the swap t, s

would not falsify XA ~ Y or X ~ YB. But what should the values

of t and s be outside of XY?

We cannot construct t and s simply, ensuring the swap s, t does

not falsify anything in 	ℳZ. Instead, we use structural induction.

Consider for now that XY is non-empty. If we added []	 ↦ 	�� to

ℳ – call the result 	ℳm – XY can only have a single value in any

table that satisfies	ℳm. Recall the hypothesis from Hypothesis 1in

Section 4. We adopt this as our induction hypothesis. Assume our

present ℳ contains K+1 attributes. Then 	ℳm contains K or fewer

attributes since []	 ↦ 	��. By our induction hypothesis, there is a

table cm (see Figure 8) that satisfies, and is complete with respect

to 	ℳm. As XA ~ YB is not in 	ℳZ, it is not in 	ℳmZ either. Thus

cm falsifies XA ~ YB.

Attributes of XY Other attributes

0 0 … 0 zC,C zC,_ … zC,N

… … … … … … … …

0 0 … 0 z{,C z{,_ … z{,N

Figure 8. A relation instance for K+1 non-constant attributes.

Which context for A, B should we do this for? Not for all of them.

It is the maximal contexts that are relevant. X, Y is a maximal

context for A, B iff it is a context for A, B and there is no other

context X', Y' such that set(X'Y') ⊃ set(XY).

Since we use induction in the proof, we need to prove a base case

of the induction hypothesis. We prove it for the cases of ℳ with

0, 1, and 2 non-constant attributes in the following Lemma.

LEMMA 11. (Induction base, i ≤ 2). For at most i ≤ 2
attributes there exists a table t in split-swap form that satisfies

and is complete with respect to ℳ.

PROOF This can be directly shown by enumerating through all

the possibilities. □

We have assumed so far that the (maximal) contexts, if any, for A,

B are non-empty. There is the case where A, B has a single

maximal context {}, the empty context. In this case, we cannot

appeal to the induction hypothesis. Fortunately, such pair A, B

will have special properties by virtue of the fact they have

swapped orders only in the empty context. In fact, our sixth axiom

schema speaks directly to this very case. (We likely would never

have had the insight for the sixth axiom (schema) Chain had we

not encountered this case while attempting to prove

completeness.) In this case, we will be able to construct a two-row

swap for A, B directly that does not falsify anything in	ℳZ.

LEMMA 12. (Empty context). There exists a swap for A, B with

the empty maximal context that satisfies ℳ while falsifying A ~ B.

PROOF. We construct a two-row swap with values 0 and 1 that

falsifies A ~ B but cannot falsify anything in	ℳZ as shown in

Figure 9. For the latter, it suffices to prove that the swap does not

falsify any C ~ D in	ℳZ. For A and B, they have opposite values

in each row in the swap. For any C such that A ~ C is in 	ℳZ, C

must have the same value as A in each row. (Otherwise, A and C

would have swapped values – 0 and 1 – between the two rows.)

Likewise for B. And for any D such that C ~ D is in 	ℳZ, D must

have the same value as C (and so the same as A) in each row. And

so forth. Of course, it would be impossible to construct our two

rows if there is a chain connecting A and B through order-

compatibility: A ~ EC~…~	EE ~ B. If there were, we would need

to set the value of each EC~…~	EE the same as A’s value and the

same as B’s value in each row. But A’s and B’s values differ. The

Chain axiom schema (OD6) ensures there is no such chain from A

to B. E}A	~	ENB is in	ℳZ, for each EN, since the maximal context

for A, B is []. If there were a chain A ~ EC~…~	EE ~ B such that

A ~ EC is in	ℳZ, EN~	ENZC is in	ℳZ for each i on 1, . . , G − 1, and

EE ~ B is in	ℳZ, then A ~ B is in	ℳZ also, by the Chain axiom.

Since we know that A ~ B is not in	ℳZ, there is no such Chain.

Thus, our two rows are constructable. We can partition the

attributes into three groups: those that must have the same values

as A , those the same as B, and those for which it does no matter.

Figure 9 shows the construction.

A B A’s group B’s group Remaining attributes

0 1 0 … 0 1 1 1 0 0 … 0

1 0 1 … 1 0 0 0 1 1 … 1

Figure 9. Swap for A, B with the empty maximal context.

For attributes that do not match A or B, it is important we do not

introduce swaps between them, as this could falsify something in

	ℳZ. It suffices to use the same value for these in each row.

