
Probabilistic Model Checking with Java PathFinder

Xin Zhang and Franck van Breugel

Technical Report CSE-2010-02

February 2010

Department of Computer Science and Engineering
4700 Keele Street, Toronto, Ontario M3J 1P3 Canada

Probabilistic Model Checking

with Java PathFinder∗

Xin Zhang and Franck van Breugel

DisCoVeri Group, Department of Computer Science and Engineering

York University, 4700 Keele Street, Toronto, M3J 1P3, Canada

Abstract

Recently, we developed a theoretical framework to measure the amount
of progress an explicit-state probabilistic model-checker has made with
its verification effort of a property. In this paper, we discuss how Java
PathFinder (JPF) has been extended to a probabilistic model-checker
and how JPF can keep track of its progress. Furthermore, new search
strategies that take the probabilities into account has been added to JPF.

1 Introduction

On the one hand, probabilistic model checkers such as PRISM [KNP04] have
been successfully employed to verify models of probabilistic systems. However,
they are not suitable for checking properties such as uncaught exceptions of the
actual code of the system. On the other hand, model checkers such as Java
PathFinder (JPF)1 [VHB+03] have been used with success to verify actual code
of systems. However, they do not take into account the probabilities associated
with the probabilistic choices of the systems. In this paper, we bridge the gap
by extending JPF to a probabilistic model checker.

JPF is an explicit state model checker of Java bytecode. In its basic form, it
is a Java virtual machine. In contrast to an ordinary Java virtual machine, JPF
systematically explores all potential executions of a system, rather than a single
one. Each execution is a sequence of transitions. Each transition consists of a
sequence of bytecode instructions. While exploring those executions, JPF tries
to find violations of properties like uncaught exceptions and deadlocks. JPF
has been designed in such a way that it can be easily extended.

∗This research is supported by NSERC.
1http://babelfish.arc.nasa.gov/trac/jpf/

1

2 Extension of JPF to a Probabilistic Model

Checker

If we model check the Java code of a probabilistic system, JPF does not take
into account any probabilities associated with the probabilistic choices in the
code. We have extended JPF to a probabilistic model checker by associating
probabilities to the transitions.

To express probabilistic choices in the Java code, we have introduced the
class Choice of the package probabilistic which contains the static method

make(double[] p).2 Given an array p of doubles with
∑p.length−1

i=0
p[i] =

1, the invocation Choice.make(p) returns i with probability p[i]. Hence, the
invocation Choice.make(0.5, 0.5) returns either 0 or 1, both with probability
0.5.

An invocation of the make method contains the probabilities of the proba-
bilistic choice. JPF needs those probabilities. Hence, JPF has to treat the invo-
cation of this method differently from the invocations of other methods. There-
fore, we introduce a so-called model class, named JPF probabilistic Choice

according to JPF’s convention for naming model classes, which also contains the
method make. Whenever JPF encounters an invocation of the probabilistic.

Choice.make method, it does not model check the bytecode of that method,
but it considers the bytecode of the JPF probabilistic Choice.make method
instead. This bytecode provides JPF with the probabilities associated with the
probabilistic choice represented by the make method. How these probabilities
are employed by JPF is discussed next.

3 New Search Strategies

JPF can check the transitions in different orders by using, for example, a depth-
first search (DFS) or a breadth-first search (BFS). Since we have extended JPF
by associating probabilities to the transitions, we can use these probabilities to
determine in which order to explore the transitions. In [ZvB10] we introduce
several new search strategies which use the probabilities associated with the
transitions. These new search strategies have been implemented in JPF. Given
the modular way we have extended JPF, new search strategies can easily be
added.

To let transitions with the highest probability be searched first, our probability-
first search (PFS) strategy sorts the enabled transitions by their probability.
Our breadth-first probability-second search (BFPSS) is an enhancement of BFS
in which transitions at the same level are sorted by their probability. Our ran-
domized search (RS) randomly selects an enabled transition, where the chance
of a transition being selected is proportional to its probability.

2Our extension has been developed in a modular way such that we can deal with existing

methods such as the nextBoolean method of the Random class in the same way as we handle

our make method of the Choice class.

2

4 Measuring the Progress of JPF

In many cases, JPF will either run out of memory or will simply not terminate
within any reasonable amount of time when verifying the code of a probabilistic
system. In [ZvB10], we introduce the notion of a progress measure for model
checkers such as JPF.

