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Abstract

This paper describes the first complete implementation of a non-blocking binary search tree in an
asynchronous shared-memory system using single-word compare-and-swap operations. The implementa-
tion is linearizable and tolerates any number of crash failures. Insert andDelete operations that modify
different parts of the tree do not interfere with one another, so they can run completely concurrently.
Find operations only perform reads of shared memory.

1 Introduction

Although there are extensive, highly optimized libraries of sequential data structures, libraries of non-blocking
distributed data structures are much less comprehensive. Over the past fifteen years, some progress has been
made to provide non-blocking implementations of arrays and linked lists (as well as data structures that can
be built from them, like stacks, queues, hash tables, and skip lists) in shared-memory distributed systems
[4, 5, 9, 14, 20, 22, 24]. The binary search tree (BST) [15] is one of the most fundamental sequential data
structures, but comparatively little has been done towards providing non-blocking implementations of it. In
the documentation for the ConcurrentSkipListMap class of the Java standard library [17], Lea wrote, “you
might wonder why this [non-blocking dictionary implementation using skiplists] doesn’t use some kind of
search tree instead, which would support somewhat faster search operations. The reason is that there are
no known efficient lock-free insertion and deletion algorithms for search trees.”

We give the first complete, non-blocking, linearizable BST implementation using only reads, writes, and
single-word compare-and-swap (CAS) operations. It does not use large words, so it can be run directly on
existing hardware. Updates to different parts of the tree do not interfere with one another, so they can run
concurrently. Searches only read shared memory and follow tree edges from the root to a leaf, so they do
not interfere with updates, either.

At a high level, our implementation is easy to understand, partly due to its modularity. We give an
overview in Section 3. A more detailed description of our implementation, together with pseudocode, is given
in Section 4. A proof of correctness is given in Section 5. It is surprisingly intricate; complex interactions
can arise between concurrent operations being performed in the same part of the tree. This makes it difficult
to guarantee that the coordination between processes actually does prevent concurrent updates on the same
part of the tree from interfering with one another. We also must ensure that searches do not go down a
wrong path and miss the element for which they are searching, when updates are happening concurrently.

2 Related Work

There are implementations of BSTs using locks that support concurrent accesses. For example, Guibas and
Sedgewick [8] gave a balanced BST by uncoupling rebalancing operations from updates, as did Kung and



Lehman [16], who also proved their implementation correct. Nurmi and Soisalon-Soininen [21] introduced
chromatic trees, a leaf-oriented version of red-black trees with relaxed balance conditions and uncoupled
update and rebalancing operations. Boyar, Fagerberg, and Larsen [3] modified some of the rebalancing
operations of chromatic trees, improving their performance, and gave a proof of correctness of their locking
scheme. However, in all of these implementations, a process changing the data structure must lock a number
of nearby nodes. This can block searches and other updates from proceeding until the process removes the
locks.

The co-operative technique described by Barnes [1] is a method for converting locked-based implementa-
tions into non-blocking ones. His idea is to replace locks owned by processes with locks owned by operations.
When acquiring a lock on a part of the data structure, for example a node in a tree, an operation writes a
description of the work that it needs to do while holding the lock. Other processes that encounter a locked
cell can then help the operation that locked it, so that the lock can eventually be released, even if the process
that acquired the lock crashes. Like most general transformations, it can have large overhead when applied
to particular implementations. If it were applied to the lock-based tree implementations mentioned above,
a process may have to repeatedly help many other operations progress down the tree, which could result in
a very long delay until any operation completes.

Valois [23, 24] briefly sketched a possible non-blocking implementation of a node-oriented BST using
registers and CAS objects, based on his non-blocking implementation of a linked list, but a full description of
this implementation has not yet appeared. His idea is to have an auxiliary node between a tree node and each
of its children, to avoid interference between update operations. However, as in his linked list implementation,
this approach can give rise to long chains of consecutive auxiliary nodes, which degrade performance, when
nodes are deleted. Our implementation is also conceptually simpler than Valois’s, requiring one tree pointer
to be changed for each update (rather than four).

In his Ph.D. thesis [7], Fraser wrote, “CAS is too difficult to apply directly” to the implementation
of BSTs. Instead, he gave a non-blocking implementation of a node-oriented BST using multi-word CAS
operations that can atomically operate on eight words spread across five nodes. He provided some justification
for the correctness of his implementation, but did not provide a proof of correctness. He described how to
build multi-word CAS operations from single-word CAS, but this construction involves substantial overhead.

Bender et al. [2] described a non-blocking implementation of a cache-oblivious B-tree from LL/SC oper-
ations, but a full version of this implementation has not yet appeared.

Universal constructions can be used to provide wait-free, non-blocking implementations of any data
structure, including BSTs. However, because of their generality, they are usually less efficient than imple-
mentations tailor-made for a specific data structure. Some universal constructions [12] put all operations into
a queue and the operations are applied sequentially, in the order they appear in the queue. This precludes
concurrency. In other universal constructions [11, 13] a process copies the data structure (or the parts of it
that will change and any parts that directly or indirectly point to them), applies its operation to the copy,
and then tries to update the relevant part of the shared data structure to point to its copy. In a BST, the
root points indirectly to every node, so no concurrency is possible using this approach, even for updates on
separate parts of the tree.

Similarly, shared BST implementations can be obtained using software transactional memory [6, 7, 10].
However, current implementations of transactional memory either satisfy weaker progress guarantees (like
obstruction-freedom) or incur high overhead when built from single-word CAS.

3 Implementation Overview

A BST implements the dictionary abstract data type. A dictionary maintains a set of keys drawn from a
totally ordered universe and provides three operations: Insert(k), which adds key k to the set, Delete(k)
which removes key k from the set, and Find(k), which determines whether k is in the set. An update
operation is either an Insert or a Delete. We assume duplicate keys are not permitted in the dictionary,
so an insertion of a duplicate key should return False without changing the dictionary. Similarly, an attempt
to delete a non-existent key should return False. Our implementation can also store auxiliary data with
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Figure 1: Insertion in a leaf-oriented BST in a single-process system.
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Figure 2: Deletion in a leaf-oriented BST in a single-process system.

each key, if this is required by the dictionary application.
Our BST implementation is non-blocking: starting from any configuration of any infinite asynchronous

execution, with any number of crash failures, some operation always completes. It is also linearizable. This
means that, for every execution, one can assign a linearization point to each completed operation and some
of the uncompleted operations so that the linearization point of each operation occurs after the operation
starts and before it ends, and the results of these operations are the same as if they had been performed
sequentially, in the order of their linearization points.

In our implementation, nodes maintain child pointers but not parent pointers. We use a leaf-oriented
BST, in which every internal node has exactly two children, and all keys currently in the dictionary are
stored in the leaves of the tree. (Any auxiliary data can also be stored in the leaves along with the associated
keys.) Internal nodes of the tree are used to direct a Find operation along the path to the correct leaf. The
keys stored in internal nodes may or may not be in the dictionary. A leaf-oriented BST also maintains the
following BST property: for each internal node x, all descendants of the left child of x have keys that are
strictly less than the key of x and all descendants of the right child of x have keys that are greater than or
equal to the key of x. As shown in Figure 1 and 2, an insertion replaces a leaf by a subtree of three nodes and
a deletion removes a leaf and its parent by making the leaf’s sibling a child of the leaf’s former grandparent.
(In the figures, leaves are square and internal nodes are round.) For both types of updates, only a single
child pointer near a leaf of the tree must be changed.

However, simply using a CAS on the one child pointer that an update must change would lead to
problems if there are concurrent updates. Consider the initial tree shown in Figure 3(a). If a Delete(C)
and a concurrent Delete(E) perform their CAS steps right after each other, the resulting tree, shown in
Figure 3(b), still contains E, which is incorrect. Similarly, if a Delete(E) and a concurrent Insert(F )
perform their CAS steps right after each other, then the resulting tree, shown in Figure 3(c), does not
contain F because it is unreachable from the root. Harris [9] avoided analogous problems in his linked list
implementation by setting a “marked” bit in the successor pointer of a node before deleting that node from
the list. Once the successor pointer is marked, it cannot be changed. We use a similar approach: when
deleting a leaf, we mark the parent of the leaf before splicing that parent out of the tree. Once a node is
marked, we ensure that its child pointers cannot change.

Ensuring that the child pointers of a marked node do not change is more difficult than in Harris’s linked
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Figure 3: Problems can occur if updates only CAS one child pointer.

list implementation, because the two child pointers are stored in two different words, so we cannot atomically
mark both of them. Instead, we mark a node using a separate state field of the node. The state field is
changed by CAS steps, and is initially set to the value Clean. To mark the node, we set its state to Mark.
We also use this field to flag the node, to indicate that an update is trying to change a child pointer of the
node. Before an Insert or Delete changes either of the node’s child pointers, it must change the state
of the node to IFlag or DFlag, respectively. After the child has successfully been changed, the state is
changed from IFlag or DFlag back to Clean. This prevents both of the problems shown in Figure 3.
(The use of flagging is motivated partly by Fomitchev and Ruppert’s linked list implementation [5], although
they used flagging purely to improve performance.)

Thus, the key steps in update operations can be described as follows (using the examples of Figure 1
and 2). The Insert(C) operation shown in Figure 1 is done using three CAS steps: (1) flag node D’s parent,
node B, (2) change the appropriate child pointer of node B, and (3) unflag node B. We refer to these three
types of CAS steps as iflag, ichild and iunflag CAS steps, respectively. The Delete(C) operation shown
in Figure 2 is accomplished using four CAS steps: (1) flag C’s grandparent, node B, (2) mark C’s parent,
node D, (3) change the appropriate child pointer of B, and (4) unflag node B. We call these four types of
CAS steps dflag, mark, dchild and dunflag CAS steps, respectively. We refer to ichild and dchild CAS steps
collectively as child CAS steps. We refer to iflag and dflag CAS steps collectively as flag CAS steps. We
refer to iunflag and dunflag CAS steps collectively as unflag CAS steps.

In some sense, setting the state of a node to Mark, IFlag, or DFlag is analogous to locking the child
pointers of the node: An operation must successfully acquire the lock (by setting the flag) before it can
change a child pointer. Marking a node locks the node’s child pointers forever, ensuring that they never
change again. Viewed in this way, a Find does not acquire any locks, an Insert is guaranteed to complete
when it acquires a lock on a single node at the site of the insertion, and a Delete is guaranteed to complete
after acquiring locks on just two nodes at the site of the deletion. Since each operation only requires locks
on one or two nodes near a leaf of the tree, our locking scheme will not cause serious contention issues, and
concurrent updates will not interfere with one another if they are on different parts of the tree. In contrast,
the lock-based algorithms described in Section 2 require locking all nodes along a path from the root to a
leaf (although not all simultaneously).

To achieve a non-blocking implementation, we use a strategy similar to Barnes’s technique, described in
Section 2. When an operation flags a node x to indicate that it wishes to change a child pointer of x, it also
stores a pointer to an Info record (described below) that contains enough information for other processes to
help complete the operation, so that the node can be unflagged. Thus, an operation that acquires a lock
always leaves a key to the lock “under the doormat” so that another process blocked by a locked door can
unlock it after doing a bit of work. We prove this helping mechanism suffices to achieve a non-blocking
implementation. The pointer to the Info record is stored in the same memory word as the state. (In typical
32-bit word architectures, if items stored in memory are word-aligned, the two lowest-order bits of a pointer
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can be used to store the state.)
Helping can often contribute to poor performance because several processes try to perform the same piece

of work. Thus, we choose a conservative helping strategy: a process P helps another process’s operation
only if the other operation is preventing P ’s own progress. Since Find operations do not have to make any
changes to the tree (and therefore cannot be blocked from doing so), they never help any other operation.
If P is performing an update operation that must flag or mark a node that is already flagged or marked, it
helps complete the operation that flagged or marked the node. Then P retries its own update operation.

Once an Insert operation has successfully performed its first key step, the iflag CAS, there is nothing
that can block it from completing the other two key steps, the ichild and iunflag CAS steps. Similarly, once
a Delete operation has successfully performed its first two key steps, the dflag and mark CAS steps, there
is nothing that can block it from completing the other two key steps, the dchild and dunflag CAS steps.
However, if a Delete operation successfully performs its first key step, the dflag CAS, and then fails when
attempting its mark CAS, it is impossible to complete the operation as planned. This could happen, for
example, if a concurrent Insert has replaced the leaf to be deleted by three new nodes, in which case the
flag is no longer on the node whose child pointer must be changed to accomplish the deletion. Thus, if a
mark CAS fails, the Delete operation uses a CAS to remove its flag and restarts the deletion from scratch.
The CAS that removes the flag in this case is called a backtrack CAS to distinguish it from a dunflag CAS.
(See Figure 4 for a summary of the types of CAS steps. In the figure, the italicized mark CAS is performed
on the child of the node whose state is DFlag.)

The proof of correctness includes several major parts. We show that no value is ever stored in the same
CAS object by two different successful CAS steps. This implies that, if a process reads a CAS object twice
and sees the same value both times, the CAS object did not change between the two reads. We show that
helping is carefully coordinated so that each of the CAS steps required to perform an operation is performed
by at most one process (and they are done in the correct order). For example, we show that if a process P
performs a successful iflag CAS as part of an Insert operation, at most one process (either P or a process
helping to perform the operation) successfully performs the following ichild CAS, and, if it is successfully
performed, then at most one process performs the following iunflag CAS. Similarly, for a Delete operation,
after a dflag CAS succeeds, then either the remaining three CAS steps required to complete the Delete are
successfully performed at most once each and in the correct order, or the DFlag is removed by a backtrack
CAS. In the latter case, the tree is unchanged, and the deletion is retried. We use all of these facts to prove
that the nodes together with their child pointers always form a BST with distinct keys in the leaves. This
allows us to choose very natural linearization points for successful update operations: each successful Insert
and Delete operation is linearized at its successful child CAS.

4 Detailed Implementation

4.1 Representation in Memory

Our BST is represented using registers, which support read and write, and compare-and-swap (CAS) objects,
which support read and CAS operations. If R is a CAS object, then CAS(R, old, new) changes the value of
R to new if the object’s value was old, in which case we say the CAS was successful. A CAS always returns
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separated by dotted lines are stored in a single word.

the value the object had prior to the operation. (If a CAS object R does not support reads, a CAS(R, v, v),
for any value v, will read R.) The data types we use are defined in Figure 7.

