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Abstract

This paper seeks to provide a systematic account of the conceptual and

computational principles pertinent to recent approaches to natural scene

segmentation. Image segmentation has been traditionally viewed as a

problem of partitioning an image into regions with respect to content-

independent visual structures – a class of image segmentation referred to

in this paper as image-based segmentation. Also developed are different

approaches to content-specific segmentation of natural scenes with re-

spect to meaningful visual entities – the approaches collectively referred

to as semantic-based natural scene segmentation. The main interest of

the paper is concerned with this latter class of image segmentation. In

particular, its focus is drawn to the recent approaches which apply prob-

abilistic methods of visual classification as well as image segmentation

methodologies to decomposing natural scenes with respect to object

classes. This class of semantic-based image segmentation is referred to

as probabilistic approaches to natural scene segmentation.

The paper starts the account by highlighting a common set of concep-

tual underpinnings of image segmentation across natural scene segmen-

tation methodologies. In particular, Section 2 lays bare the nature and

the challenges of image-based natural image segmentation and describes

the recent shift of attention in a number of approaches to the seman-

tic aspects of the problem. The rest of the paper is concerned with

the major ideas and techniques of probabilistic approaches. Section 2.3

describes the problems as well as the major ideas and conceptual princi-



ples of probabilistic approaches. The section also outlines the two major

approaches to representing the inference problems of natural scene seg-

mentation, viz, image partition via stochastic search and scene labeling

via visual classification. Section 4 discusses the conceptual issues per-

taining to (1) how to capture semantics from visual features, (2) how to

integrate image-based and semantic-based visual cues, and (3) how to

organize relevant information into a coherent system of representation

and inference. The last section focuses on the conceptual and empirical

issues of the prevailing models in the current developments as well as

the open issues that worth attention for future research. Supplementary

materials are provided in the appendix, which summarizes some major

probabilistic approaches to natural scene segmentation.
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1 Introduction

1.1 Scope of Discussion

The goal of image segmentation is to determine the parts of an image that

admit being perceived as a meaningful whole or segments [3]. A subimage

– a collection of observed units, referred to in this paper as visual inputs,

such as pixels or groups of pixels – is interpreted as a segment if the input

can be explained in terms of a set of physical, geometric as well as semantic

properties or features. These pieces are expected to yield a meaningful decom-

position of sensory input, that represents a coherent, semantic interpretation

of the external environment. A good image segmentation can be beneficial in a

wide range of computational visual tasks, including high quality image/video

editing, object-based encoding, transmission and manipulation of multimedia

data, context-based image analysis, object recognition and others. [33, 97].

Over decades of active research, a vast literature has developed, characterized

by a proliferation of frameworks built on a diversity of theoretical, mathemat-

ical and algorithmic underpinnings and the cross-fertilization between these

ideas. Any attempt at a non-trivial overview can easily grow into a book-

length study. As a result, this paper restricts its scope to some emerging

paradigms with a focus on some previously less explored problems of image

segmentation – in particular, the issues concerning the role of semantic content

of visual input and their delineation.

The challenge of natural scene segmentation is great. A thoughtful examina-



tion of this class of problems may help to highlight what image segmentation

may entail in general. For this purpose, the term ‘natural images’ refers to

any image of a non-constrained and non-contrived scene which may consist of

objects, both man-made and otherwise, in some indoor, outdoor or combined

conditions1. It may be natural for biological observers to perceive their en-

vironments dynamically. For many reasons, however, the main focus of this

paper is segmentation of a single image. Oftentimes, human observers inter-

pret static scenes with ease, attesting to the fact that under a broad range of

circumstances, a single image does provide enough information for semantic-

based analysis and understanding. To maintain a sharp focus, this paper is

primarily concerned with natural scenes conveyed in single 2D images and does

not consider in any detail higher dimensional data such as video sequences (for

a recent review, see [154, 168, 86, 169]).

1.2 Focus of Discussion

The main focus of this paper is drawn on computational approaches which seek

decomposition of a 2D image in terms of visual components that are intuitively

meaningful to humans. In particular, these approaches are concerned with im-

age segmentation based on natural image semantics that captures the general

characteristics of a broad range of perceptual objects subsumed under the same

category. At the core of current developments of natural image segmentation is

1This notion of natural images is not unique to this paper, but is often used, though
sometimes implicitly, in the literature of semantic-based image analysis (for an example, see
[82]).
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a set of conceptual and computational issues concerning the relations between

visual semantics and scene segregation. It is a common view that representing

the semantics of natural scenes as well as the assumptions/heuristics concern-

ing the nature and structure of visual input is a problem of image modeling;

and finding a set of subimages that provides the most meaningful decomposi-

tion of a scene according to a particular model is a problem of inference.

Image data can be mapped to these categories either deterministically or prob-

abilistically. The former seeks a model of the underlying processes and struc-

tures inherent in scene/image composition to ensure certainty and to remove

ambiguity in image partition, whereas the latter consider the composition of

visual input as stochastic processes. The diversity and ambiguity in visual ap-

pearance of perceptual categories are captured as part of the stochastic causes

that are likely to have generated the observation.

The recent surge in interest in probabilistic approaches to segmenting an im-

age into object classes constitutes the main focus of this paper, which seeks

to throw light upon the semantic nature of the problem. In this paper, these

approaches are collectively referred to as probabilistic approaches to natural

image segmentation, or probabilistic approaches in short. A decade of explo-

ration has produced a body of literature of its own, and calls for a thorough

and thoughtful review of their theoretical and computational underpinnings.

Unlike the other approaches, however, there is a lack of a systematic account

of these approaches as a whole from the perspective of scene segregation and

their implications for further directions of image segmentation research.
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1.3 Organization of Discussion

The account given in this paper starts with a set of conceptual underpinnings of

image segmentation. In particular, it highlights the nature and the challenges

of natural image segmentation to the conventional frameworks, which seek to

delineate significant subimages by visually-defined, content-independent struc-

tures – these approaches are referred to in this paper as image-based segmen-

tation. It also covers the shift of attention of a number of approaches to the

semantic aspects of the problem. The focus of discussion then shifts to defin-

ing the problem of category-based segmentation with a general account of the

theoretical formulation of the problem in the probabilistic approaches.

Section 2.3 defines the problems and introduces the major ideas and conceptual

principles of probabilistic approaches. It also emphasizes the major distinc-

tions among different approaches in how natural scene segregation problems

can be represented under probabilistic frameworks.

The major focus of Section 4 is drawn to the problems of semantic modeling

in object class segmentation. It emphasizes the conceptual issues pertaining

to the problems, viz, how to capture semantics from visual features, how to

integrate image-based and semantic-based visual cues, and how to organize

relevant information into a coherent system of representation and inference.

Finally, the last section considers a number of conceptual and empirical issues

of the prevailing models in the current developments, many of which remain

open and should be addressed in future research into natural scene segregation.

The appendix provides a summary of some major probabilistic approaches to
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natural scene segmentation.

2 Image Segmentation: Conceptual Principles

Image segmentation refers to the formation of subimages that decompose a

scene. Different classes of subimage formation are found in the literature.

Some approaches seek image decomposition corresponding uniquely to seman-

tically defined categories, usually physical objects, embedded in the visual

input, whereas the others define regions that may not align with the embed-

ding of any semantic category or physical objects in the image [151]. The

latter perspective, which gives rise to image-based segmentation, is the main

focus of earlier research in image segmentation and remains a problem of vi-

tal importance that spawns much active research. The changing demands of

visual applications pose great challenges to image-based image segmentation,

motivating a shift in perspective toward semantics-based segmentation, the

problem with which this paper is concerned. Segmentation, which organizes

visual input into a coherent interpretation, relies on the concepts of coherence

and visual organization. It is these fundamental concepts that differentiate

classes of segmentation approaches. A comprehensive review of this develop-

ment is beyond the scope of the paper. Instead, a few representative perspec-

tives2 will be mentioned in order to illustrate the general persuasion of the

image-based perspective on the problem and the reasons for the shift to more

2There are a number of good reviews on various aspects of image-based segmentation,
such as [136, 21, 118, 142, 37, 38, 150, 27, 32, 52, 151]. For compactness of exposition, no
separate citations of these reviews are made in the ensuing discussion.
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semantics-based standpoints. These accounts emphasize the basic intuition

rather than the formal details.

2.1 Image-Based Segmentation

Image segmentation has conventionally been described as exhaustive parti-

tioning of visual input into subimages over spatially contiguous regions, each

of which is characterized by some measure of visual homogeneity and a sig-

nificance contrast with its surround relative to the interior variation. The

partitioning can be thought of as representing image-based visual structure

[1]. This view of segmentation has given rise to a manifold of segmentation

techniques, which are traditionally discussed in terms of the paradigmatic dis-

tinctions: edge/boundary-based, region-based and clustering-based segmen-

tation [40, 138, 62]. Edge/boundary-based segmentation techniques locate

the interface between subimages along the visual discontinuities where abrupt

changes in image features occur. In contrast, region-based segmentation seeks

spatially contiguous homogeneous subimages according to some measure of

image properties. Cluster-based techniques group visual input in some char-

acteristic feature spaces into clusters. Subimages are thus defined in terms

of two major criteria: spatial contiguity and visual similarity (or dissimilar-

ity). Cross-fertilization between paradigms has also been explored to integrate

different tools and to exploit the complementarity between region-based and

boundary-based information [38].