To measure JPF’s progress by simply counting the number of executions
that have been checked is not very useful for several reasons. First of all, it may
be very difficult or even impossible to determine the total number of potential
executions. Hence, the number of executions that have been checked by JPF
gives us very limited information about the amount of progress that has been
made. Secondly, some executions are more likely to happen than others. For
example, nonterminating executions often occur with probability zero. Checking
such an execution amounts to no progress at all.

Instead of counting the number of executions, we endow the set of potential
executions with a σ-algebra and a probability measure. In this way, we obtain a
probability space of executions. The measure of the set of executions that have
been checked gives us a number in the interval [0, 1]. This number provides us
a quantitative measure of the amount of progress JPF has made. The larger
the number, the more progress JPF has made. In [ZvB10] we have shown that
computing the progress measure can be reduced to computing the measure of
the complement of the set of those executions of the probabilistic system that
satisfy a particular temporal logic formula. To compute the measure of this set,
we can use, for example, the algorithm of Courcoubetis and Yannakakis [CY95,
Lemma 3.1.1.1]. For more details, we refer the reader to [ZvB10].

We have implemented the progress measure in JPF. In our implementa-
tion we delegate to MRMC [KZH+09] to compute the measure of the above
mentioned set of executions. After each transition being explored by JPF, the
progress is computed. Our extension of JPF can handle millions of transitions.

We have compared the amount of progress the different search strategies
make for probabilistic systems. To make such a comparison, we have imple-
mented a number of randomized algorithms in Java. For each Java implemen-
tation, we have run JPF with the different search strategies. In the graph below,
the amount of progress made by JPF when model checking a Java implementa-
tion of a randomized version of quick-sort is plotted.

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

P
ro

gr
es

s
M

ea
su

re

Number of Transitions

BFPSS
BFS
DFS
PFS
RS

From the above graph we can conclude that for this particular example,
the new search strategies PFS, BFPSS and RS, which take into account the
probabilities, outperform the JPF’s standard search strategies DFS and BFS.
However, as we have shown in [ZvB10], the search strategies are in theory incom-
parable. That is, for each pair of search strategies, there exists a probabilistic
system such that the one strategy makes faster progress than the other. Also
in practice we have seen that the search strategies are incomparable. However,
for most probabilistic systems the new search strategies PFS, BFPSS and RS
perform better than the JPF’s original search strategies DFS and BFS.

5 Conclusion

We have extended JPF to a probabilistic model checker. In [ZvB10] we have
introduced new search strategies that take into account the probabilities associ-
ated to the probabilistic choices of probabilistic systems. These strategies have
been implemented in JPF. To measure the amount of progress of a probabilistic
model checker has made, we have introduced a progress measure in [ZvB10].
JPF has been extended to keep track of this progress measure. We have shown
that the new search strategies to make progress faster than JPF’s original search
strategies in most cases and, hence, are more appropriate to verify probabilistic
systems.

Developing other search strategies, based on ideas from the field of schedul-
ing, is a direction for future research. Our current extension of JPF can only

4

track the progress of sequential code representing a probabilistic system. Being
able to also handle concurrent code is another challenge for the future.

The development of a preliminary version of our tool helped us shaping the
theory discussed in [ZvB10]. After having fully developed the theory, we re-
implemented our tool. The current version of our tool3 is better structured and
more efficient.

References

[CY95] Costas Courcoubetis and Mihalis Yannakakis. The complexity of
probabilistic verification. Journal of the ACM, 42(4):857–907, July
1995.

[KNP04] Marta Kwiatkowska, Gethin Norman, and David Parker. Proba-
bilistic symbolic model checking with PRISM: A hybrid approach.
International Journal on Software Tools for Technology Transfer,
6(2):128–142, September 2004.

[KZH+09] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger
Hermanns, and David N. Jansen. The ins and outs of the probabilis-
tic model checker MRMC. In Proceedings of the 6th International

Conference on Quantitative Evaluation of Systems, pages 167–176,
Budapest, Hungary, September 2009. IEEE.

[VHB+03] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park,
and Flavio Lerda. Model checking programs. Automated Software

Engineering, 10(2):203–232, April 2003.

[ZvB10] Xin Zhang and Franck van Breugel. A progress measure for explicit-
state probabilistic model-checkers. January 2010.

3Available at the URL www.cse.yorku.ca/~franck/research/progress.

5