Call the two-row swap in Figure 9 r. Table r satisfies ℳ. Assume

otherwise: for X	↦�				∊ ℳ,	 r	r	r	r	 falsifies it. Let �	 ↦ � be over non-

constants attributes, without loss of generality. Let E be the first

element of X, and F of Y. If both E and F are from A, A’s group

or the remaining group attributes (as in Figure 9), or they are both

from B or B’s group attributes, then X and Y order the two tuples

of r the same way. Therefore, E must be from one group, and F

from the other. Since 	↦�				∊ 	ℳZ,	�	~	�				∊ 	ℳZ by Theorem 15.

By the Downward Closure rule E	~	F				∊ 	ℳZ. Contradiction. □

Our proof obligation for swap(ℳ), that it does not falsify any OD

in 	ℳZ is proved in the following Lemma.

LEMMA 13. (swap(ℳ) satisfies ℳ). Assuming Hypothesis 1,

for all ℳ of K or fewer non-constants attributes, swap(ℳ) does

not falsify any OD in ℳ.

PROOF. Hypothesis 1 is the key in proving that A, B do not

falsify any OD in 	ℳZ. When we consider pair A and B which

requires a swap in non-empty context � we obtain ℳm = ℳ ∪
{[]	 ↦ 	XC, … , []	 ↦ 	XE}, where � = {XC, … , XE}. By our

hypothesis, there exists a table cm in split-swap form that is

satisfied and complete with respect to ℳm. As ℳ′Z ⊇ 	ℳZ,

therefore any ODs in 	ℳZ is not falsified.

None of the sub-tables falsifies any OD in 	ℳZ, by the hypothesis

in non-empty context and soundness of base cases (empty context

and i ≤ 2). As the table swap(ℳ) is append-normalized,

swap(ℳ) does not falsify any OD in 	ℳZ. □

LEMMA 14. (Satisfies). Every order dependency (OD) that is

derivable with respect to the axiomatization over ℳ is not

falsified by the table t.

PROOF. The sub-tables split(ℳ) and swap(ℳ), as we construct

them, are satisfied with respect to ℳ (Lemma 10 and Lemma 13

respectively). If neither split(ℳ) nor swap(ℳ) falsifies any OD

in	ℳZ, then t as split(ℳ) append swap(ℳ) cannot falsify any

OD in 	ℳZ either (See Lemma 9). □

LEMMA 15. (complete). Assuming Hypothesis 1 for all ℳ

constracted over K or fewer attributes, given any ℳ constructed

over K+1 attributes and none is a constant with respect to 	ℳ

(Definition 18), the table t = split(ℳ) append swap(ℳ) is

complete with respect to ℳ.

PROOF. Assume �	 ↦ 	� over only non-constant attributes, is in

the complement of ℳZ (�	 ↦ 	�				∉ ℳZ). Theorem 15 tells us that

order dependency �	 ↦ 	� holds iff �	 ↦ 	�� and ��	 ↔ 	��.

Case 1. �	 ↦ 	�				 ∉ ℳZ. We have already proven that for the

scenario with �	 ↦ 	�� (FD) we are always complete (Theorem

16).

Case 2. �	 ↦ 	�				∉ ℳZ, but X ↦ ��				∊ ℳZ. By Theorem 15 X ~ Y

∉ ℳZ. Find longest PA prefixing X such that:

1. P ~ Y ∊ ℳZ

2. PA ~ Y ∉ ℳZ

Find longest QA prefixing Y such that:

3. PA ~ Q ∊ ℳZ

4. PA ~ QB ∉ ℳZ

5. P ~ Q ∊ ℳZ [Downward Closure (1)]

6. P ~ QB ∊ ℳZ [Downward Closure (1)]

7. �A�B	 ↔ ��AB ∊ ℳZ [Shift(3, [B ↔ B])]

8. �A�B	 ↔ ��AB ∊ ℳZ [Replace(5)]

9. �B�A	 ↔ ��BA ∊ ℳZ [Shift(6, [A ↔ A]]

10. �A�B	 ↔ �B�A ∉ ℳZ [(4)]

11. ��AB	 ↔ ��BA ∉ ℳZ [Transitivity(8,9,10]

12. ��A	~	��B ∉ ℳZ [11]

A and B have a swap within the context, p = set(PQ). In

constructing swap(ℳ), we considered all maximal contexts for

A, B for which a swap is needed. Hence, we considered some

superset � ⊇ p. If � ≠ [], a sub-table that satisfies, and is

complete with respect to ℳ ∪ {[]	 ↦ 	VC, … , []	 ↦ 	VE}, where

� = {VC , … , VE} is appended in swap(ℳ). This falsifies WA ~

WB, for all lists W that order the attributes of p (thus, falsifies

�	 ↦ 	�). Else if � = [], we appended a swap s, t as in Figure 9

which falsifies A ~ B ([]A ~ []B). □

THEOREM 18. (soundness and completeness). The set of the OD

axioms ℐ ={OD1–OD6} is sound and complete.

