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Abstract

Advanced autonomous robotic platforms are increasingly deployed in outdoor en-

vironments; these environments can be considered more complex than the traditional

office or lab environment, in that they are less structured and allow a wider variety of

robot motion. In order for an autonomous system to plan its path through the operating

environment, an estimate of its position and orientation is (often) important, if not crit-

ical. Pose estimation is the task which deals with estimating the pose, i.e., the position

and orientation of a device, based on sensor measurements. Traditional approaches often

focus on 2D environments, such as offices, where the device’s limited mobility allows for

simplification of the required estimation. This work instead focuses on unconstrained six

degree of freedom vehicles operating in true 3D environments.The approach developed

here decouples the process for estimating a device’s orientation from the device’s posi-

tion; this assumes that orientation may be efficiently estimated, provided a sensor such

as an IMU. An algorithm is developed that performs orientation estimation efficiently

using an extended Kalman filter, while using a particle filter to estimate the position.

iv



Acknowledgements

Some 150 pages, and this may be the hardest one to write. This thesis has been a long

time in the making, and it would not have been possible without the help of various peo-

ple along the way. First of all, I would like to thank my supervisor, Michael Jenkin, for

his support and patience with me. He has calmly guided me through the different stages

of this thesis, despite various delays and setbacks. His reading, rereading and comments

have helped shape this thesis into what it is. Of course, this thesis would not have been

finished without the support and encouragement of my parents and siblings. Whether it

was talking or care packages, you were there for me. When the writing got to me, there

was always some wood, hay or ditch to be worked on; it let me maintain (the pretense

of) at least a little sanity. I would like to thank Susan in the office for all the help she

has given me; anytime I needed help, she was there with a smile. Finally, various people

at school have been very helpful, specifically; Anna with various discussions, Andrew

Hogue with the egomotion datasets, and Mabel with moral support and encouragement.

And now, at long last, I can acknowledge that this thesis is done.

v



Table of Contents

1 Introduction 1

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Contributions of the work . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Previous work 10

2.1 Probabilistic estimation in theory . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Bayes filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Markov Localization . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Practical estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Discrete grid localization . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Monte-Carlo localization . . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Rao-Blackwellized Particle Filters . . . . . . . . . . . . . . . . 25

2.2.4 So where is the robot? . . . . . . . . . . . . . . . . . . . . . . 26

vi



2.3 Orientation and the Kalman Filter . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Representing orientation . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 EKF for orientation estimation . . . . . . . . . . . . . . . . . . 28

2.4 The Normal Distribution Transform . . . . . . . . . . . . . . . . . . . 32

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Localization when orientation is known 35

3.1 Derivation of the filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 The normalizing term η . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Algorithm process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Motion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Restricting the motion model . . . . . . . . . . . . . . . . . . . 53

3.5 Range likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Application of the NDT to pose estimation . . . . . . . . . . . 55

3.5.2 Evaluation of the range likelihood . . . . . . . . . . . . . . . . 57

3.6 Filter applied to a 3D dataset . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Simulation results 66

4.1 Experiment conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



4.2 A constant 10,000 particles . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 KLD particle size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Comparison with simple particle filter . . . . . . . . . . . . . . . . . . 97

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Summary and future work 101

5.1 Contributions of the work . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Limitations of the work . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 107

viii



Chapter 1 Introduction

Using sensory information to locate the robot in its environment is the
most fundamental problem to providing a mobile robot with autonomous
capabilities. Ingemar J. Cox, 1991 [15].

Imagine you are suddenly teleported into the middle of an unknown town as
illustrated in Figure 1.1. Checking your pockets, you find a map of the area you are
in; it shows some of the local landmarks and streets, but none of them are labeled
by name. You want to get to the local bus station, marked on the map, to go home;
however, you have no idea as to where you are currently located. You look around in the
hope of finding some recognizable landmark. Noticing a phone-booth across the street,
you check your map and find that there are 20 phone booths in town. Unfortunately,
that is too general to help you. Heading up the street, you walk past a restaurant and,
again checking your map, you see that only three restaurants are located near a phone
booth. Having narrowed down your possible positions, you again walk a little further,
and pass a park. Although there are six parks in town, your map indicates that only
one of the three “restaurants near a phone booth” are also located near a park. Having
determined where you are on the map, and knowing which way you are facing, you
can now determine the easiest way to get to the bus terminal. As you walk along, you
occasionally check the map, making sure that the things you see around you match what
the map tells you. What you have done in this example is to estimate your pose (i.e.,
your position and what direction you are facing), and then continued to track your pose
as you make your way to the bus terminal.

Clearly, it is important for people to know where they are if they are to determine a
route to their destination. People perform variants of this simple example everyday to
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(a) 2D Map (b) Your initial view after teleporting

Figure 1.1: Estimating your pose based on a map (a) showing the surrounding area of the
town, and scenes such as the one in (b), you have learned to automatically find your way.

get their bearings and to plan their routes. Sometimes the process is as simple as looking
at the names of two intersecting streets and matching them to a mental map. Other
times, the process is more involved; sometimes even requiring us to ask for directions,
i.e. to request additional information. In either case, without knowing where you are,
it is difficult or perhaps even impossible to plan to get to your destination. This ability
to determine where we are is not just important for people, but also for autonomous
systems, such as robots. Technologies such as the Global Positioning System (GPS)
[55, 54] have been developed in an attempt to directly determine the location of a
device. While GPS may solve the position problem in certain cases (i.e., in vehicle
navigation systems), such a solution is only available when GPS signals can be received
by the system. The GPS signal is generally not available when underwater, underground
or even indoors. Active agents cannot always rely on the availability of GPS signals
and rather must infer their position through some alternative approach. Even outdoor
vehicles may not always be able to access GPS signals, and when they are available may
not provide a sufficiently accurate location fix.

How then can an autonomous vehicle localize itself within an environment? The
task of determining the position and orientation of a device is called pose estimation.
Mimicking the approach taken in the example above, given a map of its (extended)
surroundings, and allowed enough time to move around and gather information, the
vehicle will attempt to identify regions on the map in which it is likely to be located.
This may be accomplished if the vehicle is given a map which describes the environment
and information regarding past movements and observations. The map may be specific,
such as a road map or floor plan, or it may be more abstract like a mental map of features
within an area. In considering solutions to the problem of pose estimation it can be
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(a) A simple 2D map (b) Partial 3D model of a barge (c) Crime scene model

Figure 1.2: Examples of environment maps. (a) A very simple 2D environment map.
Reprinted from [7]. (b) A partial barge model created using the AQUA sensor. Reprinted
from [42]. (c) A crime scene model from the C2SM project. Reprinted from [68].

Figure 1.3: The 6DOF amphibious underwater robot AQUA [29]. Pose estimation algo-
rithms for such a device must consider the device’s ability to assume nearly any orienta-
tion in 3D space.

worthwhile to divide the information available to the vehicle into two groups; control
inputs and sensor measurements. Control inputs are requests to physically move around,
while sensor measurements indirectly record the actual result of the control inputs.

Since estimating the position for a stationary robot is relatively trivial (it doesn’t
move!), the robots considered in this work are all assumed to be equipped with some
mechanism allowing a change in position over time. Wheels, legs, fins, wings and
various thrusters (jets) are commonly used to accomplish this. For example, the
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AQUA robot [29] in Figure 1.3 is a small amphibious hexapod robot able to swim both
underwater and at the surface. The AQUA robot is equipped with six fins, allowing
it to move in any direction (except sideways) when deployed in water. The operating
environment for which the AQUA robot is designed provides a good example where the
ability to determine the robot’s pose is desirable, but complex. Suppose that the AQUA
vehicle is being deployed to inspect a previously surveyed coral reef autonomously. The
robot is tasked to return to a specific area of the reef to model the current state of the
reef, so that it can be compared to existing models of the same region. Once released
near the coral reef, the robot must plan an appropriate route to the particular area of
interest. In order to do so, the robot must first determine its current location relative to
the reef. It can attempt to accomplish this by using its sensor readings and (possibly) its
motion commands in order to estimate where it is, and then refine the estimate over time
as it moves toward its destination.

Pose estimation is a well studied problem for autonomous systems (see Chapter 2
for details on various approaches), due to its importance in many tasks. Existing work
in pose estimation has typically focused on vehicles that remain in contact with the
ground. This limitation of a ground position makes the pose estimation problem one of
estimating three unknown parameters which vary as a function of time: the (x, y) posi-
tion coordinates and the orientation θ of the vehicle. The limited number of parameters
required to describe the pose simplifies the computational requirements. However, if
the vehicle is not restricted to ground movement (as is the case for underwater, aerial
and space vehicles), then describing the pose with only three parameters is insufficient.
Such vehicles are said to exist within a six degrees of freedom (6DOF) environment,
referring to the fact that six parameters are required to uniquely describe the vehicle’s
pose. These parameters describe the vehicle’s ability to move in three dimensions and
assume an arbitrary orientation relative to those axis. These additional parameters result
in an exponential increase (with respect to the number of dimensions) in computational
requirements. For each position estimate (x, y, z) we must also estimate the three
orientation parameters; a lack of knowledge regarding the direction the vehicle is facing
may make the evaluation of a range sensor very complicated, possibly preventing its
timely computation. The increase in the space that needs to be searched in order to
estimate the pose generally makes it impractical to use current 3DOF pose estimation
solution techniques to solve the 6DOF problem. This is largely due to the increased time
requirement for computing the estimate. If the estimate that is computed by the robot
is five minutes out of date, the robot may then make poor choices and, for example,
run into objects. This is similar to looking at the cars driving on the road, waiting five
minutes and then crossing the street; odds are that an accident will occur.
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Just as the nature of the vehicle’s ability to move influences the pose estimation
problem, the nature of the vehicle’s sensors also has a great impact on the complexity of
the problem. We would have a much harder time moving around a room if we lacked
the ability to sense depth visually, as is the case for someone who is blind and instead
relies on the limited sensing ability of their cane to help them navigate a room. In
the case of ground contact robotics, there has been great success with the use of 1D
sensors such as sonar or 2D sensors such as laser scanners (i.e., a touchless ‘cane’). See
[25, 6, 27, 50] for examples. More sophisticated sensing technologies are beginning to
emerge, including the ability to obtain dense 3D depth (distance from the observer) and
intensity measurements, such as 3D laser scanners (e.g., [1, 45, 47]) and 3D vision-based
systems (e.g., [38, 31]). These sensors determine the location of points in 3D space,
and the resulting cloud of points can be used to represent the environment visible to
the vehicle. Sensors that can provide more constraints on the vehicle’s state can be
considered to be more powerful in terms of solving the pose estimation problem. As
the dimensionality of the pose estimation problem increases, so does the need for more
powerful sensor technologies.

While robots can be equipped with a wide variety of sensors and manipulators,
some are more common than others. Common navigation-related sensors include GPS
(and similar technologies), various range sensors (laser, sonar, etc.), and orientation
sensors such as a compass or an inertial measurement unit (IMU). Sensors can be
separated into two groups; some provide an absolute measure of a specific property
while others merely indicate the presence of “something.” For example, a compass
measures directly the earth’s magnetic field and as such, with some level of error, always
points north. On the other hand, a bump sensor simply establishes that the robot has hit
something, without indicating what, or where, it might be (other than touching the robot).

Clearly, it is much simpler if a property can be measured directly, instead of hav-
ing to infer it. An inertial measurement unit (IMU) typically provides 3D information
about a robot’s orientation and movement by incorporating accelerometers and gyro-
scopes. IMU’s are able to estimate the orientation component of a device’s pose directly,
assuming noise in the signal can be filtered sufficiently. While useful for determining
the orientation, IMUs are generally ineffective for estimating the position of a device1.
For very short time spans, an IMU may be used to track movement by integrating the
acceleration of a device over time. However, without corrective inputs (such as absolute

1 Very sophisticated IMU’s have been built for maintaining long-range estimates of position (e.g.,
for submarines, and aircraft prior to the widespread deployment of GPS). Although their accuracy was
sufficient to enable transpacific flights with errors under a few hundred miles (and to enable ICBMs), such
systems are prohibitively large and expensive to use on autonomous robots.
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(a) An Inertial Reference Sensor. (b) The AQUASensor

Figure 1.4: Examples of advanced 3D sensors. (a) an InteriaCube IMU [39], (b)
AQUASensor, an underwater 3D range and intensity sensor. [42]

readings from GPS), the position estimate tends to drift due to noise and error accumula-
tion, and the position result will quickly become useless. Further, even if perfect motion
tracking would be possible, the result would still be limited to merely tracking a relative
pose. Without prior knowledge of the robot’s initial position and orientation, the position
estimate would simply be an offset from the start state. Without knowledge of an abso-
lute pose on the map where the device is or was located, it is challenging to plan a route
to the device’s destination.

1.1 Problem statement

This thesis investigates the efficient global pose estimation of an unconstrained 6DOF
device using sophisticated 3D sensors. Unlike a ground contact robot which is typically
provided with a “flat” map of its environment, like the one shown in Figure 1.2 (a), the
6DOF devices considered in this thesis are provided with a fully 3D map such as the ones
shown in Figure 1.2 (b) and (c). This makes the pose estimation problem considerably
more difficult than the 2D pose estimation problem. A variety of sophisticated sensors
are available for sensing a robot’s environment. This work concentrates on the sensing
abilities of devices such as the AQUA [29] and C2SM [68] robot platforms. Although
datasets from those projects are used in this thesis, the algorithm developed in this work
has wider application to devices operating in 3D environments with alternative sensor
technologies. This work assumes a dense point cloud sensor for distance information
as well as a sensor for determining the 3D orientation of the device. The AQUASensor
[38] uses stereo vision to generate a point cloud representing the distance to objects
visible to the sensor, while comparing changes over time for egomotion estimation
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(estimating the sensor’s motion) [37]. The latter is also important, since many 6DOF
vehicles are not in contact with a reference surface, and must work actively to simply
remain stationary, resulting in motion without a corresponding command from the
robot. The output of an Inertial Measurement Unit (IMU) is used to monitor the
approximate orientation of the robot. This task is well studied, and relatively efficient,
since the orientation of a device can be sensed directly through gravity and mag-
netic forces (i.e., a compass). This thesis describes an algorithm that makes use of the
strengths of both these technologies, while allowing either to be upgraded independently.

This work makes use of a particle filter approach to estimate the likelihood that the
robot is located at a particular pose. Particle filters are an example of a sampling approach
to solving the pose estimation problem. In typical 3DOF approaches this involves using
many particles (“guesses”) to estimate the three pose parameters x, y, θ, as shown in
Figure 1.5. Each particle is used to represent a potential solution to the problem and
known properties of sensor measurements and commanded robot motion are used to up-
date each of the individual guesses independently. Guesses that score well are retained
while guesses that score poorly are discarded. Particle filters are discussed in some detail
in the following chapter. Although particle filters have proven to be effective for 2D pose
estimation, when considering 6DOF devices, steps must be taken to reduce the search
space due to the increased dimensionality of the problem. If a portion of the pose may be
estimated more efficiently, then the effort required to estimate the remaining parameters
can be reduced. For example, an inertial orientation reference sensor, such as the one
in Figure 1.4(a), provides an estimate of the device’s absolute orientation. Through the
use of an independent orientation sensor it is possible to decouple the orientation and
position estimation process. Although affected by external magnetic forces, these orien-
tation sensors are not (for our purposes) affected by the drift errors typically associated
with the position estimate provided by IMUs or with the errors associated with odometry.
Corrective inputs such as gravity and magnetic forces are constantly incorporated to min-
imize drift. By modeling the noise typically associated with these sensors, it becomes
possible to estimate efficiently the true orientation being measured independently of its
position. If this efficient orientation estimate can be incorporated into the pose estimation
filter, then computational resources can be focused on the (relatively) simplified position
estimation problem.

1.2 Contributions of the work

The primary contribution of this work is the development of a framework to estimate
the 6DOF pose of an autonomous agent. This framework allows the orientation of an
autonomous agent to be estimated efficiently and separately from the position. Without
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(a) (b) (c)

(d) (e) (f)

Figure 1.5: 3DOF Pose estimation using a particle filter in an ambiguous environment.
The green circle represents the robot’s true pose, while the blue circles represent the
symmetrically identical poses. (a) Shows a uniform distribution of particles, representing
the initial uncertainty regarding the robot’s pose. (b-e) Show the progressive clustering of
particles as more information is added to the estimate. (f) shows the final estimate, with
four symmetric poses. See [50] for problems encountered in symmetric environments
such as this.
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this framework, the dimensionality of the problem becomes large. This makes real-time
6DOF pose estimation challenging in many situations, or even unrealistic for the ex-
isting robots and computational resources available on the AQUA robot. A secondary
contribution is the novel use of the Normal Distribution Transform (NDT) [53] for the
efficient likelihood estimation of range data. Although ray-casting is a well studied field,
high frame-rate video generation remains time-consuming. The NDT on the other hand
allows a direct lookup of the (approximated) range likelihood, saving considerable com-
putational time when compared to the ray-casting approach. The combination of these
two contributions provides a computationally affordable approach to pose estimation,
making it feasible for 6DOF devices.