A leaf node has no children. It has a single field, key, and we say that it has type Leaf. (If auxiliary data
is to be stored in the dictionary, the Leaf node can have additional fields stored in registers.) An internal
node has two children. It has five fields, key, left, right, state, and info, and we say it has type Internal. We
also say that leaf and internal nodes have type Node. The key field of a leaf or internal node is stored in
a register, which is initialized with a value when the node is created, and is never changed thereafter. The
left and right child pointers of an internal node are represented by CAS objects. They always point to other
nodes. The state field has one of four possible values, Clean, Mark, IFlag, or DFlag, and is initially
Clean. It is used to coordinate actions between updates acting on the same part of the tree, as described
in Section 3. An internal node is called clean, marked or flagged depending on its state. Finally, an internal
node has a pointer, info, to an Info record. This field is initialized to a null pointer, ⊥. The state and info
fields are stored together in a CAS object. Thus, an internal node uses four words of memory. The word
containing the state and info fields is called the update field of the node.

When an update operation U flags or marks a node, U stores enough information so that another process
that encounters the flagged or marked node can complete U ’s update. We use two types of records, called
IInfo records and DInfo records (referred to collectively as Info records) to store this information. When a
node is flagged or marked, a pointer to an Info record containing the necessary information is simultaneously
stored in the info field of the node. To complete an Insert, a process must have a pointer to the leaf that is
to be replaced, that leaf’s parent and the newly created subtree that will be used to replace the leaf. This
information is stored in an IInfo record, in fields named l, p and newInternal, respectively. To complete a
Delete, a process must have a pointer to the leaf to be deleted, its parent, its grandparent, and a copy of
the word containing the state and info fields of the parent. This information is stored in a DInfo record in
fields named l, p, gp and pupdate, respectively. The fields of Info records are stored in registers.

The data structure is illustrated in Figure 5. The figure shows a part of the tree containing three leaves
with keys A, C and E and two internal nodes with keys B and D. Two update operations are in progress.
A Delete(C) operation successfully flagged the internal node with key B. Then, an Insert(F ) operation
successfully flagged the internal node with key D. The Info records for these two updates are shown to the
right of the tree. The Insert is now guaranteed to succeed: either the process performing the Insert or
some other process that is helping it will change the right child of the internal node with key D to point to
the newly created subtree (shown at the right) that the IInfo record points to. The Delete operation is
doomed to fail: When the Delete created the DInfo record, it stored the values it saw in node D’s state
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Figure 6: Trees showing leaves with dummy keys when the dictionary is (a) empty and (b) non-empty.

and info fields in the pupdate field of the DInfo record. When the Delete (or a process helping it) performs
the mark CAS on node D, it will use, as the old value, the pupdate value stored in the DInfo record. The
state and info fields of the node with key D have since changed, so the mark CAS will fail. This is a
desirable outcome (and is the reason insertions flag nodes before changing them): if the Delete did succeed
in changing the right child of the internal node with key B to the leaf with key E (thereby removing the
internal node with key D from the tree), the newly inserted key F would disappear from the tree. Instead,
the DFlag stored in the internal node with key B will eventually be removed by a backtrack CAS, and the
Delete will try deleting key C again.

As shown in Figure 1 and 2, the basic modifications to the tree require changing the child pointers of
either a parent or grandparent of a leaf. This would require numerous special cases in the pseudocode to
handle situations where the tree has fewer than three nodes. To avoid these special cases, we append two
special values, ∞1 < ∞2, to the universe Key of keys (where every real key is less than ∞1) and initialize the
tree so that it contains two dummy keys ∞1 and ∞2, as shown in Figure 6(a). (Thus, the key field of a node
actually stores an element of Key ∪ {∞1,∞2}.) Deletion of the leaves with dummy keys is not permitted,
so the tree will always contain at least two leaves and one internal node. When the dictionary is non-empty,
dictionary elements will be stored in leaves of the subtree shown in Figure 6(b). The shared variable Root
is a pointer to the root of the tree, and this pointer is never changed. All other named variables used in the
pseudocode are local variables (although they may contain pointers to shared memory).

For simplicity we assume nodes and Info records are always allocated new memory locations. In practice,
however, memory management is an important issue: it would be more practical to reallocate the memory
locations that are no longer in use. Such a scheme should not introduce any problems, as long as a memory
location is not reallocated while any process could reach that location by following a chain of pointers. Such
safe garbage collection schemes are often provided (for example, by the Java environment) and some options
for memory-management schemes that might be used with our algorithm are discussed briefly in Section 6.

4.2 The Algorithms

Pseudocode for the BST operations are given in Figure 7, 8 and 9. Comments are preceded by ⊲. In variable
declarations, T *x declares x to be a pointer to an instance of type T. Similarly, in describing the output
type of a function, T* is a pointer to an instance of type T. If x is a pointer, x → y refers to field y of the
record to which x points.

The Search(k) routine traverses a branch of the tree from the root to a leaf, towards the key k. It
behaves exactly as in a sequential implementation of a leaf-oriented BST, choosing which direction to go at
each node by comparing the key stored there to k, continuing until it reaches a leaf. The Find(k) routine
simply checks whether the leaf l returned by Search contains the key k. The Insert(k) and Delete(k)
routines also call Search to find the location in the tree where they should apply their update. In addition
to the leaf l reached, Search returns some auxiliary information that is used by Insert and Delete:
Search returns the node p that it saw as the parent of l, and the node gp that it saw as the parent of p,
and the values it read from the state and info fields of p and gp. (Note, however, that p and gp may not be
the parent and grandparent of l when Search terminates, due to concurrent updates changing the tree.)
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1 type Update { ⊲ stored in one CAS word
2 {Clean,DFlag, IFlag,Mark} state

3 Info *info
4 }
5 type Internal { ⊲ subtype of Node
6 Key ∪ {∞1,∞2} key

7 Update update

8 Node *left, *right
9 }
10 type Leaf { ⊲ subtype of Node
11 Key ∪ {∞1,∞2} key

12 }
13 type IInfo { ⊲ subtype of Info
14 Internal *p, *newInternal

15 Leaf *l
16 }
17 type DInfo { ⊲ subtype of Info
18 Internal *gp, *p
19 Leaf *l
20 Update pupdate

21 }
⊲ Initialization:

22 shared Internal *Root := pointer to new Internal node
with key field ∞2, update field 〈Clean,⊥〉, and
pointers to new Leaf nodes with keys ∞1 and
∞2, respectively, as left and right fields.

Figure 7: Type definitions and initialization.

Both Insert and Delete make repeated attempts until they succeed. Insert first performs a Search

for the leaf that it must replace. If this leaf already contains the key to be inserted, Insert returns False
(line 50), since the dictionary is not allowed to contain multiple copies of a key. If Insert finds that some
other operation has already flagged or marked the parent, it helps that operation complete (line 51) and then
starts over with a new attempt. Otherwise, it creates the two new Leaf nodes and a new Internal node to be
added to the tree, as well as a new IInfo record containing the necessary information. It then tries to flag
the parent with an iflag CAS (line 56). If this fails, line 61 of Insert helps the operation that has flagged or
marked the parent, if any, and begins a new attempt. If the iflag CAS succeeds, the rest of the insertion is
done by HelpInsert, which simply attempts the ichild CAS (line 66) and the iunflag CAS (line 67), using
the information stored in the IInfo record. The ichild CAS is actually carried out by CAS-Child, which
determines whether to change the left or right child of the parent, depending on the key values, so the actual
ichild CAS is on either line 115 or 117. After calling HelpInsert, Insert returns True (line 59).

The structure of Delete is very similar to the structure of Insert. It first calls Search to find the leaf
to be deleted (and its parent and grandparent). If it fails to find the key, Delete returns False (line 76). If
Delete finds that some other operation has already flagged or marked the parent or grandparent, it helps
that operation complete (line 77 and 78) and then begins over with a new attempt. Otherwise, it creates a
new DInfo record containing the necessary information and attempts to flag the grandparent with a dflag
CAS (line 81). If this fails, the Delete helps the operation that has flagged or marked the grandparent
(line 85), if any, and then begins a new attempt. If the dflag CAS is successful, the remainder of the deletion
is carried out by HelpDelete. However, it is possible that the attempted deletion will fail to complete
even after the grandparent is flagged (if some other operation has changed the parent’s state and info fields
before it can be marked), so HelpDelete returns a boolean value that describes whether the deletion was
successfully completed. If it is successful, Delete returns True (line 83); otherwise, it tries again.

HelpDelete first attempts to mark the parent of the leaf to be deleted with a mark CAS (line 91). If
the mark CAS is successful, the remainder of the deletion is carried out by HelpMarked, which simply
performs the dchild CAS (line 105) and the dunflag CAS (line 106) using information stored in the DInfo
record. However, if the mark CAS is unsuccessful, then HelpDelete helps the operation that flagged the
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23 Search(Key k) : 〈Internal*, Internal*,Leaf*,Update,Update〉 {
⊲ Used by Insert, Delete and Find to traverse a branch of the BST; satisfies following postconditions:
⊲ (1) l points to a Leaf node and p points to an Internal node
⊲ (2) Either p → left has contained l (if k < p → key) or p → right has contained l (if k ≥ p → key)
⊲ (3) p → update has contained pupdate

⊲ (4) if l → key 6= ∞1, then the following three statements hold:
⊲ (4a) gp points to an Internal node
⊲ (4b) either gp → left has contained p (if k < gp → key) or gp → right has contained p (if k ≥ gp → key)
⊲ (4c) gp → update has contained gpupdate

24 Internal *gp, *p
25 Node *l := Root

26 Update gpupdate, pupdate ⊲ Each stores a copy of an update field

27 while l points to an internal node {
28 gp := p ⊲ Remember parent of p
29 p := l ⊲ Remember parent of l
30 gpupdate := pupdate ⊲ Remember update field of gp
31 pupdate := p → update ⊲ Remember update field of p
32 if k < l → key then l := p → left else l := p → right ⊲ Move down to appropriate child
33 }
34 return 〈gp, p, l, pupdate, gpupdate〉
35 }

36 Find(Key k) : Leaf* {
37 Leaf *l

38 〈−,−, l,−,−〉 := Search(k)
39 if l → key = k then return l

40 else return ⊥
41 }

42 Insert(Key k) : boolean {
43 Internal *p, *newInternal

44 Leaf *l, *newSibling

45 Leaf *new := pointer to a new Leaf node whose key field is k

46 Update pupdate, result

47 IInfo *op

48 while True {
49 〈−, p, l, pupdate,−〉 := Search(k)
50 if l → key = k then return False ⊲ Cannot insert duplicate key
51 if pupdate.state 6= Clean then Help(pupdate) ⊲ Help the other operation
52 else {
53 newSibling := pointer to a new Leaf whose key is l → key

54 newInternal := pointer to a new Internal node with key field max(k, l → key),
update field 〈Clean,⊥〉, and with two child fields equal to new and newSibling

(the one with the smaller key is the left child)
55 op := pointer to a new IInfo record containing 〈p, l, newInternal〉
56 result := CAS(p → update, pupdate, 〈IFlag, op〉) ⊲ iflag CAS

57 if result = pupdate then { ⊲ The iflag CAS was successful
58 HelpInsert(op) ⊲ Finish the insertion
59 return True

60 }
61 else Help(result) ⊲ The iflag CAS failed; help the operation that caused failure
62 }
63 }
64 }

65 HelpInsert(IInfo *op) {
⊲ Precondition: op points to an IInfo record (i.e., it is not ⊥)

66 CAS-Child(op → p, op → l, op → newInternal) ⊲ ichild CAS

67 CAS(op → p → update, 〈IFlag, op〉, 〈Clean, op〉) ⊲ iunflag CAS

68 }

Figure 8: Pseudocode for Search, Find and Insert.
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69 Delete(Key k) : boolean {
70 Internal *gp, *p
71 Leaf *l
72 Update pupdate, gpupdate, result

73 DInfo *op

74 while True {
75 〈gp, p, l, pupdate, gpupdate〉 := Search(k)
76 if l → key 6= k then return False ⊲ Key k is not in the tree
77 if gpupdate.state 6= Clean then Help(gpupdate)
78 else if pupdate.state 6= Clean then Help(pupdate)
79 else { ⊲ Try to flag gp

80 op := pointer to a new DInfo record containing 〈gp, p, l, pupdate〉
81 result := CAS(gp → update, gpupdate, 〈DFlag, op〉) ⊲ dflag CAS

82 if result = gpupdate then { ⊲ CAS successful
83 if HelpDelete(op) then return True ⊲ Either finish deletion or unflag
84 }
85 else Help(result) ⊲ The dflag CAS failed; help the operation that caused the failure
86 }
87 }
88 }

89 HelpDelete(DInfo *op) : boolean {
⊲ Precondition: op points to a DInfo record (i.e., it is not ⊥)

90 Update result ⊲ Stores result of mark CAS

91 result := CAS(op → p → update, op → pupdate, 〈Mark, op〉) ⊲ mark CAS

92 if result = op → pupdate or result = 〈Mark, op〉 then { ⊲ op → p is successfully marked
93 HelpMarked(op) ⊲ Complete the deletion
94 return True ⊲ Tell Delete routine it is done
95 }
96 else { ⊲ The mark CAS failed
97 Help(result) ⊲ Help operation that caused failure
98 CAS(op → gp → update, 〈DFlag, op〉, 〈Clean, op〉) ⊲ backtrack CAS

99 return False ⊲ Tell Delete routine to try again
100 }
101 }

102 HelpMarked(DInfo *op) {
⊲ Precondition: op points to a DInfo record (i.e., it is not ⊥)

103 Node *other

⊲ Set other to point to the sibling of the node to which op → l points
104 if op → p → right = op → l then other := op → p → left else other := op → p → right

⊲ Splice the node to which op → p points out of the tree, replacing it by other

105 CAS-Child(op → gp, op → p, other) ⊲ dchild CAS

106 CAS(op → gp → update, 〈DFlag, op〉, 〈Clean, op〉) ⊲ dunflag CAS

107 }

108 Help(Update u) { ⊲ General-purpose helping routine
⊲ Precondition: u has been stored in the update field of some internal node

109 if u.state = IFlag then HelpInsert(u.info)
110 else if u.state = Mark then HelpMarked(u.info)
111 else if u.state = DFlag then HelpDelete(u.info)
112 }

113 CAS-Child(Internal *parent, Node *old, Node *new) {
⊲ Precondition: parent points to an Internal node and new points to a Node (i.e., neither is ⊥)
⊲ This routine tries to change one of the child fields of the node that parent points to from old to new.