PROOF.

Base case: ℳ with i ≤ 2 attributes proved by Lemma 11.

Assume Hypothesis 1 for all ℳ composed over i or fewer

attributes.

Induction step: Consider an ℳ over i + 1 attributes.

Case 1. ℳ contains constants attributes (Definition 18). Let ℳ'

be ℳ with these constants attributes removed. ℳ' has i or fewer

attributes. By the induction hypothesis (Hypothesis 1), there is r'

which satisfies, and is complete with respect to, ℳ'. Lemma 8

guarantee we can construct r from r' that satisfies, and is complete

with respect to, ℳ.

Case 2. ℳ contains no constants attributes. Lemma 15 establishes

there exists an r that satisfies, an is complete with respect to, ℳ.□

5. RELATED WORK
Ordered sets and lattices have been a subject of research in

mathematics [5]. In fact, our concept of order dependency is

equivalent to order-preserving mapping between two ordered sets.

The work in mathematics has concentrated on investigating

properties of, and relationships between, ordered sets rather than

among the mappings. To the best of our knowledge, no inference

system for describing relationships between mappings has been

proposed.

Order dependencies were introduced for the first time in the

context of database systems in [7]. However, the type of orders,

hence the dependencies defined over them, were different from

the ones we presented here. A dependency � ↝ 	� holds if order

over the values of each attribute in � implies an order over the

values of each attribute of	�. (For simplicity, we use the arrow ↝

for different type of orders.) In other words, the dependency is

defined over the sets of attributes rather than lists. The distinction

between these two types of dependencies was later [13] aptly

described as pointwise versus lexicographical order dependency.

Formally, an instance of a database satisfies a pointwise order

dependency � ↝ 	� if, for all tuples s and t, for every attribute A

in �, � op �� implies that for every attribute B in �, e op e,

where op ∈ {<,=,>,≤,≥}. In [8] a sound and complete set of

inference rules for such dependencies is defined together with an

analysis of the complexity of determining logical implication. A

practical application of the dependencies for an improved index

design is presented in [6].

Dependencies defined over lexicographically ordered domains

were introduced in [13] under the name lexicographically ordered

functional dependencies. Two other papers [14], [15] by the same

author develop a theory behind both lexicographical as well as

pointwise dependencies (the latter were somewhat simpler than

the dependencies defined in [7]). A set of inference rules (proved

to be sound and complete) is introduced for pointwise

dependencies, but – interestingly – not for lexicographical

dependencies. Only a chase procedure is defined for the latter. A

simplified extension of relational algebra to ordered domains is

presented in [15].

Sorting is at the heart of many database operations: sort-merge

join, index generation, duplicate elimination, ordering the output

through the SQL order-by operator, etc. The importance of

sorted sets for query optimization and processing has been

recognized very early on. Right from the start, the query optimizer

of System R [16] paid particular attention to interesting orders by

keeping track of all such ordered sets throughout the process of

query optimization. In more recent research, [8] and [10] explored

the use of sorted sets for executing nested queries. The importance

of sorted sets has prompted the researchers to look beyond the sets

that have been explicitly generated. Thus, [12] shows how to

discover sorted sets created as generated columns via algebraic

expressions. (In DB2, a generated column is a column that can be

computed from other columns in the schema.)

For example, if column A is sorted, so is the generated column G

defined as G = A/100	 + 	A − 3	(that is, A ↝	G). We show in

[18] how to use relationships between sorted attributes discovered

by reasoning over the physical schema. The axiomatization

presented here provides a formal way of reasoning (hence

discovering) previously unknown (or hidden) sorted sets. Based

on this work, many other optimization techniques from relational

query processing can also be adapted.

6. CONCLUSIONS
Ordering permeates databases, to such an extent that we take it for

granted. It appears in many queries and is relatively expensive to

perform. The goal of this paper was to develop a theory behind

dependencies over lexicographically ordered sets. To the best of

our knowledge, this is the first attempt at an axiomatization for

such dependencies. We present that ODs subsumes FDs. We have

also shown our inference rules for order dependencies are sound

and complete. Furthermore, we explored some other useful

properties of order dependencies.

Though now we conclude, the story of order dependency is far

from over. There is much more that can be done, and should be.