A number of mathematical frameworks have attracted a great deal of attention
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and have generated very active research to date. Closely related to semantic-

based segmentation in general, and the probabilistic approaches in particular,

are the well-studied paradigms that formulate image segmentation explicitly

as a problem of optimization. Underlying the optimization problem is the con-

cept of energy-minimizing segmentation. An energy function is defined over

all possible ways of segmentation, that embeds a cost measure according to

some desired properties of good segmentation [141]. The task of image seg-

mentation is defined as the search for the optimal solution that corresponds to

the minimum of the energy function. This basic idea resonates across differ-

ent paradigms, probabilistic and deterministic, throughout this paper. Energy

based models are distinguished by the type of energy function and the cor-

responding optimization technique applied to the models. In particular, the

underlying representation gives rise to the class of spatial continuous and spa-

tial discrete models [19, 31]. The following is a brief account of the key ideas

of these approaches to highlight the common working principles of different

segmentation paradigms despite their distinct standpoints.

The segmentation problem may be formulated in the domain of continuous

functions and solved by variational techniques and gradient descent dynamics

that evolve the contours in the direction of negative energy gradient accord-

ing to a set of partial differential equations (PDE’s). Two major classes of

deformable models – the parametric deformable models, such as snakes, and

the geometric deformable models based on the level set function – have been

developed to adapt an initially given contour dynamically to the image input
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until it stops at the boundary of some optimal subimages by optimizing some

energy functions [67, 29, 63, 26, 96, 27]; More generalized formulations have

been explored to capture the synergy of gradient-based boundary costs and

interior or regional costs in driving the segmentation processes. The Mumford-

Shah image energy model (sometimes referred as Mumford-Shah functional)

approximates an image as consisting of disjoint homogeneous subimages and

piecewise continuous boundaries. Many formulations of the ideas of piece-

wise smooth segmentation have been independently developed or subsequently

elaborated, such as the weak membrane/plate models, the region competition

method and many others [12, 116, 120, 171, 26, 27]. Many of these approaches

open up the possibility of introducing into variational approaches the statis-

tical properties of semantics-motivated objects in the feature spaces of color,

texture and shape; more is discussed in due course.

Discrete approaches give rise to a graph-based formulation of the problem

which seek optimal solutions corresponding to the lowest energy partition of

a graph. Those approaches seek the configuration that corresponds to the

minimum of an energy function, which is defined over an undirected weighted

graph to encode observation and segmentation criteria. Many energy functions

used in the literature can be summarized in the standard form [161, 73, 72]:

Ψ = Ψimage + Ψprior, where the image-driven component, Ψimage, is a function

derived from observed data; in particular, when viewed from the image label-

ing perspective, it measures the cost of a particular assignment given the state

or observation. The prior energy, Ψprior, encodes the segmentation criteria and
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the corresponding interpretive constraints used for segmentation. Energy func-

tions may also encode a probabilistic measure or distribution over the space of

possible configurations (or assignments) to induce a stochastic random field.

The energy surfaces in most real-life image modeling, probabilistic or other-

wise, are non-convex with potentially very complex topology. The search for

the optima of these surfaces is, in general, extremely challenging. One classical

approach is to explore the solution space for an estimate of the optima with

Markov chain dynamics [41, 42, 158, 159, 4]. The data driven Markov chain

Monte Carlo (DDMCMC) method, for instance, uses image-based visual cues,

such as edge or color distributions, to guide configuration formation by means

of revision of boundaries, splitting and merging of regions and switching of

region models [158, 159]. For other stochastic search approaches applied to

partitioning the weighted graph, see [41, 42, 4]. Min-cut/max-flow optimiza-

tion techniques constitute a widely-adopted alternative to stochastic search

approaches in partitioning a weighted graph [46, 166, 20]. A cut is a partition

of the sites (nodes) of a graph into two disjoint sets; its cost is the sum of

the cost of all edges crossing the cut. The key idea of the min-cut method

is to partition a weighted graph with a cut at the minimum cost. To gener-

ate clusters with minimum similarity between groups and maximum similarity

within each group, the normalized cut approach measures the cost of a cut in

terms of both the sum of edge weights across the cut between two regions and

the total connection between the sites in either of them with the rest of the

graph [146, 148, 147]. The application of these frameworks to semantic-based
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segmentation is discussed later.

2.2 The Semantic Gap and Scene Segregation

Image-based segmentation seeks to segregate subimages according to some

domain-independent and visually defined concepts of visual coherence. These

image-based criteria capture important local constraints, and therefore pro-

vide an otherwise ill-defined problem with some minimum structure so that

the relevant classes of coherent visual patterns can be recovered by algorithmic

means. The simplest yet still powerful of these properties includes the assump-

tion of piecewise homogeneous, smooth or continuous surfaces. More elaborate

criteria that incorporate statistical properties in complex feature spaces have

been developed yielding significant improvement in the quality of segmenta-

tion. It has also been realized that this segmentation paradigm has reached

a performance level, where many state-of-the-art approaches tend to converge

[157, 43]. Yet, object segregation remains a challenge for image-based segmen-

tation which provides no immediate solution to the problem. The discrepancy

between the results of state-of-the-art (image-based) segmentation approaches

and human perception is striking, as illustrated in Figure 1. In general, an

image is more than a combination of image-based feature patches. Rather, hu-

mans perceive meaningful scene composition and they segregate the subimages

accordingly. Oftentimes, segmentation boundaries alone provide adequate in-

formation for interpreting a scene in terms of semantic categories with which

humans usually employ to think of their environment. Despite individual
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Input images Segmentation results

Mean shift (source: [32])

Geodesic active region (source: [122])

Normalized cut (source: [32])

DDMCMC (source: [158])

Figure 1: Discrepancies between image-driven segmentation and human per-
ception: some illustrations. From top to bottom respectively : mean shift,
normalized cut, data driven MCMC and coupled geodesic active region.
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differences, manual segmentation by human observers, as illustrated by the

examples in Figure 2, segregates conceptually motivated, semantic-based ob-

jects according to their perception of the world.

Strong correlation between the semantic-based description of image contents

and the coherent properties captured by the segmentation criteria is required

for any segmentation technique that is intended to generate a partition that

is meaningful to human perception. As the semantic distinction pertinent

to visual perception is extraneous to image-based segmentation criteria, their

correlation is but a pleasant coincidence. The discrepancies between image-

based segmentation and the semantic contents of images find their causes in

the fundamental challenge of the semantic gap.

Research into content-based image analysis demonstrates that semantic con-

cepts which define the categories of our perceptual world, stand in no direct

relationship to image-based attributes [110, 167, 45, 97]. Indeed, the issues

of lack of coincidence between visual features extractable from image data

and semantic-based interpretation of a visual scene – that is the semantic

gap – has been raised since the earlier history of semantic-based image un-

derstanding and segmentation [152, 65]. In hindsight, it should come as no

surprise. Otherwise, ideas, abstraction, and experience would play no role in

visual understanding; were this true, given input alone would dictate how hu-

mans interpret their visual world, and visual understanding would stand apart

from the general faculty of human understanding. The absence of strong rela-

tions between two sides of the gap does not imply a lack of visual regularities
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Input images Manual segmentation

[A]

[B]

[C]

[D]

[E]

Figure 2: Object segregation based on human perception. Sources for [A],[C]
and [E]: [43] and for [B] and [D]: [32].
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among members of semantic categories; otherwise, semantic-based visual un-

derstanding would be impossible. Rather, these categories are characterized

by their variability in visual appearance. Moreover, more than often, their

visual appearance cannot be directly explained by the very definition of the

categories. A simple object class, such as human faces and horses, appears

enormously different across individual instances and across the full range of

viewing conditions – not to mention buildings, fruits, animals, flame/fire, rainy

days, tools and other more abstract categories. Furthermore, objects defined

in terms of the same semantic meaning do not necessarily cluster in clearly de-

lineated groups vis-à-vis other objects in the image-based feature space. The

challenge to semantic-based image analysis and understanding is very much

compounded by the complexity of scene composition due to occlusion, clutter-

ing, reflection, shading and other unfavorable conditions. The recent surge in

interest in semantic-based image analysis and understanding refocuses much

attention to the problem of capturing the semantic meaning of images, and

motivates active research to discover perceptually based correlations between

the semantic-based and image-based descriptors [110, 28, 121].

2.3 Beyond Image-Based Segmentation

As highlighted in the preceding discussion, image-based segmentation empha-

sizes the similarity of image-based features but considers no semantic distinc-

tions of perceptually coherent parts. This limitation of image-based segmen-

tation as well as image understanding has long been pointed out by many
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researchers [40, 61, 2, 155, 9]. In spite of different theoretical emphases, ob-

ject segregation is always an important inspiration for image segmentation.

Indeed, many visual tasks do require segmentation information related to se-

mantic object segregation. Different themes can be discerned in the literature

to incorporate perceptual properties that are not directly recovered by mea-

sures of visual homogeneity and spatial proximity. One of them, the proba-

bilistic approach, is the focus of the subsequent sections of paper. The rest

of this section outlines some other major approaches to perceptual/semantic

object segmentation.

Many approaches take the obvious transition to narrow the gap by incorpo-

rating object-related properties into the existing image-based segmentation

models – including but not restricted to the thresholding segmentation [151],

deformable models [35, 63, 122, 30, 123, 27, 70, 22, 31] and graph-based mod-

els [47, 48, 49, 50, 51]. Instead of some simple measure of similarity in feature

spaces, regions are clustered and visual input is classified according to the sta-

tistical properties of visual appearance of the target objects. Much research

has advanced along this direction in domain-specific image analysis – a notice-

able line of development being segmentation of medical or biological objects.