114 if new → key < parent → key then
115 CAS(parent → left, old, new)
116 else
117 CAS(parent → right, old, new)
118 }

Figure 9: Pseudocode for Delete and some auxiliary routines.
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parent node and performs a backtrack CAS (line 98) to unflag the grandparent.
As mentioned in Section 4.1, each time a node is flagged, its info field contains a pointer to a new

Info record, so it will always be different from any value previously stored there. When the state field is
subsequently changed back to Clean by a dunflag, iunflag or backtrackCAS, we leave the pointer to the Info
record in the info field so that the CAS object that contains these two fields has a value that is different from
anything that was previously stored there. (If this causes complications for automatic garbage collection
because of cycles of pointers between tree nodes and Info records, clean update fields could instead have a
counter attached to them to serve the same purpose. Alternatively, pointers from the Info records to the
nodes of the tree can be set to ⊥ when the Info record is no longer needed, thus breaking cycles. This would
complicate the pseudocode, because one would have to check that the Info record’s pointer fields are non-⊥
before using them.)

5 Correctness

We begin with an outline of the proof of correctness, followed by the lengthy detailed proof. In the following
proof, we use a fairly standard definition of an execution. A configuration is an instantaneous snapshot
of the system describing the state of all local and shared variables as well as the programme counter and
invocation stack of each process. A step can be either a shared-memory access by a process (including the
result of the access) or a local step that simply updates a process’s own local variables. For local steps, a step
corresponds to executing one line of code. In particular, an invocation of a subroutine and the return from
a subroutine are each considered to be a step. We assume each step is atomic, so an execution consists of
an alternating sequence of configurations and steps, starting with the initial configuration where the shared
memory is initialized with three nodes as shown in Figure 6(a). An execution is legal if every process follows
its algorithm in the subsequence consisting of the steps that it performs, and if every shared object behaves
according to its sequential specification in the subsequence of steps that access it.

5.1 Outline of Correctness Proof

It is fairly straightforward to prove that calls to various subroutines satisfy their simple preconditions, which
are given in the pseudocode. (These preconditions are mostly required to ensure that when we access a
field using x → y, x is a non-⊥ pointer.) They are proved together with some very simple data structure
invariants, for example, the keys of a node and its two children are in the right order, and the tree always
keeps the nodes with dummy infinity keys at the top, as shown in Figure 6. These facts are sufficient to
prove that every terminating Search satisfies its postconditions.

A large part of the proof is devoted to showing that the CAS steps proceed in an orderly way. For
example, we show that a successful mark CAS is performed on the correct node before the corresponding
dchild CAS is performed. The sequence of changes that a node can go through are illustrated in Figure 4.
The labels in the boxes show the values of the state field of the node. Each of the transitions corresponds to
a successful CAS step on the node, except for the italicized mark CAS, which denotes a mark CAS on the
appropriate child of the node. The italicized mark CAS changes the state field of the child from Clean to
Mark. There are three circuits in Figure 4 starting from the Clean state. Each time a node travels once
around one of these circuits, a new Info record is created for the flag CAS that begins the traversal. All
subsequent CAS steps in that traversal of the circuit use information from that Info record. (We say that
all of these CAS steps belong to the Info record.) A traversal of the three-step circuit on the right, which we
call the insertion circuit, corresponds to successfully completing an insertion. A traversal of the four-step
circuit on the left corresponds to successfully completing a deletion. A traversal of the two-step circuit on
the left corresponds to an unsuccessful attempt of a deletion in which the mark CAS fails. We call these
the deletion circuits.

It is fairly easy to see, by examining each of the CAS steps in the code, that the state field of a node v
can change from Clean to DFlag or IFlag and then back to Clean again or from Clean to Mark (in
which case it can never change again). Moreover, it can be shown that, each time the state and info fields
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of a node are changed, the pair of fields have a value they have never had before: When the state changes
from Clean to DFlag or IFlag, the info field points to a newly created Info record. When the state
changes back to Clean, the pointer in the info field is not changed (and that pointer has never previously
been stored alongside a Clean state). If the state changes to Mark, the info field stores the corresponding
DInfo pointer, which has never previously been stored alongside a Mark state.

To prove that Figure 4 reflects all possible changes to the tree requires more work. A traversal of the
insertion circuit is initiated by an iflag CAS on a node v’s update field. This iflag CAS belongs to some
IInfo record f . We prove there is at most one successful ichild CAS belonging to f . This requires a more
technically involved argument to prove that, whenever a child pointer is changed, it points to a node to
which it never previously pointed. We also show that, if there is an iunflag CAS (belonging to f) which
resets the state of v to Clean, it can happen only after the unique successful ichild CAS belonging to f has
been performed.

Each traversal of a deletion circuit begins with a dflag CAS on a node v’s update field. This dflag CAS

belongs to some DInfo record f . We prove that only the first mark CAS belonging to f succeeds (using the
fact that the update field of v is never changed to a value it had previously). A process does a backtrackCAS

belonging to f only after performing an unsuccessful mark CAS belonging to f and observing that every
prior mark CAS belonging to f also failed (line 92). Hence, if some mark CAS belonging to f succeeds, no
process will perform a backtrack CAS belonging to f . This is why a backtrack CAS can only occur from one
place in Figure 4. Thus, once the mark CAS occurs, the deletion will not have to retry. We also prove that
only the first dchild CAS belonging to f succeeds and that a dchild CAS belonging to f succeeds only after
the mark CAS belonging to f . Finally, a dunflag CAS belonging to f can succeed only after a successful
dchild CAS belonging to f .

All of this information about the ordering of CAS steps essentially tells us that the state field is correctly
acting as a lock for the child pointers of the node. This allows us to prove that the effects of the child CAS

steps are exactly as shown in Figure 1 and 2: an ichild CAS replaces a leaf by three new nodes that have
never been in the tree before, and a dchild CAS replaces a node by one of its children (as part of a deletion
of the node’s other child, which is a leaf).

Using this information, we prove some invariants about the tree. Because a dchild CAS happens only
after the corresponding mark CAS, an internal node is removed from the tree only after it is marked. Thus,
every unmarked node is still in the tree. Because we know the effects of ichild and dchild CAS steps, we can
prove that no node ever acquires a new ancestor in the tree after it is first added to the tree. (However, it
may lose ancestors that are spliced out of the tree by dchild CAS steps and it may gain new descendants.)
This allows us to prove a useful lemma: if a node x is on the search path for key k at some time, then x
remains on the search path for k as long as x is in the tree. (This is because x can never obtain a new
ancestor that could redirect the search path for k in a different direction, away from x.)

Finally, we can define the linearization points for all Find, Insert and Delete operations. For conve-
nience, we also define linearization points for calls to Search. While a process is performing Search(k), a
node to which it is pointing may get removed from the tree. However, we show that each node the Search

visits was in the tree, on the search path for k, at some time during the Search. We prove this by induction.
It is true for the root node (which never changes). Suppose the Search advances from one node x to its
child y. Either y was already a child of x when x was on the search path for k (in which case y was also on
the search path for k at that time), or y became a child at some later time. In the latter case, x was flagged
when y became its child. At that time, x must have been unmarked and, therefore, in the tree, on the search
path for k. So y was on the search path for k just after it became the child of x. Thus, if Search(k) reaches
a leaf and terminates, we can linearize it at a point when that leaf was on the search path for k.

We linearize each Find operation at the same point as the Search that it calls. The Insert and
Delete operations that return False are linearized at the same point as the Search they perform. We
prove that every Insert and Delete operation which returns True must have a successful child CAS and
we linearize the operation at that child CAS, since that is when the tree changes to reflect the update. Using
this linearization, we show each operation returns the same result as it would if the operations were done
sequentially in their linearization order and the keys in the leaves of the tree are always the contents of the
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dictionary.
The last part of the proof shows the implementation is non-blocking. To derive a contradiction, assume

there is an execution where some set of operations continue taking steps forever, but no operation completes.
We argue that no iflag, mark, child or unflag CAS steps can succeed, because then an operation would
terminate. Thus, eventually, only dflag and backtrack CAS steps succeed and the tree stabilizes. We
argue that processes must continue performing CAS steps, and (eventually) they fail only because of other
successful CAS steps. Hence, there must be infinitely many successful dflag and backtrack CAS steps. After
a successful dflag CAS on a node v, a backtrack CAS is performed on v only if the mark CAS on v’s child
fails. Thus, the deletion operating on a lowest node in the tree cannot backtrack, and therefore terminates,
contradicting the assumption.

We begin by proving some basic invariants and simple pre- and postconditions in Section 5.2. Next,
we prove some basic facts about how update fields of internal nodes are changed by various types of CAS

steps in Section 5.3. The proofs in these two sections are relatively straightforward. (The reader may
want to read only the statements of the lemmas in those sections when first reading this proof.) The more
interesting proofs begin in Section 5.4, which prove that CAS steps proceed in an orderly way. (Essentially,
we show that they occur as shown in Figure 4.) Section 5.4 concludes with Corollary 15 and 16, which say
the effects of child CAS steps are exactly as shown in Figure 1 and 2. Next, in Section 5.5, we establish
some invariants of the tree. In Section 5.6 we use these tree properties to define the linearization points for
Find operations and update operations that return False. Each update operation that returns True is
linearized at its successful child CAS step. We prove that each operation returns the same result as it would
if the operations were done in their linearization order. Finally, in Section 5.7, we prove the algorithm is
non-blocking.

5.2 Basic Invariants and Preconditions

We now begin the detailed proof by first proving some fairly simple properties. We first observe from the
code that some fields of objects never change.

Observation 1 The key field of a Node never changes. No field of an Info record ever changes. The Root
pointer never changes.

Proving that calls to the various subroutines satisfy their preconditions is a bit tricky: many invocations
(indirectly) use results obtained from earlier calls to the Search routine. Thus, we must establish that
each call to Search satisfies its postconditions. However, proving these postconditions requires some basic
invariants about the data structure. The proofs of those invariants, in turn, are dependent on how the data
structure is updated. In particular, they depend on knowing that the routines satisfy their preconditions.
Thus, we need to combine, in an inductive argument, the proof that preconditions are satisfied with the
proofs of the data structure invariants and of Search’s postconditions. Thus, the following lemma serves
to bootstrap the rest of the proof of correctness. The first five items in the lemma describe subroutine
preconditions. The next two involve the postconditions of Search. The remaining items are some simple
data structure invariants.

Lemma 2 The following are invariants of the algorithm.

1. Each call to HelpInsert satisfies its preconditions.

2. Each call to HelpDelete satisfies its preconditions.

3. Each call to HelpMarked satisfies its preconditions.

4. Each call to Help satisfies its preconditions.

5. Each call to CAS-Child satisfies its preconditions.

6. Any Search that has executed line 25 has a non-⊥ value in its local variable l.
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7. Each call to Search that terminates satisfies its postconditions.

8. For each internal node x, neither of x’s child pointers are ⊥. Furthermore, x’s left child has a key that
is smaller than x’s key and x’s right child has a key that is greater than or equal to x’s key.

9. The info field of each internal node “matches” its state field. More precisely:

(a) if v.state is IFlag, then v.info points to an IInfo record, and

(b) if v.state is DFlag or Mark, then v.info points to a DInfo record.

10. The top part of the tree is always as shown in Figure 6. More precisely:

(a) Root → left → key = ∞1, and

(b) if Root → left points to an internal node, then Root → left → right points to a leaf with key ∞1.

11. For any IInfo record f , f.p and f.newInternal are pointers to internal nodes, and f.l is a pointer to
a leaf node.

12. For any DInfo record f , f.gp and f.p are pointers to internal nodes, f.l is a pointer to a leaf node and
f.pupdate is a value that has previously appeared in f.p → update.

Proof: Claim 8 and 10 are true initially, according to the initialization of the data structure. All other
claims are vacuously true for an execution of 0 steps. Assume that the invariants hold throughout some
prefix α of the execution. Let α′ = α · s · C where s is a single step and C is the configuration that results
from performing s after the final configuration of α. We show that each of the 12 parts of the lemma hold
throughout the prefix α′.

1. We show that if s is an invocation of HelpInsert (either on line 58 or 109), its argument is a pointer
to an IInfo record.

If s is an execution of line 58, its argument is a pointer to a newly created IInfo record.

If s is an execution of line 109 in the Help routine, the precondition of Help (part 4 of the induction
hypothesis) ensures that the argument of HelpInsert was taken from the update.info field of some
internal node. Furthermore, the state of the update field is IFlag, so the claim follows from part 9 of
the induction hypothesis.

2. We show that if s is an invocation of HelpDelete (either on line 83 or 111), its argument is a pointer
to a DInfo record. (This proof is similar to the preceding paragraph.)

If s is an execution of line 83, its argument is a pointer to a newly created DInfo record.

If s is an execution of line 111 in the Help routine, the precondition of Help (part 4 of the induction
hypothesis) ensures that the argument of HelpDelete was taken from the update.info field of some
internal node. Furthermore, the state of the update field is DFlag, so the claim follows from part 9
of the induction hypothesis.

3. We show that if s is an invocation of HelpMarked (either on line 93 or 110), its argument is a pointer
to a DInfo record.

If s is an execution of line 93 in the HelpDelete routine, the precondition of HelpDelete (part 2 of
the induction hypothesis) ensures that the argument of HelpMarked is a pointer to a DInfo record.

If s is an execution of line 110 in the Help routine, the precondition of Help (part 4 of the induction
hypothesis) ensures that the argument of HelpInsert was taken from the update.info field of some
internal node. Furthermore, the state of the update field is Mark, so the claim follows from part 9 of
the induction hypothesis.
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4. We show that if s is an invocation of Help, its argument has been stored in the update field of an
internal node. There are six places in the code that call the Help routine. We consider each of them
in turn.