1.3 Structure of this work

The remaining sections are laid out as follows. Chapter 2 presents a brief history of
pose estimation and existing approaches to its solution, along with a description of the
use of the Extended Kalman filter for estimating the orientation. Chapter 3 derives the
necessary filter for 6DOF pose estimation, and along with examples of its operation,
outlines the computation of the various required distributions. Chapter 4 examines the
results of various experiments used to validate the filter. Results comparing the filter
to a naı̈ve particle filter are also presented. Finally, Chapter 5 provides a summary and
discusses potential future work and applications for the filter.
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Chapter 2 Previous work

More and more tasks are being assigned to robots, as the required technologies enabling
their use develop. Mobile robots are increasingly employed in cutting-edge automated
warehouses and deployed to monitor workspaces, such as nuclear facilities, that may be
hazardous for people to enter. Operating in restricted or controlled environments, these
robots are often able to rely on direct positioning systems, such as patterns embedded in
floor tiles [32], GPS systems [55], and other external positioning cues. Being unaware
of their location could be disastrous for any of these robot systems. While mistakenly
retrieving a book from the wrong shelving unit at an Amazon warehouse would be
bad for business, a wrong turn at a nuclear facility might result in disaster. Even the
seemingly trivial task of bringing a cup to the kitchen may be next to impossible if
the robot is unaware of where the kitchen is in relation to itself. Although wandering
around aimlessly is workable for a simple device such as the Roomba vacuum cleaner
[40], it clearly would not be effective for more complicated systems and tasks. As
the workspaces accessible to robots become more complex, it similarly becomes more
critical for a robot to be able to determine its location within the workspace.

Pose estimation is the task of determining the most likely pose of a robot, based on
information gathered over time, such as control inputs and sensor readings. There are
two broad classes of pose estimation: local pose estimation and global pose estimation
[21]. Local pose estimation (also known as pose tracking) deals with the problem of
tracking a robot as it moves, given an approximate initial pose. Since the initial pose
of the robot is known approximately, the search process for identifying the robot’s
location can be focused on a local subset of locations within the known map. Although
local pose estimation may not be needed in a perfect world, it becomes necessary when
considering the robot’s imperfect execution of control inputs. Unintended results like
wheel slippage, overshooting a target distance or being bumped by outside influences
(i.e., people pushing the robot) cause errors to occur in the robot’s estimate of its
position. These errors accumulate over time resulting in a highly degraded estimate of
the robot’s position, as shown in Figure 2.1. Given the importance of this problem a
wide range of different algorithmic solutions have been proposed to address this problem.
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Figure 2.1: A typical expansion of a robot’s evolving belief due to motion. The motion
of the robot is modeled, including uncertainty, resulting in an increasingly uncertain
estimate of the robot pose. Rotation, typically being less reliable than translation, results
in an increase in uncertainty after the first turn. After the second turn and some forward
motion, the robot’s belief has degraded considerably. Outside correction, using sensors,
is needed in order to reduce the uncertainty. Figure taken from [7].

Global pose estimation is concerned with locating a robot lacking prior knowledge of
its location [41]. Since the initial pose is unknown, there is no good prior estimate upon
which to build processes, such as those widely used for local pose estimation. Given
a set of sensor measurements from a single location, there are multiple, simultaneous
poses which are equally likely or possible. This often prevents the use of methods
which are successfully used for local pose estimation. However, once the global pose
estimation process converges around a single estimate, the global pose estimation prob-
lem essentially simplifies to one of local pose estimation. Given the need to represent
multiple possible poses in solving either the local or global pose estimation process,
the use of a probabilistic representation to encode potential robot pose(s) is common.
Two basic approaches have emerged in the literature, Kalman- and particle-filtering:
the (extended) Kalman Filter represents the robot pose as a unimodal distribution while
various particle-filtering systems use a sampling approach. See [52] for an approach
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that uses Kalman filters, and [28, 58, 14, 5, 19, 27, 52, 63] for a variety of example
approaches using particle filters.

This chapter reviews existing work on global pose estimation. Section 2.1 covers the-
oretical probabilistic estimation. Section 2.2 reviews various approaches that have been
used to implement the theory in realistic situations. Section 2.3 provides an overview
of Kalman filtering and also outlines the extended Kalman filter used in this work for
estimating a vehicle’s orientation. Finally, Section 2.4 outlines the Normal Distribution
Transform (NDT), which generates a likelihood function defined on a map or range scan
(typically used for map building). Components of the NDT are used in Chapter 3.

2.1 Probabilistic estimation in theory

The problem of pose estimation is an inherently probabilistic one, due to the need to
model uncertainty and noise in the collected data, as well as error in the actual motion
of the robot. In practice it is very difficult to determine with certainty a single pose
which satisfies the motion estimates and sensor measurements. Instead, a more effective
approach is to generate a probability distribution which represents the likelihood that
the robot is located at a certain pose X , given a set of observations and controls Y .
This distribution p(X|Y ), the probability that X occurs given Y , is called the posterior
probability; p(X|Y ) is also known as the belief. Peaks in the belief function correspond
to likely pose estimates. Estimating the robot’s true state then becomes the task of
collapsing the belief into a single estimate, typically by choosing the maximum a
posteriori (MAP) value, although other approaches are possible, such as the minimum
mean square error (MMSE) (see [60] for a comparison). Unfortunately, there is always
a possibility that the belief function has converged to an incorrect pose estimate. The
kidnapped robot problem [11] deals with detecting when the belief no longer represents
the actual state, and correcting it. This failure can occur simply because of accumulated
sensor errors, it may be due to only sampling in an incorrect region of the map, or it
may be because the robot has literally been picked up and “kidnapped” to a new location.

What is desired, then, is a robust approach which is able to estimate a mobile agent’s
state based on past observations and commanded motion. Section 2.1.1 discusses an
approach that has been developed for general, recursive state estimation. The application
of this approach to robot pose estimation is discussed in Section 2.1.2.
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bel(xt) = p(xt|z1:t, u0:t−1)

= p(xt|zt, z1:t−1, u0:t−1)

Expand according to Bayes rule:
= p(zt|xt,z1:t−1,u0:t−1)p(xt|z1:t−1,u0:t−1)

p(zt|z1:t−1,u0:t−1)

Define η as a normalizing constant = 1
p(zt|z1:t−1,u0:t−1)

= η p(zt|xt, z1:t−1, u0:t−1) p(xt|z1:t−1, u0:t−1)

By the Markov assumption:
= η p(zt|xt) p(xt|z1:t−1, u0:t−1)

Expand the last term using the theorem of total probability
= η p(zt|xt)

∫
p(xt|xt−1, z1:t−1, u0:t−1) p(xt−1|z1:t−1, u0:t−1)dxt−1

By the Markov assumption
= η p(zt|xt)

∫
p(xt|xt−1, ut−1) p(xt−1|z1:t−1, u0:t−1)dxt−1

But p(xt−1|z1:t−1, u0:t−1) = bel(xt−1)

= η p(zt|xt)
∫
p(xt|xt−1, ut−1) bel(xt−1)dxt−1

Figure 2.2: Derivation of the recursive belief updating rule, following the derivation
found in [7] and [66].

2.1.1 Bayes filter

The Bayes filter [61] provides a general framework with which to recursively estimate
the state of a system given a series of measurements. It is used to estimate the
posterior probability density over the state space conditioned on (noisy) data and (noisy)
commanded motions. The posterior probability density is also called the belief, which
reflects the filter’s “belief” regarding the state of the parameters being estimated. Bayes
filters are used to estimate a belief for some state xt at time t, given observations z1:t and
inputs u0:t−1 (where zm:n or um:n indicate observations between time m and n)2. As time
goes on, the amount of data z1:t and u0:t−1 that must be included in the estimate grows,
eventually becoming computationally unattractive. It would be beneficial to eliminate
past data by making the filter recursive, and only condition it on the previous state and
current sensor data. The data accumulated prior to the last state would not need to be
considered, since a recursive filter would depend only on the most recent information.

Following the derivation found in [7] and [66], a recursive version of bel(xt) may be

2 We assume that command u0 is executed first, resulting in state x1. Sensor measurement z1 is then
observed while in state x1. Command u1 is then executed, resulting in state x2, etc.
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calculated. Without any simplifying assumptions (i.e., using only mathematical identi-
ties) one can show the following (see Figure 2.2):

bel(xt) = η p(zt|xt, z1:t−1, u0:t)

∫
p(xt|xt−1, z1:t−1, u0:t−1) bel(xt−1)dxt−1 (2.1)

In this formulation the probability density functions (pdfs) rely on past data; estimating
these probabilities in general is complex. In some cases however, it is possible to use
realistic assumptions to simplify the parameters for the pdfs. A common assumption
is the Markov assumption [7], which in this context states that past and future data are
(conditionally) independent if the current state is known. Assuming the state xt−1 is
complete (that is, no collected data or states prior to xt−1 would improve our prediction),
we may then simplify the pose pdf as follows, resulting in the state transition probability:

p(xt|xt−1, z1:t−1, u0:t−1) = p(xt|xt−1, ut−1) (2.2)

Similarly, we may model the measurement probability and simplify it as follows (again
assuming xt is complete and using the Markov assumption):

p(zt|xt, z1:t−1, u0:t−1) = p(zt|xt). (2.3)

Using these simplifications, we may substitute equations 2.2 and 2.3 into equation 2.1,
resulting in the following (full derivation in Figure 2.2):

bel(xt) = η p(zt|xt, z1:t−1, u0:t−1)

∫
p(xt|xt−1, z1:t−1, u0:t−1) bel(xt−1)dxt−1

= η p(zt|xt)
∫
p(xt|xt−1, ut−1) bel(xt−1)dxt−1.

This form is known as the Bayes filter, and reduces the problem of estimating bel(xt) to
computing three (relatively) basic probability distributions:

p(xt|xt−1, ut−1) the state transition probability
p(zt|xt) the measurement probability
bel(x0) the initial belief

Being recursive, the filter must have an initial state bel(x0) from which to start. Various
methods may be used for initializing this, although two are prevalent. The first simply
assumes a uniform distribution over the entire space, indicating a total lack of knowledge
regarding the true state. The second approach assumes some prior information about the
initial state. If the initial pose (in the case of robot pose estimation) is roughly known,
then some normal distribution with its mean at the approximately known pose may be
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used.

Once initialized, only two distributions remain that must be estimated at each iter-
ation of the filter. The meaning of the state transition and measurement probabilities
depend on the context in which Bayes filter is employed. Note that if the measurements
are independent of time that p(zt|xt) may be simplified to p(z|x). This might permit an
a priori computation of (a portion of) the PDF, resulting in a reduction of the required
computational time for each update.

2.1.2 Markov Localization

The application of Bayes filter, with the Markovian assumptions described above, to
the problem of robot localization is known as Markov Localization [7]. See Figure 2.3
for a simple one dimensional example of Markov Localization. The previously defined
state xt being estimated is now defined as the state of the robot (its pose, and any
other state-relevant information) at time t. The belief regarding the state xt may now
be estimated using the available data yt = {ut−1, zt}. Let ut be control data directing
the robot’s motion at time t and let zt be sensor measurements observed at time t.
Further, let uti:tj and zti:tj denote the control data and sensor measurements collected
between time ti and tj and assume that control action ut−1 is executed prior to sensor
measurement zt. This application of Bayes’ filter to robot pose estimation involves the
development of appropriate representation formalisms for the pdfs and estimation of the
vehicle motion p(xt|xt−1, ut−1) and measurement processes p(z|xt).

Due to the nature of robot motion, it is extremely difficult to say with certainty what
the outcome of any control input might be: even a command to remain stationary may
not be successfully executed, since the robot could be bumped or slide down a slope.
For this reason the state transition probability makes use of a motion model to estimate
the result of control inputs. The motion model is generally dependent on the specifics
of the robot platform employed, although certain implementations are robust enough
that a general model can be used. Given an estimate of the previous pose xt−1 and a
control input ut−1, the state transition probability p(xt|xt−1, ut−1) is used to estimate
the likelihood of the state xt. A probabilistic model of the robot’s motion is used to
compute where, with varying likelihood, the robot will arrive. Since a single control
input may result in a variety of outcomes, the state transition introduces uncertainty into
the pose estimate of the robot. The uncertainty introduced for this is dependent on the
characteristics of the robot being used. For example, a robot may be quite accurate in
linear translational motion, but tend to lose accuracy during rotational motion (common
in differential drive robots). Figure 2.4 shows the results of various noise parameters for
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Figure 2.3: The changing belief of a 1DOF robot, as control and sensor data are in-
tegrated using Markov localization. The robot’s initial pose belief is represented as a
uniform distribution (a). At the next time step, the robot detects a door in (b), and up-
dates the belief accordingly. The likelihood of detecting a door is reflected in p(z|x),
which represents the probability of observing a door given pose x. (c) Shows the belief
after having moved forward some distance. Note that the peaks have smoothed out, due
to uncertainty regarding the final motion resulting from the given motion command. In
(d) the robot again senses a door, and upon integrating this new observation, the belief
now strongly represents the correct pose. After further movement, the belief in (e) is
again smoothing out. Figure reprinted from [7].
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Figure 2.4: The motion model of a differential drive robot. The robot in (a) exhibits
accurate forward motion, but considerable error due to rotational slip, typical of such a
vehicle. (b) Shows very little rotational slippage, but reduced accuracy for translation.
(c) Is similar to (a), but has even greater accuracy for translation, and reduced accuracy
for rotation. Figure reprinted from [7].

the motion model of a differential drive vehicle.

The measurement probability p(zt|xt) is used to improve the estimate using evidence
observed by the robot. Given an observation zt observed by the robot’s sensors, the
measurement probability estimates the likelihood of observing such a reading given the
pose xt. This is generally accomplished by comparing the real observation with a virtual
one generated using an a priori map. As such, the measurement probability is sometimes
stated as p(zt|xt,m), where m (or mt, if the map changes over time) is an a priori map
given to the robot. Various similarity measures are possible, but two commonly used
ones are the beam model for range finders [6] and the a priori likelihood map [7]. Both
are formulated only for a single range data point, even though range scanners generally
provide denser data using a scanning sensor. It is therefore commonly assumed that
the probability for a data set zt, consisting of i range points, zit, is computed as a
combination of the individual points according to p(zt|xt) =

∏
i

p(zit|xt).

In [6] a sensor model is developed which computes the measurement probability
based only on the expected distance from the map. The probability function suggested
is the union of several independent functions and has been shown to work well in prac-
tice. Experiments show a decrease in failures from 39.5% and 10.2% to 7.8% and 6.8%,
respectively, when compared to other approaches [6]. The probability of observing a
certain range is formulated as a mixture:

p(zt|xt) = α1 phit(zt|xt) + α2 pshort(zt|xt) + α3 pmax(zt|xt) + α4 prand(zt|xt)
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sphit(zt|xt) =

{
η ∗N(zt; z

∗
t , σ

2
hit) if 0 ≤ zt ≤ zmax

0 otherwise

pshort(zt|xt) =

{
λshort exp(−λshort zt))

1−exp(−λshort z∗t )
if 0 ≤ zt ≤ z∗t

0 otherwise

pmax(zt|xt) =

{
1 if zt = zmax

0 otherwise

prand(zt|xt) =

{
1

zmax
if 0 ≤ zt ≤ zmax

0 otherwise

Figure 2.5: Four component PDFs for a range finder’s beam model [6].

where zt is the observed range and z∗t is the expected range (for details see Figure 2.5
and 2.6). The measurement probability is defined as the composition of four distinct
distributions. The first of these, phit(zt|xt), is a Gaussian distribution centered on the
range expected to be observed at xt. This represents the fact that noise is present in the
range sensor, preventing an exact, perfect reading. The next distribution, pmax(zt|xt),
represents the fact that it is possible for an object to simply be out of range for the
sensor, in which case many sensors return a fixed maximum value. The probability of
observing something nearer than expected is modeled by pshort(zt|xt). This is motivated
by the fact that while detecting something between the robot and the expected object is
possible, anything passing behind the object would be shielded by the object itself and
therefore not detected. Finally, prand(zt|xt) handles random, unexpected readings, such
as the sensor simply failing to detect an object.

An alternative method makes use of the likelihood field (shown in Figure 2.7) which
can be precomputed and then used as a lookup table. This approach represents the like-
lihood of the robot’s range finder detecting an object at some location on the map, deter-
mined relative to the robot’s current pose. For example, given a pose estimate (x, y, θ),
and an object detected at φ degrees relative to the robot’s pose, at a distance r, then the
likelihood field estimates directly the probability of the range finder reporting an object
at (x′, y′). Define (x′, y′) as:

x′ = x+ cos(θ + φ) r

y′ = y + sin(θ + φ) r

One advantage of this approach is that it does not require the computation of the
expected sensor output. Instead, it simply projects the observed data onto the likelihood
map. The obvious down side is that, for example, detecting an object at a distance of
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Figure 2.6: A visualization of the components distributions for the beam model. Prior
to running the filter, a separate set of distributions is generated for each expected range
z∗t . Reprinted from [6].

2m ignores the possibility that an object should have been detected at a distance of 1m
according to the map. Although a flaw, it does not appear to be very problematic: trials
for this work show that over time such readings tend to naturally become inconsistent
with the map, largely negating the problem.

Other methods for defining either the state transition probability or the measurement
probability are also possible. In fact, depending on the sensors employed by the robot,
entirely different approaches may be required. The robot may depend on vision, for
example, or make use of an alternative representation of its environment. In either case,
the Bayes’ filter may still be applied, and only the specific probability distribution needs
to be adjusted.
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(a) (b)

Figure 2.7: Example likelihood field (b) for a simple environment (a). Reprinted from
[7].