Many interactive tools have been developed to allow on-the-fly human input

that provides information about the target objects for initialization and subse-

quent modification of the segmentation. Boundary-based methods, such as the

intelligent scissors [112, 113, 115, 111], lazy snapping [95], JetStream [124], and

others, trace out curves by integrating image-based segmentation criteria and

15



on-line user-defined information to enclose a target object. Region based ap-

proaches, in different segmentation formulations, such as region-growing [114],

Markov random field [11] and graph cut [139], extract target objects according

to the region statistics recovered from a set of exemplar regions specified by

users as foreground or background.

Common to many approaches that attempt more automatic segmentation of

natural scenes based on semantic information regarding target objects is the

strategy of employing pattern recognition techniques to capture the visual dis-

tinctions between object-embedding subimages. Neural networks, Bayesian

classifiers, fuzzy models, k-nearest neighbor algorithms and other techniques

are frequently used for classifying visual input in terms of visual patterns per-

tinent to domain-specific categories; for a review of these approaches used

in medical images analysis and remote sensing, see [8] and [98] respectively.

Similar approaches are applied to natural image retrieval. Blobworld [25, 24]

extracts coherent regions according to a mixture model defined in a complex

feature space. A number of object-specific segmentation approaches has also

been developed.

3 Probabilistic Pattern Approaches to Object Class Seg-
mentation

A probabilistic model is a mathematical description of an inference problem.

As a more elaborated discussion is provided in [93], it suffices to state the cen-
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tral idea of probabilistic approaches: the problem of object class segmentation

is to infer a plausible description, A, in terms of a set of object class labels,

with respect to the probabilistic model or probability distribution3, pr(A|D),

given observations, D. The underlying model encodes the “true value4” of each

interpretation, i.e., how well each interpretation explains the observation. In

probabilistic approaches, these models defined over a set of parameters cap-

ture belief about plausible configurations, encoding prior knowledge and all

information derived from past observation.

Inference can therefore be viewed in terms of two problems: interpretation

selection and model selection. The primary interest of interpretation selec-

tion in the context of object class segmentation is an optimal partition that

incurs the least expected risk due to misclassification, according to a trained

probabilistic model. Optimal decisions depend on the selection criteria. It is

common in the literature to seek the mode of the posterior distribution, also

called maximum a posteriori (MAP), i.e.,

ÂMAP = arg max
A

pr(A|D) (1)

or the maximum posterior marginals (MPM’s), i.e., for each labeling site Si,

Âi
MPM

= arg max
Ai

pr(Ai|D), (2)

3In this paper, probability distribution refers to probability density function of contin-
uous variables and probability mass function for the discrete cases.

4This is an interpretation adopted from Hinton and Sejnowski [56].
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where Ai is the description of the subimage i.

The trained probabilistic model is given in model selection which seeks a con-

figuration of model parameters that best adapt a probability model to a set

of training data. It is common to compute the optimal configurations of hid-

den variables and model parameters either under some iterative framework

[80, 79, 164, 55] or with some stochastic search procedure [134, 157, 156, 159]

using Monte Carlo methods. The idea of object class segmentation as a prob-

lem of visual inference plays a key role in probabilistic approaches and mo-

tivates much active research on the technique of visual inference for image

labeling. Further discussion is presented in [93].

3.1 Major Approaches

To capture coherent and meaningful interpretations of the observed signal,

probabilistic models encode the prior knowledge of model semantics and em-

pirical evidence distributed across space over different levels of abstraction.

Different approaches can be distinguished in the literature as to how these

probabilistic descriptions should be specified. The inference problem of object

class segmentation may be solved by searching for the most coherent partition

that agrees with the observation. This basic principle gives rise to the strategy

of partitioning via stochastic search. Instead of an explicit definition, an image

partition may be implicitly given through predicting the object class member-

ship of individual visual inputs. In practice, object class labeling is inferred by

means of classification through analysis of local measurement. For the purpose
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of exposition, the literature may be organized according to different classifica-

tion schemes. For clarity of exposition, this paper summarizes the literature

using the presentational scheme as illustrated in Figure 3. This scheme should

be understood as only a road map for discussion of the literature.

Probabilistic
 Approaches  to 
Natural Scene 

Segregation

Labelling via 
Classification

Stochastic 
search 

Codebook
(Visual

 Vocabulary)

Random 
Field

Generative
Random 

Field

Conditional
Random 

Field

Figure 3: Organization of discussion of different probabilistic approaches to
scene segmentation in this paper. The probabilistic pattern approaches are
grouped into subclasses in terms of modeling techniques from left to right.
See text for details.

3.1.1 Image Partitioning via Stochastic Search The basic idea of

stochastic search is to look for the most coherent interpretation according to

the posterior model. This perspective adopts the classical definition of image

segmentation, which is a configuration of non-overlapping regions: {Ri}, that
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cover an image, I.

I =
i=1⋃
k

Ri, Ri ∩Rj 6= ∅, ∀i 6= j. (3)

The space of all admissible partitions is a set of all possible configurations of

regions that partition an image. The search of the configuration that best

explains the observed data may start from an initial configuration and follow

a sequence of reversible moves to explore the space under a set of operations

for configuration formation/transformation. These operations may include

merging or splitting of regions, modification of region description, boundary

evolution and others. Illustrated in Figure 4 are three different examples of

admissible image partitions.

Figure 4: The space of image partition can be conceptualized as a set of dif-
ferent configurations of non-overlapping regions that cover an image. The
configurations i, j, and k, for instance, represent three different elements in
the space of admissible partitions. Different elements in the space can be
transformed from one to the others under a set of operations of configura-
tion modification such as changing the number, combination, placement, and
description of constitutive regions.

The most sophisticated expression of the partitioning via stochastic search

strategy is found in the generative framework of image parsing, an extension
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of data-driven Markov chain Monte Carlo (DDMCMC) to visual segmentation,

grouping, and recognition tasks [158, 156, 157, 159]. An image is parsed into a

configuration of constitutive visual patterns with a graph based representation

called a “parsing graph.” The structure of the graph specifies the spatial

Figure 5: Abstract representation of a parsing graph. The parsing graph takes
the form of a three-level tree. The root represents the scene. The intermediate
nodes represent the pattern-based regions, which collectively constitute the
description of the scene. Each of these region-level nodes is connected to the
leaves corresponding to the pixels that form the region.

relationship of the patterns, and the state at each site represents a particular

pattern model drawn from a set of pattern families, generic as well as class-

specific. The simplest parsing graph takes the form of a three-level tree. As

illustrated in Figure 5, the tree consists of a root representing the scene, a

set of intermediate sites of visual patterns and the leaf sites corresponding to

image pixels. The layer of intermediate sites defines a partition of the image,
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where the size of the layer is not known a priori and must be estimated.

A parsing tree, W , describes the scene in terms of a set of visual patterns. The

objective of the segmentation process is to select the parsing tree such that

Ŵ = arg max
W

pr(W|I) = arg max
W

pr(I|W)pr(W), (4)

where I denotes observation. Let K` be the number of visual patterns from

family `, and {W`
i } the set of visual patterns of the family. The prior model

of the underlying interpretation is given by

pr(W) =

ρ∏
`

pr(K`)
K`∏
i

pr(W`
i ). (5)

Let V`
i be the region corresponding to the visual pattern W`

i . Visual patterns

in different regions are modeled as independent stochastic processes specified

by the visual pattern class `. The likelihood of image data is given by

pr(I|W) =

ρ∏
`

K`∏
j

pr(V`
j |W`

j ). (6)

The exact form of the prior and the image likelihood depends on the choice of

visual patterns5

The framework of reversible jump Markov chain Monte Carlo is adopted for

searching for the image partition that is most compatible to observation by

5Non-class specific pattern families include homogeneous patterns, texture patterns,
shading patterns, clutter patterns, and curve patterns while the class-specific pattern fami-
lies consist of frontal face patterns and text fragments [157, 159].
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reconfiguring the parsing graph. The reconfiguration dynamics is governed by

a set of graph transformation operators, which either change the structure of

the group or node attributes, including a birth or a death of a visual pattern,

splitting and merging of a region, pattern model switching, and boundary

evolution. The ergodic and reversible Markov chain in the space of parsing

graphs ensures that fair samples are generated from the invariant probability

corresponding to the posterior model pr(W|I). Object class specific detectors

are deployed to approximate the probability of graph components conditional

on the observation and propose a move in the Markov chain dynamics, as il-

lustrated in Figure 6.

This is one of the most explicit formulations that integrates both generative

and discriminative methods to solve the problems of object class segmenta-

tion. In this framework, generative models, by virtue of their full account of

the data generation, ensure the consistency of interpretation while discrimina-

tive methods provide a fast but not necessarily consistent solution to restrict

an otherwise very extensive search in the most probable regions.