If s is an execution of line 51 of Insert or line 78 ofDelete, its argument is the pupdate value returned
by an earlier Search. By part 7 of the induction hypothesis, that Search satisfied its postconditions.
In particular, pupdate was read in the update field of a node, by Postcondition (3).

If s is an execution of line 61 of Insert, it uses the value read from p → update at line 56.

If s is an execution of line 77 of Delete, its argument is the gpupdate value returned by an earlier
Search. By part 7 of the induction hypothesis, that Search satisfied its postconditions. Furthermore,
line 77 can be executed only if l → key = k 6= ∞1, so Postcondition (4c) ensures that gpupdate was
read in the update field of a node.

If s is an execution of line 85 of Delete, it uses the value read from gp → update at line 81. (As
argued in the previous paragraph, postcondition (4a) applies to the Search on line 75, so gp points
to an internal node and the access to gp → update makes sense.)

If s is an execution of line 97 of HelpDelete, it uses the value read from op → p → update at line 91.
(The access to op → p → update makes sense because op → p is an internal node, by part 12 of the
induction hypothesis.)

5. We show that if s is an invocation of CAS-Child (either on line 66 or 105), its first argument is a
pointer to an internal node and its last argument is a pointer to a node.

If s is an execution of line 66 of HelpInsert, the precondition of HelpInsert (which was satisfied,
by part 1 of the induction hypothesis) ensures that op points to some IInfo record f . By part 11 of the
induction hypothesis, the arguments to the CAS-Child, f.p and f.newInternal both point to internal
nodes.

If s is an execution of line 105 ofHelpMarked, the precondition ofHelpMarked (which was satisfied,
by part 3 of the induction hypothesis) ensures that op points to some DInfo record f . By part 12 of
the induction hypothesis, f.p points to an internal node. By part 8 of the induction hypothesis, that
internal node has two non-⊥ child pointers. Thus line 104 of HelpMarked stores a non-⊥ pointer in
the local variable other. Also, by part 12 of the induction hypothesis, f.gp points to an internal node.
Thus, the precondition for CAS-Child is satisfied when it is called in step s.

6. We check that if s is an execution of line 25 or 32, it maintains claim 6. (No other lines can affect this
claim.) Line 25 sets l to Root, which is non-⊥, by Observation 1, so it preserves claim 6. By part 8 of
the induction hypothesis, executing line 32 also maintains claim 6.

7. We must check that if a Search terminates at s, it satisfies its postconditions. Let
〈gpfinal, pfinal, lfinal, pupdatefinal, gpupdatefinal〉 be the final values of the local variables when the
Search terminates.

By part 6 of the induction hypothesis, the exit condition of the Search’s while loop ensures that lfinal
points to a leaf. Root always points to an internal node, by Observation 1. Thus, the Search must
execute the loop at least once. At the beginning of each loop iteration that the Search performs, l
points to an internal node; otherwise the exit condition would have been satisfied. Thus, each iteration
of the loop stores a pointer to an internal node in p. This establishes postcondition (1).

Postcondition (2) is satisfied, because the last time the Search executes line 32, the value lfinal is
read from the appropriate child of the node that pfinal points to.

Postcondition (3) is satisfied, because the last time the Search executes line 31, the value pupdatefinal
is read from pfinal → update.

We now prove Postcondition (4). Assume lfinal → key 6= ∞1. Since the root node contains key ∞2

and k < ∞2, the first time the Search executes line 32, it changes l to point to the root’s left child.
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By part 10 of the induction hypothesis, that child’s key is ∞1. Since lfinal → key 6= ∞1, the loop is
executed at least twice.

In the second and all subsequent iterations of the loop, a pointer to an internal node is stored in the
local variable gp (since a pointer to an internal node is stored in the local variable p in every iteration).
So Postcondition (4a) is satisfied.

Postcondition (4b) is satisfied, because the second-last time the Search executes line 32, the value
pfinal is read from the appropriate child of the node that gpfinal points to.

Postcondition (4c) is satisfied, because the second-last time the Search executes line 31, the value
gpupdatefinal is read from gpfinal → update.

8. When a new internal node is created at line 54, its child pointers satisfy this claim. It remains to
show that if s is an execution of line 115 or 117 of CAS-Child that succeeds in changing a child
pointer, then s preserves claim 8. (No other line changes a child field of an internal node.) When the
CAS-Child was invoked prior to s, it satisfied its preconditions by part 5 of the induction hypothesis.
In particular, its new argument was non-⊥. Thus, the new value written by s is non-⊥. Furthermore,
the test on line 114 ensures that the ordering property is maintained by s.

9. The only step that can write IFlag in a node’s state field is an iflag CAS (line 56), which also stores a
pointer to a newly-created IInfo record in the node’s info field. So part (a) is preserved by every step.

Similarly, the only step that can write DFlag in a node’s state field is a dflag CAS (line 81), which
also stores a pointer to a newly-created DInfo record in the node’s info field. The only step that can
write Mark in a node’s state field is a mark CAS on line 91 of the HelpDelete routine. According
to part 2 of the inductive hypothesis, the argument of that call was a pointer to a DInfo record, and
the mark CAS writes a pointer to that object in the node’s info field. Thus part (b) is preserved by
every step.

10. Since Root never changes and the key field of a node never changes (by Observation 1), it suffices to
prove the following two things to show that s preserves this part of the invariant: s cannot change the
field Root → left → right, and if s changes Root → left, then s preserves (a) and (b). We prove these
statements by considering two cases, corresponding to the two types of steps that can change child
pointers.

First, suppose s is an ichild CAS that changes Root → left. Thus, s is inside a call to CAS-Child

from line 66 of HelpInsert. By part 1 of the induction hypothesis, the argument to that HelpInsert

is a pointer to some IInfo record f . Since s is a successful ichild CAS, s changes the root’s left child
pointer from f.l to f.newInternal. By part 10 of the induction hypothesis, f.l → key = ∞1. Consider
the time f was created (on line 55 of some call to Insert(k)). At that time f.newInternal → key
and f.newInternal → right → key are both set to max(k, f.l → key) = max(k,∞1) = ∞1 (since
k ∈ Key). Furthermore, f.newInternal → right points to a leaf. Thus, after s, Root → left → key =
f.newInternal → key = ∞1 and Root → left → right is equal to f.newInternal → right, which
points to a leaf with key ∞1. So, both (a) and (b) are preserved by s in this case.

Now, suppose s is a dchild CAS that changes Root → left. Thus, s is inside a call to CAS-Child from
line 105 of HelpMarked. By part 3 of the induction hypothesis, the argument to that HelpMarked

is a pointer to some DInfo record f . Consider the time f was created (on line 80 of some call to
Delete(k)). Since line 80 is executed, f.l → key = k 6= ∞1; otherwise the test in line 76 would have
evaluated to True. Since s is a successful dchild CAS on Root → left, the value in Root → left just
prior to s was f.p. By part 12 of the induction hypothesis, f.p points to an interal node. Therefore, by
part 10 of the induction hypothesis, f.p → right points to a leaf with key ∞1. But f.l → key 6= ∞1,
so f.p → right 6= f.l. Thus, just before the dchild CAS, other is set to f.p → right on line 104. This
means that s changes Root → left to f.p → right, which we have already shown to be a pointer to a
leaf with key ∞1. Thus, just after s, (a) is satisfied, and so is (b), since Root → left now points to a
leaf.
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Next, to derive a contradiction, we assume s is an ichild CAS that changes the field Root → left →
right. Thus, s is inside a call to CAS-Child from line 66 of HelpInsert. By part 1 of the induction
hypothesis, the argument to that HelpInsert is a pointer to some IInfo record f . Step s changes
f.p → right from f.l to f.newInternal. Thus, just before s, Root → left = f.p and Root → left →
right = f.l. Thus, by part 10 of the induction hypothesis, f.p → key and f.l → key are both ∞1.
Consider the time when f was created (on line 55 of some call to Insert(k)). The values in f.p and
f.l were obtained from a call to Search on line 49. By part 7 of the induction hypothesis, that
Search satisfied its postconditions. In particular, postcondition (2) implies that f.p → left was equal
to f.l during the search (since k < ∞1 = f.p → key). This contradicts part 8 of the induction
hypothesis since f.l → key = f.p → key. Thus, s cannot be an ichild CAS that changes the field
Root → left → right.

Finally, to derive a contradiction, we assume s is a dchild CAS that changes the field Root → left →
right. Thus, s is inside a call to CAS-Child from line 105 of HelpMarked. By part 3 of the
induction hypothesis, the argument to HelpMarked is a pointer to some DInfo record f . Since step
s is a successful CAS, Root → left → right must be equal to f.p just prior to s. However, f.p points
to an internal node, by part 12 of the induction hypothesis, and Root → left → right points to a leaf,
by part 10 of the induction hypothesis. This contradiction means that s cannot be a dchild CAS that
changes the field Root → left → right.

11. Since fields of IInfo records are never changed, by Observation 1, we need only check that the claim
is preserved if s creates a new IInfo record. This only occurs at line 55 of the Insert routine. When
an IInfo record f is created, f.newInternal points to a newly created internal node, and f.p and f.l
are values obtained from the Search on line 49. By part 7 of the induction hypothesis, that Search
satisfied its postconditions. In particular, f.p points to an internal node and f.l points to a leaf node.

12. Since fields of DInfo records are never changed, by Observation 1, we need only check that the claim
is preserved if s creates a new DInfo record. This only occurs at line 80 of the Delete routine. When
a DInfo record f is created, its fields are filled with values obtained from the Search on line 75. By
part 7 of the induction hypothesis, that Search satisfied its postconditions. Furthermore, the test on
line 76 must have failed, so f.l → key = k 6= ∞1 and Postcondition (4) is applicable. It follows from
the postconditions of Search that f.gp and f.p point to internal nodes, f.l points to a leaf node and
f.pupdate is a value that has previously been read from f.p → update.

We remark that the pre- and post-conditions described in the preceding lemma are sufficient to guarantee
that whenever a line of the pseudocode accessesX → Y , the pointer X points to an object of the appropriate
type and is not ⊥, so the access makes sense.

5.3 Behaviour of CAS Steps on update Fields

Next, we examine the order in which successful CAS steps can occur, and their effects on the update field
of a node. As mentioned in Section 5.1, we can view each node v in the tree as an automaton and we wish
to show that the sequences of changes that it can go through are as shown in Figure 4. The main goal of
the next few lemmas is to show that this automaton accurately captures all the successful CAS steps that
can occur. The first one is easily proved by observing the code.

Lemma 3 The following statements are true for each internal node v.

1. When v is created, v.update = 〈Clean,⊥〉.

2. Flag and mark CAS steps on v’s update field succeed only if v’s state is Clean.

3. Iunflag CAS steps on v’s update field succeed only if v’s state is IFlag.
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4. Dunflag and backtrack CAS steps on v’s update field succeed only if v’s state is DFlag.

5. Once v is marked, its update field never changes.

Proof: We prove each of the five statements in turn.

1. The internal node that is initially in the tree starts with a Clean state. Internal nodes are created
only on line 54, which sets the state to Clean.

2. Prior to an iflag CAS that uses pupdate as the old value, it is checked that pupdate.state is Clean.
Prior to a dflag CAS that uses gpupdate as the old value, it is checked that gpupdate.state is Clean.
Now consider a successful mark CAS that is performed by a call to HelpDelete. Lemma 2(2) says
that the argument to HelpDelete was a DInfo record f . In the execution of Delete that created f ,
the test on line 78 failed, meaning that f.pupdate.state was Clean. The mark CAS uses f.pupdate
as the old value for the CAS, so it will succeed only if the node’s state field was Clean.

3. An iunflag CAS specifies that the old value of the state field must be IFlag.

4. A dunflag CAS or backtrack CAS each specifies that the old value of the state field must be DFlag.

5. Follows from the previous three parts: none of the CAS steps on v.update can succeed if v.state =
Mark.

We now prove that no ABA problem can occur for update fields of internal nodes. We use the notation
&x to denote a pointer to the object x.

Lemma 4 For each internal node v, no CAS ever changes v.update to a value that was previously stored
there.

Proof: When v is created, v.update is set to 〈Clean,⊥〉, by Lemma 3(1). We consider each of the types
of CAS steps that can change v.update and argue that each one writes a value in v.update that has never
appeared there before. A successful mark CAS is the first CAS that changes v.state to Mark, by Lemma
3(5). Each successful flag CAS on v.update sets its v.info subfield to point to a newly created Info record,
so that address could never have appeared in v.info before. An iunflag CAS changes the update field from
〈IFlag,&f〉 to 〈Clean,&f〉 (where f is some Info record). Since &f never appeared in v.info prior to the
iflag CAS that set v.update to 〈IFlag,&f〉, v.update has never had the value 〈Clean,&f〉 prior to this
iunflag CAS. Identical reasoning applies to a dunflag or backtrack CAS that changes the state of v.update
from 〈DFlag,&f〉 to 〈Clean,&f〉.

Each successful flag CAS stores a pointer to a newly created Info record. Thus, no two successful flag
CAS steps use pointers to the same Info record. If a successful flag CAS stores a pointer to an Info record
f , we say that the flag CAS belongs to f . Mark, child, unflag and backtrack CAS steps all use information
from some Info record. (More precisely, a pointer to this Info record is used as the argument of the invocation
of HelpDelete, HelpInsert or HelpMarked that performs the CAS.) We say that each of these CAS

steps also belong to the Info record. Notice that dflag, mark, dchild and dunflag CAS steps can belong only
to DInfo records, and iflag, ichild and iunflag CAS steps can belong only to IInfo records. When an Insert

or Delete creates an Info record, the values that it stores in several fields of the Info record are taken from
the results of an invocation of Search. We also say that this invocation of Search belongs to the Info
record.