2.2 Practical estimation

Section 2.1 discussed Bayes filters and the specific application of the Bayes filter to pose
estimation, called Markov localization. Markov localization may be implemented in a
variety of ways, each with its own benefits and drawbacks. A common theme in each of
these implementations is that they must all deal with representing the real (continuous)
world on a discrete computer. Bayes’ filter is likewise defined as a continuous function
over the entire state space (the robot’s world in Markov localization). Unfortunately, ex-
cept in special cases such as those exploited for Kalman filters, the nature of the functions
required for pose estimation generally prevents the computation of continuous solutions
for the belief. In this section we discuss several existing approaches to the problem,
beginning with a discrete grid approach.

2.2.1 Discrete grid localization

An approach popular in early implementations (e.g., [6, 16, 5, 34, 25, 62]) of Markov
Localization is the discretization of the state space using a grid based representation.
By dividing the state space into a grid, a probability can be maintained for each grid
cell, where each cell is used to represent a potential pose. Using the simplest approach,
each of these cells must be updated every time the robot moves and each time a sensor
reading becomes available. Due to the discretized nature of the representation, the
cell size limits the accuracy with which the robot can localize itself: there is a clear
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Figure 2.8: A discrete grid representation of a robots state space. Each layer is used to
represent one parameter of the state x, y, θ. Reprinted from [7]

trade off between accuracy and computational/space requirements. Increased cell size
requires less computation but likewise results in a less accurate estimate. On the other
hand, dividing the space into smaller cells is more accurate, but also increases the time
required to update the belief.

The basic approach for updating each cell (potential pose) xi in the grid involves
calculating the probability of the robot arriving at xi from any cell in the space. The
first step for each cell xi is to compute

∫
p(xi|xt−1, ut−1)dxt−1, based on the existing

belief and the current motion command. Additionally, after recording a sensor reading,
the grid is again updated by calculating the likelihood of observing that sensor reading
at each cell. That is, for each xi, update the probability according to p(xi) p(z|xi).
Since the sensor likelihood is independent of time, [6] shows that we may pre-compute
a portion of the sensor likelihood function. Further computational improvements
include selectively updating only portions of the grid, which reduces the computational
requirements, although memory requirements are unaffected. See [6] for more details.

The Dynamic Markov approach, introduced in [16], attempts to deal with the
problem of selecting a cell size and updating the many states. An octree [41] is
used to represent the state space (since three parameters are required), and the size
of the cells is varied dynamically according to the current belief. The grid is ini-
tially divided at a coarse resolution, until peaks develop in the belief, at which time
sections of the grid are refined (divided) dynamically. To further improve efficiency,
a selective update strategy is used to only update likely states, ignoring unlikely
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states. A single probability is maintained which indicates the likelihood that the actual
pose is not in one of the states being considered. When this probability becomes
large, the belief may no longer represent the actual state. In this case, localization must
be re-initialized as the belief now contains little useful information other than “I am lost.”

Representing and computing the measurement and motion functions works rea-
sonably well for applications such as pose estimation for 2D ground contact robots.
Unfortunately, the approach becomes computationally unattractive when moving from
2D to 3D applications. To illustrate, simply representing the state space for a 30mx30m
room using a naı̈ve 2D grid representation requires roughly 7Mb of memory (assuming
15x15cm cells and 2◦ orientation resolution). The same environment in 3D (using the
same assumptions, and a 3m ceiling) would require approximately 4.3Tb of memory.
Clearly a sparse representation can be used, as in [16], but the sparse representation
must still handle the much larger 3D space.

It is obvious then that uniform sampling of the state space is computationally ex-
pensive, even when only considering three pose parameters. The probabilities for many
cells must be maintained, despite the fact that a majority of those cells represent unlikely
poses. For this reason, even for 2D pose estimation, alternative approaches have been
developed which focus computation more specifically. Particle filtering is currently the
most popular method in the literature and is discussed in the next section.

2.2.2 Monte-Carlo localization

Particle filters have emerged as a very popular approach to the pose estimation problem
(e.g., [50, 26, 33]), as they address both memory and computational requirements for
2D robots. Monte-Carlo Localization (MCL) is a particle filtering approach applied
to robot localization (cf. [19] for particle filters in general, and [58, 7, 67] for the
application of particle filters to robotics). Particle filters estimate the desired probability
distribution using a sample based approach. When applied to pose estimation, this
results in some number of particles being distributed in a map of the environment: each
particle (denoted as pi = {xi, wi}) represents a pose xi and an associated measure of its
correctness wi, the importance weight. At each time step the particle set is updated (see
Figure 2.9) using the control input and sensor data. The update process tends to increase
the uncertainty when given a control input (due to uncertainty in the result of motion)
and then reduces the uncertainty when integrating the sensor measurement.

As it may be very difficult (or impossible) to sample directly from the desired
probability p(xt|u0:t−1, z1:t), an alternative distribution is sampled instead. Importance
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input: {control ut−1, sensor measurement zt, particle set P }

For i = 1 to |P| do
draw a random particle p from P according to wi ∀ pi ∈ P
generate the new pose p′ ∼ p(p′|ut−1, p)
w’ = p(zt|p′)
P’ = {P’, { p′, w′ }}

end for

normalize all w′ ∈ P’ such that
∑

iw
′
i = 1

return P’

Figure 2.9: The basic MCL algorithm. After [24].

sampling [28] works by sampling from this alternative distribution, and then correcting
the resulting belief by estimating a weight which reduces the difference between the
sampled, alternative belief and the desired belief. As the complexity of importance
sampling increases with time, a recursive approach is desirable. Sequential importance
sampling (SIS) [10, 18] provides a recursive algorithm to estimate the required weight
at time t, given the weight at t− 1.

A key issue with particle filters is the tendency for most particles’ weight to become
too small to affect the belief of the robot. As a result, a small set of particles tend
to falsely gain high probability while the remaining particles tend toward a negligible
probability. To prevent this, a bootstrap filter [61] is used (also known as Sampling
Importance Resampling) to address this issue. When the algorithm determines it is
required, the bootstrap filter re-samples the particle cloud. Particles are eliminated or
retained according to their weight; particles with low probability tend to be removed,
and particles with high probability tend to be duplicated. Figure 2.10 outlines the low
variance resampler [7].

The number of particles required to localize the robot effectively may be set as a
constant at initialization, or adjusted while running. In introducing MCL, [4] decided to
adapt the particle size by integrating the control and sensor data in one step. They sample
until

∑
iwi is greater than a preset threshold η, motivated by the fact that particles in

highly likely areas will have a large weight, requiring fewer samples. Particles placed in
unlikely places have a low weight and contribute relatively little to the sum. On the other
hand, a method known as KLD sampling (based on the Kullback-Leibler distance) [23]
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input: {Particle set Pt, Particle size M}

Pt = {φ} A new particle set
r = rand(0,M−1)
c = P 1

t .w
i = 1
For m = 1 to M do

U = r + (m− 1) ∗M−1

while U > c
i = i+ 1
c = c+ P i

t .w
end while
Add P i

t to Pt
end for

return Pt

Figure 2.10: Low variance sampler. From [7]. Notationally P i
t is the ith particle of the

set, and P i
t .w is the weight associated with that particle.

adapts the size of the particle set such that, with some probability 1−δ, the error between
the true posterior and the sample-based approximation is less than ε. The algorithm
works by tracking where particles are placed in the space and then sampling until the
particle size n is reached. If a particle is placed into an empty “bin” in the space, then
the particle size is recomputed according to the approximation

n ' k − 1

2ε

{
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

}3

(2.4)

where k is the number of non-empty bins in the space and z1−δ is the upper 1 − δ
quantile of the normal distribution with zero mean and unity variance. The result is that
when the particle set is focused on a small region of the map, fewer particles are placed
than when the particle set is distributed widely.

Robots must often operate in environments with people and other dynamic events,
and even advanced sensors may still return incorrect data at times. In [8], adjustments
to Markov localization are discussed for environments which contain a large amount of
dynamic content. They utilize an entropy filter to ignore those sensor readings which
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increase the entropy of the robot’s belief: only sensor readings which confirm the robot’s
belief are incorporated within the particle filter. In addition, a novelty filter is used which
eliminates sensor readings for obstacles which are ‘novel’, i.e. unexpected. If an individ-
ual reading, in a scan from the sensor, is shorter than expected with a probability greater
than θ (set to 0.99 in [8]’s experiments), then that reading is ignored. Experimental result
show standard localization failed in 27% of cases, while the addition of these filters re-
duces the failure rate to less then 2%. This filter is particularly useful in situations where
portions of the sensor scan are frequently corrupted by mobile features, such as people.
These temporary influences are clearly not part of the map, and as such their presence
in the scan does not contribute positively to the estimated likelihood. Detecting, and
removing them is therefore advantageous, as validated by experimental results.

2.2.3 Rao-Blackwellized Particle Filters

Although particle filters are effective when sampling a small number of parameters,
even particle filters can become ineffective when the dimensionality of the state space
increases. Rao-Blackwellization is an approach that can be used to improve the
performance of a particle filter if the structure of the state-space model allows for some
of the parameters to be marginalized out, conditioned on the remaining parameters [70].
Rao-Blackwellized particle filters are used to estimate the posterior using a parametric
pdf to represent a subset of the parameters, conditioned on the remaining, particle
sampled parameters. It is assumed that the parametric distribution can be computed
relatively efficiently. Only the remaining parameters need to be sampled (in the reduced
state space) which can be accomplished using particle filters [7, 17].

Formally, the desired belief is again represented as bel(xt) = p(xt|z1:t, u0:t) (see
Section 2.1.1). If the state space can be divided as X = {P,R}, then using the chain rule
of probability, we can rewrite bel(xt) as follows:

bel(xt) = p(xt|z1:t, u0:t)

= p(rt, pt|z1:t, u0:t)

= p(rt|pt, z1:t, u0:t)p(pt|z1:t, u0:t)

If we can efficiently compute p(rt|pt, z1:t, u0:t) analytically (e.g., using a Kalman filter,
or some other parametric filter), then only p(pt|z1:t, u0:t) needs to be sampled using a
particle filter [28]. The sampling of this reduced space can generally be accomplished
using far fewer particles compared to standard particle filters operating on the entire
search space. In addition to sampling p(pt|z1:t, u0:t), each particle must now also carry a
parametric representation of p(rt|pt, z1:t, u0:t).
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Rao-Blackwellization has been applied very successfully to various robotics areas.
For example, FastSLAM [51] makes use of Rao-Blackwellization to reduce significantly
the computational requirements of Simultaneous Localization and Mapping (SLAM).
The FastSLAM algorithm first computes robot path estimates using a particle filter. Each
particle then maintains a collection of landmark estimates computed analytically using
Kalman filters, conditioned on the path estimate. Rao-Blackwellization has also been ap-
plied to tracking the attitude and position of an air-vehicle. Here the attitude parameters
are sampled using particles, while the position is estimated using GPS position fixes and
a parametric filter [70].

2.2.4 So where is the robot?

When a definitive solution for the robot’s pose is needed, a single pose estimate must
be determined from the PDF of the belief. Unfortunately, there is no straight-forward
solution to this problem: at any given time the particle filter may represent a multi-modal
distribution. In the context of pose estimation it is therefore often meaningless to take
a simple mean or the minimum mean square error (MMSE) of the particle filter as a
reasonable estimate of the true pose. For example, the estimate resulting from the mean
of multiple peaks may be a pose with very low probability [20, 30].

The maximum a posteriori (MAP) estimate is better able to deal with the presence
of multiple modes. MAP estimation can be used to determine an optimal solution over
a time sequence [30], or only for the current state [3]. Simulated annealing or genetic
algorithms have been applied to solving the global optimization problem, although they
are not easily used for sequential MAP estimation [30]. In [9, 30, 44] the particle rep-
resentation is considered as a randomized adaptive discrete grid approximation of the
target distribution. As the transition and observation probabilities can be evaluated for
any two consecutive states, the particle filter approximation can be considered a Hidden
Markov Model [30]. The Viterbi algorithm [73] is then applicable to determining a MAP
sequence for any time t, although the memory requirements grow with time. If a MAP
estimate for only the past k states is sufficient, then the memory requirements are con-
stant, although the computational complexity is high (O(N2)). This cost is reduced to
O(NlogN) in [44] through various optimizations, making the approach more feasible.

2.3 Orientation and the Kalman Filter

The Kalman filter [64] can be used to estimate the states of a linear system which has
been corrupted by certain types of noise (i.e., gaussian noise). Two key objectives of the
Kalman filter are that the expected value reported by the filter should equal the expected

26



value of the true state and the error variance is minimized. Informally, the Kalman
filter is a Bayes’ filter within which the probability distributions are assumed to be
Gaussian, the Markovian property holds, and plant and measurement processes are linear.

Assume that the system is described by a state x which, in the case considered here,
cannot be measured directly; the Kalman filter estimates the state by measuring the sys-
tem output y. A process model is then required which describes the expected response
of the system. Given this process model (or state equation), the state xk+1 can then be
estimated by the Kalman filter given the state estimate xk and the control input uk sent
to the system. The effect of the control input on the system is modeled by Γk. Both the
measurement (Λk) and the process models (Φk) are assumed to be corrupted by noise (Cv
and Cw respectively), which must be uncorrelated and have zero mean. Once the process
model generates an expected outcome, the estimate must then be corrected based on the
recorded measurement yk+1.

x̃k+1 = Φk~xk + Γ~uk (2.5)

P̃k+1 = Φk
~PkΦ

t
k + Cv,k (2.6)

Kk+1 = P̃k+1Λt
k+1

(
Λk+1P̃k+1Λt

k+1 + Cw,k+1

)−1

(2.7)

xk+1 = x̃k+1 +Kk+1 (yk+1 − Λk+1x̃k+1) (2.8)

Pk+1 = P̃k+1 −Kk+1Λk+1P̃k+1 (2.9)

Equations 2.5 and 2.6 estimate the next state without considering the latest measure-
ment. A mixture matrix K (known as the Kalman gain) is computed in Equation 2.7,
which weights the measurement and the process model. If the measurement noise is
large, K will be small, and little weight will be given to the measurement. A small mea-
surement noise results in K being large and hence more importance will be assigned to
the measurement. Finally, Equations 2.8 and 2.9 apply this correction, resulting in the
next filtered estimate of the state. There is insufficient space here to go into the full de-
tails of Kalman filtering. For more details including a complete derivation of the Kalman
filter and its assumptions see [64, 75]. The original Kalman filter paper is [43].

2.3.1 Representing orientation

The estimation of orientation is a well studied problem in the literature
[59, 12, 76, 56, 48] and is useful in a wide variety of applications. While orienta-
tion is commonly represented using the typical roll, pitch and yaw parameters, they
suffer from a draw-back known as gimbal lock. Gimbal lock occurs when two of
the axes become parallel, which effectively eliminates one sensing axis. Quaternions
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provide an alternative representation which addresses this problem (see [71, 74] for an
overview). Here orientations are represented as 4D vectors, removing the problem of
gimbal lock and allowing for simple concatenation of successive rotations. Quaternions
are a popular representation for orientation in a variety of areas, including robotics and
3D computer graphics.

Since the measurement model for an orientation system is not linear, the Kalman filter
cannot be applied to 3D orientations (and quaternions) directly. However, alternative
versions of the Kalman filter exist that are applicable to orientation. In the following
section the quaternion based, Extended Kalman filter used in this work is described.

2.3.2 EKF for orientation estimation

Although Kalman filtering is excellent for the estimation of linear systems, estimating
the orientation of a vehicle is not a linear problem. The Extended Kalman filter [64]
solves this by extending the plant and measurement models in the Kalman filter. This
extension is performed by linearizing the plant and measurement functions around the
current estimate of the filter using the partial derivatives of the plant and measurement
model. In this way, the problem can be considered linear in the region surrounding the
current estimate. In this section we review the filter introduced in [59], making minor
modifications to their notation for readability. Although the algorithm in this work treats
orientation estimation as a black box, it is useful to gain insight into the working of such
a filter. For further details of the EKF and its application to orientation estimation see
[59, 48].

To begin with, define the orientation of a coordinate system B (i.e., the robot), as a
rotation relative to a reference coordinate frame N (i.e., the world). Given a rotation
quaternion ~q = [q1, q2, q3, q4]T , the transformation of a vector ~x3x1 from N to B can be
defined as

~xb = Cb
n[~q] ~xn

where

Cb
n[~q] =

1

‖~q‖

q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q2

1 + q2
2 − q2

3 + q2
4 2(q2q3 + q4q1)

2(q1q3 + q2q4) 2(q2q3 − q4q1) −q2
1 − q2

2 + q2
3 + q2

4

 (2.10)

and

‖~q‖ =
√
q2

1 + q2
2 + q2

3 + q2
4.
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Given the angular velocity ~ω = {p, q, r}B of a body relative to N , then the angular
motion of a rigid body obeys the differential equation

d

dt
~q = Ω[~ω] ~q

where

Ω[~ω] =
1

2


0 −r q p
r 0 −p q
−q p 0 r
−p −q −r 0

 .
Assume that sensor readings are taken at an interval of Ts such that ~ω is effectively
constant between samples, and ~ω Ts → 0, i.e., the overall change in orientation per time
step is vanishingly small. Then the small angle approximation can be used, allowing the
quaternion prior to sample k to be incrementally updated as follows (from pages 511 and
755 of [74]):

~qk+1 = exp (Ω[~ωk] Ts) ~qk

=


cw r sw −q sw p sw

−r sw cw p sw q sw
q sw −p sw cw r sw
−p sw −q sw −r sw cw

 ~qk
where

sw = sin

(
Ts
√
p2 + q2 + r2

2

)
and

cw = cos

(
Ts
√
p2 + q2 + r2

2

)
.