Image parsing is a theoretically well grounded framework for integrating multi-

ple visual patterns visible from different levels of analysis. In practice, however,

only visual patterns with comparatively little variability such as frontal face

and text fragments are tested in the reported evaluation, despite the appli-

cation of discriminative methods to drive the search dynamics. Part of the

reasons may lie in the complexity of the generative model and the search pro-

cedure that would be required for unconstrained scenes. This partitioning
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Source: [157]

Figure 6: Abstract representation of the Markov chain dynamics used in image
parsing. Data driven processes based on pattern classification are used to
propose a new move in the space of parsing graphs in search for the optimal
configuration that explains the data.

via search principle has also been adopted with a more discriminative flavor

to incorporate both image-based and gestalt cues in the decision of partition

reconfiguration with moves proposed according to a set of classifier functions

[134].

3.1.2 Scene Labeling via Classification A majority of the approaches

fall into this category. Instead of directly manipulating the global partitions,

these approaches only implicitly define this global solution through predicting

the membership of local regions. A widely-adopted choice of representation is

the modeling language of conditional random fields which can be interpreted
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as networks of classifiers interactively dependent on each other [66]. Other

non-graph-based formulations are also possible to implement this strategy.

For example, the stochastic properties of the underlying processes may be

captured by the empirical distributions observed from the training data or by

integrating similarity measures defined in terms of the responses of various

classifiers [75, 134].

3.1.2.1 Labeling with visual codebooks The principal idea is to delineate se-

mantic objects by direct recovery of their occurrence in an image from local

information. Many approaches define semantic categories in terms of a dictio-

nary or codebook of visual templates. Various computational heuristics have

been devised to build a dictionary or codebook by sampling from a training

set of interpreted images. The conditional probability of membership given a

visual pattern can then be modeled with respect to a similarity metric defined

over the dictionary and the membership map associated with each constituent

pattern.

The jigsaw approach [15, 14, 17] uses a set of overlapping fragments of an

object class with corresponding ‘figure-ground’ maps to detect class instances

in data and to label image pixels. Overcompleteness in representation is the

key to this labeling scheme, as illustrated in Figure 7. Given a huge codebook,

an object instance in an image is likely to be covered completely by fragments

of varying sizes, which are highly overlapped and well distributed across an

object instance. Each pixel of the selected fragments can be labeled in terms

of their membership in figure or ground with a reliability measure defined by
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Source: [15]

Figure 7: Abstract representation of the jigsaw approaches. A library of pro-
totypical intensity patches sampled from a training set is matched to visual
input for object detection. Segmentation labels can be assigned according to
the figure ground masks associated to the intensity patches recovered from the
data.

the hit rate of fragments.

To capture the common characteristics within the class, the fragment library

(or dictionary) of intensity patches should be strongly correlated with object-

embedding subimages, and low in similarity measures with other subimages,

which contains no class instance. According to the Neyman-Pearson criteria,

or mutual information criteria, a subset of k most informative fragments is

selected from a group of varying sized image patches randomly sampled from

a training set that consists of both class and non-class images.

Implicit shape models (ISM) [89, 87, 92, 90, 91, 88] combines the codebook
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approach with spatial configuration modeling. The object class-specific model

is generated from a training set with segmentation information, based on a

discriminative set of prototypical patterns of class instances. Visually similar

features are grouped according to a similarity measure and the centers of the

resulting clusters are included in the codebook. In particular, the local de-

scriptions are grouped using agglomerative clustering. The similarity between

two patches, α and β, is measured by Normalized Greyscale Correlation:

NGC(α, β) =

∑
αi∈α

βi∈β

(αi − ᾱi)(βi − β̄i)

√∑
i

(αi − ᾱi)2
∑
i

(βi − β̄i)2
, (7)

and the similarity measure between two clusters ci and cj, two clusters of local

descriptions, is defined as the follows:

S(ci, cj) =

∑̂
c∈ci
c̃∈cj

NGC(ĉ, c̃)

|ci||cj|
. (8)

Clusters are recursively merged whenever the similarity between their consti-

tutive members is above a threshold t.

Corresponding to each of these codebook templates is a learned probability

of object locations and figure-ground labeling masks. Thus, the codebook

provides an object-centered representation of figure-ground assignment. The

probability of spatial configurations is approximated by the empirical distri-

bution by searching over the training set for all of the similar occurrences of
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the codebook entries, and the positions of the activated entries are stored with

respect to an object center. This center-adjusted location can be sampled by

a kernel density estimator to obtain a non-parametric probability density es-

timation of the spatial distribution of codebook entries. A segmentation mask

is generated for every occurrence position of each codebook entry.

Object class segmentation is framed as a problem of figure-ground labeling

according to a detection-labeling strategy, as illustrated in Figure 8. In the

Source: [92]

Figure 8: Segmentation based on an implicit shape model is characterized by
a detection-labeling strategy. Image patches are sampled from an image and
compared to the codebook. Matching patches then cast probabilistic votes,
which lead to object hypotheses. Segmentation labels can be determined based
on the figure-ground masks of those recovered patches that are consistent to
the object hypothesis.

object detection phase, intensity patches are sampled from the test image and

measured in terms of its similarity with the codebook templates. The activated

templates then cast vote for the possible positions of an object occurrence. The
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occurrence of object instances, defined by the object class-object center pair,

(c, x), can be determined at the local maxima in the voting space using mean-

shift model estimation. This voting strategy can be interpreted as a Parzen

window probability density estimation for the correct object location.

Since a binary mask of figure-ground label is associated with each codebook

entry at a given occurrence location, x, the figure-ground label can be assigned

to each pixel P in the activated regions according to the likelihood ratio of the

figure probability to the ground probability:

L =
pr(p = figure|c, x)

pr(p = ground|c, x)
. (9)

Both the figure and ground probability can be estimated from the segmen-

tation masks associated to the relevant set of codebook entries. The figure

probability also provide a measure of confidence in the segmentation results.

The segmentation results can be used in a further hypothesis selection stage

to reduce the false positives that may arise in the voting process. The best

combination of hypothesis, that minimizes the total description length for im-

age, model and error, is selected.

ISM captures the spatial structure of visual patterns of an object class, provid-

ing a flexible representation for class-specified object detection and segmenta-

tion. Its object-centered representation allows delineating individual objects

even under the effects of occlusion in a cluttering scene. The requirement of

the approach for a huge codebook, however, restricts its applicability to com-
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plex object classes or complex scenes. The segmentation is not accurate for

object parts, such as the roof of a car or the head of a cow, which may con-

tain nontrivial inter-class variation or which may be characterized by complex

configurations of fine structures.

The topic (or aspect) recovery approaches6 also use a codebook of discrimina-

tive visual patterns to infer the latent topics of each subimage extracted by

image-based techniques [140, 162, 23]. The key idea is to explain observation

in a high dimensional and usually sparse feature space by a set of latent top-

ics populated in a lower dimensional probabilistic semantic space. The joint

distribution of observation is factorized into a product of local condition dis-

tributions of visual patterns given the latent topics and the distribution of the

topics. In the context of object class segmentation, each subimage, usually

an over-segmented superpixel, is modeled as a mixture of the latent topics.

These latent topics are inferred from a set of discriminative visual patterns

extracted by image-based techniques [140, 162, 53]. The recovered topics are

then mapped to object class membership.

3.1.2.2 Labeling with graph-based representations Graph-based representa-

tions are common frameworks among different approaches to object class seg-

mentation. The cornerstone of these approaches is the graphical structure of

representation and inference. In general, the probability distribution of scene

6Topic recovery approaches, also known as latent class approaches, refer to those infer-
ence approaches that extend the probabilistic latent Semantic analysis (PLSA) [58, 59] or
latent Dirichlet allocation (LDA) [13] to semantic-based visual analysis. LDA can be viewed
as an extension of PLSA with an additional Dirichlet prior for the probability distribution
of the latent topics.
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labeling in terms of visual categories is defined over a graphical structure of

representation to encode both observation and a priori visual constraints in

terms of spatial configurations of filter/classifier responses. The main purpose

of graphical representations is to capture by a probability distribution the spa-

tial structures of image features and computational decisions among different

sites. These structures are captured by the decomposition of the joint distri-

bution in terms of the neighborhood structure of the underlying graph, such

that, each site depends on only a subset of sites in a local neighborhood. That

is, given the state of its neighborhood, the site is statistically independent of

the rest of the graph.

The probabilistic approaches in the literature of object class segmentation are

increasingly characterized by a common language developed in stochastic field

theory. They are characterized by modeling a random field defined over an

undirected graph, where the sites (or nodes) represents random variables de-

fined over a space of states. These models encode the statistical regularities

in the spatial configuration of local measurement, object class membership

assignment as well as intermediate explanatory factors. From the modeling

point of view, random fields can be viewed as normalized energy-based mod-

els. The most well-known class is the Gibbs random field, where the energy,

Ψ =
∑

ΨC , defined for each possible configuration is a linear combination

of local energies,ΨC , each encoding important contextual constraints over the

neighboring sites in the clique, C. Many issues in relation to the deployment

of random fields in segmentation modeling are the subject of discussion in Sec-
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tion 4. For a more detailed account of probabilistic graphical models in object

class segmentation, see [93]. It is important to highlight a key distinction in

the random field approaches to natural scene labeling: the generative and the

conditional random fields.

The application of random fields to image modeling is traditionally associated

with the probabilistic generative framework. In object class segmentation,

probabilistic generative models encode the input patterns, output configura-

tions, and in many cases, intervening hidden pattern layers of a pattern system

by a joint probability distribution [80, 79, 164, 60]. In the absence of any inter-

vening conceptual layers, an ensemble of visual patterns is defined in terms of

both an observation model, or likelihood distribution, pr(D|A), of observation

as well as the prior probability distribution, pr(A), of output configurations.