Lemma 5 Only the first mark CAS belonging to a DInfo record can succeed.
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Proof: Let f be any DInfo record. Now suppose some mark CAS, mcas, that belongs to f succeeds.
We wish to show it is the first mark CAS that belongs to f . To derive a contradiction, assume there is
some mark CAS mcas′ that belongs to f and precedes mcas. Both mark CAS steps attempt to change
f.p → update from f.pupdate to 〈Mark,&f〉. According to the postcondition of the Search belonging
to f , f.pupdate was read from f.p → update during the Search. This happens before f is created, and
therefore before mcas′. When mcas occurs (after mcas′), f.p → update is still equal to f.pupdate; otherwise
mcas would fail. Thus, by Lemma 4, f.p → update must be equal to f.pupdate when mcas′ occurs. Hence,
mcas′ succeeds and changes f.p → update to 〈Mark,&f〉. This field never changes again after mcas′, by
Lemma 3, so mcas must fail, contrary to the definition of mcas.

Lemma 6 If a successful mark CAS belongs to a DInfo record f , then no backtrack CAS belongs to f .

Proof: Let f be a DInfo record. Assume a successful mark CAS, mcas, belongs to f . Consider any
invocation H of HelpDelete whose argument is a pointer to f . By Lemma 5, its mark CAS either succeeds
(if it is the first mark CAS belonging to f) or some earlier mark CAS belonging to f has succeeded in which
case H sets its result to 〈Mark,&f〉 (by Lemma 3). Either way, the test on line 92 of the HelpDelete

evaluates to True and H will not attempt a backtrack CAS.

5.4 Behaviour of Child CAS Steps

We now focus on how child CAS steps update child pointers. The following lemma describes how the old
value used in a child CAS is obtained.

Lemma 7 Let ccas be a child CAS belonging to some Info record f and let R be the register it attempts
to change. Let r be the last or second-last execution of line 32 in the Search belonging to f , depending on
whether ccas is an ichild CAS or a dchild CAS, respectively. Then, r reads R and the value read by r is
the old value used for ccas.

Proof: We consider two cases.
Case 1: ccas is an ichild CAS. We first note that r is well-defined: the call to Search belonging to f

performs at least one iteration of the loop, since Root always points to an internal node. The IInfo record
f was created by an invocation Insert(k) for some k. The value read by r is returned by the Search and
saved in f.l. This value is used as the old value for ccas, proving the second part of the claim.

Step r reads f.l from one of the child fields of f.p and ccas is a CAS on one of the child fields of f.p. To
complete the proof of the first part of the claim, we must show that they both are on the same child field of
that node. Let pkey = f.p → key. Whether ccas is applied to the left or right child depends on whether the
key of f.newInternal → key is smaller than pkey or not.

If r reads f.p → left, then k < pkey and so is f.l → key (by Lemma 2(8)). Thus f.newInternal → key =
max(k, f.l → key) < pkey and ccas is applied to f.p → left, according to the test on line 114.

On the other hand, if r reads f.p → right, then k ≥ pkey, so f.newInternal → key = max(k, f.l →
key) ≥ pkey and ccas is applied to f.p → right, according to the test on line 114.

Case 2: ccas is a dchild CAS. The DInfo record f was created by some invocation Delete(k), where
k = f.l → key. We first check that r is well-defined. As in Case 1, the Search belonging to f executed at
least one iteration of its loop. Furthermore, it returned a leaf with key k 6= ∞1, so the Search must have
performed at least two iterations of the loop before reaching a leaf (by Lemma 2(10)). The value read by r
is returned by the Search and saved in f.p. This value is used as the old value for ccas, proving the second
part of the claim.

Step r reads f.p from one of the child fields of f.gp and ccas is a CAS on one of the child fields of f.gp.
We must show that they both are on the same child field of that node. The step ccas is applied to the left
child field iff f.l → key = k < f.gp → key, which is true iff r reads the left child field.

Let ccas1, ccas2, . . . be the sequence of successful child CAS steps in the execution, in the order that they
occur. Let fi be the Info record to which ccasi belongs. (If ccasi is an ichild CAS, then fi is necessarily
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an IInfo record. If ccasi is a dchild CAS, then fi is necessarily a DInfo record.) Let fcasi be the (unique)
successful flag CAS that belongs to fi. Let ucasi be the CAS that next changes the update field flagged
by fcasi after fcasi, if such a change exists. (If it exists, ucasi must be an unflag or backtrack CAS, by
Lemma 3.)

For each successful child CAS step, we define Ri and ri as in the preceding lemma: Ri is the register
changed by ccasi and ri is the last or second-last execution of line 32 in the Search belonging to fi,
depending on whether ccasi is an ichild CAS or a dchild CAS, respectively. (As argued in the proof of the
lemma, ri is well-defined.) By definition of ri, ri reads the value fi.l in Ri if ccasi is an ichild CAS, or the
value fi.p in Ri if ccasi is a dchild CAS. We have the following corollary of Lemma 7.

Corollary 8 For all i, ri reads Ri and the value read by ri is the old value used for ccasi.

The next few lemmas prove that child CAS steps are done in an orderly way. Intuitively, we prove each
child CAS comes between the corresponding flag and unflag CAS, and after the corresponding mark CAS

in the case of dchild CAS steps. Furthermore, at most one successful child CAS belongs to each Info record,
the child CAS steps are done in a way that avoids the ABA problem, and they maintain the invariant that
the data structure is a full binary tree.

Lemma 9 Each mark CAS that belongs to an Info record f is preceded by a successful dflag CAS that
belongs to f .

Proof: Let mcas be any mark CAS belonging to f . It is performed by an invocation of HelpDelete. If
HelpDelete was called by line 83, then the dflag CAS belonging to f on line 81 succeeded. Otherwise,
HelpDelete was called by line 111 of Help after a dflag CAS belonging to f wrote 〈DFlag,&f〉 in the
update field of some node (according to the precondition of Help). Thus, in both cases, the mark CAS

comes after the successful dflag CAS belonging to f .

Lemma 10 Each dchild CAS that belongs to an Info record f is preceded by a successful mark CAS that
belongs to f .

Proof: Let ccas be any dchild CAS belonging to f . It is performed by HelpMarked. If HelpMarked

is called by line 93 of HelpDelete, the test on line 92 ensures that f.p → update was equal to 〈Mark,&f〉
after line 91. Otherwise, HelpMarked is called by line 110. In this case, 〈Mark,&f〉 has been read in the
update field of some node, according to the precondition of Help. Thus, in both cases, a successful mark
CAS belonging to f has occurred before the invocation of HelpMarked.

Lemma 11 If a dchild CAS belongs to a DInfo record f , then no backtrack CAS belongs to f .

Proof: If a dchild CAS belongs to f , then a successful mark CAS belongs to f , by Lemma 10. Thus,
there is no backtrack CAS that belongs to f , by Lemma 6.

Lemma 12 Each child CAS that belongs to an Info record f is preceded by a successful flag CAS that
belongs to f . (In particular, for all i, ccasi occurs after fcasi.)

Proof: Let ccas be a child CAS belonging to f .
If ccas is an ichild CAS, then it is performed by line 66 of HelpInsert. This routine is called either by

line 58 of Insert after successfully performing the iflag CAS belonging to f or by a process executing line
109 of Help. In the latter case, 〈IFlag,&f〉 has appeared in a node’s update field, by the preconditions of
Help. Either way, some process has performed the successful iflag CAS belonging to f prior to ccas.

If ccas is a dchild CAS, it follows from Lemma 9 and Lemma 10 that ccas is after the successful flag
CAS belonging to f .

Lemma 13 For all i, if ccasi is a dchild CAS then there is exactly one successful mark CAS belonging to
fi. This mark CAS occurs between fcasi and ccasi.
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Proof: Lemma 10 says that a successful mark CAS belonging to fi occurs before ccasi. By Lemma 5,
there is exactly one successful mark CAS that belongs to fi. Lemma 9 says that the unique successful mark
CAS belonging to fi comes after fcasi.

Lemma 14 (The Child CAS Lemma) For all i ≥ 1 such that ccasi exists, the following statements are
true.

1. ccasi is the first successful child CAS on Ri after ri. It is also the first successful child CAS belonging
to fi.

2. If ucasi exists, it is an unflag CAS that belongs to fi, and ccasi does not occur after ucasi.

3. If ccasi is an ichild CAS, then ccasi writes a pointer to the root of a full binary tree consisting of three
new nodes that have never appeared in the data structure before (i.e., the three nodes have never been
reachable from the Root by following child pointers before).

4. If ccasi is a dchild CAS, then just prior to ccasi, Ri contains fi.p. If ccasi is an ichild CAS, then
just prior to ccasi, Ri contains fi.l.

5. If ccasi is a dchild CAS, then fi.p’s child pointers do not change between the last execution of line 32
within the Search belonging to fi and ccasi.

6. After ccasi, the data structure is a full binary tree. (That is, every internal node that can be reached
by following child pointers from Root has exactly two children, there are no cycles in the child pointers
among these nodes, and there is at most one path of child pointers to any node from the root.)

7. ccasi writes a value into Ri that has never been stored there before.

Proof: We prove the lemma using strong induction on i. Let k be a positive integer such that ccask exists.
Assume the claims are true for ccasi when 1 ≤ i < k. We prove the claims are true for ccask.

1. Let ok be the old value used for ccask. By Corollary 8, ok is the value read from Rk by rk. To derive
a contradiction, assume that ccask is not the first successful child CAS on Rk after rk. Then, let
ccasj be the last successful child CAS on Rk between rk and ccask. The child CAS ccasj writes a
different value than ok (by Claim 7 of the induction hypothesis). The value in Rk does not change
between ccasj and ccask (by definition of ccasj), so Rk contains a value different from ok when ccask
is performed. Since ccask uses ok as the old value, it will not succeed, which contradicts the definition
of ccask. Thus, ccask is the first successful child CAS on Rk after rk.

Now, to derive a contradiction, assume ccask is not the first successful child CAS that belongs to
fk. Thus, there is some j < k such that ccasj also belongs to fk. By Lemma 12, ccasj occurs after
fcasj and ccask occurs after fcask. There is at most one flag CAS for each Info record created, so
fcasj = fcask. So, ccasj occurs after fcask (by Lemma 12), which occurs after rk. Thus, ccask is
not the first successful child CAS on Rk after rk, contradicting the previous paragraph. Hence, ccask
must be the first child CAS that belongs to fk.

2. Suppose that ucask exists. Recall that it is the first CAS step that succeeds in changing Rk after
fcask. Thus it changes Rk from 〈IFlag,&fk〉 or 〈DFlag,&fk〉 to something else. By Lemma 3, the
only types of CAS steps that can do this are unflag CAS or backtrack CAS steps. Since the old value
used by ucask is 〈IFlag,&fk〉 or 〈DFlag,&fk〉, ucask must belong to fk.

We first show that ucask cannot be a backtrack CAS belonging to fk. If ccask is a ichild CAS, there
cannot be a backtrack CAS that belongs to the IInfo record fk. If ccask is a dchild CAS, then it was
preceded by a mark CAS belonging to fk, by Lemma 10. Thus, there are no backtrack CAS steps
belonging to fk, by Lemma 6.
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Thus, we know that ucask is an unflag CAS that belongs to fk. It remains to show that ccask occurs
before ucask. To derive a contradiction, assume that ccask occurs after ucask. Let q be the process
that performs ucask. We consider two cases.

If ucask is an iunflag CAS, let ccas be the ichild CAS performed by q just before ucask. Both ccas
and ucask belong to fk. Since q used a pointer to fk in the old value for ucask, q’s invocation of
HelpInsert that performs ccas and ucask comes after fcask (and therefore after rk). The read rk
returns the value fk.l and this is the value stored in Rk at all times between rk and ccask, by Claim
1, proved above. Thus, ccas must be a successful child CAS on Rk, since it uses fk.l as its old value
and it occurs between rk and ccask. But this contradicts Claim 1 for ccask, proved above.

If ucask is a dunflag CAS, the proof is very similar to the preceding paragraph. Let ccas be the dchild
CAS performed by q just before ucask. Both ccas and ucask belong to fk. Since q used a pointer
to fk in the old value for ucask, q’s invocation of HelpMarked that performs ccas and ucask comes
after fcask (and therefore after rk). The read rk returns the value fk.p and this is the value stored in
Rk at all times between rk and ccask, by Claim 1, proved above. Thus, ccas must be a successful child
CAS on Rk, since it uses fk.p as its old value and it occurs between rk and ccask. But this contradicts
Claim 1 for ccask, proved above.

In both cases, we obtained a contradiction. Thus, ccask cannot occur after ucask.

3. If ccask is an ichild CAS, it writes the pointer fk.newInternal. That pointer points to a node x
created by the Insert that performed fcask. When x is created, its child pointers point to two newly
created leaf nodes, y and z. None of x, y or z can be reachable from the Root until some child CAS

changes a child pointer to point to one of them. We consider all successful child CAS steps prior to
ccask and prove that none of them wrote pointers to x, y or z.

An ichild CAS can only write a pointer to an internal node, so it cannot write a pointer to y or z.
Furthermore, only an ichild CAS belonging to fk can write a pointer to x, and there is no such ichild
CAS prior to fk, by Claim 1, proved above.

It remains to show that no dchild CAS can write a pointer to x, y or z before ccask. To derive a
contradiction, assume some dchild CAS writes a pointer to x, y or z prior to ccask. Consider the first
such dchild CAS, ccasj . The value written by ccasj is read from a child pointer of fj .p in line 104.
Thus, ccasj could not have written a pointer to x because no child pointer points to x before ccasj (by
definition of ccasj). Thus ccasj writes a pointer to y or z. Without loss of generality, assume it writes
a pointer to y. Then, the process that performed ccasj had previously read a pointer to y in a child
field of the node that fj .p points to (on line 104). Thus, fj.p could only point to x since, prior to ccasj ,
the only child pointer that points to y is in the node x. So, one of the child fields in the node that
fj.gp points to contained a pointer to x before the end of the Search belonging to fj , according to
postcondition (4b) of the Search. This is impossible, since no child pointer points to x before ccask.
This completes the proof of Claim 3.

4. A dchild CAS ccask uses fk.p as the old value. An ichild CAS ccask uses fk.l as the old value. Since
the CAS is successful, Rk must have contained that value just before ccask.

5. Let x be the node that fk.p points to. Let r be the last execution of line 32 of the Search that belongs
to fk. To derive a contradiction, assume that for some j < k, ccasj is a successful child CAS that
changes a child pointer in node x between r and ccask.