In order to apply a Kalman filter, the processes being estimated need to be modeled
so that predictions can be made. The work in [59] assumes that the orientation sensors
incorporate a gyro, an accelerometer (i.e. the two typical components of an IMU) and a
magnetometer. The output of these sensors varies according to the actual angular velocity
~ωtrue, the total acceleration experienced by the device (due to gravity ~g and the device’s
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acceleration ~abody) and earth’s magnetic field ~h. Due to various corrupting influences,
these values cannot be measured directly, and instead are modeled as [59]:

~ω = ~ωtrue +~bg + ~vg

~a = Cb
n(q)(~g + ~abody) +~ba + ~va (2.11)

~m = Cb
n(q)~h+~bm + ~vm.

Where ~bg,~ba,~bm are bias vectors and ~vg, ~va, ~vm are uncorrelated white Gaussian
measurement noise with zero mean and covariance matrices Σg,a,m = σ2

g,a,mI3x3,
respectively.

The Kalman filter makes use of two equations to compute expected values which
can then be compared to the actual values. The a priori equation known as the state
transition equation predicts what the next state should be, based on the best estimate of
the last state, without any current sensor evidence. This filter combines the incremental
rotation update from equation 2.11 and the bias vectors:

~xk+1 = Φ(Ts, ~ωk) + wk

=

exp(ΩkTs) 0 0
0 I3x3 0
0 0 I3x3

qkbak
bmk

+

 ~wqk~wak
~wmk

 . (2.12)

Once the next state has been predicted, the estimate needs to be corrected using evidence.
The a posterior estimate can be computed from the a priori estimate by comparing the
observed and expected data. The measurement model is used to generate an estimate of
what the sensor measurements should be according to the a priori estimate.

~zk+1 = f(~x −k+1) + ~vk+1

=

[
Cb
n(qk+1) 0

0 Cb
n(qk+1)

] [
~h
~g

]
+

[
~bak+1
~bmk+1

]
+

[
~vak+1

~vmk+1

]
(2.13)

Since the measurement model is not linear, as the Kalman filter requires, it needs to be
locally linearized for the covariance calculations, by computing its Jacobian around the
apriori estimate:

Fk+1 =
∂

∂~xk+1

~zk+1

∣∣∣~xk+1=~x −
k+1

(2.14)
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As the filter integrates new data readings, a covariance matrix Pk, indicating the certainty
of the state estimate xk, is maintained. In addition, temporary matrices are also created
at each step; for the state transition, Qk, and for the measurement model, Rk+1.

Qk =

(Ts/2)2 Ξk Σg ΞT
k 0 0

0 Σk
a 0

0 0 Σk
m

 (2.15)

Rk+1 =

[
Ra
k+1 0
0 Rm

k+1

]
(2.16)

where Σk
a,m = Tsσ

2
wa,wm

I3x3

Ra,m
k+1 =

{
σ2
a,mI3x3 conditional on motion, see [59]
∞ otherwise

Ξk =


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3


Combining the developed state and measurement models, the Extended Kalman fil-

ter can now be used to estimate orientation as follows, provided an initial state ~xk and
covariance matrix Pk. Based on ~xk and the angular velocity ~ω, the next state and error
covariance matrix are estimated using the state transition model (a priori):

~x −k+1 = Φ(Ts, ~ωk) ~xk (2.17)

P −k+1 = Φ(Ts, ~ωk) Pk Φ(Ts, ~ωk)
T +Qk (2.18)

The Kalman gain is computed next, functioning as a mixture matrix between the esti-
mated state and covariance, and the measured data: the data known with more certainty
is assigned more weight.

Kk+1 = P −k+1F
T
k+1 (Fk+1P

−
k+1F

T
k+1 +Rk+1)−1 (2.19)

Using this gain, a correction is applied to the estimate and covariance (a posteriori).

~xk+1 = ~x −k+1 +Kk+1[~zk+1 − f(~x −k+1)] (2.20)

Pk+1 = P −k+1 −Kk+1Fk+1P
−
k+1 (2.21)
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2.4 The Normal Distribution Transform

The Normal Distribution Transform (NDT) [53] was originally designed for laser scan
alignment for ground contact robots performing SLAM. The NDT’s feature of interest
here is the likelihood estimator that it generates for a given map. This likelihood repre-
sents the probability that a range measurement reports a point at any particular location
in the map. The NDT is generated by dividing the map, or range scan, composed of a set
of points x, into a two dimensional grid of size n, where the first cell is centered on the
origin. Associated with each cell are the points {~xi} that are contained within the cell;
a mean and covariance is computed for each cell using this set of points. A piecewise
continuous function is thus defined over the entire map, using a normal distribution
conditioned on the points in each cell.

More specifically, for the points in each cell, the NDT computes,

the mean point ~q =
1

n

∑
i

~xi (2.22)

and the covariance Σ =
1

n

∑
i

(~xi − ~q)(~xi − ~q)t. (2.23)

This provides an efficient lookup table for the likelihood of the range finder reporting a
data point anywhere in the map. Standard minimization techniques can then be applied
to correct alignment errors between the reference scan on which the NDT is based and
a newly obtained laser scan. Under the NDT, the likelihood of observing a point ~x
in the map, located in cell (u,v) using a grid centered at (0, 0) may be computed as a
multinomial normal distribution:

p(~x)(u,v) =
1

2π
√
|Σ|

exp

(
−(~xi − ~q)tΣ−1(~xi − ~q)

2

)
. (2.24)

Since the space has been discretized, this approach leads to discontinuities in the distribu-
tion, which [53] compensates for by using four partially overlapping grids, and defining
the overall probability as

PNDT (~x) =
1

4

(
p(~x)(u,v) + p(~x)(u+n

2
,v) + p(~x)(u,v+n

2
) + p(~x)(u+n

2
,v+n

2
)

)
. (2.25)

The normal distribution can easily be defined on higher dimensions and the definition of
the NDT may be likewise extended to higher dimensions. Such an extension is outlined
in [46] and was shown to be useful for 3D scan registration. The algorithm is changed
such that instead of defining a grid using 2D cells, it is defined using a hypergrid of 3D
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Figure 2.11: A 2D NDT map showing the cell divisions in a simple (sparse) map, in-
dicated using blue dots. Brighter areas indicate a higher likelihood of having the range
sensor return a “hit”. Reprinted from [46].

cubes. Although the steps for initializing each cube are identical to equations 2.22 and
2.23, the grid is now centered on the 3D origin. The only other difference then, is that
the likelihood of observing a point ~x in a given cell is defined as

p(~x)(0,0,0) =
1

(2π)1.5
√
|Σ|

exp

(
−(~xi − ~q)tΣ−1(~xi − ~q)

2

)
(2.26)

The application of the NDT to pose estimation will be described in Section 3.5.1.

2.5 Summary

It is clear that pose estimation is an important capability for autonomous robots. Current
solutions for global pose estimation have been shown to work well for robots with
limited freedom of motion. Ground contact robots especially have been well studied,
and various robust approaches have been developed for them. However, because of
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their computational requirements, these solutions quickly become unattractive when
considering vehicles operating with higher degrees of freedom in non-planar environ-
ments. On the other hand, the Kalman filter provides a direct, closed form estimate
of the state, allowing for fast updates since all the matrices can generally be quickly
computed. In comparison with particle filtering, the required time for each update is
trivial; unfortunately, Kalman filtering is not normally applicable to pose estimation.
The primary obstacle with the Kalman filter is its limitation to representing a unimodal
distribution, which is incompatible with the multiple representations needed for position
estimation. Although this limits the applicability of the Kalman filter, it finds wide and
useful application in domains within which its constraints are met. For example, the
EKF can be used to maintain an ongoing estimate of a robot’s 3D pose from direct
pose measurements. Although neither a pure Kalman filter nor a pure particle filter is
appropriate for the problem of pose estimation for 6DOF pose tasks, hybrid approaches
may prove effective. The approach taken in current solutions for estimating the range
likelihood may be too slow when used in 3D situations. The NDT provides an efficient,
alternative likelihood estimator that will be further explored in the following chapter.

In the next section we outline an approach for addressing some of the problems
associated with global pose estimation for 6DOF autonomous agents. Specifically, a
Rao-Blackwellized approach is developed for 6DOF autonomous agents that uses an Ex-
tended Kalman filter for orientation and a particle filter for the other parameters.
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Chapter 3 Localization when orientation is known

Vehicles operating in a 3D environment must maintain a host of parameters specifying
the vehicle’s state. Instead of using a single monolithic system to estimate every compo-
nent of the state, various sub-systems can be used to monitor individual parameters. This
allows an individual sensor to be focused on the task it does well, instead of attempting
to estimate all parameters. For example, many airplanes or helicopters have independent
devices to monitor a variety of aircraft parameters. A variety of status displays (such as
those shown in Figure 3.1) are made available to the pilot. The altitude, airspeed and
vertical speed are computed using air pressure and air flow sensors on the aircraft. On
the other hand, turn, heading, compass and attitude indicators use a combination of an
inclinometer, gyroscope and magnetic compass. Similarly, in pose estimation it makes
sense to decompose the various parameters into individual components, based on the
available sensors, instead of attempting to estimate everything using a single approach.
Taking advantage of hidden structure in the state can make an enormous impact on the
computational requirements for estimating the overall state.

In this chapter, we describe an algorithm for the efficient estimation of the pose for
a device operating in an unrestricted, three dimensional environment, under the assump-
tion that orientation estimation can be achieved independently of position. Section 3.1
derives the filter, while Section 3.2 outlines the general process for using it. The sub-
sequent sections provide a simple example (Section 3.3), and information regarding the
various distributions that need to be computed (Sections 3.4 and 3.5). Finally, Section
3.6 provides an example of the filter in use on a real dataset.

3.1 Derivation of the filter

The purpose of this filter is to estimate a belief regarding the state (position and orien-
tation) of a mobile robot as it varies over time. Let the state of the robot at time t be
defined by Xt = {xt, θt}, where xt denotes the position and θt denotes the orientation of
the robot. Here the position and orientation are vectors encoding the 3D nature of these
values. Further, let Yt denote relevant evidence collected by the robot at time t, and Ym:n
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Figure 3.1: Instrument panel on a helicopter showing, among other things gyro, heading
and altitude dials. Aircraft pilots rely on these instruments to maintain safe flight, when
personal instincts may be unreliable.

the evidence between times m and n. In very general terms, the belief of the robot can
then be stated as

Bel(Xt) , p(Xt|Y0:t) (3.1)
= p(xt, θt|Y0:t) (3.2)

As argued in Chapter 2, it is desirable to split this term into separate subcomponents that
might be computed more efficiently than attempting to establish the full pdf directly. We
can decompose this monolithic pdf using Rao Blackwellization. A typical application of
Rao Blackwellization separating the position and orientation (see Chapter 2.2.3 or [17])
results in either

p(xt, θt|Y0:t) = p(θt|xt, Y0:t) p(xt|Y0:t) (3.3)
or
= p(xt|θt, Y0:t) p(θt|Y0:t) (3.4)

depending on the assumption as to which can be established independently, position or
orientation. Equation 3.3 would be appropriate if the position likelihood, p(xt|Y0:t), can
be decoupled from prior knowledge of the device’s orientation state. Although this is not
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appropriate for the application considered here, it may be useful for other applications
and is an interesting direction for future work. Of interest here is the manipulation
given in Equation 3.4. For a device such as the AQUA robot, the orientation estimate
in p(θt|xt, Y0:t) is not generally affected by position (ignoring the effects of external
noise sources such as local magnetic forces on orientation sensors). This suggests
that a potentially effective mechanism for establishing p(xt, θt|Y0,t) is to decouple θt
and xt using Equation 3.4. The estimate p(θt|Y0,t) can then be used when sampling
p(xt|θt, Y0:t). This is the basic approach taken here; the details of the approach are
outlined in the following sections.

A recursive filter is desired that computes one portion of the state efficiently while us-
ing a sampling approach on the remaining state. Given evidence Y0:t = {u0:t−1, z1:t, i1:t},
let ut be the control inputs for the robot at time t, zt be the sensor readings used as
evidence for the robot’s position at time t, and let it be the IMU data used for orientation
estimation at time t. Assume that control ut−1 is executed at state Xt−1, and that this
commanded motion results in state Xt. The sensor data zt and it are subsequently col-
lected while the device is in state Xt. Note that neither z0 nor i0 are collected, since it is
assumed that u0 will be executed prior to the first data collection; similarly, there is no ut.

Given some independent mechanism of estimating orientation, how can we reformu-
late the conditional pdf, p(Xt|Y0:t), to exploit this? Consider the Bel(Xt): after applying
the theorem of total probability over θt−1, the belief (or joint posterior distribution) can
be rewritten as

Bel(Xt) , p(Xt|Y0:t)

= p(xt, θt|Y0:t) (3.5)

=
p(xt, θt, Y0:t)

p(Y0:t)
. (3.6)

Applying the theorem of total probability over θt−1 on the numerator

=

∫
p(xt, θt, Y0:t|θt−1)p(θt−1) dθt−1

p(Y0:t)
(3.7)

and applying the chain rule of conditional probability (p(a, b|c) = p(a|b, c)p(b|c))

=

∫
p(xt, θt|Y0:t, θt−1)p(Y0:t|θt−1)p(θt−1) dθt−1

p(Y0:t)
. (3.8)

Observing that p(a|b) =
p(b|a)p(a)

p(b)
and pulling the denominator into the integral,

=

∫
p(xt, θt|θt−1, Y0:t) p(θt−1|Y0:t) dθt−1. (3.9)
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Equation 3.9 may now be modified by applying the chain rule of probability (p(a, b|c) =
p(b|c) p(a|b, c)) to expand p(xt, θt|θt−1, Y0:t) as follows:

p(xt, θt|θt−1, Y0:t) = p(θt|θt−1, Y0:t) p(xt|θt, θt−1, Y0:t)

expanding Y0:t , (u0:t−1, i1:t, z1:t) in the second term
= p(θt|θt−1, Y0:t) p(xt|θt, θt−1, u0:t−1, i1:t, z1:t)

= p(θt|θt−1, Y0:t) p(xt|zt, θt, θt−1, u0:t−1, i1:t, z1:t−1).

Writing α = (θt, θt−1, u0:t−1, i1:t, z1:t−1) this can be expressed as

p(xt, θt|θt−1, Y0:t) = p(θt|θt−1, Y0:t) p(xt|zt, α). (3.10)

Note that p(xt|zt, α) can be expanded as follows

p(xt|zt, α) =
p(xt, zt, α)

p(zt, α)

=
p(zt|xt, α)p(xt, α)

p(zt, α)

=
p(zt|xt, α)p(xt|α)p(α)

p(zt|α)p(α)

=
p(zt|xt, α)p(xt|α)

p(zt|α)
.

Substituting into 3.10 obtains

p(xt, θt|θt−1, Y0:t) = p(θt|θt−1, Y0:t)
p(zt|xt, α) p(xt|α)

p(zt|α)
. (3.11)

Expanding α in p(xt|α) allows 3.11 to be rewritten as

p(xt, θt|θt−1, Y0:t) = p(θt|θt−1, Y0:t) p(zt|xt, α) p(zt|α)−1 p(xt|α) (3.12)
= p(θt|θt−1, Y0:t) p(zt|xt, α) p(zt|α)−1 (3.13)
p(xt|it, θt, θt−1, u0:t−1, i1:t−1, z1:t−1).

Define β = (θt, θt−1, u0:t−1, i1:t−1, z1:t−1). Note that α = (β, it). Then

p(xt, θt|θt−1, Y0:t) = p(θt|θt−1, Y0:t) p(zt|xt, α) p(zt|α)−1 p(xt|it, β). (3.14)
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Expand p(xt|it, β) using the same derivation as used to obtain 3.11(
p(a|b, c) = p(b|a,c)p(a,c)

p(b|c)

)
= p(θt|θt−1, Y0:t) p(zt|xt, α) p(zt|α)−1 p(it|xt, β) p(xt|β)

p(it|β)
. (3.15)

= p(θt|θt−1, Y0:t) p(zt|xt, α) p(zt|α)−1 p(it|xt, β) p(it|β)−1 p(xt|β) (3.16)

Finally, applying the theorem of total probability to p(xt|β) in terms of xt−1 results in
the following equivalence:

p(xt, θt|θt−1, Y0:t) = p(θt|θt−1, Y0:t) p(zt|xt, α) p(zt|α)−1 p(it|xt, β) p(it|β)−1∫
p(xt|xt−1, β) p(xt−1|β)dxt−1. (3.17)

Note that the derivation of 3.17 relies only on properties of conditional probability. Sub-
stituting Equation 3.17 into Equation 3.9 obtains

Bel(Xt) =

∫
p(θt|θt−1, Y0:t) p(zt|xt, α) p(zt|α)−1 p(it|xt, β) p(it|β)−1[∫
p(xt|xt−1, β) p(xt−1|β)dxt−1

]
p(θt−1|Y0:t) dθt−1. (3.18)

It is possible to simplify several of these distributions under a Markov assumption (see
Section 2.1.1). Based on the assumption that the state {xt, θt} is complete at time t
when considering the full pose, and that {θt} is complete when considering only the
orientation, then all data preceding those states may be ignored in the distributions of
equation 3.18. The measurement equations (and associated normalizers) can then be
simplified as follows:

p(zt|xt, α) p(zt|α)−1 = p(zt|xt, z1:t−1, θt, θt−1, u0:t−1, i1:t)

p(zt|z1:t−1, θt, θt−1, u0:t−1, i1:t)
−1

= p(zt|xt, θt) p(zt|θt)−1 (3.19)
and

p(it|xt, β) p(it|β)−1 = p(it|xt, z1:t−1, θt, θt−1, u0:t−1, i1:t−1)

p(it|z1:t−1, θt, θt−1, u0:t−1, i1:t−1)

= p(it|xt, θt) p(it|θt)−1. (3.20)

Note in Equation 3.20 that a further simplification is possible if the assumption that it
is independent of xt holds. Such an assumption is not necessarily true, i.e., magnetic
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sensors may behave differently near a ship’s hull. Nonetheless, in certain situations it
may reduce the required computational effort; this potential simplification is discussed
in more detail later in this section.