The observation model predicts observed states in terms of their generative

processes. According to Bayes’ law, the posterior model is given by

pr(A|D) =
pr(D|A)pr(A)

pr(D)
, (10)

that describes how likely a particular configuration given observation.

Consider as an example the Obj-cut segmentation model [78, 81, 80, 79], a

probabilistic generative framework for object class-based foreground extrac-

tion. It seeks a configuration of labels drawn from a binary image label set

L = {ground, figure}, that is most likely under a given probability distribu-

tion, pr(M|D), of configuration given image data. The posterior distribution
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of the configuration is given by an object-specific Markov random field (MRF)

characterized by an energy function, Ψ, that specifies both image-based and

semantic-based constraints over local configurations, as illustrated in Figure 9.

A unitary energy component captures the RGB distributions for foreground

and background. A pairwise component give preference to same labeling for

sites with pixel of similar color. A contrast-sensitive component encourages

boundaries of regions to be consistent with image edges. An object specific

component assigns low energy to object label for pixels that fall inside the ob-

ject, given the model parameters of the object class. Given a set of s samples

of model parameters {Θi}s
i=1, learned from the training set, a sample-based

solution is given by minimizing the following objective function:

M̂ = arg min
{M}

s∑
i=1

Ψ(M, Θi)pr(Θi|Xo,MT). (11)

M̂ can be optimized using MINCUT energy minimization procedure. The ob-

jective function given in Eq. (11) is a mixture of experts. Each of these experts

contributes its individual opinion according to a particular hypothetical model

(or view) of the object class to the combined decision with a weight propor-

tional to the probability of its occurrence defined by the sample parameter

set, Θi, given the image data and the true configuration. The performance

of a ’panel’ of experts is found superior to the assignment based on the MAP

estimate of the model [80, 79]. Due to the lack of knowledge about the true

configuration, this term is approximated by the probability of the parameter
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Modified from [80]

Figure 9: Abstract representation of the Obj-cut segmentation model. Obj-
cut models figure-ground segmentation by a random field based on four energy
components, which encodes color compatibility of a pixel with its label, ac-
counts for the pixel location with respect to the recovered object boundaries,
encourages similar labels assigned in local neighborhoods, and ensures figure-
ground boundary assigned in the areas of high image contrast. Used for object
detection to improve the boundary alignment of segmentation is a layered pic-
torial structures model, which encodes a shape-based part model of the target
object class.

set given image features according to the object class model.

Object class information is provided by a layered pictorial structure (LPS), a

MRF with each site corresponding to a 2D pattern that represents a part of
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Constellation Object instance generation

Figure 10: Object representation using LSP in Obj Cut

the object class. The random field specifies a generative model for possible

shape, appearance and spatial layout of a object class in terms of its rigidly

moving components [81]. A part label is defined for a set of pixels that de-

fine the part, and the locations, orientations, scales and layer numbers of each

pattern in a constellation of parts characterize an object instance.

An object instance is represented as a configuration of extracted parts arranged

in layers at relative depths to allow for possible deformation, articulation and

self-occlusion, as illustrated in Figure 10. The random field constrains the

structure of selected part labels to a set of valid configurations. The LPS is

characterized by pairwise constraints between sites according to a Potts model,

such that all valid configurations, being considered to be equally likely, are as-

signed an energy level which is lower than the level associated with invalid

configurations. The LPS model is matched to the image to obtain the sam-

ples {Θi}, from the distribution of the model parameters given image features,

and the posterior of Θ given image features is approximated using loopy belief

propagation (LBP). A object class segmentation is given by the assignment
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selected according to Eq. (11).

Part parameters, Θ, including number of parts, part masks, location, orienta-

tion, scale and appearance of object parts, are learned from a set of training

videos, each of which contains an exemplar object instance of the object class

in motion [78]. An initial estimation obtained from a set of fragments ex-

tracted by clustering rigidly moving points is iteratively refined by optimizing

one parameter at a time while keeping the others unchanged until no further

reduction of model energy is possible.

The recent proliferation of conditional random fields in object class segmenta-

tion highlights the paradigmatic shift towards a more direct (discriminative)

approach to the problem, building interpretations around an explicit defini-

tion of the conditional probabilistic model, pr(A|D), instead of a generative

model as a whole. Conditional random fields can be interpreted as a network

of pattern predictors communicating with each other to exchange information

in labeling decision [66]. Many object class specific structures can be captured

through a broad range of experts, such as neural and linear classifiers, textons,

boundary detectors, shape descriptors, spatial maps, appearance fragments, to

name just a few; for examples, see [54, 132, 55, 66, 94, 149, 165, 60, 135].

Instead of briefly mentioning each of these approaches, the following discussion

focuses on the scene segmentation framework of the Mixture of Conditional

Random Field (MoCRF) [55]. The integration of image-based and semantic-

based visual cues is achieved in two steps. First, an image is over-segmented

into superpixels7, each of which is a homogeneous, spatially contiguous region.
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A image-based algorithm, such as the normalized cut, can be adapted for par-

titioning an image into regions of consistent size, which is kept small enough

to assume the boundaries of the segments to be consistent with those of the

object classes.

The second step is to assign class labels to these superpixels. The image is

A B

Source: [55]

Figure 11: The Mixture of Conditional Random Fields. A : A set of context-
specific models are applied to the superpixel descriptors for scene segmenta-
tion. A gating function is used to modulate the relevance of each context to
a given image. B : An abstract representation of the model which encodes
the rules of segmentation which account for (1) the local information discov-
ered from superpixel descriptors and specific label compatibility; (2) pairwise
interactions between labels of neighboring sites, modulated by the boundary
probability; and (3) global bias provided by the context-specific average label
distribution.

modeled by a mixture of context-dependent conditional random fields (CRF’s)

:

pr(A|D) =
∑
c∈C

pr
M

(A|D, c)pr
G
(c|D) (12)
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where each pr
M

(·|·, c) is a CRF for a context c. The gating function, pr
G
,

generates a probability distribution of scene context, specified by a classifier

based on the aggregate statistics of the image date D. Each context-dependent

CRF is defined with respect to a graph, G, where each label site corresponds

to a superpixel and only those of neighboring superpixels are connected.

Given a given context, a CRF encodes the semantic-based constraints of the

label field. In particular, three different kinds of constraints are used in [54]. A

classifier is used to measure the probability of an assignment for a single site,

given some local features of the underlying superpixel, such as color, texture,

and edge information. The interaction between neighboring sites are captured

by a pairwise function based on the compatibility of the site labels and a

measure of boundary presence between the underlying superpixels. A measure

of similarity is incorporated to constrain the overall image label distribution

to confirm the relative proportion of the various labels in a typical scene with

the given context.

Given the model, an assignment is predicted for a new image according to

the Maximum Posterior Marginal (MPM) criterion:

Âi = arg max
Ai

∑
c∈C

pr
M

(A|D, c)pr
G
(c|D), (13)

where the marginal label distributions of each superpixel, pr
M

, are inferred by

loopy belief propagation in every context-dependent CRF’s.

7Superpixelization is first proposed in [134] as a preprocessing step for learning good
segmentation from human segmented data.
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Apart from the random field approaches, there are other graph-based frame-

works for object class segmentation. The rest of this section provides a brief

summary of these formulations of the problem, starting with the directed

graphical models. In contrast to the undirected graphical representation of

random fields, directed graphical models associated a probability distribu-

tion with a directed acyclic graph on a set of random variables, where the

joint distribution is given by the product, over all the sites of the graph, of

the conditional probability one for each variable conditioned on the variables

corresponding to its parents [39, 10]. The common core of topics recovery

approaches, mentioned in the preceding discussion, rests on their representa-

tion with directed graphical models of the generative processes of observation.

Another deployment of a direct graphical model is the belief network which

encodes the prior model of scene descriptions across scales of granularity [34].

The description associated with a node in the belief tree is dependent only on

the coarser scale description at its parent node given those at all coarser scale

nodes.

Graph-based representation plays important roles across different probabilistic

pattern approaches to object class segmentation. As mentioned, the stochastic

search approaches [158, 134, 156, 157, 159], for instance, seek the most proba-

ble segmentation by reconfiguring the underlying graphical models. Similarly,

a graph is deployed to represent the conceptual hierarchy of scene decompo-

sition in [103], where an outdoor scene is recursively decomposed into compo-

nents (each of which corresponds to a node of the graph) with respect to three
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types of relations: object composition (is-part-of), object typology (is-kind-

of) and spatial relation. A set of rules are extracted from the graph to guide

classification.

An object class may also be represented by a tree-based canonical model [153].

Images are represented by trees of subimages, where subimages at the ances-

tor level correspond to more salient regions than those at the descendant ones.

According to the assumption of their frequent occurrence, the object class-

specific subtree is extracted from a set of training images under the operations

of tree-matching and tree-union. Detection and segmentation of the target

object class are achieved by matching the tree of subimage extracted from a

test image to the canonical model.