Future work in this area should pursue two lines of research: on

the one hand, further investigation of the theoretical questions; on

the other hand, applications of the theoretical framework in a

practical database setting. These are further things we plan to do.

• One of the major practical applications which we are currently

working on is a theorem prover [19]. Given a set of order

dependencies ℳ and an arbitrary dependency	�	 ↦ 	�, we

would like to efficiently decide whether ℳ logically

implies	�	 ↦ 	�. Such a theorem prover would be a useful tool

for the use of ODs in query optimization.

• Integrity constraints have been widely used in query

optimization through query rewrites. For example, functional

dependencies have been shown to be useful in simplifying

queries with distinct, order by, and group by

operations [17], whereas inclusion dependencies can be used

to remove certain joins over primary and foreign keys [4]. We

believe that order dependencies can be used in similar ways to

simplify queries with order by operation.

• We are exploring the use of ODs for database design [2].

functional dependencies are by far the most common integrity

constraints in the real world. The notion of the key derived

from a given set of FDs is a fundamental to the relational

model. The determination of order dependencies might be an

important part of designing databases in the relational model,

too. It can be used in database normalization and

denormalization. order dependencies can reveal redundancies

that cannot be detected using Functional dependencies alone.

It would be an interesting research topic to extend the results

obtained there to the design of relational databases.

7. ACKNOWLEDGMENTS
We thank Calisto Zuzarte and Wenbin Ma from IBM laboratory

in Toronto for their encouragement and many helpful suggestions

throughout the project.

8. REFERENCES
[1] Armstrong, W.W., 1974, Dependency structures of data base

relationships. In Proceedings of the IFIP Congress,

Stockholm, 580-583, North-Holland.

[2] Bernstein, P., 1976. Synthesizing third normal from relations.

ACM TODS, 277-298.

[3] Beeri, C., Bernstein, P.A., 1979. Computational Problems

Related to the Design of Normal Form Relational Schemas.

ACM Transactions on Database Systems.

[4] Cheng, Q., Gryz. J., Koo, F., Leung, T.Y.C, Liu, L., Qian,

X., Schiefer, K.B., 1999. Implementation of Two Semantic

Query Optimization Techniques in DB2 Universal Database.

VLDB.

[5] Davey, B.A., Priestley, H.A., 2002. Introduction to Lattices

and Order (2. ed.). Cambridge University Press, 1-298.

[6] Dong, J., Hull, R., 1982. Applying Approximate order

dependency to Reduce Indexing Space. SIGMOD

Conference, 119-127.

[7] Ginsburg, S., Hull, R., 1981.Ordered Attribute Domains in

the Relational Model. XP2 Workshop on Relational Database

Theory.

[8] Ginsburg, S., Hull, R., 1983. order dependency in the

Relational Model. Theor. Comput. Sci., 149-195.

[9] Graefe, G., 2003. Executing Nested

Queries. Datenbanksysteme für Business, Technologie und

Web, Tagungsband der 10. BTW-Konferenz, 58-77.

[10] Guravannavar, R., Ramanujam, H.S., Sudarshan, S, 2005.

Optimizing Nested Queries with Parameter Sort

Orders. VLDB, 481-492.

[11] Kimball, R., Ross, M., 2002. The Data Warehouse Toolkit

Second Edition. The Complete Guide to Dimensional

modeling. John Wiley & Sun.

[12] Malkemus, M., Padmanabhan, S., Bhattacharjee, B.,

Cranston, L, 2005. Predicate Derivation and Monotonicity

Detection in DB2 UDB. ICDE, 939-947.

[13] Ng, W., 1999. Lexicographically Ordered Functional

dependencies and Their Application to Temporal Relations.

IDEAS, 279-287.

[14] Ng, W., 1999. Ordered Functional dependencies in

Relational Databases. Inf. Syst., 535-554.

[15] Ng, W., 2001. An extension of the relational data model to

incorporate ordered domains. ACM Trans. Database Syst.,

344-383.

[16] Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie,

R.A., Price, T.G., 1979. Access Path Selection in a

Relational Database Management System. SIGMOD, 23-34.

[17] Simmen, D.E, Shekita, E.J., Malkemus, 1996. Fundamental

Techniques for Order Optimization. SIGMOD, 57-67.

[18] Szlichta, J., Godfrey, P., Gryz, J., Ma, W., Pawluk, P.,

Zuzarte, C., 2011, Queries on dates: fast yet not blind. EDBT

497-502.

[19] Ullman, J.D., 1988. Principles of Database and Knowledge-

Base Systems, Vol. I, 378-379, Computer Science Press,

Rockville, MD, 376-423.

[20] http://www.tpc.org