By Lemma 10, x is marked before ccask. By Lemma 12 and Claim 2 of the induction hypothesis,
x is flagged when ccasj occurs. Since marked nodes never become unmarked and a node cannot be
both marked and flagged, ccasj occurs before the successful mark CAS belonging to fk. Since x’s
state must be Clean just before that mark CAS occurs, there must be a successful unflag CAS on x
between ccasj and the mark CAS. The old value used by the mark CAS was read at line 31 before r,
but the unflag CAS changes the update field between r and the mark CAS. This contradicts the fact
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that the mark CAS succeeds (because Lemma 4 implies that no ABA problem can occur in an update
field).

6. If k = 1, the data structure is a full binary tree prior to ccask because of the way it is initialized.
If k > 1, the induction hypothesis implies that the data structure is a full binary tree prior to ccask
because no changes to it have occured between ccask−1 and ccask. We must show that ccask preserves
this property.

If ccask is an ichild CAS, it replaces a subtree by a full binary tree of three new nodes, by Claim 3
proved above, so the full binary tree property is preserved.

Now suppose ccask is a dchild CAS. Then ccask changes a child pointer of the node that fk.gp points
to from fk.p to the pointer other read (in line 104) from a child pointer of the node fk.p points to.
Since the child pointers of the node that fk.p points to cannot change between line 104 and the ccask
(by Claim 5, proved above), it follows that just prior to the dchild CAS, other points to a child of the
node fk.p points to. Thus, the dchild CAS replaces a subtree by a subtree of that subtree, and the
full binary tree property is preserved.

7. If ccask is an ichild CAS, it updates the child pointer to point to a new node that has never been in
the data structure before, by Claim 3 proved above.

Now consider the case where ccask is a dchild CAS. Let x be the node whose child pointer is changed
by ccask. Without loss of generality, assume x’s left child pointer is changed by ccask. Suppose ccask
changes the left child of x from node z to node y. To derive a contradiction, assume that y was the
left child of x at some earlier time.

Just prior to ccask, y was a child of z, as argued in the proof of Claim 6. By Claim 6 of the induction
hypothesis, y 6= z. Thus there is some j < k such that ccasj caused y to stop being the left child of x.
(This child CAS exists because y was a child of x but is no longer a child of x just before ccask.)

We prove that, just after ccasj , y is not a descendant of x. If ccasj is an ichild CAS, this follows
from Claim 3 of the induction hypothesis. If ccasj is a dchild CAS, then by Claim 5 of the induction
hypothesis, ccasj replaces a pointer to y by a pointer to y’s child, so y is no longer a descendant of x
(since y cannot be a descendant of its own child by Claim 6 of the induction hypothesis).

Claims 3 and 5 imply that y can never become a descendant of x again between ccasj and ccask,
contradicting the fact that y is a grandchild of x just before ccask.

This completes the proof of the lemma.

The following two corollaries of Lemma 14 describe the effects of a successful ichild or dchild CAS.
Essentially, they say that the effect of a child CAS is exactly as shown in Figure 1 and 2.

Corollary 15 For all i, if ccasi is an ichild CAS, it changes a child pointer of fi.p, replacing fi.l, which is
a pointer to a leaf, by a pointer to the root of a full binary tree consisting of three new nodes that have never
appeared in binary tree before.

Proof: Immediate from Lemma 14(3) and 14(4).

Corollary 16 Consider any successful dchild CAS, ccasi. One of the child pointers in the node that fi.p
points to was fi.l when line 32 was last executed by the Search belonging to fi. Let ps be the other child
pointer of fi.p at that time. Then, ps and fi.l are still the child pointers of fi.p just before ccasi, and ccasi
changes a child pointer of fi.gp from fi.p to ps.

Proof: By Lemma 14(5), fi.p’s child pointers do not change between the last execution of line 32 within
the Search belonging to fi and ccasi. So, just before the dchild CAS, line 104 sets the local variable other
to ps, and the claim follows from the code of line 105.
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5.5 Tree Properties

We have proved in Lemma 14(6) that the child pointers form a full binary tree. We can now prove some
properties of that tree. An internal node is called inactive when it is first created. It becomes active when
a successful ichild CAS writes a pointer to it for the first time. It remains active forever afterwards. An
exception is the root node, which is active right from the beginning of the execution.

Lemma 17 In every configuration, each active unmarked internal node is reachable from the root.

Proof: Since marked nodes never become unmarked, we only have to show that every successful child CAS

maintains this invariant.
First, consider a successful ichild CAS ccasi that changes a child pointer of fi.p. We show that the only

node that becomes unreachable from the root as a result of ccasi is a leaf. By Lemma 14(1), ccasi is the first
change to Ri since it was read by ri during a Search. When that Search executed ri, it read the pointer
to a leaf fi.l. So, by Corollary 8, fi.l is the only node that becomes unreachable as a result of ccasi.

Next, we show that the node y that becomes active as a result of ccasi is reachable from the root just
after ccasi. Lemma 12 and Lemma 14(2) implies that when ccasi occurs, fi.p is flagged, so it cannot be
marked. Thus, fi.p is reachable from the root just prior to ccasi, and fi.p’s new child y is also reachable
from the root after ccasi.

Now suppose ccasi is a dchild CAS. By Corollary 16, ccasi changes the child of fi.gp from fi.p to fi.l’s
sibling. So the only nodes that become unreachable as a result of this CAS are fi.p and the subtree rooted
at fi.l. Since fi.l is a leaf, and fi.p is marked when casi occurs (by Lemma 10), the claim follows.

We say that node x is a left-descendant (right-descendant) of internal node y in configuration C if, in
configuration C, x is in the tree and x is a descendant of y’s left (right, respectively) child. The following
lemma implies that nodes cannot acquire new ancestors.

Lemma 18 If x is a left-descendant (right-descendant) of y at some configuration C, then x is a left-
descendant (right-descendant, respectively) of y in all configurations between the first time x is in the tree
and C.

Proof: We write the proof for left-descendants; the proof for right-descendants is symmetric. Assume the
claim is false to derive a contradiction. Then there is some successful child CAS, ccasi, such that
(1) x is in the tree at some time before ccasi,
(2) x is not a left-descendant of y in the configuration before ccasi, and
(3) x is a left-descendant of y in the configuration after ccasi.
If ccasi is an ichild CAS, this violates Lemma 14(3), because the nodes added to the tree by the ichild CAS

must never have appeared in the tree before. If ccasi is a dchild CAS, this violates Corollary 16, because
the dchild CAS removes two nodes from the tree and does not add any.

For any configuration C, let TC be the binary tree formed by the child pointers in configuration C. We
define the search path for key k in configuration C to be the unique path in TC that would be followed by
the ordinary sequential BST search procedure. (Although we have not yet proved that TC is always a BST,
we can still define this search path just by looking at what a BST search would do if it were run on TC .)

Lemma 19 If x is a node on the search path for key k in some configuration C and x is still in the tree in
some later configuration C′, then x is still on the search path for k in C′.

Proof: Let y be any ancestor of x in TC′ . If x is a left-descendant of y in configuration C′, then x is a
left-descendant of y in configuration C (by Lemma 18), so k < y.key (since x is on the search path for k
in configuration C). By a symmetric argument, if x is a right-descendant of y in configuration C′, then
k ≥ y.key. Thus, if a traversal of T ′

C decides which direction to go at each ancestor y of x based on a
comparison of that y’s key with k, it will always choose to go towards the node x. Thus, x is on the search
path for k in C′.
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5.6 Proof of Linearizability

In this section, we prove that the implementation is linearizable. We shall define linearization points for
each of the Insert, Delete and Find operations. In addition, it will be convenient to define linearization
points for calls to the Search routine. The goal is to show that at any time T , the set of keys resulting
from the sequence of update operations linearized before T is exactly the same as the set of keys that are
currently stored in the leaves of the tree. Roughly speaking, we shall define a linearization point for each
call to Search(k) at which time the leaf returned by the Search is on the search path for k in the tree.
Thus, a Find can be linearized at the same time as the Search that it performs and each update operation
that returns False can be be linearized at the same time as the last Search that it performs. Each update
operation that returns True will be linearized at the child CAS that changes the BST to reflect the update.
(This child CAS may be performed by the process doing the update itself, or by another process that is
helping the update.)

First, we define linearization points for the Search routine. We wish to choose a linearization point for
the Search(k) so that the leaf the Search returns is in the tree and on the search path for k at the time
that it is linearized. It would be natural to try to linearize the Search in the last iteration of its loop when
it reads a pointer to that leaf. However, we have designed the Search routine to ignore marks and flags.
Thus, by the time the Search reaches the leaf, that leaf may no longer be in the tree if, for example, the
leaf’s parent has been marked and removed by a concurrent Delete operation. However, we can prove that
the leaf was in the tree at some time during the execution of the Search, using the next lemma.

We say that a Search enters a node when a pointer to this node is assigned to l on line 25 or line 32.

Lemma 20 Let v1, v2 . . . , be the nodes entered by a Search(k) (in the order they are entered). For all j,
there is a configuration Cj such that

1. vj is on the search path for k in configuration Cj,

2. Cj is before the Search enters vj , and

3. Cj is after the Search is invoked.

Proof: We prove the claim by induction on j.
Base Case (j = 1): Since Root never changes, v1 is the root node. Let C1 be the configuration immediately
before the Search enters v1. Claim 1 is true because the root node is always on the search path for any
key. Claim 2 and 3 follow from the definition of Cj .
Induction Step: Let j > 1. Assume the lemma holds for j − 1 and that the Search enters a node vj .
We prove that the lemma holds for j. Let enterj be the step when the Search enters vj . This will be an
execution of line 32, when a pointer to vj is read in a child field of vj−1.

In the special case where vj is the one of the nodes initially in the tree, it must be the left child of the
root, since all calls to Search use keys smaller than ∞1. In this case, we choose Cj to be the configuration
right before enterj . This choice clearly satisfies the claim.

Otherwise, there is some child CAS ccas that writes a pointer to vj in a child field of vj−1 before enterj .
(In fact there is exactly one such child CAS, by Lemma 14(7).) Let C be configuration just after ccas. We
define Cj to be either Cj−1 or C, whichever is later.

By the induction hypothesis, Cj−1 is after the Search is invoked. Thus, Cj must also be after the Search
is invoked. By the induction hypothesis, Cj−1 precedes enterj−1, which precedes enterj . Configuration C
also precedes enterj (by definition), so Cj is before the Search enters vj . It remains to prove that vj is on
the search path for k in configuration Cj . We consider two cases.
Case 1: Cj = Cj−1. This means that ccas wrote a pointer to vj in the child field of vj−1 before Cj−1, and
the pointer was still there when enterj read that field after Cj−1. By Lemma 14(7), the child pointer must
have contained the pointer to vj at Cj−1. Thus, at Cj−1, vj−1 was on the search path for k (according to
the induction hypothesis) and the child pointer of vj−1 that would be read by a search for k contained a
pointer to vj . Thus vj is on the search path for k at Cj−1 = Cj .
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Case 2: Cj = C. The successful child CAS, ccas changes a child pointer of vj−1 immediately before C. By
Lemma 12 and Lemma 14(2), vj−1 is flagged (and hence not marked) when ccas occurs. By Lemma 17, vj−1

is in the tree TC . In some configuration Cj−1 before C, vj−1 was on the search path for k, by the induction
hypothesis. By Lemma 19, vj−1 is still on the search path for k in configuration C.

Step enterj reads the appropriate child of vj−1 (i.e., the left child if k < vj−1.key and the right child
otherwise), so vj is the appropriate child of vj−1 in configuration C. Thus, vj is on the search path for k in
C = Cj .

For each Search that terminates, we define its linearization point to be the configuration Cj correspond-
ing to the last node the Search enters, as defined in Lemma 20. Thus we have the following corollary.

Corollary 21 Consider any execution of Search(k) that terminates. The linearization point chosen for
the Search is during the Search. The Search returns a pointer l to a leaf, and that leaf is on the search
path for k at the linearization point of the Search.

Recall the BST property states that, for each internal node x in the binary tree, the key of every left-
descendant of x is smaller than x’s key and the key of every right-descendant of x is greater than or equal
to x’s key. Now that we know that each Search ends at the “correct” leaf of the BST, we can prove that
the BST property is an invariant.

Lemma 22 In every configuration, the tree of child pointers is a BST.

Proof: The claim is true for the tree in the initial configuration. Since keys stored in nodes never change,
we need only check that every child CAS preserves the invariant.

Assume the BST property holds prior to a dchild CAS. By Corollary 16, the dchild CAS replaces a
subtree of the tree by a subtree of that subtree, so the BST property still holds after the dchild CAS.

Now consider an ichild CAS. Let C be the configuration just prior to the ichild CAS. Assume the BST
property holds in C. We shall show that it also holds just after the ichild CAS. Let f be the IInfo record to
which the ichild CAS belongs. Let Insert(k) be the operation that created f . The ichild CAS changes a
child pointer of f.p from f.l to f.newInternal, which points to an internal node with key max(k, f.l → key).
That internal node has two children with keys f.l → key and k (and they are in the right positions relative
to their parent according to the way that they were constructed). Thus, we must just check that f.l is on
the search path for both k and f.l → key in C. The leaf f.l is definitely on the search path for f.l → key in
C, since the tree satisfies the BST property in C.

It remains to show that f.l is on the search path for k in C. By Corollary 21, f.l was on the search path
for k at the linearization point of the Search belonging to f . By Lemma 20, this linearization point occurs
before C. Since f.l is still in the tree at C, it follows from Lemma 19, that f.l is still on the search path for
k in C.

As mentioned above, we linearize each Find operation that terminates at the same time as the lineariza-
tion point for the Search routine that it calls. Now we turn our attention to constructing linearization
points for the update operations. We begin, in the next few lemmas, by showing that each update that
returns True has a unique successful child CAS and each update that returns False has no successful child
CAS.

Lemma 23 Let f be any Info record. The first child CAS that belongs to f (if there is one) must succeed.

Proof: Let ccas be the first child CAS that belongs to f . Let fcas be the successful flag CAS for f , which
exists and precedes ccas, according to Lemma 12.