Further, p(xt|xt−1, β) contains the complete state {xt−1, θt−1}, allowing us to ignore
most of the parameters (with the exception of ut−1 since it occurs after the complete
state). Although the state θt occurs after the (assumed) complete state, we ignore it,
since the orientation of a device at time t does not affect the likelihood of having arrived
at xt−1. Only θt−1 is needed for a complete state in p(θt|θt−1, Y0:t), since we assume that
orientation may be estimated independently of xt−1. Therefore only the data {ut−1, it, zt}
that occurs after the complete state must still be considered. Any evidence related to the
device’s position may also be eliminated, again based on the assumption that orientation
is not affected by position. As a result we may also ignore zt, since by definition it con-
tains no information related to the device’s orientation. This then results in the following
simplifications:

p(xt|xt−1, β) = p(xt|xt−1, u0:t−1, z1:t−1, i1:t−1, θt, θt−1)

= p(xt|xt−1, θt−1, ut−1) (3.21)
and

p(θt|θt−1, Y0:t) = p(θt|θt−1, u0:t−1, z1:t, i1:t)

= p(θt|θt−1, ut−1, it). (3.22)

Substituting these equations back into equation 3.18 results in

Bel(Xt) =

∫
p(θt|θt−1, ut−1, it) p(zt|xt, θt) p(zt|θt)−1 p(it|xt, θt) p(it|θt)−1∫
p(xt|xt−1, θt−1, ut−1) (3.23)

p(xt−1|θt, θt−1, u0:t−1, i1:t−1, z1:t−1) dxt−1 p(θt−1|Y0:t) dθt−1.

The terms p(zt|xt, θt), p(zt|θt)−1, p(it|xt, θt) and p(it|θt)−1 are constant with respect
to the integral dθt−1 and may therefore be moved out of the integral. Finally, moving
p(θt−1|Y0:t) into the inner integral results in:

Bel(Xt) = p(zt|xt, θt) p(zt|θt)−1 p(it|xt, θt) p(it|θt)−1∫
p(θt|θt−1, ut−1, it)

∫
p(xt|xt−1, θt−1, ut−1)

p(xt−1|θt, θt−1, u0:t−1, z1:t−1, i1:t−1) p(θt−1|Y0:t) dxt−1 dθt−1. (3.24)

Note that the ut−1 term in p(xt−1|θt−1, u0:t−1, z1:t−1, i1:t−1) is executed after the state
xt−1, while the state θt occurs after xt−1, allowing both to be safely removed. Also
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observe that u0:t−2, z1:t−1, i1:t−1 , Yt−1. We may then simplify the last two terms of
equation 3.24 as follows:

p(xt−1|θt−1, u0:t−2, z1:t−1, i1:t−1) p(θt−1|Y0:t)

=p(xt−1|θt−1, Yt−1)p(θt−1|Yt−1)

=p(xt−1, θt−1|Yt−1)

=Bel(Xt−1). (3.25)

Substituting this equivalence back in results in the desired recursive filter:

Bel(Xt) = p(zt|θt)−1 p(it|θt)−1 p(zt|xt, θt) p(it|xt, θt)∫
p(θt|θt−1, ut−1, it)

∫
p(xt|xt−1, θt−1, ut−1) (3.26)

Bel(Xt−1)dxt−1 dθt−1.

As mentioned earlier (Equation 3.20), a simplification could be introduced if the assump-
tion p(it|xt, θt) = p(it|θt) is valid, resulting in p(it|θt) p(it|θt)−1 = 1. This situation may
arise if the sensors employed are able to purely measure orientation-relevant properties,
while never being affected by where the measurements are taken. The experiments dis-
cussed in Chapter 4 make this assumption. For convenience, define the normalizing
constant

η =

{
p(zt|θt)−1 if p(it|xt, θt) = p(it|θt)
p(zt|θt)−1 p(it|θt)−1 otherwise

The belief of Xt−1 is propagated forward, prior to measurement, using the con-
ditional probabilities p(xt|xt−1, θt−1, ut−1) and p(θt|θt−1, ut−1, it). The measurement
likelihoods represented by p(zt|xt, θt) and p(it|xt, θt) are then used to assign likelihood
weights to the predicted state, using the collected measurement data.

Although this filter may be implemented any number of ways, here we imple-
ment the orientation likelihood p(θt|θt−1, ut−1, it) using an EKF (from [59], see Section
2.3.2) and the position likelihood p(xt|xt−1, θt−1, ut−1) using a particle filter (see Sec-
tion 2.2.2). Furthermore observe that only a single estimation process is required for
p(θt|θt−1, ut−1, it) resulting in significant computational savings.

3.1.1 The normalizing term η

The filter as presented in Equation 3.26 contains the two terms p(zt|θt)−1 and p(it|θt)−1.
The normalizer η = p(zt|θt)−1p(it|θt)−1 can be computed explicitly for the example
shown in Section 3.3. Although easily computed for such a case, their computation in
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general is complex. As a result, an approximation is generally used [7], which greatly
simplifies the problem. By approximating the terms p(zt|θt)−1 and p(it|θt)−1 as constant
normalizers, they may be ignored entirely in practice. Instead, the sum of the computed
weights (over a portion of the space, i.e., all particles in the case of a particle filter) is
assumed to sufficiently approximate the normalizer. This is based on the assumption that
the sum of a likelihood distribution should sum to one. Table 3.2 shows the result of
using this approximation, compared to the actual result, shown in Table 3.1.

3.2 Algorithm process

The previous section developed a recursive approximation for the robot’s belief, which
may be restated as:

Bel(Xt) = η prange [pimu]

∫
modelOrientation

∫
modelMotion Bel(Xt−1) dxt−1 dθt−1.

This filter can be implemented using a particle filter to estimate the position of the
robot, and a Kalman filter to estimate the orientation (although a different estimator
could be used instead). This hybrid implementation takes advantage of the efficiency of
the Kalman filter, while using a particle filter to sample the more difficult to estimate
position state, for which no direct sensor readings are available. The implementation
details are outlined below. Define each particle as the tuple Pt = {θt, xt, wt}, where θt
is the orientation of the device (as estimated by the Kalman filter). The position xt at
state Xt is known with certainty wt.

Step 0. Filter initialization
Place N particles over the position space {x, y, z}, either uniformly or in some focused
manner. At this time also initialize the Extended Kalman filter that estimates ~θ and any
required likelihood structures. The implementation for this work uses a single Extended
Kalman filter, avoiding the computational expense of updating a Extended Kalman
filter for each particle. This choice is further motivated by the fact that the orientation
is assumed independent from the position, with individual Kalman filters theoretically
converging to the same orientation estimate.

The filter can now be updated at time t as follows:
For Loop

Step 1. Update the Extended Kalman Filter.
Using IMU data it, and motion estimate ut−1 (provided by the egomotion
estimation process [37]) create a best estimate θt of the orientation for the current
state at time t. The Kalman filter should be allowed to converge to a reasonably
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certain estimate of the device’s orientation, before moving onto the next step.
This is motivated by the fact that computation of the range likelihood and motion
model is essentially meaningless without a reasonable estimate of the orientation.

Step 2. Particle filter
For each particle pi, estimate the next position state xt according to the control
input ut−1 and the motion model. See Section 3.4 for details on the motion
model. Using the motion model, the control ut−1 is converted into an estimate
of the actual resulting motion, {∆θ,∆x}, resolved in the robot orientation frame
defined by θt−1. This provides an a priori best estimate of the next state, and is
added to the current estimate pi, resulting in the updated particle position.

Step 3. Weighting
For each particle in the particle set, compute a weight update describing the like-
lihood that the particle describes the true pose of the robot. For each particle i,
the weight is updated according to:

wit = p(zt|xit, θit) p(it|xit, θit) wit−1.

Finally, the weights of the particle set are normalized.

wit ← wit

N∑
j=0

1

wjt
.

Step 4. Re-sampling
Especially when the filter is initialized using a uniform distribution, the majority
of particle weights will tend towards zero. This can lead to filter failure, but can
typically be prevented by resampling the particles occasionally. For information
on resampling refer to Section 2.2.2.

End For

It is important to efficiently compute the likelihoods at each update, since both the map
and sensors utilize 3D data. Computing the distributions defined in Section 3.1 is dis-
cussed in the following sections.

Section 2.3.2 Orientation update p(θt|θt−1, ut−1, it)
Section 3.4 Motion model p(xt|xt−1, θt−1, ut−1)
Section 3.5 Range likelihood p(zt|xt, θt)

However, a simple example to illustrate the overall technique is provided first, consider-
ing the dimensionality of the overall problem.
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Figure 3.2: The robot’s environment for this example. The walls are painted in such a
way that, lacking IMU information, the color of the wall is insufficient to determine the
position of the robot. The diagram illustrates the final state of the robot in this example:
it is located at Site 1, facing south (note the camera on the robot). Translation of the
robot is limited to moving in the direction of the arrow.

3.3 Simple example

This section provides a simple example of the filter applied to an estimation task.
Consider a mobile robot placed in a hallway; the robot is able to turn around and face
opposite its current direction (i.e., turn to face either North or South). The robot may
also either move to the other end of the hallway, or it may remain at its current location.
The west end of the hallway (Site 1) has been painted blue/green, while the east end
(Site 2) is green/blue (See Figure 3.2). The state Xt = {xt, θt} is to be estimated.
Define xt as the position of the robot at time t, limited to either end of the hallway,
i.e., xt ∈ (Site 1,Site 2). In addition, let θt be the direction faced by the robot, i.e.,
θt ∈ (North,South). The robot is equipped with sensors Y = {Z, I}, where Z senses
the colour of the hallway, and I senses the direction the robot is facing. Controls to
the robot consist of the pair ut ∈ ((Turn, Stay), (Move, Stay)). As an arbitrary choice,
the robot is only able to translate in the direction it is facing (i.e., in the direction of
the arrow on the robot), due to the mechanics selected for this robot. As a result, when
facing south at Site 1, the robot is likely to remain where is it when given a move
command. Table 3.3 details the plant and measurement likelihoods for each of the four
distributions that are required. The robot’s environment is illustrated in Figure 3.2.

Initially, no information regarding the state of the system is known; therefore the
belief is initialized to be uniform over all possible robot states:

Bel(Site 1,North)0 = Bel(Site 1,South)0 =

Bel(Site 2,North)0 = Bel(Site 2,South)0 = 0.25.

44



it xt θt = North θt = South
North Site 1 0.9 0.1
North Site 2 0.9 0.1
South Site 1 0.1 0.9
South Site 2 0.1 0.9

(a) p(it|xt, θt)

zt xt θt = North θt = South
Blue Site 1 0.85 0.15
Green Site 1 0.15 0.85
Blue Site 2 0.15 0.85
Green Site 2 0.85 0.15

(b) p(zt|xt, θt)

θt θt−1 ut−1 it = North it = South
North North Turn 0.8 0.1
South North Turn 0.2 0.9
North South Turn 0.9 0.2
South South Turn 0.1 0.8
North North Stay 1.0 0.5
South North Stay 0.0 0.5
North South Stay 0.5 0.0
South South Stay 0.5 1.0

(c) p(θt|ut−1, θt−1, it)

xt xt−1 ut−1 θt−1 = North θt−1 = South
Site 1 Site 1 Move 0.1 .9
Site 2 Site 1 Move 0.9 0.1
Site 1 Site 2 Move 0.1 0.9
Site 2 Site 2 Move 0.9 0.1
Site 1 Site 1 Stay 1 1
Site 2 Site 1 Stay 0 0
Site 1 Site 2 Stay 0 0
Site 2 Site 2 Stay 1 1

(d) p(xt|xt−1, ut−1, θt−1)

Figure 3.3: The measurement probabilities (a,b) and models of the result for the robot’s
turning and moving capabilities (c,d). The measurement model in (a) shows the IMU
indicates the correct orientation 90% of the time, independent of the position xt. The
camera sensor (b) detects the correct color in 85% of measurements, while misreading
the color (i.e., due to lighting) 15% of the time. In (c) the result of rotation commands is
modeled; when the measured orientation it conflicts with the final state, the measurement
is given more weight. Finally, moving from one end of the hallway to the other occurs
with 90% likelihood if the arrow in Figure 3.2 is aimed down the hallway. The robot
remains at the current site 90% of the time if the arrow is aimed at the nearby wall. The
“Stay” command always results in remaining in the current state.
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Using the filter defined in Section 3.1, the posterior belief at time t denoted Belt is
estimated as

Bel(xt, θt) =

∫
p(θt|θt−1, ut−1, it)

∫
p(xt|xt−1, θt−1, ut−1) Bel(xt−1, θt−1) dxt−1 dθt−1.

Given the discrete nature of our example, this may be restated as:

Bel(xt, θt) =
∑
θt−1

p(θt|θt−1, ut−1, it)
∑
xt−1

p(xt|xt−1, θt−1, ut−1) Bel(xt−1, θt−1).

The measurement update incorporates the sensor measurements and is computed as:

Bel(xt, θt) = η p(zt|xt, θt) [p(it|xt, θt)] Bel(xt, θt). (3.27)

Based on these equations, we may then proceed with estimating the state of our system.
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Given the control u0 = {Stay, Stay} and measurements z1 = {Green} and i1 = {North},
the estimated belief may be evaluated according to

Bel(x1, θ1) = p(θ1|North,Stay, North) ∗ [p(x1|Site 1,North,Stay) Bel(Site 1,North)0+

p(x1|Site 1,South,Stay) Bel(Site 1,South)0]+

p(θ1|South,Stay, North) ∗ [p(x1|Site 2,North,Stay) Bel(Site 2,North)0+

p(x1|Site 2,South,Stay) Bel(Site 2,South)0]

Which, for each of the four cases, evaluates to:

Bel(x = Site 1, θ = North)1 = 0.375

Bel(x = Site 1, θ = South)1 = 0.125

Bel(x = Site 2, θ = North)1 = 0.375

Bel(x = Site 2, θ = South)1 = 0.125

Substituting the measurements z1 and i1 into equation 3.27 results in

Bel(x = Site 1, θ = North)1 = η p(Green|S1, N) p(North|S1, N) Bel(S1, N)1

= η 0.15 ∗ 0.9 ∗ 0.375 ≈ η 0.028

Bel(x = Site 1, θ = South)1 = η 0.85 ∗ 0.1 ∗ 0.125 ≈ η 0.053

Bel(x = Site 2, θ = North)1 = η 0.85 ∗ 0.9 ∗ 0.375 ≈ η 0.159

Bel(x = Site 2, θ = South)1 = η 0.15 ∗ 0.1 ∗ 0.125 ≈ η 0.009

where the normalizer η ≈ [0.028 + 0.053 + 0.159 + 0.009]−1 ≈ 4.00

The belief at t = 1 is then represented as

Bel(x = Site 1, θ = North)1 ≈ 0.113

Bel(x = Site 1, θ = South)1 ≈ 0.213

Bel(x = Site 2, θ = North)1 ≈ 0.638

Bel(x = Site 2, θ = South)1 ≈ 0.038
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Given the control u1 = {Turn, Stay} and measurements z2 = {Blue} and i2 = {South},
the estimated belief may be evaluated according to

Bel(x2, θ2) = p(θ2|North,Turn, South) ∗ [p(x2|Site 1,North,Stay) Bel(Site 1,North)1+

p(x2|Site 1,South,Stay) Bel(Site 1,South)1]+

p(θ2|South,Turn, South) ∗ [p(x2|Site 2,North,Stay) Bel(Site 2,North)1+

p(x2|Site 2,South,Stay) Bel(Site 2,South)1]

Evaluating for each of the four cases results in

Bel(x = Site 1, θ = North)2 ≈ 0.054

Bel(x = Site 1, θ = South)2 ≈ 0.271

Bel(x = Site 2, θ = North)2 ≈ 0.071

Bel(x = Site 2, θ = South)2 ≈ 0.604

Substituting the measurements z2 and i2 into equation 3.27 results in

Bel(x = Site 1, θ = North)2 = η p(Blue|S1, N) p(South|S1, N) Bel(S1, N)2

≈ η 0.85 ∗ 0.1 ∗ 0.054 ≈ η 0.023

Bel(x = Site 1, θ = South)2 ≈ η 0.15 ∗ 0.9 ∗ 0.271 ≈ η 0.020

Bel(x = Site 2, θ = North)2 ≈ η 0.15 ∗ 0.1 ∗ 0.071 ≈ η 0.005

Bel(x = Site 2, θ = South)2 ≈ η 0.85 ∗ 0.9 ∗ 0.604 ≈ η 0.257

where the normalizer η ≈ 3.277

The belief at t = 2 then evaluates to

Bel(x = Site 1, θ = North)2 ≈ 0.075

Bel(x = Site 1, θ = South)2 ≈ 0.067

Bel(x = Site 2, θ = North)2 ≈ 0.018

Bel(x = Site 2, θ = South)2 ≈ 0.841
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Given the control u2 = {Stay, Move} and measurements z3 = {Green} and i3 = {South},
the estimated belief may be evaluated according to