4 Issues of Modeling in Object Class Segmentation

This section provides a brief summary of major strategies proposed in the

literature of the probabilistic approaches to address the major issues of mod-

eling in object class segmentation: (1) the measurement problem: how to

capture semantics from visual features, (2) the integration problem: how to

integrate image-based and semantic-based visual cues, and (3) the organiza-

tional problem: how to organize relevant information into a coherent system

of representation and inference.
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4.1 Measurement Problems

The first problem is concerned with mapping measurements in some feature

space to local semantic patterns. The main issues are related to the grounding

of semantic representation of image content in visual properties extractable

from measurement. Image models based on local intensity patches provide

an intuitively straightforward and computationally simple mapping to parti-

tion an image in terms of object class membership. This strategy, adopted by

many approaches [15, 89, 17, 14, 87, 92, 90, 16, 91, 88, 94, 149] to classify

membership of visual inputs, can be effective for certain classes of problems.

Among others, two major conditions favor this class of modeling vocabular-

ies. First, the object class subimages can be characterized by a limited set

of archetypal intensity patterns, thus not subject to considerable variability

due to scene structures, viewing conditions or differences among member in-

stances. Second, the local appearance of different object classes do not share

many common features, such that subimages corresponding to different object

classes can be easily set apart by distinct distributions over the pattern space.

However, these conditions do not hold for natural scenes in general.

A shift away from local appearance fragments to other feature spaces is evident

in the literature. The choice of feature space includes but is not restricted to

object boundary fragments [134, 107, 80], local intensity/brightness contexts

[71, 16, 94, 149, 153, 165, 60, 135], shapes/contours [132, 133, 153, 159, 172],

structures [89, 87, 92, 80, 16, 79, 88], colors [103, 34, 54, 164, 55, 94, 18, 23,

135, 163], textures [103, 34, 134, 54, 80, 71, 132, 164, 55, 79, 18, 23, 135, 163]
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and edges [54, 132, 157, 164, 55, 94, 149], In spite of the on-going debate about

which features are most meaningful for object-categorization and recognition,

no privileged feature classes can guarantee the best performance across all ob-

ject classes under all scene conditions.

Indeed this important and yet difficult problem has been a subject of dis-

cussion since the early years of pictorial pattern recognition [21]. In general,

texture and color [107] have been found to be most effective, and have been

most widely adopted for predicting outdoor scenes dominated by objects in

highly variable forms, such as vegetation, buildings, dirt tracks, and the like.

On the other hand, geometrical features such as shapes, structures and constel-

lations of parts are generally more reliable cues for objects that are physically

generated from some types of blueprints or prototypes such as text, biological

forms or artificial objects [92]. These alternatives are to some extent related

to the classical choice in image-based segmentation between those employing

region-related and those emphasizing edge-related information. In any case,

object detection usually involves a complex interpretation of visual stimuli

over a context residing in multiple feature spaces. It is common to deploy a

combination of expert models, each specialized for a particular set of classifi-

cation/detection tasks, to incorporate their contributions and to account for

their relative merits within an integrated framework of interpretation.

The general strategy of capturing category-specific semantics is to model the

conditional probability of semantics-relevant visual patterns given feature mea-

surement. Conditional probability distributions can, in general, be repre-
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sented non-parametrically by histograms, which are applied to modeling edges

[76, 74, 157, 55, 140, 23], color [75, 55, 135, 23, 163], or texture [75, 134, 80,

157, 79, 23, 163]. The χ2 distance between two histograms may be interpreted

as a probabilistic measure of affinity in local structures between subimages

[134, 107]. Similarly, the distances between a subimage histogram and a set

of exemplar histograms can be used to capture pattern familiarity [132]. It is

also common to reinterpret the confidence measure of a linear combination of

classifiers, such as boosting, as the probability distribution of pattern ensem-

bles [157, 149].

Alternatively, the conditional likelihood can be represented by parametrized

models. Among the most well-known ones are Gaussian models, (such as for

edges [164] and for intensity patterns [157]), and Gaussian mixture models.

The latter provide a more versatile way to capture the complexity of the ob-

ject class-specific pattern ensembles and have been applied to modeling object

class patterns in color spaces [164, 149] or texture spaces [164].

Object class-specific visual patterns are characterized by intricate structures of

both long-range and short-range dependencies between the responses of visual

channels across space. Local descriptions designed to capture statistical regu-

larity over a short range play an important role in object class segmentation.

It is not only because of the complexity associated with modeling long range

interaction, but also due to the intrinsic character of natural images. Natural

scenes are complex, cluttered with objects in various ways. Occlusion gives rise

to partial views that may consist of a set of disconnected visual patterns corre-
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sponding to the same object. In the absence of any a priori knowledge about

an object present in an image, visual patterns that characterize the local view

of an object class provide the most reliable information for predicting object

embedding in the scene. This helps to explain the preference for features that

bear no intrinsic relationship to global spatial forms, including color, bright-

ness, local gradients and textures in object categorization [75, 107, 129].

Geometric forms of object classes can be characterized by local descriptors

such as contour fragments, orientation energies, local spatial structures or

edge groups [99, 107, 80, 132, 133, 79, 159]. For instance, a set of prototypical

curves is used in Obj-cut to represent the outline of the parts of an object

[81, 78, 80, 79]. Familiar spatial patterns may be modeled by a mixture of

Gaussians with a library of prototypical shape pieces, known as ‘shapeme’

[132, 133, 131]. The global descriptors are eschewed but not absent in natural

scene representation [132, 157, 172]. Probabilistic descriptions encoding vari-

ability of spatial forms may be helpful for alleviating some degrading effect of

occlusion and cluttering. In general, global descriptors of object classes have

been found to be ineffective for tasks of semantic-based image interpretation

of natural scenes, marred by the degrading effects of occlusion.

There are many approaches [103, 15, 89, 17, 92, 88, 149] that rely solely on

the discriminating power of classifiers to provide an object class labeling for a

scene. These approaches, on one hand, highlight the predictive power of object

class semantic models in object class segmentation, but on the other, turn the

problem of segmentation into a by-product of object class-specific subimage
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detection and recognition. Yet, it is coming to light that in the absence of low-

level image analysis, the performance of object class models declines in effec-

tiveness, accuracy, and reliability as the object classes becomes more complex

in form and more variable in appearance [94]. Deployment of a priori knowl-

edge of visual semantics is to help removing ambiguities concerning meaningful

structure recovery, which cannot be accomplished satisfactorily based solely

on image data. These ambiguities are partly due to the highly complex rela-

tions between the visual appearance of object class-specific subimages and the

semantic definition of the concept. On the other hand, semantic-based mod-

els are usually strong in coarse representation that leaves out many details

unattended [94].

4.2 Integration Problems

The integration problem arises, which motivates many frameworks to exploit

image-based patterns for furnishing a mapping from the semantics of object

classes to their pixel level image embedding. An obvious and simple option is

to apply the object class model directly to the homogeneous regions obtained

from image-based processing [109, 69, 68, 77, 64, 14, 71, 132, 55, 140, 23, 135].

Image-based processes play two roles in forging a representation. First, over-

segmentation according to image-based criteria yields ‘building pieces’, usually

referred to as superpixels, each of which is the basic unit for object class

membership assignment. A probabilistic model can be defined over some

pre-defined partition generated by an existing technique such as graph-cuts
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[14, 55, 140, 135, 23], constrained Delaunay triangulation (CDT) [132] or the

watershed algorithm [71]. Second, these regions, homogeneous according to

some image-based criteria, become the perceptual units to collect statistical

measures for object class membership prediction. In the stochastic search

framework, superpixel grouping can serve to propose plausible image parti-

tions [134].

Many classification-based models are characterized by conditional random

fields over graphs of superpixels. A set of classifiers (multilayer perceptrons)

may be deployed to measure the probability of an assignment for a single site,

given some local features of the underlying superpixel, such as color, texture,

and edge information [55]. The interaction between neighboring sites are cap-

tured by a pairwise energy function based on the compatibility of the site labels

and a measure of boundary presence between the underlying superpixels. To

address the problem of label consistency, a cross-scale framework [14] may be

used to represent the pattern-subpattern relations with a tree of superpixels,

built by adaptively grouping small collections of pixels into larger ones accord-

ing to their similarity and saliency [143, 144, 145]. A different probabilistic

formulation of this strategy based on a library of binary patches of shape parts

can also be found in [16].

By involving image-based segmentation processes in the partition decision,

these superpixel-based approaches yield better segmentation. In a sense, the

image model is split into image-based and semantic-based representations.

Other than region labeling and merging through common labels, the exist-
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ing algorithms provide little or no updating mechanisms to revise the initial

decision in light of object class interpretation. The notable exception is the

integration of codebook-based object class segmentation and the deformable

model in an iterative framework [71]. An initial segmentation given by some

image-based technique is allowed to be deformed in a sequence of coupling

steps of region labeling and region morphing. This approach may be viewed

as the deterministic counterpart of stochastic searching approaches.

In the absence of any channel for semantic-based influence on segmentation,

the assumption of over-segmentation that all the object boundaries are pre-

served in the segment boundaries becomes critical and the performance is very

sensitive to the quality of the image-based steps. These superpixel-based ap-

proaches restrict the contributions of semantic-based interpretation to provid-

ing (1) an interpretation to the pre-segmented regions, and (2) semantic-based

control over region growing. This can be viewed as an extension of image-based

segmentation by introducing object class semantics into its control mechanism

that governs region refinement.