Let x be the node whose child pointer ccas tries to change. Let r be the step in which the Search

belonging to f read the child pointer of x, as described in Lemma 7. Let r′ be the previous step of the
Search, which read the update field of x at line 31. To show that ccas is successful, it suffices to prove that
no successful child CAS on x occurs between r and ccas because the value read by r is used as the old value
for the CAS step ccas.
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Because fcas succeeded, the value in x.update just prior to fcas must be the same as it was when it was
read by r′. The step r′ must have read Clean in x.update.state; otherwise, the test on line 51 (for Insert)
or 77 (for Delete) would evaluate to True, and f would not have been created. Thus, by Lemma 4, x’s
state is Clean at all times between r′ and fcas.

We consider how x.update can change after fcas. If f is a DInfo record, the next change to x.update
cannot be a backtrack CAS, because a successful mark CAS belonging to f was performed (by Lemma 10)
and therefore there cannot be a backtrack CAS belonging to f (by Lemma 6). Thus, if x.update is changed
after fcas, the first change must be an unflag CAS belonging to f (by Lemma 3), which must occur after
ccas since an unflag CAS is always immediately preceded in the code by a child CAS.

Thus, at all times between r and ccas, x.update is either clean or flagged with a pointer to f . By Lemma
12 and Lemma 14(2), when any successful child CAS ccasi occurs on x, x is flagged with a pointer to fi.
Since there are no child CAS steps belonging to f before ccas (by definition of ccas), there cannot be any
successful child CAS steps on x between r and ccas. Therefore, ccas will succeed.

Lemma 24 If an Insert or Delete operation returns result True, then during the operation, there is a
successful child CAS that belongs to an Info record created by the operation.

Proof: Consider any Insert or Delete operation that returns True, and let f be the Info record that
it creates during the last iteration of the while loop, just before it returns True. Let fcas be the flag
CAS belonging to f that the operation performs. We first prove there is a child CAS that belongs to f by
considering two cases.

If the operation is an Insert, it can return True (on line 59) only after executing HelpInsert using a
pointer to f on the preceding line. This HelpInsert performs an ichild CAS belonging to f .

If the operation is a Delete, it can return True (on line 83) only if the call to HelpDelete using a
pointer to f returns True. That call to HelpDelete returns True only after HelpMarked is called, and
HelpMarked performs a child CAS belonging to f .

In both cases, there is some child CAS that belongs to f before the end of the Insert or Delete

operation. The first child CAS that belongs to f , which must also be before the end of the operation,
succeeds according to Lemma 23. That child CAS occurs after fcas, by Lemma 12. Thus the successful
child CAS occurs during the Insert or Delete operation.

Lemma 25 If a successful child CAS belongs to an Info record f created by an Insert or Delete operation,
then f is created during the last iteration of the operation’s while loop.

Proof: First, consider an Insert operation. Suppose there is a successful ichild CAS belonging to an
IInfo record f created by the Insert. By Lemma 12, there is a successful iflag CAS belonging to f . After
this successful iflag CAS the Insert routine returns True on line 59 (unless it crashes), so the Insert does
perform any further iterations of its while loop.

Now, consider a Delete operation. Suppose there is a successful dchild CAS belonging to a DInfo
record f created by the Delete. Let mcas be the first mark CAS belonging to f . We argue that mcas
must succeed. By Lemma 9, a successful dflag CAS that belongs to f is performed before mcas. Prior to
that dflag CAS, the Search belonging to f reads the value f.pupdate in f.p → update. If mcas fails, the
value of f.p → update was changed to some value other than f.pupdate before mcas, so it will never be
changed back to f.pupdate (by Lemma 4). Thus, all the later mark CAS steps belonging to f will also fail,
contradicting Lemma 10. So, mcas must succeed. So, f.p → update is equal to 〈DFlag,&f〉 at all times
after mcas, by Lemma 3.

Now, after creating f , the Delete routine calls HelpDelete with a pointer to f . When HelpDelete

performs its mark CAS, it either succeeds (if it is the first mark CAS that belongs to f) or it sees that p →
update is already equal to 〈DFlag,&f〉. Thus, the test on line 92 will evaluate to True, and HelpDelete

will return True (unless it crashes). Thus, the Delete does not perform any further iterations of its while
loop.

Corollary 26 For each Insert or Delete operation, there is at most one successful child CAS belonging
to the Info records created by the operation.
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Proof: By Lemma 25, only the last Info record created by the operation can have a successful child CAS

that belongs to it. Only the first child CAS belonging to that Info record can succeed, by Lemma 14(1).

Corollary 27 If an Insert or Delete returns False, there is no successful child CAS that belongs to any
Info record created by that operation.

Proof: If the Insert routine or Delete routine returns False, it does not create an Info record in the
final iteration of the while loop (since it exits on line 50 or 76, respectively, before creating an Info record).
Thus, by Lemma 25, there is no successful child CAS that belongs to any Info record created by the update
operation.

We can now define the linearization points for update operations. If there is a successful child CAS

that belongs to an Info record created by an update operation, the operation that created the Info record
is linearized when that child CAS occurs. The choice of this linearization point is unique, by Corollary 26.
This defines linearization points for all upates that return True, by Lemma 24. By Lemma 27, this does not
define a linearization point for any update operation that returns False. If the update operation returns
False, we linearize it at the same time as the Search that it performs in the last iteration of its while loop.

Lemma 28 If an operation has a linearization point, then that linearization point is during the operation.

Proof: For Find operations and update operations that return False, this follows from Corollary 21. For
update operations that have a successful child CAS, this follows from Lemma 24.

The linearization points chosen for operations are either child CAS steps or configurations. The lin-
earization ordering of all the operations is the order in which their linearization points occur in the execution
(which, recall, is an alternating sequence of steps and configurations). The only operation that can be lin-
earized at a child CAS is the update that created the Info record to which the child CAS belongs. However,
there may be several operations that are linearized at a single configuration. (These will either be Find

operations or update operations that return False.) To make the linearization order a total order on the
operations, we can break the ties arbitrarily. It remains to show that all terminating operations output the
same result as they would if they were performed in the linearization ordering.

We first consider the subsequence of update operations that are linearized at child CAS steps. For i ≥ 1,
let Oi be the update operation linearized at ccasi. Let Li be the set of keys in leaves of the tree in the
configuration just after ccasi. Let Di be the set of keys that would be in a dictionary if operations O1, . . . , Oi

were performed sequentially, in that order, starting with an empty dictionary. (Let D0 = ∅ and let L0 be
the set of keys in the leaves of the tree in the initial configuration, i.e., L0 = {∞1,∞2}.)

Lemma 29 For all i ≥ 0, the following statements are true.

1. If i ≥ 1 and Oi is an Insert(k) operation, then it returns True and k /∈ Di−1.

2. If i ≥ 1 and Oi is a Delete(k) operation, then it returns True and k ∈ Di−1.

3. For all i ≥ 0, Li = Di ∪ {∞1,∞2}.

Proof: We prove the lemma by induction on i.
Base case (i = 0): L0 = {∞1,∞2} and D0 = ∅.
Inductive step: Let i ≥ 1. Assume the claims hold for i− 1. We consider two cases.
Case 1: Oi is an Insert(k) operation. Then Oi returns True, since Insert operations that return False

are not linearized at child CAS steps. Recall that fi is the IInfo record that ccasi belongs to. The Search

that belongs to fi returned a pointer fi.l with fi.l → key 6= k; otherwise the Insert would have returned
False on line 50. By Corollary 21, fi.l is on the search path for k at the time the Search is linearized.

Because ccasi succeeds, fi.p is flagged when it occurs (by Lemma 12 and Lemma 14(2)) and therefore
fi.p is not marked. Thus, fi.p and fi.l are in the tree immediately before ccasi (by Lemma 17) . By Lemma
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19, fi.l is still on the search path for k immediately before ccasi. Since the tree is a BST (by Lemma 22),
and there is a leaf fi.l on the search path for k in the tree that does not contain the key k, k must not appear
in any leaf. Thus, k /∈ Li−1 and, by the induction hypothesis, k /∈ Di−1.

The effect of ccasi on the tree is to replace the leaf fi.l by a subtree containing two leaves whose keys are
k and fi.l → key, by Corollary 15. Thus, Li = Li−1 ∪ {k}. So, we have Li = Li−1 ∪{k} = Di−1 ∪ {k} = Di.

Case 2: Oi is a Delete(k) operation. Then Oi returns True, since Delete operations that return
False are not linearized at child CAS steps. Recall that fi is the DInfo record that ccasi belongs to. The
Search that belongs to fi returned a pointer fi.l with fi.l → key = k; otherwise the Delete would have
returned False on line 76.

Because ccasi succeeds, fi.gp is flagged when it occurs (by Lemma 12 and Lemma 14(2)) and therefore
fi.gp is not marked. Thus, fi.gp is in the BST immediately before ccasi (by Lemma 17). By Corollary 16,
fi.p is a child pointer of fi.gp and fi.l is a child pointer of fi.p immediately before ccasi, so fi.l is also in
the tree. Hence, k = fi.l → key is in Li−1 and, by the induction hypothesis, k ∈ Di−1.

The effect of ccasi is to replace fi.gp’s pointer to fi.p by a pointer to fi.l’s sibling, thus removing exactly
one leaf fi.l from the tree (by Corollary 16. Thus, Li = Li−1 − {k}. So, we have Li = Li−1 − {k} =
Di−1 − {k} = Di.

Now we consider all the other operations and show that they also return the results they should, according
to the linearization ordering.

Lemma 30 Consider an operation O that is linearized after ccasi but before ccasi+1 (if ccasi+1 exists).

1. If O is a Find(k) operation that returns ⊥, then k /∈ Di.

2. If O is a Find(k) operation that does not return ⊥, then k ∈ Di.

3. If O is an Insert(k) operation, then it returns False, and k ∈ Di.

4. If O is a Delete(k) operation, then it returns False, and k /∈ Di.

Proof: We prove each of the statements in turn.

1. If O is a Find(k) operation that returns ⊥, then its Search returns a pointer to a leaf that is on the
search path for k in the tree at its linearization point, by Corollary 21. Since the Find returns ⊥, that
leaf contains a key different from k. Since the tree is a BST, k cannot be stored in any other leaf of
the tree, so k /∈ Li. By Lemma 29, k /∈ Di.

2. If O is a Find(k) operation that does not return ⊥, then its Search returns a pointer to a leaf that
is in the tree at its linearization point, by Corollary 21. Thus, k ∈ Li = Di by Lemma 29.

3. If O is an Insert(k) operation, it returns False since it is not linearized at a child CAS. Consider
the Search(k) routine that it called just before returning False. That Search returns a pointer to
a leaf that is in the tree at its linearization point, by Corollary 21. Since the Insert returns False,
that leaf has key k. Thus, k ∈ Li = Di by Lemma 29.

4. If O is an Delete(k) operation, it returns False since it is not linearized at a child CAS. Consider
the Search(k) routine that it called just before returning False. That Search returns a pointer to
a leaf that is on the search path for k in the tree at its linearization point, by Corollary 21. Since the
Delete returns False, that leaf does not have key k. Since the tree is a BST, k cannot be stored in
any other leaf of the tree, so k /∈ Li. By Lemma 29, k /∈ Di.

Lemma 31 All Find operations linearized before ccas1 return ⊥. All Delete operations linearized before
ccas1 return False. There are no Insert operations linearized before ccas1.
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Proof: Consider any Delete(k) or Find(k) operation linearized before ccas1. It is linearized at the same
time as its Search is linearized. At that time the leaf returned by the Search is on the search path for k
in the tree, which is still as it was when it was initialized (since no successful child CAS steps have occurred
yet), so the leaf returned by the Search contains the key ∞1 6= k. Thus, the Find would return ⊥ and the
Delete would return False.

To derive a contradiction, suppose an Insert(k) is linearized before ccas1. Then it must return False

(by the definition of the linearization points of Insert operations). Thus, the Search(k) called by the last
iteration of the Insert’s while loop must have returned a leaf l containing the key k. The linearization point
for the Search is the same as for the Insert, meaning that l was in the tree before ccas1 (by Corollary 21),
but this is impossible.

Theorem 32 The implementation given in Figure 7, 8 and 9 is a linearizable implementation of a dictio-
nary.

Proof: By Lemma 29, 30 and 31 all terminating operations in the execution return the same response as
they would if the operations were done in the linearization ordering. It follows from Lemma 28 that the
linearization respects the real-time ordering of operations.

5.7 Progress

We first give simple proofs of three technical lemmas that will help ensure Delete operations make progress.
The first one shows that helping is guaranteed to remove a flag.

Lemma 33 Suppose some process completes an execution of Help(〈a,&f〉), where a ∈ {IFlag,DFlag}.
Then there is a successful unflag or backtrack CAS belonging to f .

Proof: We consider two cases. If a is IFlag, then f is an IInfo record, and Help calls HelpInsert(&f),
which performs a iunflag CAS belonging to f . The first such step succeeds.

If a is DFlag, then f is a DInfo record, and Help calls HelpDelete(&f). If the test on line 92
evaluates to True, then HelpMarked performs a dunflag CAS belonging to f . If the test evaluates to
False, then a backtrack CAS belonging to f is performed. The first dunflag or backtrack CAS that belongs
to f succeeds.

Lemma 34 Let f be a DInfo record. If, in some configuration C, a node x has x.update = 〈DFlag,&f〉
and no dchild CAS belonging to f has yet occurred, then f.gp points to x and f.p points to a child of x.

Proof: The only node that can be flagged with a pointer to f is the one that f.gp points to, so f.gp must
point to x. Let r be the step in which the Search belonging to f read f.p in the child pointer of x, as
described in Lemma 7. Let r′ be the previous step of the Search, which read the update field of x at line 31.

Let fcas be the (unique) flag CAS belonging to f . Because fcas succeeded, the value in x.update just
prior to fcas must be the same as it was when it was read by r′. The step r′ must have read Clean in
x.update.state; otherwise, the test on line 51 (for Insert) or 77 (for Delete) would evaluate to True, and
f would not have been created. Thus, by Lemma 4, x’s state is Clean at all times between r′ and fcas.

Thus, at all times between r and C, x.update is either clean or flagged with a pointer to f . By Lemma
12 and Lemma 14(2), when any successful child CAS ccasi occurs on x, x is flagged with a pointer to fi.
Since there are no child CAS steps belonging to f before C, there cannot be any successful child CAS steps
on x between r and ccas. Thus, the node that f.p points to is still a child of x in configuration C.