Bel(x3, θ3) = p(θ3|North,Stay, South) ∗ [p(x3|Site 1,North,Move) Bel(Site 1,North)2+

p(x3|Site 1,South,Move) Bel(Site 1,South)2]+

p(θ3|South,Stay, South) ∗ [p(x3|Site 2,North,Move) Bel(Site 2,North)2+

p(x3|Site 2,South,Move) Bel(Site 2,South)2]

Evaluating for each of the four cases results in

Bel(x = Site 1, θ = North)3 ≈ 0.005

Bel(x = Site 1, θ = South)3 ≈ 0.821

Bel(x = Site 2, θ = North)3 ≈ 0.042

Bel(x = Site 2, θ = South)3 ≈ 0.132

Substituting the measurements z3 and i3 into equation 3.27 results in

Bel(x = Site 1, θ = North)3 = η p(Green|S1, N) p(South|S1, N) Bel(S1, N)3

≈ η 0.15 ∗ 0.1 ∗ 0.005 ≈ η 0.35E−3

Bel(x = Site 1, θ = South)3 ≈ η 0.85 ∗ 0.9 ∗ 0.821 ≈ η 0.349

Bel(x = Site 2, θ = North)3 ≈ η 0.85 ∗ 0.1 ∗ 0.042 ≈ η 0.018

Bel(x = Site 2, θ = South)3 ≈ η 0.15 ∗ 0.9 ∗ 0.132 ≈ η 0.010

where the normalizer η ≈ 2.652

The belief at t = 3 then evaluates to

Bel(x = Site 1, θ = North)3 ≈ 0.919E−3

Bel(x = Site 1, θ = South)3 ≈ 0.926

Bel(x = Site 2, θ = North)3 ≈ 0.047

Bel(x = Site 2, θ = South)3 ≈ 0.026

Table 3.1 summarizes the result of the filter over the course of three time steps.
Initially the belief is uniform, but incorporating the controls results in the estimate of the
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Bel()0 Bel()1 Bel()1 Bel()2 Bel()2 Bel()3 Bel()3

Bel(Site 1,North) 0.25 0.375 0.113 0.054 0.075 0.005 0.000
Bel(Site 1,South) 0.25 0.125 0.213 0.271 0.067 0.821 0.926
Bel(Site 2,North) 0.25 0.375 0.638 0.071 0.018 0.042 0.047
Bel(Site 2,South) 0.25 0.125 0.038 0.604 0.841 0.132 0.026
Control {Stay, Stay} {Turn, Stay} {Stay, Move}
Sensor {zt, it} {Green, North} {Blue, South} {Green, South}

Table 3.1: Evolving belief regarding the where the robot is located, and which direction
it is facing, with the most likely state shown in bold. After 3 iterations, the filter believes
with 0.926 probability that it is facing South at Site 1. Note that, regardless of whether
p(it|xt, θt) and p(it|θt)−1 are computed, the results are identical.

Bel()0 Bel()1 Bel()1 Bel()2 Bel()2 Bel()3 Bel()3

Bel(Site 1,North) 0.25 0.375 0.145 0.021 0.002 0.000 0.000
Bel(Site 1,South) 0.25 0.125 0.030 0.154 0.035 0.896 0.981
Bel(Site 2,North) 0.25 0.375 0.820 0.083 0.002 0.002 0.000
Bel(Site 2,South) 0.25 0.125 0.005 0.742 0.960 0.102 0.020
Control {Stay, Stay} {Turn, Stay} {Stay, Move}
Sensor {zt, it} {Green, North} {Blue, South} {Green, South}

Table 3.2: In the previous example (summarized in Table 3.1), the normalizer η =
p(zt|θt)−1p(it|θt)−1 was computed explicitly. The same experiment is presented here,
but the normalizer η is now approximated( as discussed in Section 3.1.1). The final
certainty is now 98.1%, compared to 92.6% in the previous example.

belief at t = 1 showing that the robot is more likely to be facing north. The robot cor-
rectly updates the belief after observing a green wall, and receiving a north reading from
the IMU at time t = 1. The beliefBel()1 is 75% certain that it is facing north, while most
likely being at Site 2. After being commanded to turn around, and incorporating mea-
surements, the belief changes so that with 84% certainty the robot is facing south at Site
2. Finally, moving the robot while not changing the direction results in the final belief,
at timestep t = 3, that the robot is located at Site 1 and facing south with 92.6% certainty.

3.4 Motion model

The motion model is used to update the most recent estimate of the robot’s position,
taking commanded motion into account. Robot motion is inherently uncertain; as such,
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Figure 3.4: Common kinematic models for ground based vehicles, used for estimating a
vehicle’s motion, include (a) differential drive and (b) Ackerman steering. For full details
refer to [22].

attempts to model the result of commanded motion must consider this uncertainty. The
motion model takes the control input and estimates the likely outcome of executing that
action, as shown in Figure 3.4.

Depending on the motion and control characteristics of the robot, the input could
contain any number of parameters. The parameters may be limited to rotation and
translation parameters, depending on the kinematics of the vehicle, such as differential
drive or Ackerman steering for ground vehicles (see Figure 3.4). Kinematics approaches
attempt to determine the outcome of commanded motion, based, for example, on the
commanded number of revolutions for each wheel. Ground contact vehicles commonly
use odometry, which attempts to record the result of commanded motion. The result
from odometry, plus an appropriate noise model to model wheel slippage, may be
sufficient to use as a motion model in such a case.

Vehicles operating in 3D environments are not necessarily able to collect odometry
in the same sense. Lacking a surface to track, such vehicles must rely on fins, thrusters
and control surfaces to effect motion. The indirect data of such locomotion requires
the robot to rely more heavily on sensors to monitor its egomotion. For example, [37]
describes a method using vision techniques coupled with an IMU.

Given a reasonably accurate estimate of the robot’s motion (in the robot reference
frame) using egomotion estimation, a very simple motion model can be used. The
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(a) (b)

(c) (d)

Figure 3.5: The result of applying a motion model in 3D without corrective inputs. Fig-
ure (a) shows an initial position distribution, followed by the robot swimming forward.
As the robot moves forward in Figure (b) and (c) the positional uncertainty increases.
Turning a corner in (d), the robot’s position has become quite uncertain along two axis.
The motion model in this instance applies independent Gaussian noise proportional to
the egomotion estimate along each axis.
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motion model must still consider variations of the estimate, as the motion estimate itself
may be prone to noise. Given the lack of a more detailed error model, a straightforward
approach is to simply apply an additive Gaussian noise to the estimate. Of course,
if a more refined error model is available, it could be used instead. For each particle
an independent motion error is generated from the noise distribution for the estimated
robot motion. In the case that particles are clustered, essentially describing the same
pose, this added random noise allows them to expand into a larger surrounding space.
Spatially separating the particles serves several purposes, the most obvious being
that multiple particles describing the same (x, y, z) position is wasteful. In addition,
adding a sufficiently large error to the motion estimate (for some of the particles) may
push a particle into a better, nearby region, from where a resampling would result in
potentially seeding the overall filter. Particles that wander too far from the optimal
solution are likely to be killed off during the resampling if they land in unlikely locations.

This work uses a simple additive Gaussian noise as the motion model, where the
variance of the Gaussian is set proportionally to the robot’s estimated displacement, as
recovered from the egomotion estimation. Although this approach overestimates the
motion error, it allows particles to spread sufficiently at any update step in order to evolve
into a better estimate.

3.4.1 Restricting the motion model

Although this work focuses on unconstrained 6DOF vehicles, the algorithm developed
here may nonetheless be applied to vehicles with more robust odometry models, or more
restricted motion capabilities. For example, an outdoor ground vehicle clearly cannot
take off into the air, but nonetheless still operates in a non planar world (i.e., 2D pose
estimation solutions may not be effective due to variations of the ground surface). The
use of 6DOF pose estimation would be useful in these instances; it would, however, be
fruitless to search for such robots flying far away from the ground. Given such a vehicle,
the algorithm could simply make use of a less general motion model. This would prevent
the estimate from suggesting poses that the sensor is not capable of achieving, i.e., the
particles would remain at a constant height from the ground. This height depends on
where the sensors for the vehicle are mounted; since the robot cannot leave the ground,
the sensor’s distance from the ground will likewise be relatively constant (where some
variance in the height is expected, due for example to rough ground or the movement
characteristics of the the robot). The particle filter should also consider this restriction
when initializing the particle filter; the reduced search space can be taken into account
when placing particles, limiting particle placement to locations within a certain range
off the ground surface. For example, if the sensor is mounted 2 meters off the ground,
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Figure 3.6: A sample 3D range cloud frame of a ship wreck, generated using the AQUA
sensor. [38]

then particles could be restricted to a region of 2m ± ε (where ε represents the expected
variance of the sensor’s distance from the ground).

3.5 Range likelihood

A key sensing ability common to many robots is the ability to sense distance in some
manner. Sonar and laser range sensors are common, and vision systems [38, 63] are be-
coming popular. Both vision and laser range finders are able to provide dense, detailed
3D information about regions visible to the robot. This range likelihood is used for each
particle to estimate the likelihood of observing the output of such a sensor at the pose
{xi, θi}, for the ith particle. The likelihood must be estimated efficiently, since the par-
ticles must span a much larger space (requiring more particles) compared to traditional
2D particle filters, and the range data contains far more data points. Typical particle fil-
ter methods attempt to generate an expected range scan, based on a given particle and a
known map (outlined in Section 2.2.2). In 3D this amounts to ray-casting a scene, which
is a well studied subject in computer graphics (see [35, 36]). Although efficient algo-
rithms exist for 3D ray casting, current algorithms are insufficient to the task required for
raycasting a frame for each particle of the particle filter. To see this, a critical bottleneck
in the estimation of the range likelihood is the time required to generate a psuedo-scan for
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each particle. For example, suppose that the range data zt is composed of k independent
data points zkt . Then the total likelihood is computed as:

p(zt|xt, θt) =
∏
k

p(zkt |xt, θt).

Given a particle pi = (xi, θi, wi), the transformation T x,θ may then be defined from the
range finder’s reference frame N to the world reference frame B defined by the map
(Cb

n[θi] is specified in equation 2.10), as:

T (pi)(~z) = ~xi + Cb
n[θi] ~z (3.28)

Then for each vector T x,θ(zk) originating at xi, a raycast must be performed in the
map. Even sparse sampling (every tenth pixel along both axis, i.e., 1% of the image)
of a 320x240 pixel range frame would require 768 ray casts, resulting in nearly 40
million rays to be cast for a particle filter consisting of a modest 50,000 particles. Each
ray requires multiple evaluations, continuing until an object is struck, or the maximum
sensor range is reached.

Rather than following the ray casting approach, an alternative that bypasses the ray-
cast process is desired. One approach is the use of a lookup table that provides direct, pre-
computed values for the likelihood. The following section describes such an approach,
based on results from the laser scan alignment literature [53].

3.5.1 Application of the NDT to pose estimation

As discussed in Section 2.4, the NDT has been shown to be effective in a number of scan
alignment and map building applications. Here we use the NDT to estimate the likeli-
hood of a range scan, without the use of minimization techniques. Note that recently
this approach was independently proposed by [65]. Using the NDT in this manner pro-
vides a piece-wise PDF defined over the entire position space, which may be largely pre-
computed off-line. Every point detected by the robot, using its sensors, may be looked up
directly (after transformation to the world coordinate frame), resulting in the estimated
likelihood of observing that point. However, there is one clear shortcoming with using
this method for pose estimation; certain classes of information are not well represented
using this approach. To illustrate this, suppose two parallel walls, 1m apart, are present
in an environment, and the robot detects a wall. Ray-casting techniques would realize
that only the closest wall could be observed by the robot (see Figure 3.8 (a)), and would
assign very low or zero likelihood to the more distant wall. On the other hand, since the
NDT would directly look up the likelihood, it would not notice the nearer wall is present
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(a) Side view

(b) Birds-eye view

Figure 3.7: Octree structure used to store model data and likelihood lookup. Model
comes from the C2SM project [68].

56



(a) Result using ray-casting techniques (b) Result using the NDT technique

Figure 3.8: The result of estimating the likelihood for detecting a range of 3m, using
ray-casting techniques is shown in (a). The rightmost wall’s presence is ignored, since it
is not detectable from any pose on the robot side of the left wall. On the other hand, (b)
shows two regions where the robot may be based on the NDT, resulting in one cloud for
each wall.

(see Figure 3.8 (b)). As such, both walls would be assigned equal probability. While
this wrongly assigns importance to such map regions, experiments show that over time
such inconsistencies tend to cancel each other out. This results in reducing the likelihood
of particles placed incorrectly (to the point of being insignificant), making this incorrect
importance manageable.

3.5.2 Evaluation of the range likelihood

Due to the number of particles required for effectively sampling the position space, the
range likelihood must be evaluated as efficiently as possible. In Section 3.5.1 an approach
for estimating the likelihood of a single range reading was outlined. In this section, the
approach is optimized for multiple range readings in a scan. For every particle, the range
data in a scan must be evaluated in the reference frame defined by a particle. Given a
range scan zt composed of an m × n 2D grid of 3D range points zm,nt , the likelihood of
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(a) Subway model on which an NDT is defined.

(b) 3D NDT, red indicates high likelihood, while blue denotes low probability.

Figure 3.9: The 3D NDT used to define a likelihood on a model. The NDT is used to
define the likelihood of the range sensor indicating a “hit” at any location in the map.
Model data taken from the C2SM project [68].
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the entire scan can then be estimated as

p(zt|xt, θt) =
∏
m,n

p(zm,nt |xt, θt)

≈
∏
m,n

PNDT [T (pi)(zm,nt )]

Let z∼ = T (pi)(zm,nt )

=
∏
m,n

1

(2π)1.5
√
|Σ|

exp

(
−(z∼ − ~q)tΣ−1(z∼ − ~q)

2

)
.

Let σ(z∼) = −(z∼ − ~q)tΣ−1(z∼ − ~q)
2

and Ci =
1

(2π)1.5
√
|Σ|

, constant per cell

=
∏
m,n

Ci expσ(z∼)

= C0 expσ(z∼0 ) ... Cmn expσ(z∼mn)

= (C0 × ...× Cmn) exp(σ(z∼0 ) + ...+ σ(z∼mn))

= exp(ln(C0,0) + ....+ ln(Cm,n) + σ(z∼0,0) + ...+ σ(z∼m,n))

= exp(
∑
i

ln(Ci) +
∑
i

σ(z∼i )). (3.29)

The representation in this work stores ln(C) instead of C, since C is constant for each
cell, and can therefore be precomputed. The likelihood may now be computed using
only a single exponential call, which results in a considerable savings in computational
cost. For a range scan with 100 range points, the constant Ci and the computed value zi
for each point are looked up and added together. The final likelihood for the range scan
is then computed by taking the exponential of that value.

In practice, when p(zt|xt, θt) is computed for each particle, the weights for likely
poses are extremely large, while unlikely poses have vanishingly small weights. This can
result in weights that are skewed such that resampling will never select any less likely
particles. This generally leads to a single particle surviving the resampling, causing
filter failure. Instead, in this work the weights are evaluated on a logarithmic scale as
ln(p(zt|xt, θt)). This amounts to not computing the exponential in Equation 3.29 in the
first place, i.e.,

p(zt|xt, θt) =
∑
i

ln(Ci) +
∑
i

σ(z∼i ).
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Figure 3.10: A sampled instance of p(zt|xt, θt) for a specific range image zt, over all xt,
given an approximation of θt, on a subway model from [68]. The likelihood is indicated,
from high to low as red, green and blue; black indicates zero likelihood. This image was
generated by evaluating p(zt|xt, θt) at 2cm intervals, using the orientation estimate from
the Kalman filter. When particles are used instead, the noisy motion model used ensures
that even particles placed near the edges of this distribution will quickly converge to the
high likelihood center (indicated in red).

Finally, depending on the available computational resources, the range scan may be sam-
pled at reduced resolution; this work uses 10% of the available range points on each axis
to balance computational requirements and data loss. Clearly, increasing the number of
range points used should improve the accuracy of the estimate, and conversely, the lim-
ited sampling used here likely results in slower convergence. Exploring the use of a filter
that varies the number of samples dynamically (depending on the number of particles in
use or on some computational time constraint) would be of interest in future work.

3.6 Filter applied to a 3D dataset

This section demonstrates the result of applying the filter to a sequence of simulated
sensor measurements collected from a dataset for the C2SM project [68]. The filter has
no prior knowledge of the robot’s pose, as demonstrated by the uniform distribution
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Figure 3.11: A uniform distribution of particles across the position search space. This
example uses 10,000 particles for the search space.

of particles in the position space shown in Figure 3.11. Note that only position is
encoded in the following figures. The EKF for orientation estimation is initialized using
experimentally obtained values for σg,a,m, taken from [59]), shown in Table 3.3. After
incorporating the sensor measurements, the majority of particles’ weights are zero, as
most of the search space has negligible likelihood. Resampling the particle filter results
in Figure 3.12(a). Note that, again, areas of high likelihood are coloured red, then green,
while low likelihood is indicated by blue; areas with zero likelihood are indicated by
black, i.e., the absence of particles. In all figures, the yellow line indicates the ground
truth robot path3. As expected, the particles initially form a stream along the length
of the subway car, since the observed portion of the subway car is not unique. Upon
incorporating another set of measurements, the filter begins to converge on the correct
pose estimate, as shown in figure 3.12(b), indicated by the the green particles clustered
near the robot.