Alternative approaches have been taken to encode the statistical properties of

the visual scenes or object classes in terms of both image-based and semantic-

based visual patterns [54, 80, 79, 157, 18]. A key issue of modeling these pat-

tern ensembles is how to evaluate evidence supplied by different pattern mod-

els, both image-based and semantic-based. The Markov field aspect model,

for instance, imposes spatial coherence constraints by a random field model on

latent topic induction on overlapping image patches [162]. Obj-cut seeks a
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segmentation framework that is able to encourage the segmentation to follow

the image-based structures, such as edges, but at the same time, to resemble

an object [80, 79]. The image processes are encoded with a random field which

consists of an object class specific labeling model coupled with a part-detection

model to predict figure/ground assignment. The image model is characterized

by an energy function that specifies both image-based and semantic-based con-

straints over local configurations, as discussed in the preceding section. This

framework illustrates a common strategy to integrate multiple visual models

using a linear combination of energies, each of which encodes a particular class

of expected or familiar visual patterns.

4.3 Organizational Problems

It remains a challenge as to how visual patterns should be organized into a per-

ceptually coherent representation that adequately captures the formation of

object-embedding subimages. Perpetually meaningful patterns such as junc-

tion patterns, contour patterns and curve patterns are helpful for capturing

non-local characteristics of object class specific subimages [134, 133]. Image

parsing applies the partition strategy to decompose an image into regions and

curve structures, such as free curves, and curve groups with (nearly) parallel

or tree structures [159]. In a more discriminative fashion, an image partition

is generated by grouping superpixels into a good segmentation [134]. Curvi-

linear continuity of a hypothesized segmentation is defined in terms of change

in angles between contour edges at the junction of every pair of adjacent su-
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perpixel junctions on the boundary of the segment. In an image labeling

framework, visual cues are integrated through a random field characterized

by an energy model, which incorporates contextual constraints of grouping

regions with strong contour continuity [132].

Hierarchical representations constitute a common framework for recovering vi-

sual structures through varying ranges of observation and analysis [34, 14, 54,

135]. Some hierarchical structures can be conveniently captured in a multi-

scale feature space on the level of object class based classifiers. For instance,

regions can be clustered and merged according to an energy representation

that matches measurement with an object class-specific template in a wavelet

transform domain [77, 64]. Object class-specific descriptions can be expressed

in terms of a set of filters applied to different feature spaces in a range of scales

by modulating the filter responses with Gaussian kernels of varying scale pa-

rameters [75].

Hierarchical architectures are also common, that consist of representations

and reasoning in different granularity levels, usually referred to as scales of

analysis. Contextual information is captured from different spatial regions,

on which the saliency of visual cues that characterize a semantic-based class

critically depends. A region that is too small provides insufficient image data,

while a region that is too large may contain a mixture of objects and their

background.

The multiscale conditional random field (mCRF) method [54] deploys a local

classifier to predict an object class-specific label assignment given a set of fea-
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tures, measured within an image patch around a pixel. This label field then

moves through a hierarchy of models which encode the geometrical relations

and patterns of the field over an expanding scope of information integration

and analysis. A hierarchical conditional random field is defined in [135] on a

forest of multiscale image partitions generated by a graph-based method [33]

with varying amount of image smoothing and constraints on the minimum size

of regions. The topology of the forest encodes the spatial relations between

these segmented regions or superpixels, where a (non-root) node is connected

to a single parent with the maximal overlap in the number of pixels between

parent and child regions. Other similar approaches including contextual de-

pendent conditional random fields [55] and tree-based fragment segmentation

[14] are mentioned previously.

In a subsequent extension of the implicit shape model [92, 90], a codebook of

scale varying patches is compiled to capture the appearance variability of ob-

ject instance over scale. This latter approach represents an attempt to address

the problem of scale-invariant object categorization under the probabilistic

framework. In general, scale-dependent signatures of object classes have not

been taken into account in an explicit and adequate way. Many probabilistic

models implicitly assume either a fixed scale for object class modeling or that

class instances can be represented adequately by some scale-independent pat-

terns for some given choices of semantic categories. With this aspect of pattern

representation largely overlooked, these approaches also forgo the advantages

that an invariant representation may bring.
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Parsimonious representations introduce unobservable constructs to interpret

observation. In object class segmentation, hidden layers of visual patterns

may act as representational constructs for encoding a priori knowledge such

as familiar object class-specific configurations [80, 79], expected structures of

occlusion processes [165, 66, 60], geometric/perceptual patterns [159], or scene

descriptions [103]. These interpretive structures, though not directly observ-

able, are essential for the detection of object class embeddings in image data.

Often, many of these hidden structures capture the underlying invariance of

appearance differences due to viewing conditions [80, 164], seasonal/time of

day variations [103], intraclass deformation [157] and other effects. Hidden

variables also play a central role in disentangling the longer range dependence

between observed states, and may be interpreted as intermediate results on

the way to the best interpretation [44, 170, 83, 51].

Representations may be organized with layered structures of visual and ab-

stract patterns [80, 164, 79, 159, 165, 66, 60]. The object-specific random field

in Obj-cut captures the spatial form of an object class in terms of a composition

of 2D patterns, termed parts, organized in layered pictorial structures [80, 79].

Similarly, the located hidden random field assigns object class membership

via part labeling [66]. The model energy encodes the part appearance and the

local dependence between parts via a set of part classifiers. Layout consistent

random field models extend this idea with a set of asymmetric pairwise energy

components to encourage local and non-local compatibility between part labels

in terms of layout consistency under possible occlusion conditions [165, 60].
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An important class of hidden variables captures the image embedding of object

class specific patterns in terms of the spatial transformation of the canonical

representation of visual appearance. For instance, to encode the putative poses

of the object parts, Obj-cut explains the visual patterns of the object class

specific pictorial structures in terms of the location, orientation, scale and oc-

clusion of these parts. The configurational constraints of a valid composition

of an object instance is encoded by the model energy in terms of the legal

ranges allowed for these parameters.

In the located hidden random field model, part-specific patterns are tied to an

object-based frame through hidden location variables to encode the plausible

spatial configuration [66]. Translation and left/right flips of object instances

relative to the canonical representations are encoded to explain the part ap-

pearance in layout consistent random field models [165, 60]. In addition to the

object-based transformations with respect to translation and scale, LOCUS

[164] introduces a hidden deformation field to account for the local variations

of image instances from the canonical patterns. The field consists of (1) a set

of discrete shifts defined over a set of non-overlapping patches of the image and

(2) a prior model that encourages spatial consistency in the field by penalizing

the squared difference between changes across neighboring patches. Similarly,

image parsing models object class specific patterns with B-spline-based bound-

ary representations varying under the operators of affine transformation and

elastic deformation [157].

The hierarchical structure of representations based on prototypical structures
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allows the intra-class invariance to be explained by a set of expert modules

sensitive to different transformation. Obviously, these strategies for modeling

the invariance of visual appearance in object classes has a long history traced

back to the common idea shared by these approaches and the deformable tem-

plate approaches, mentioned previously.

Among the probabilistic approaches to object class segmentation, the deploy-

ment of unobservable, explanatory constructs for the most part serves the

general strategy of object class detection/labeling based on visual templates

and their corresponding filters/classifiers. As a result, deep interpretive hi-

erarchies are rare; they usually involve no more than one or two layers of

intermediate structures, closely tied to object class appearance to account for

viewpoint changes or other external sources of intra-class variability. The pur-

pose of these detection and classification mechanisms is to recover the image

embedding of some prototypical patterns. Yet, the internal structures of pat-

tern organization that give rise to the semantic content of subimages are less

explored. This greatly restricts their generalization and predictive power in

capturing the inherent semantics of interpretive concepts.

5 Discussion and Conclusion

This section shifts the focus to a more general discussion of the paradigmatic

development of probabilistic approaches to object class segmentation, con-

cerning (1) the achievements and drawbacks of the current approaches, and

(2) some open issues that may concern future research in natural scene seg-
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mentation.

5.1 Conceptual and Empirical Issues of Current Models

5.1.1 Performance issues

5.1.1.1 Perceptual accuracy of object boundary alignment The most impor-

tant contributions of the probabilistic approaches are due to the application

of semantic properties of visual categories to narrowing the gap between ma-

chine segmentation and human interpretation of a scene. One distinct aspect

of this achievement is the improvement in object boundary alignment, i.e.,

how closely segmentation boundaries follow object boundaries. Oftentimes,

semantic knowledge is required for visual interpretation of an apparently sim-

ple scene; see, for example, Figure 12.

Segmentation of semantic categories is achieved with varying degree of success.

All reported works use visual inspection as the common means of performance

evaluation and comparison; for selected results, see Figure 16 in the appendix.

Inspection of sample output allows direct evaluation of the perceptual accu-

racy of the segmentation, but limited by the size of the reported cases – usually

fewer than 10 test cases.

Quantitative measures of statistical accuracy are also adopted, subject to the

availability of segmented test data. Accuracy/error rates are the common

quantitative metrics, which measure the ‘correctness’ of segmentation in terms

of the percentage of pixels being classified correctly or incorrectly. As men-

tioned in Table 2 in the appendix, many of these approaches achieve levels
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Input Image Manual

Image based Class based

Figure 12: An example of class-based segmentation: an illustration of object
boundary alignment. The class based segmentation is produced by MoCRF
and the image based segmentation by mean shift. The image is labeled in
terms of 7 known visual categories (the legend is shown on the far right).
Source: [55].

of accuracy between the high eighties and high nineties percent. While these

statistics provide a convenient summary of experimental findings over all test

cases, they must be considered with great caution. These quantitative mea-

sures of correctness or accuracy of segmentation vary with the choice of train-

ing and test data. It is common to test reported work on in-house datasets

or a particular subset of a much larger, publicly available dataset. These test

data are usually compiled or selected to demonstrate what the tested methods

are capable of. It is however unclear about how the methods perform under

55



increasingly less advantageous conditions. It is also a challenge to determine

from a few reported cases when the methods are applicable, apart from judg-

ing by their assumptions and theoretical set-up [106, 128].