Lemma 35 Let f be a DInfo record. At all times after some process performs a dchild CAS that belongs
to f , the node that f.p points to is not in the tree (i.e., it is not reachable from the root).

Proof: Suppose some dchild CAS that belongs to f has been performed. The first dchild CAS that
belongs to f succeeds, by Lemma 23. That dchild CAS changes one of f.gp’s child pointers from f.p to one
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of f.p’s children, according to Lemma 16. Since there is only one path from the root to f.p prior to the
dchild CAS, by Lemma 14(6), f.p is no longer reachable from the root after the dchild CAS. It follows from
Lemma 15 and 16 that no other child CAS can ever create a path leading from the root to f.p after it is
removed from the tree.

For any execution α, define the graph Gα to be the directed graph whose vertices are all internal nodes
created during α. There is an edge from node x to node y in Gα if and only if y is a child of x at some time
during α. (This graph may have infinitely many vertices for an infinite execution.)

Lemma 36 For any execution α, Gα contains no cycles.

Proof: It suffices to show, for all i, that there is no cycle in the subgraph Gi of Gα corresponding to the
first i steps of the execution. We prove this by induction on i.
Base case (i = 0): G0 contains a single node and no edges.
Inductive step: Let i ≥ 1. Assume Gi−1 contains no cycles. Unless the ith step is a child CAS, the set
of edges in Gi is the same as in Gi−1, so it suffices to prove that Gi is acyclic when step i of the execution
is a child CAS. By Corollary 15, an ichild CAS adds an edge to Gi from some node to a node that has
no outgoing edges in Gi, so adding this edge cannot create a cycle in Gi. By Corollary 16, a dchild CAS

belonging to f adds an edge to Gi from f.gp to a child other of f.p (unless other is a leaf, in which case no
edges are added to Gi). Moreover, edges from f.gp to f.p and from f.p to other already exist in Gi−1. So
this change cannot introduce a cycle in Gi.

Theorem 37 The implementation given in Figure 7, 8 and 9 is non-blocking.

Proof: To derive a contradiction, assume there is some execution α that does not satisfy the nonblocking
property. Thus there is a suffix of α in which no operations terminate and some operations take infinitely
many steps. Let S be the set of operations that take infinitely many steps in α.

Claim 1: There are a finite number of successful child, mark, iflag, iunflag, and dunflag CAS steps in α.
Proof of Claim 1: There are a finite number of operations invoked in α. By Lemma 26, there is at most
one successful child CAS per operation, so there are a finite number successful child CAS steps. Thus,
there are a finite number of nodes ever added to the tree. By Lemma 3, there is at most one successful
mark CAS per node in the tree. Any Insert that successfully performs its iflag CAS calls HelpInsert

which terminates in two steps and then the Insert itself terminates. Thus each of the finitely many Insert

operations in the execution has at most one successful iflag CAS. By Lemma 3 two successful iunflag CAS

steps on a node’s update field must have a successful iflag CAS between them. So there are a finite number
of successful iflag and iunflag CAS steps. There is at most one successful dunflag CAS belonging to each
DInfo record f . It is performed by HelpMarked, which is called only after there has been a successful
mark CAS belonging to f . Thus, since there are a finite number of successful mark CAS steps, there are a
finite number of successful dunflag CAS steps. This completes the proof of Claim 1.

Since there are a finite number of successful child CAS steps in α, the tree eventually stabilizes. Let T
be this stable tree. Also, the graph Gα has a finite number of edges and has no cycles, by Lemma 36. Each
iteration of line 32 in a Search corresponds to moving the pointer l from a node x to y, where (x, y) is an
edge of Gα. Thus, any Search in α must terminate. Hence, there are no Find operations in S.

Calls to CAS-Child terminate in a constant number of steps. Therefore, calls to HelpInsert and
HelpMarked also terminate in a constant number of steps.

Claim 2: Each call to Help and HelpDelete in α must terminate.
Proof of Claim 2: Help and HelpDelete do not contain any loops, and they only call each other or
routines that are guaranteed to terminate. Thus, we must show that they do not call each other in a mutual
recursion forever. To derive a contradiction, suppose this occurs. For all i ≥ 1, let opi be the argument to the
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ith call to HelpDelete in this infinite recursion and let xi be the node that opi → p points to. Similarly,
let ui be the argument given to Help when the ith call to HelpDelete in this infinite recursion invokes it.

Let i > 1. We show (xi−1, xi) is an edge in Gα. When HelpDelete is called for the (i − 1)th time,
it performs an unsuccessful Mark CAS on xi−1.update and then calls Help using the value read from
xi−1.update as the argument ui−1. Then, since the mutual recursion continues, ui−1.state must be DFlag

and opi = ui−1.info. Since 〈DFlag, opi〉 appeared in xi−1.update, opi → gp must point to xi−1, since it was
placed there by a dflag CAS. By definition, opi → p points to xi. The pointers opi → gp and opi → p were
written into opi after they were returned by a Search, and the postconditions of that Search ensure that
opi → p was a child pointer read in the node that opi → gp points to. Thus, xi was a child of xi−1 at some
time during that Search. So, (xi−1, xi) is an edge in Gα.

Thus, (xi−1, xi) is in Gα for all i > 1, yielding an infinite path in Gα, which is impossible (since Gα is
acyclic and contains a finite number of edges). This completes the proof of Claim 2.

Thus, the only routines that might not terminate are Insert and Delete. If a call to either routine does
not terminate, it must perform infinitely many iterations of the routine’s while loop. Thus, each operation
in S performs infinitely many calls to Search (with the same key as its argument). Let O1, . . . , Om be the
operations in S. Since the tree eventually stabilizes, every call to Search by Oi initiated after the tree has
stabilized will return pointers to the same three nodes, gpi, pi and li, by Lemma 20 and the postconditions
of Search.

By Claim 1, the only types of successful CAS steps that occur infinitely often in α are dflag and backtrack
CAS steps. Let α′ be a suffix of α where

1. the only successful CAS steps in α′ are dflag and backtrack CAS steps,

2. for all i, every invocation of Search by Oi in α′ returns the pointers gpi, pi, li, and

3. for all i, the last invocation of Search by Oi in α prior to the beginning of α′ also returned the pointers
gpi, pi, li.

Choose gplowest to be one of the lowest of the nodes gp1, . . . , gpm in T (i.e., none of the other gpi’s is a
proper descendant of gplowest in T ). Let Slowest = {Oi : gpi = gplowest}.

For all i, the only node that Oi can attempt a dflag CAS on in α′ is gpi. Thus, no operation attempts
a dflag CAS on a proper descendant of gplowest. Therefore, there can be at most one successful backtrack
CAS step applied to each proper descendant of gplowest in T , since there must be a successful dflag CAS

on a node between two successful backtrack CAS steps on that node (by Lemma 3).
Thus, in some suffix of α′, there are no successful CAS steps on the update fields of proper descendants

of gplowest and the values in those fields stabilize. Let α′′ be the suffix of α′ where

1. the update fields of all proper descendants of gplowest in T never change, and

2. for all i, the last invocation of Search by Oi in α prior to the beginning of α′′ began after the update
fields of all proper descendants of gplowest in T had already stabilized.

Claim 3: If Oi ∈ Slowest, then pi.state is not Mark during α′′.
Proof of Claim 3: To derive a contradiction, suppose that during α′′, pi.update = 〈Mark,&f〉 for some
DInfo record f . The only step that can write this value is a mark CAS belonging to f , so f.p points to pi.

First, suppose Oi is an Insert. Then, Oi eventually calls Help(pi.update) on line 51. The Help routine
then calls HelpMarked(&f), which performs a dchild CAS belonging to f . By Lemma 35, pi is no longer
reachable from the root after this dchild CAS. This contradicts the fact that Oi reaches pi infinitely many
times in α′′.

Now, suppose Oi is a Delete. By Lemma 9, a successful dflag belonging to f was performed before
f.p was marked. By Lemma 35, no dchild CAS belonging to f occurs, since pi remains in the tree forever.
Thus, no dunflag CAS belonging to f ever occurs, since a dunflag CAS is always immediately preceded by
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a dchild CAS. Furthermore, no backtrack CAS belonging to f occurs, by Lemma 6. Thus, the node that
f.gp points to remains flagged with a pointer to f forever, and hence remains in the tree forever, by Lemma
17. Furthermore, by Lemma 34, pi remains a child of the node f.gp points to forever. Thus f.gp must point
to gpi since there is a unique path to each node in the tree (by Lemma 14(6)).

Therefore, Oi must eventually call Help(〈DFlag,&f〉) on line 77, which calls HelpDelete(&f). The
mark CAS fails because f.p → update is already 〈Mark,&f〉, so the process performing Oi then calls
HelpMarked(&f) which performs a dchild CAS belonging to f . By Lemma 35, pi must not be reachable
from the root after this occurs, contradicting the assumption that Oi’s calls to Search reach pi infinitely
often. This completes the proof of Claim 3.

Claim 4: Slowest contains only Delete operations.
Proof of Claim 4: To derive a contradiction, assume some Oi ∈ Slowest is an Insert operation. (Recall
that none of the operations in S can be Find operations.) Note that gpi = gplowest and pi is a child of gpi,
so pi is a child of gplowest, and therefore pi → update has stabilized in α′′ (either to a flagged or clean value,
by Claim 3). Consider an iteration of Oi’s while loop in α′′. If pi → state is Clean in α′′, the test on line 51
evaluates to False, and Oi will perform a successful iflag CAS on pi → update, which is impossible because
there are no successful iflag CAS steps in α′′. Thus, pi → state field must be either DFlag or IFlag in α′′,
and Oi invokes the Help routine. By Lemma 33, the flag is eventually removed from pi, contradicting the
assumption that pi’s update field has stabilized in α′′. Thus, Slowest cannot contain any Insert operations.
This completes the proof of Claim 4.

Claim 5: In some configuration of α′′, gplowest is clean.

Proof of Claim 5: If gplowest.state is Clean at the beginning of α′′, then the claim is clearly satisfied.
Next, suppose gplowest is marked at the beginning of α′′. Let f be the DInfo record such that

gplowest.update = 〈Mark,&f〉. Then each process in Slowest would eventually call Help(〈Mark,&f〉)
from line 77, which would call HelpMarked(&f). Thus, a dchild CAS belonging to f would be performed,
and f.gp = gplowest would be removed from the tree, by Lemma 35. This contradicts our assumption that
each process in Slowest reaches the node gplowest infinitely many times.

If gplowest.state is IFlag or DFlag at the beginning of α′′, then each process in Slowest will eventually
call Help from line 77. By Lemma 33, gplowest will eventually become clean. This completes the proof of
Claim 5.

Eventually, gplowest is clean, by Claim 5. The next change to gplowest can only be a dflag CAS, since no
iflag CAS steps succeed in α′′. We show that eventually some dflag CAS on gplowest does succeed. Suppose
this is not the case. Then gplowest eventually stabilizes to a clean value. Thus, each Delete operation Oi

in Slowest stops performing dflag steps. So, Oi must eventually evaluate the test on line 78 to be True.
Recall that pi’s update field does not change during α′′. Since pi is not marked, by Claim 3, pi must be
flagged throughout α′′. Thus, Oi calls Help on pi’s update field. By Lemma 33, the flag on pi is eventually
removed, contradicting the fact that pi’s update field does not change during α′′. Thus, some Delete Oi in
Slowest eventually dflags gplowest.

Finally, we derive the required contradiction. After its successful dflagCAS, Oi callsHelpDelete, which
attempts a mark CAS. Since pi’s update field has not changed since Oi read it in its previous Search, the
mark CAS succeeds, contradicting the fact that no successful mark CAS steps occur during α′′.

This completes the proof that the implementation is non-blocking.

6 Future Work

Theoretical analysis and experimental work is needed to optimize our implementation and compare its
performance to other dictionary implementations. There are results (in the sequential setting) proving that
the expected time for operations on randomly constructed BSTs is logarithmic in the number of keys [18].
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Such bounds for random concurrent updates are not as well-studied. In sequential systems, there are many
techniques for maintaining a balanced BST that guarantee logarithmic height. One important goal is to
extend our implementation to provide a similar guarantee, possibly by adapting some techniques for balancing
lock-based concurrent BSTs, mentioned in Section 2.

We can also study ways to improve the amortized step complexity per operation. For example, after a
process helps another operation to complete, it restarts its own operation from scratch. There may be more
efficient ways to resume the operation by adding parent pointers to marked nodes using a strategy similar
to the one used for linked lists [5], but this could add significant complications to the algorithm.

An adversarial scheduler can prevent a Find from completing in the following run. Starting from an
empty tree, one process inserts keys 1, 2 and 3 and then starts a Find(2) that reaches the internal node
with key 2. A second process then deletes 1, re-inserts 1, deletes 3 and re-inserts 3. Then, the first process
advances two steps down the tree, again reaching an internal node with key 2. This can be repeated ad
infinitum. A natural question is whether Find can be made wait-free without a significant reduction in
efficiency.

Effective management of memory is important for achieving reasonable space bounds. Hazard point-
ers [19] may be applicable to a slightly modified version of our implementation, where a Search helps
Delete operations to perform their dchild CAS steps to remove from the tree marked nodes that the
Search encounters. More specifically, retirement of tree nodes and Info records could be performed when
an unflag (or backtrack) CAS takes place. Search would maintain a hazard pointer to each of the nodes
pointed to by gp, p, l and l’s sibling, as it traverses its search path. Each time an operation O helps another
operation O′, O first ensures that hazard pointers are set to point to the Info record f of O′, and to the nodes
pointed to by f.gp, f.p, f.l and f.l’s sibling. This may require storing more information in Info records.
For example, it might be helpful to store an additional bit indicating whether the Info record is retired or
not. This bit can be updated to True with an additional CAS immediately after an unflag or backtrack
CAS. The implementation of hazard pointers ensures that memory is not de-allocated as long as one or
more hazard pointers point to it, even if it has been retired. Other techniques for garbage collection may
also be applicable.

Many sequential tree-based data structures lack efficient non-blocking implementations in which non-
interfering operations can be applied concurrently, using standard primitives such as (single-word) CAS.
The techniques introduced here may prove useful for these problems, too.
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