Figure 3.13(a) shows the result of resampling after time t = 7 seconds. Although
some particles remain away from the expected pose, most have clustered towards the
correct result. Figures 3.13(b-d) show that the global pose estimate has converged to

3 The plotted “true robot path” is based on the egomotion estimate in the case of AQUA sensor data, or
simulated egomotion data in the other datasets. Error plots are relative to this ground truth path; although
the true path would be preferable, it is difficult to obtain for devices such as the AQUA underwater robot.
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(a) Belief after a single measurement. (b) Belief after a second update pass.

Figure 3.12: (a) shows the result of incorporating one measurement and resampling,
while (b) has incorporated a second measurement. In (b), the particles have begun clus-
tering around the true robot pose. The yellow path indicates the ground truth regarding
the robot’s path, while the purple line forming in (b) indicates the particle cloud mean
estimate approximating the ground truth.

σ2
g σ2

a σ2
m σ2

wa
σ2
wm

0.1 rad/s 0.1 m/s2 2 mGauss 0.5 m/s2 50 mGauss

Table 3.3: Experimental filter parameter values, used for IMU simulations in this work.
Taken from [59].

a single estimate. The visible color layers of the particle cloud in (b-d) is a result of
available measurements. In Figure 3.13(b), the range sensor is able to provide a good
restriction for the elevation of the device, although the lateral position is less accurately
known. Figure 3.13(d) on the other hand contains sufficient information for a left to right
position fix, but has reduced accuracy for the distance. The final error in estimation for
this example is ∼15cm between the particle cloud’s weighted average and the known
correct result. Figure 3.14 shows the localization error, plotted as a function of time.
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(a) At time t = 7. (b) At time t = 29.

(c) At time t = 57 (d) At time t = 95.

Figure 3.13: Progressive evolution of the pose estimate. See legend of Figure 3.12 for
details.
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Figure 3.14: Error plot for localization shown in Figures 3.12 and 3.13. The plot ignores
data at time t = 0, since it would amount to the distance between the map center and
the correct robot pose. The error shown is the distance between the robot pose and the
particle cloud mean. The cloud standard deviation shows the “spread” of the particle
cloud, where more variance would indicate less certainty. Sudden spikes in the plot are
attributed to missing data in the range sensor. This results in little information correcting
the belief, leading to the motion model expanding the size of the particle cloud. When
the range sensor is able to provide more detail again, the estimate converges again.
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3.7 Summary

This section introduced a filter which is able to estimate the 6DOF pose of an uncon-
strained vehicle operating in a 3D environment. Using this filter, a simple example is
provided to show how the filter may be applied to a simple, discrete estimation task.
Following the derivation, we develop an efficient approach for estimating the 3D likeli-
hoods required for implementing the filter. Finally, an example of the filter applied to a
real dataset is covered. The next section covers results based on various datasets, both
virtual and real.
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Chapter 4 Simulation results

The filter developed in the previous chapter has been applied to several datasets to
evaluate its performance; the results of those experiments are discussed in this chapter.
The datasets used here vary from game models (for controlled testing) to real world
datasets including a LIDAR4 map and vision-based datasets from the AQUA and C2SM
projects. The datasets used for testing the pose estimation algorithm are plotted in
Figure 4.1. In order to provide a controlled evaluation of the approach, the algorithm is
evaluated off-line on collected datasets while motion through these datasets is simulated
(with the exception of the barge fragment). This is a reasonable approach given the
complexity of collecting the data and the difficulty in obtaining ground truth estimates of
the motion of a 6DOF vehicle. The use of simulated data for the robot’s motion through
the space requires simulation of the sensor and agent (and their error models). Details of
these error models are provided below.

This chapter is laid out as follows; Section 4.1 describes the experimental conditions
used. Section 4.2 tests the localization filter using a constant 10,000 particles, demon-
strating the basic functionality of the filter. Large maps initially require a greater number
of particles (compared to smaller maps) in order to cover the position space sufficiently;

4This LIDAR dataset kindly provided by John Meneely at Queens University (Belfast, N.Ireland), and
meshed using the ball-pivot algorithm [2] implemented by Meshlab [13].

Map Vertices Polygons Size (m3)
AQUA project [38] barge model. 108612 36204 3.6× 2.0× 2.2.
A detailed subway car model [68]. 159174 53058 7.7× 4.3× 7.3.
Small game map from YoFrankie [57]. 55701 18567 11.0× 3.8× 10.6.
Four subway cars from [68]. 619188 206396 27.4× 3.4× 26.1.
Large game map from YoFrankie [57]. 157692 52564 30.4× 14.2× 28.7.
A LIDAR dataset of a kiln. 457464 152488 53.1× 15.4× 75.3.

Table 4.1: Various environment models used for experiments.
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for this reason, the KLD algorithm [23] is applied to the particle component of the filter.
The KLD algorithm varies the number of particles as needed, depending on the distri-
bution of particles in the search space (for details refer to Section 2.2.2). The results of
using the KLD algorithm are discussed in Section 4.3. Finally, Section 4.4 evaluates the
performance of the filter compared to a naı̈ve implementation of a 6DOF particle filter
(which estimates all six parameters using a particle filter).

4.1 Experiment conditions

The environment maps used for experiments reported in this chapter are real (with
the exception of the two game maps), and were collected using various vision and
laser technologies. With the exception of the barge fragment, which was collected
using the AQUASensor, all range data (hypothetically) observed by the robot using its
stereo sensor was simulated to emulate the AQUASensor. The characteristics of the
AQUASensor were duplicated based on real data from the AQUASensor; comparison
of real and simulated data for the barge fragment showed very similar data. Additional
noise and error for range image zt (composed of range points zit) is simulated by
adding random, uniformly distributed noise in the range [−0.1 |zit|, 0.1 |zit|] to each
range point in the scan. As an additional corruption, randomly positioned occlusions
are included in each range image, with each occlusion covering 10% of the width
and height of the vision frame. Three occlusions are randomly included at each time
step, with probability 0.75, 0.50 and 0.25, respectively; occlusions are positioned
somewhere between the camera and the observed distance. These occlusions are in-
cluded to simulate random failures for portions of the frame, caused for example, by fish.

The motion of the robot through the models is simulated to emulate the speed of the
AQUA robot. As such, the robot’s speed averages 30cm/second, ensuring that sufficient
overlap occurs between successive video frames. Since most of the robot motion is
simulated (again, with the exception of the barge fragment), the egomotion must also be
simulated. A known ground truth (generated in the map using a 3D modeling package)
is provided to the simulator, outlining the robot’s path through the environment. Based
on this path, changes in position and orientation (relative to the robot’s previous position
along the path) are computed in the robot’s coordinate frame, resulting in the control
ūt. The control ūt is then converted to the simulated, egomotion-estimated control ut
by adding randomly distributed noise in the range [−0.2 |ūt|, 0.2 |ūt| ], where |ūt| is the
magnitude of the vector. Finally, all IMU data for the experiments is simulated by using
the IMU model specified in [59]. Gaussian noise is added with parameters according to
the experiments in [59], listed in Table 3.3.
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(a) Four copies of (f) (from [68]) in a simulated subway car setup

(b) A LIDAR based model of a kiln in Scotland [49]

(c) Barge fragment from AQUA project [38] (d) A game world from YoFrankie [57]

(e) A game world from YoFrankie [57] (f) Subway model from C2SM project [68]

Figure 4.1: The environment models used to evaluate the localization algorithm.68



In order to simplify the comparison of results across the different models, the exper-
iments in this chapter were all performed with a common set of parameters.

• Each experiment is performed ten times, with all sensor noise re-initialized ran-
domly for each experiment. The robot’s correct path remains constant; this is to
account for the stochastic nature of the localization algorithm.

• The particle filter for each experiment is initialized randomly using a uniform
distribution, with particles covering a volume 2m larger (on each axis) than
the model’s volume (i.e., the subway model is initialized with a volume of
[7.7+2]× [4.3+2]× [7.3+2]m). This ensures that the robot’s position is included
in the initial distribution.

• The motion model for the particle filter adds additive noise independently to each
axis from a normal distribution with the variance set to 0.5 |ut|. This results in
tightly clustered particles expanding into a “bubble” around the estimated motion,
i.e., ut ± 0.5 |ut|. Such a liberal model covers potential errors in the ego motion
and also allows particles to move out of local maxima.

• The sampling rate for the IMU (and the corresponding extended Kalman filter up-
date) is 100hz; by comparison, the inertiaCube3 [39] has an update rate of 180hz.
Due to the greater computational cost associated with updating the particle filter,
it is updated at a reduced rate in these experiments, once per second. This rate
can certainly be increased, depending on the number of particles employed by the
filter. Since the algorithm is run off-line, this update process results in the Kalman
filter being updated 100 times, followed by a particle filter update.

• The unit t in the graphs refers to the number of seconds since the robot started
moving. At each second, data is collected and time stamped; the particle filter
component is then updated with this data.

• To allow the Kalman filter estimating the orientation of the vehicle to converge, it
is assumed that the robot is stationary for 10 seconds prior to moving. This allows
the sensors to settle, allowing the Kalman filter to converge to a reasonable initial
estimate. The position estimate is not computed during this time, as it would be
meaningless without a reasonable orientation estimate. These 10 seconds occur
prior to time t = 1 in the figures.

• Since the range scan is not necessarily complete, i.e., portions may not contain
any data, the filter only uses range data in the range (0, Max sensor range]. The
number of range samples used at each update step is indicated in the figures.
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• All graphs represent results starting at time t = 1, after integrating the control u0,
sensor measurements z1, i1 and resampling once. The data prior to the belief at
t = 1 (i.e., the initial random particle filter distributed over the space uniformly)
would simply clutter the graphs and is therefore omitted.

• The particle cloud mean µt is computed according to

µt =
∑
i

posi wi,

where posi is the position vector and wi is the scalar weight associated with the ith
particle.

This chapter focuses on the position estimate results, on the assumption that the orien-
tation is reasonably estimated by some other filter (i.e., the choice of orientation estimator
is unimportant, as long as it is able to reasonably estimate the device’s orientation). If the
orientation estimate is faulty, the position estimate is very unlikely to converge correctly.
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4.2 A constant 10,000 particles

This section describes experiments for validating the algorithm. In order to avoid tai-
loring the localization process to the environment, a baseline evaluation was performed
with a constant (10,000) particles used for localization. Examples of existing particle
filters used for 2D pose estimation sometimes start with 40,000 particles (e.g., [23]).
This suggests a reasonable number of particles to use; instead only a quarter were
used, as both an added challenge and, initially, to reduce the time required for running
experiments on the datasets. The smaller models (the subway, mini-level and barge
models) tend to converge rapidly to the correct position estimate given this sampling.
This is expected, as they are small and do not require a large number of particles
to cover the space sufficiently, compared to the larger models. For example, Figure
4.2 (right column) shows that the filter converges almost immediately to the correct
position estimate. Further tests shows that, for example, the small game map converges
reliably using 750 particles, see Figure 4.24. Although particles are initially distributed
uniformly throughout the model, the evaluation of the likelihood p(zt|xt, θt) is zero for
large portions of the map. This forces the particles into a relatively small subset of the
map during the first resampling of the particle cloud, resulting in the observed rapid
convergence (see Figure 4.3 for a graphical illustration).

The larger models (lighthouse, kiln and large subway models), illustrate the result of
using fewer, or on occasion too few, particles, i.e., under-sampling the position space.
Although the filter sometimes converges, it does not do so consistently, due to a lack of
particles (see Figure 4.2, left column). Although a particle may be placed with some
luck in a location where p(zt|xt, θt) evaluates to a high likelihood, this is not always
the case. Too many particles may end up in locations with near zero likelihood. For
example, the large subway model (see Figure 4.8) sometimes converges incorrectly,
particularly along the x and z axis. The y axis indicates height in this case, and since
all four subway cars are at the same height, converging to any of the subway cars will
results in the same height estimate. The lighthouse model (Figure 4.4) on the other
hand, has a large variance along all three axis, i.e., the map is very varied in its height.
This tends to result in particles converging incorrectly, which eventually results in a sum
likelihood of zero over all particles. Although detecting failure is an independent area
of study (known as the kidnapped robot problem), in this work it is trivially (and not
robustly), detected by noting when the normalizer equals zero. When the particle filter
fails, it is automatically reinitialized as a uniform distribution. This pushes the particle
cloud deviation to a maximum, which is evident in the figures. This reinitialization
results in the filter converging on the 3rd try, shown in figure 4.2. Figures 4.4 to 4.11
depict the results with 10,000 particles for the various datasets.
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Figure 4.2: This figure shows the divergence of the lighthouse model (left column), and
the convergence of the subway model (right column). Note that the lighthouse model fails
repeatedly (three times), eventually reinitializing some of the particles into the correct
space (which occurs around t = 70). The blue line indicates the true position, while the
green line indicates the estimated position.
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(a) Time t = 0. Nearly all particles have low likelihood (blue).

(b) Time t = 0, after resampling. (c) At time t = 1.

Figure 4.3: Illustrating the initial rapid convergence of the filter. (a) shows the initial
particle distribution, after the weights are updated using the latest measurements, but
prior to resampling. (b) shows the result of resampling, which only retains non-zero
particles. (c) shows the filter after the sensor measurements at time t = 1 have been
incorporated. 73



Sudden reduction of the particle filter error indicates that an (incorrect) group of
particles has been eliminated during a resample and is no longer influencing the particle
cloud mean. As discussed in Section 2.1, the particle cloud mean (or the minimum mean
square error, MMSE) is not usually an optimal estimator of the belief. A MAP estimate
(or suitable alternative) is a better approach to improving this estimate error. Such
methods may certainly be applied to this filter, but for simplicity this work makes use of
the admittedly flawed mean. This means that initial errors could be reduced through the
use of MAP, but once the filter has converged to a single cloud the estimate is robust.
For verification of this filter the simple mean approach is sufficient, but if deployed on a
robot a more robust approach should be employed.

Although the path recovered by the filter is not the true path, it closely approximates
it. This is due to the particle filter sampling an alternative distribution (the observation
likelihood), and not the desired position likelihood. Although the particles are weighed
in an attempt to correct the difference, the filter cannot do so perfectly; the observation
likelihood computed for the filter is merely an approximation of the actual observation
likelihood.

The following pages contain the figures for each of the “10,000 particle” experi-
ments performed. Each plot shows the results for ten random executions of the filter
for the same robot track, each one using randomly generated controls. Sub-figures (a-c)
display the estimation error along each axis, while (d) shows the distance between the
known correct position and the estimated robot position. Figure (e) shows the update
time required per particle filter update, which varies according to the number of range
points used (f) and the number of particles in use at a particular time (h). The uncertainty
of the particle filter is represented in (g), by the weighted standard deviation, computed
as √∑

i

wi(µ− xi)2 as opposed to the typical

√
1

N

∑
i

(µ− xi)2.

Here µ is the particle cloud mean, xi is the position component of the pose described
by the ith particle , and wi is the particle’s normalized weight such that

∑
wi = 1. This

metric is used to indicate the “certainty” with which the filter believes the estimated pose,
by showing how spatially distributed the particles are.
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Figure 4.4: 10,000 Particles, Lighthouse. Each individual, randomly seeded experi-
ment is plotted using a separate colour. The red dots indicate when the particle filter
re-initializes, due to all particles having zero likelihood.
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Figure 4.5: 10,000 Particles, Mini Level.
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(a) Lighthouse model

(b) Mini Level

Figure 4.6: The yellow path indicates the ground truth, while the purple path shows the
filter’s best estimate.
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Figure 4.7: 10,000 Particles, Subway.
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Figure 4.8: 10,000 Particles, Subway Large.
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(a) Subway model

(b) Large Subway model

Figure 4.9: The yellow path indicates the ground truth, while the purple path shows the
filter’s best estimate. The purple line coming from the lower left in (b) is due to a simple
mean being used for the best estimate.
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Figure 4.10: 10,000 Particles, Kiln.
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Figure 4.11: 10,000 Particles, AQUASensor.
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4.3 KLD particle size

Clearly a small, constant number of particles is insufficient for estimating the position
space when that search space becomes larger. Although the use of a constant, large
number of particles is possible, it is inefficient once the particle filter starts to converge.
Applying the KLD algorithm (see Section 2.2.2) to the particle filter allows the number
of particles to be varied depending on the particle distribution. Initially the particles are
distributed uniformly throughout the map; many particles are therefore needed to cover
the entire space effectively. As the filter converges, the number of particles is reduced
during the resampling phase, maintaining the represented distribution while using fewer
particles and eliminating unlikely particles.

This section shows results using KLD sampling (see Figures 4.13 to 4.15 for a
visual representation). As expected, the smaller maps still converge reliably, since they
already worked well with fewer particles. The larger models, such as the lighthouse and
large subway models (Figures 4.16 and 4.20, respectively) now converge much more
reliably, as shown in Figure 4.12. At the same time, once the filter begins to converge
the computational time drops to 50-100 msec per sensor update. The initial update time
is pushed to a maximum of about ten seconds, during which time a large number of
particles are seeded to cover the space. Since most particles die quickly, the required
number of particles is quickly reduced, (even prior to the filter converging) meaning this
time penalty only occurs during the first few time steps.

The results for the lighthouse model are much improved (two failures compared
to 77 failures), with only a single experiment not converging rapidly. After the filter
re-initializes twice, it rapidly converges on the correct position estimate. These two
failures are the only ones recorded for the KLD experiments with the lighthouse model,
while the particle filter using a constant number of particles failed 77 times on the same
dataset (over 10 runs).

The use of 10,000 particles is clearly insufficient when estimating the robot’s pose
in the large subway model; particles initially converge along different paths. On the
other hand, when using KLD sampling the same dataset consistently converges at around
t = 30, with a small deviation around time t = 70. This clearly indicates that the filter is
consistently converging to the same “optimal” path, even though a certain error remains
due to approximation errors from the NDT (i.e., caused by the NDT’s discrete nature).
The kiln model on the other hand takes a long time to converge. Comparing Figure
4.22(d) and (f) shows that the data contained in the initial range scans is very limited
(i.e., less than 50 points are being used). Shortly after more data becomes available the
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Figure 4.12: Convergence comparison between 10,000 particles (left) and a variable
number of particles using KLD sampling (right). The results for the KLD approach
clearly show rapid/consistent convergence of the pose estimate. The red dots indicate
filter failures.
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filter converges rapidly, finally eliminating particles in incorrect regions of the map.
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(a) Initial random distribution at t = 0, using 250,000 particles.

(b) Resampling the belief at t = 0, the ma-
jority of particles have zero weight and have
been eliminated by the resampling step.

(c) Belief at t = 2. Since the filter is only
sampling a portion of the position space, the
particle count is reduced to 21282 particles.

Figure 4.13: The following set of figures illustrate the position estimation component
of the filter. Although difficult to see (b) contains particles in several locations. They
become more visible at the next time step in (c), after control u1 is integrated. The
yellow line indicates the ground truth position path.
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(a) Position estimate at t = 4, using 12,974
particles. The update took 1095ms.

(b) Position estimate at t = 6, using 9,365
particles. The update took 518ms.

(c) Position estimate at t = 11, using 5,028
particles. The update took 254ms.

(d) Position estimate at t = 13, using 5,580
particles. The update took 308ms.

Figure 4.14: Continuing evolution of the particle fitler. Although the upper particle
cloud initially gains increased likelihood, over time the sensor measurements become
inconsistent with the map. At this point the particle cloud near the bottom of the figures
gain likelihood. The purple line indicates the estimated robot pose, based on the particle
cloud mean. This estimate is wrong since a simple weighted mean is used, even though
two peaks exist in the likelihood (i.e., (d) shows an estimate inconsistent with either
particle cloud). MAP estimation would be an effective option for recovering a more
robust position estimate in this case.

87



(a) Position estimate at t = 15, using 4,248
particles. The update took 232ms.

(b) Position estimate at t = 18, using 4,248
particles. The update took 229ms.

(c) Position estimate at t = 30, using 2,807
particles. The update took 118ms.

(d) Position estimate at t = 40, using 3,045
particles. The update took 161ms.

Figure 4.15: In (a) the upper cloud is still present, but after the next update it starts to
disappear (b), and has vanished entirely in (c). The pose estimation problem is now akin
to pose tracking, shown in (d). The light blue line indicates the raw odometry estimate.
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Figure 4.16: KLD Lighthouse.
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Figure 4.17: KLD Mini Level.
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(a) Lighthouse model

(b) Mini Level

Figure 4.18: The yellow path indicates the ground truth, while the purple path shows the
filter’s best estimate.
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Figure 4.19: KLD Subway.
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Figure 4.20: KLD Subway Large.
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(a) Subway model

(b) Large Subway model

Figure 4.21: The yellow path indicates the ground truth, while the purple path shows the
filter’s best estimate. The purple lines in the lower left of (b) are due to a simple mean
being used.
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Figure 4.22: KLD Kiln.
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Figure 4.23: KLD AQUASensor.
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4.4 Comparison with simple particle filter

Decoupling the orientation estimate from the position estimate allows pose estimation to
be performed at a reasonable computational cost. In order to demonstrate the efficacy of
this approach, a comparison with a traditional particle filter is presented. This example
filter estimates all parameters of the state, both the position and orientation, using only
particles. As such, the space that needs to be searched by the particle filter is much
larger, and should require more particles. For fairness, the same simulator is used,
allowing the same noise to be added to the system, and the same sensor readings to be
presented to the filter. The only changes are that the orientation control in ut (not used
in the developed filter) is now used as well. In order to be fair, no noise is added to
the change in orientation, i.e., for orientation states θt−1, θt, the control data (change
in orientation, represented using quaternions) provided is θ∆ = θ−1

t−1θt. While not
realistic, it gives the naı̈ve 6DOF filter a reasonable advantage. In order to eliminate
KLD sampling as a potential source for bias, the comparison uses a constant number of
particles (for which reason the execution time is not listed). The tests are performed on
the smaller game dataset in Figure 4.1(e).

Running the filter repeatedly and varying the size of the particle cloud reveals the
number of particles required to converge consistently, as well as the minimum number
of particles with which the filter starts to fail. Only experiments where the number
of particles showed a result of interest are shown here, although experiments with
different numbers of particles were also conducted. When using the EKF enabled filter,
it consistently converges with 750 particles (See Figure 4.24). Using 500 particles the
filter becomes less stable, and exhibits some occasional failures (10 failures in 100
experimental runs, where failure is defined as the position estimate being off by at least
one meter from the correct estimate at time t = 50).

On the other hand, disabling the EKF, and instead sampling all six parameters,
results in a requirement for a much greater number of particle. Figure 4.24 shows
experiments using 50,000, 150,000 and 250,000 particles using a naı̈ve implementation
of the particle filter. The experiments using 50,000 or 150,000 particles show consistent
failures. When using 150,000 particles the failure rate is around half, with the other half
correctly converging on the desired pose. Increasing the number of particles to 250,000
(a squared increase compared compared to the 500 when using an EKF) results in 19
failures in 100 experimental runs.
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Figure 4.24: Comparing the filter in this work (top) with a naı̈ve 6DOF particle filter
(middle and bottom). The map size used for this experiment was 11× 3.8× 10.6m3.
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(a) Mini Level, particle filter with EKF, 750 particles. ∼30 msec per update.

(b) Mini Level, naı̈ve 6DOF particle filter, 250,000 particles. ∼10 seconds per update.

Figure 4.25: The yellow path indicates the ground truth, while the purple path shows the
filter’s best estimate. Clearly (a) shows better accuracy, at a vastly reduced computational
cost.
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4.5 Summary

The filter developed in Chapter 3 was tested on six datasets using a constant 10,000
particles. These experiments show that the particle filter works well on smaller maps, but
also indicates that some of the larger models require more particles in order to converge
reliably. This makes intuitive sense, as the filter would be under-sampling the position
search space of the larger maps. Although alternative approaches may be possible
(such as making the resolution for p(zt|xt, θt) coarser, discussed in the next chapter),
an increase in particles can be used to solve the under-sampling problem. Using KLD
sampling, we show that the filter consistently converges on all of the datasets when
provided with more particles. The KLD algorithm allows the number of particles to be
varied dynamically, resulting in increased accuracy, while allowing a fast update time
once the filter begins to converge.

Naturally, a comparison with an alternative solution is warranted in order to show
the effectiveness of the approach. The limited availability of existing 6DOF solutions
leads to comparing the system to a naı̈ve implementation of a 6DOF particle filter, which
estimates all six parameters. In order to be fair to this alternative, both are provided with
the same experiment parameters and the same data. In addition, the rotation component
of the control ut is given without noise, i.e., a perfect control is provided. Due to the
inherent increased dimensionality of the approach, the comparison of course shows that
a 6DOF particle filter requires a significant increase in the number of particles. The
required number of particles for 6DOF pose estimation is exponentially increased (in
terms of the number of dimensions) when compared to the filter developed in this work
(from 500→ 5002, for similar failure rates).

These results clearly indicate the advantage and effectiveness of efficiently estimating
a portion of the state directly using a sensor such as an IMU. This approach leads to
significant time savings, while using the NDT as a likelihood estimator allows for a
greatly reduced memory footprint and additional computational savings. This allows
the presented filter to be implemented on existing robot hardware, without requiring
additional computational resources.
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Chapter 5 Summary and future work

Pose estimation is an important capability for mobile robots; without it, motion planning
may become difficult or even impossible. Although pose estimation is an important task
for robots able to move with six degrees of freedom, directly extending the existing work
for 2D pose estimation into the 3D realm is not computationally attractive. The increased
dimensionality of the problem requires a vastly larger number of particles that typically
cannot be effectively computed using current hardware. Reducing the dimensionality of
the problem is key to reducing the computational resources required. Some solutions
attempt to do so by limiting the motion of the device, or by first computing a 2D pose
estimate and then extending that estimate into 3D. Such approaches assume the the mo-
tion of the device can be limited, or that a reasonable 2D pose estimate can be computed
independently of the 3D pose. An alternative approach is needed if such assumptions are
not valid; this work has developed such an alternative.

5.1 Contributions of the work

The primary contribution of this work is the development of a 6DOF pose estimation
filter that separates pose estimation into two related problems. The first problem is the
estimation of the uni-modal components, in this case the orientation components, of
the pose using an efficient filter (such as the Kalman filter). The second portion of the
filter then estimates the remaining parameters using a particle filter, conditioned on the
parameters previously estimated efficiently. A secondary contribution in this work is
the novel use of the NDT for estimating the range likelihood. This allows the range
likelihood to be evaluated efficiently, while using relatively little memory to store the
map.

Overall, this approach reduces the dimensionality of the pose which needs to be
estimated using sampling methods, by taking advantage of an IMU to estimate the
device’s orientation separately from its position. This permits a significant reduction in
the required computational resources. The effectiveness of this approach was demon-
strated through a variety of experiments on both simulated and real world environment
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models. In order to further reduce the computational requirements, the NDT is used as
an efficient likelihood estimator for the range measurements. This eliminates the need
to generate a pseudo-scan for each particle, as would be needed with some approaches.
Instead the NDT is used to directly evaluate the likelihood of observing a range scan.
Due to variable map sizes, a constant number of particles is likely to either under- or
over-sample the position space, making it attractive to vary the number of particles
based on the distribution of the particle cloud. To this end, the KLD algorithm is applied
to the particle filter component of the filter to vary the number of particles as needed.
This results in both reducing the number of failures of the filter, and also reduces the
computational cost once the the filter has converged. Although the filter was developed
as a result of work in underwater robotics, the filter is applicable to many 6DOF vehicles
equipped with 3D sensors. For example, ground based outdoor vehicles could make
use of the filter, as they operate in semi-6DOF environments, see Figure 5.1. Although
the vehicle itself cannot come off the ground, the ground itself changes in elevation.
This can cause the vehicle to operate in orientations far from the clean, level orientation
expected for typical 2D pose estimation solutions, requiring at least a limited 6DOF
solution.

5.2 Limitations of the work

The focus of this work has been on vehicles with characteristics similar to the AQUA
robot. Certain implicit assumptions that are made regarding the robot may not be
valid when considering other platforms. For example, the work assumes a vehicle that
moves slowly enough such that there is significant scene overlap between successive
video frames. This allows for visual odometry (egomotion estimation) to be used for
a priori estimation of the change in pose for the robot. Some alternative method must
be employed to estimate the change if this work would be applied to estimating the
pose of a fast moving vehicle. The rate of such a vehicle would make visual odometry
challenging, since overlapping video frames would be less likely. This work could still
be applied using some other motion estimate/model, combined with a (potentially) more
generous noise model.

The developed filter does not explicitly account for missing data in the models;
such as the presence of people, windows, or “holes” in the map. People and objects
that move around in the environment cause readings by the range sensor that will not
match anything in the “known” environment. This may result in wasting resources on
searching for objects that are not found the map. While, to a certain extent, the NDT
approach is robust to such missing data, the evaluation of data that won’t match anything
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Figure 5.1: YURT Mars rover prototype [69]. Extending work to semi-6DOF robot
platforms, such as this rover, would be an area of interesting work. The reduced mo-
tion capabilities of the platform (compared to the AQUA robot for example) could be
exploited to reduce the number of particles required to effectively sample the position
space.

in the map is a waste of resources. Extension of the 2D novely and entropy filters in [8]
to 3D could improve some of these results.

5.3 Future work

Many interesting areas remain for potential future investigation. The obvious experiment
to conduct is the collection of a complete data set using a robot such as the AQUA
robot. Although the range data for the barge model (generated using the AQUASensor)
is real, simulated IMU data was used when testing the effectiveness of the filter. Most
of the other world maps are based on real data, although the egomotion and range data
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expected from the AQUASensor are simulated. Although the simulations in this work
incorporate noise based on experimental values from real world trials, it is no substitute
for real data. In addition, the ground truth used in this work is based on egomotion
estimation. This works reasonably well for the experiments which simulate the AQUA
sensor, but when testing on complete datasets, it would be better to have a more robust
ground truth. Performing above ground pose estimation tests using a psuedo-robot
(vision system and IMU) in a room equipped with an absolute tracking system (such
as a VICON motion capture system [72]) would provide a reliable ground truth against
which to test the algorithm’s accuracy. Once such experiments have been performed,
applying the algorithm to a live 6DOF robot would clearly be of interest. The current
implementation, once stripped of the graphical components, is certainly capable of being
run in real-time on current robot hardware, assuming the AQUASensor is also adapted
for real-time use.

Extending the work to alternative robot platforms, which may not operate in true
6DOF environments, would also be an interesting area for future work. There are many
applications where a vehicle is not truely 6DOF, yet existing technologies for 3DOF
pose estimation prove to be limited. For example, using the filter with senors mounted
on a ground based vehicle operating outdoors in rough terrain. Although not truly
6DOF, the environment is sufficiently complex to introduce elevation changes, as well as
orientation changes beyond the standard, level, yaw angle. Such conditions make 3DOF
solutions ineffective at best or even unapplicable. Application of the developed filter
could be made more efficient by adjusting the motion model to consider the constant
height of the sensor off the ground (±ε). Such a model could prevent particles from
moving too far (or too close) from the ground, while still allowing a much more re-
alistic 3D map to be used, and also considering the non-planar nature of the environment.

Another potential area of interest is the orientation estimate. The current imple-
mentation of the filter uses a single Kalman filter for estimating the orientation. Given
sufficient computational resources, a potential improvement could be to compute a
Kalman filter for each individual particle. While more time would be required per
update, and in theory each Kalman filter should converge to the same orientation
estimate, it may none-the-less improve the overall accuracy of the filter. It would also
allow integrating the expected change in orientation for each particle into the particle’s
Kalman filter, which is currently not done.

Another area worthwhile investigating is what happens when the orientation estimate
is not reliable. If, for example, the robot moves violently for a short period, the
Kalman estimate may not be reliable. Instead of fully updating the particle filter
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Figure 5.2: The AQUA robot deployed in a 6DOF environment, illustrating the roll and
pitch capabilities of the vehicle. Stereo vision sensors are visible at the front of the robot.

and potentially destroying the previously accurate estimate, it may be advantageous
to temporarily halt the particle filter. It may be possible during such a time to
accumulate the controls, and once the Kalman filter becomes more reliable again
integrate all the controls in one (accumulated) step. This would cause the particle filter
to diverge considerably, but possibly leave the particles in likely regions. The next
measurement update should then be able to eliminated those particles that strayed too far.

The filter, as developed in Chapter 3, contains the term p(it|xt, θt), i.e., the likelihood
of observing the unfiltered IMU data given the currently estimated state. The current
implementation of the filter ignores the computation of this distribution, instead focusing
on p(zt|xt, θt); i.e., the likelihood p(it|xt, θt) is assumed independent of xt. Exploring
cases where this condition does not hold, such as in areas with high magnetic variations,
would be an interesting area for future work.
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The position result of the current filter tends to converge with an error margin of
approximately 20cm. More accurate results would likely be achieved through the use
of several refinements. The NDT used in this work is run using a cell size of 20cm;
varying this size dynamically while the filter is running should vary the accuracy as
well. Increased cell size would likely lead to a less accurate estimate, but might work
well when the particles are widely distributed. Once the filter begins converging, it
may be advantageous to decrease the cell size, most likely resulting in a more accurate
estimate. A different approach would use the current pose estimate and then use the
NDT as intended by its original authors; as a scan alignment tool. Starting with the
best estimate from the filter, the position (and orientation) could be iteratively improved
through standard optimization techniques, outlined in [46, 53]. Obviously, a similar
approach could be accomplished using the ICP (or similar) algorithm, but this would
require the original world model to be stored in memory, which may be unattractive.

The developed filter can be thought of as separating the pose into two groups. One
of these can be estimated efficiently, and is characterized by a uni-modal distribution;
the other may be multi-modal and requires a sampling approach. Since the filter is
developed based on vectors, the specific dimensions to which the filter is applicable is
flexible. This work focused on a task with six parameters, three for position and three for
orientation. It would be relatively straightforward to extend the work to a greater number
of parameters. Uni-modal parameters (assuming they do not depend on the sampled
parameters), could be added to the state θt; those parameters that should be sampled, or
are dependent on the θt parameters, could be added to the state xt. Investigating such an
extension could be useful for a variety of systems.

An area unrelated to robotics that could benefit from this work is in archaeological
digs. Such sites could initially be mapped using LIDAR technology (the kiln dataset in
Chapter 4 is from an archaeological dig), producing a detailed map of the site. Once
such a map is produced, localizing an observer inside the map may be desirable. Unfor-
tunately, as these digs may occur inside caves, the use of GPS localization is often not
effective. Interest has been expressed in the ability for an archaeologist to use a hand
held device (i.e., a unit containing a stereo camera and an IMU), and with it be able to
track the observer’s movements throughout a site. For example, such a device would
permit the accurate tagging of items found in the dig site, among other things.
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