5.1.1.2 What is a “good” segmentation’? Perceptual accuracy of segmen-

tation is an elusive concept that deserves some thought. The very idea of

accuracy of segmentation assumes an image partition that corresponds to hu-

man/biological perception. This is particularly true for applications where

these results are provided for human interpretation. Segmentation performed

by a human expert yields the ‘ground truth’. In some special cases, visual

perception may be more constrained by the common purposes of expert do-

mains. In more general situations, people perceive the world differently, across

individuals, across time, across conditions and across tasks. The visual task at

hand is an important factor that determines how one thinks about the ‘good-

ness’ of visual segregation.

In contrast to many other segmentation approaches, especially image-based

ones, probabilistic approaches strongly couple segmentation with visual recog-

nition. Given the task, there remains a lack of indisputable definition of ‘cor-

rect’ segmentation of a scene. Figure 13 displays the segmentation of each of

the three images (in the leftmost column) by different individuals; for further

details, see [104]. Different individuals carve up an image in distinctly different

ways8, resulting in not only variations in details, but also qualitative differ-

8Some may observe from these results consistent organization in human perception [105,
104]. This does not alter the fact that people do not completely agree among each other on
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Original Images Manual Segmentations by different subjects

Figure 13: Manual segmentation of a scene. Segmentation of the images in
the first column from the left by different individuals is displayed on the right.
Each image is segmented by 3 subjects selected from a group of 10 undergrad-
uate students under the instruction: Divide each image into pieces where each
piece represents a distinguished thing in the image. It is important that all of
the pieces have approximately equal importance. The number of things in each
image is up to you. Some between 2 and 20 should be reasonable for any of
our images [106]. Source: [105, 104].

ences. Each of these segmentation results, expressing human perception of an

image, claims to be the ground truth of visual segmentation. As nontrivially

different as they are, statistical accuracy measures machine output against a

shifting standard.

Furthermore, object-embedding subimages are not equally significant; they

what features are so important that they deserve being marked out.
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acquire their significance from the visual needs of observers. In many cases,

this can be possible only in the task context of visual performance. In view

of the ambiguities concerning the perceptual relevancy and accuracy of vi-

sual segmentation, one should take due caution on using and interpreting the

quantitative measures of accuracy.

5.1.1.3 Evaluation of segmentation quality Even without this conceptual

problem, one is left uncertain about how to measure perceptual accuracy in

terms of statistical summary, e.g., accuracy/error rate. Due to the nonlinearity

between these accuracy measures and perceptual ‘goodness’ of segmentation,

significant improvement in perceptual quality of visual segmentation may re-

sult in only a slight increase in the accuracy rate. In other words, a small

subset of pixels yields nontrivial perceptual cues for the salient and discrim-

inative aspects of a semantic object, as illustrated in Figure 14. Despite a

small difference (< 2%) in pixel-based accuracy, the foreground segment of

the map on the right makes it easy to conjecture a cow (or at least an animal)

while it is quite hard to decipher what exactly the other segmentation results

represent. This perceptual difference is made by small subimages that capture

its legs and its head. The example highlights the problem of evaluating and

comparing segmentation results based on pixel-based accuracy rates. Neither

the qualitative nor quantitative aspects of segmentation evaluation have been

addressed in the literature.

Furthermore, a scene segregation system is characterized by many functional

properties – including but not restricted to correctness/accuracy, efficiency,
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Original image

60.6% 70.3% 72.2%

Figure 14: Statistical vs. perceptual accuracy of segmentation: an illustra-
tion. Top row: the original image. Bottom row: segmentation maps with
the corresponding pixel-based accuracy rates indicated at the bottom. The
class labeling is assigned using the method of textonBoost. The accuracy is
measured in terms of percentage of pixels assigned to the correct class label.
Source: [149].

reliability, stability, capacity, adaptivity, generalizability and robustness. A

high-performance system usually presents a reasonable tradeoff between these

requirements. Except for accuracy and to some extent efficiency, there is little

focus on the other aspects of performance in the current literature on object

class segmentation. The paucity of research on these other performance prop-

erties makes it very difficult to assess the relative merits of these algorithms

in real-life applications. It is a challenge to thoroughly study these properties

without a consistent and theoretically sound framework for measuring algo-
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rithmic performance.

Concerning only the accuracy of scene segregation with respect to object

boundary alignment – the focus of research in the current literature – there

are major issues to be addressed. At present, most of the data sets used for

semantic-based visual segmentation or visual understanding experiments are

compiled from online or proprietary image collections with inadequate control

over the range of visual conditions for experimental purposes. A more elab-

orate experimental framework is therefore required to assess the performance

characteristics of an algorithm. More controlled experiments with specific

scene and stimulus conditions may be instrumental in probing into specific

performance properties. A systematic investigation of performance properties

may require a mixture of synthetic and natural image data. An important

component of this framework is the methodology to guide the construction

of datasets. The framework should always allow comparative studies to ex-

plore in a systematic way important characteristics of major approaches under

rigorous experimental control with respect to the full range of visual condi-

tions pertinent to the tested methods. No sound methodology of performance

evaluation/comparison can be complete without representative metrics of per-

formance measurement that can capture the perceptual accuracy of segmen-

tation.

5.1.2 Issues pertinent to categorization in visual segregation

5.1.2.1 Inadequacy of object formation The progress towards the goal of

visual segregation of semantic categories should not be overstated. In the lit-

60



erature, the concept of object segmentation is usually narrowly and sometimes

arbitrarily defined. Many approaches [75, 103, 54, 55, 149, 135, 18], in par-

ticular but not restricted to those aiming at scene segmentation, entertain no

concept of an object. They fail to segregate object instances from one another,

resulting in grouping multiple instances, especially those spatially contiguous,

into a common perceptual unit (also see Figure 16 as well as Table 2 in the

appendix). This does not create a serious problem for the specific task of scene

segmentation which is not concerned with object-level segregation.

Yet, the lack of unit formation in their perceptual apparatus leads to a level

of granularity that is inappropriate for many visual recognition tasks. For

instance, the subimages carved out from the image in column (a) and (b) of

Figure 15 clearly suggest the presence of a motorcycle or a four-legged animal.

In contrast, those in column (c) and (d) do not provide very helpful cues for

determining the objects in the scenes. Similarly, the segmentation in column

(c) and (d) is also inadequate for many other visual tasks, such as object-based

image coding and editing.

Much of the discriminative power of scene segmentation and other approaches

springs from the classifiers used to capture image statistics of local features.

With little reliance on abstract organization of local features, many of these

approaches are applied to long or medium shot, outdoor scenes describable

by coarse-grained, amorphous categories, such as sky, water, vegetation, and

others. These categories are usually characterized by a small number of simple

features but not by any definite form or structures. It is a challenge for these
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(a) (b) (c) (d)

Figure 15: The role of unit formation in object perception: an illustration.
Top row: the original images. Top: original images. Bottom: segmentation
(manual or machine segmentation/ labeling). Individual object instances are
segmented in the images in column (a) and (b) but not in (c) and (d).
Source: [92] (machine output), [52] (manual), [54] (manual), and [149] (ma-
chine output) in the order of presentation from left to right.

loose assemblies of local features to segregate object instances that require suf-

ficient ability to discriminate between fine-grained details organized in highly

specific structures.

The class of foreground/background segregation approaches [15, 89, 17, 14,

92, 80, 16, 79, 88, 94, 172] aims at more fine-grained distinctions between

target objects and their background. Instead of loose assemblies of local

features, models of spatial structures, usually with respect to some object-

centered frames, provide important advantages to capture the recurring prop-

erties of target object classes. Constellations of local features, in particular,

yield robust representations for object differentiation under partial occlusion

conditions; see [89, 92, 88] for instance.
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Yet, the problem of foreground/background segregation is commonly viewed

as a binary partition problem (or its variants), dealing with one particular

visual category, e.g., cows, horses, cars, bikes or others, and ‘pushing’ all other

objects into the background, even though some of these other objects may

stand in front of the known object (for examples, see Figure 16 in the ap-

pendix.) It is debatable whether this class of segmentation can be described

in a strict sense as foreground/ background segregation. This idea of ‘fore-

ground’ is thus defined not in terms of the role and saliency of subimages, but

rather according to what a system ‘knows’ about the world. Moreover, many

of these approaches pull out only a single instance from a scene. The perfor-

mance is often studied with a test set, where each image contains a single and

usually close-up shot of an instance. In other words, this class of algorithms

segregates only a single individual instance of a specific object class instead of

carving up an image along semantic (object class) boundaries. It is the latter

that scene segregation ultimately seeks. At least in theory, a simple exten-

sion to the existing, binary classification paradigm of foreground/background

segregation is possible, by extracting the instances recursively one class at a

time. In practice, apart from the computational time required for completing

segmentation, how badly the system performance degrades with the introduc-

tion of each additional visual category is an open question.

The problems of representation express themselves in a more fundamental way

than simply in terms of the number of categories allowed for segregation. As

a result of the underdeveloped representational architectures of the prevailing
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models, object classes may not necessarily be defined in the literature in a

way that corresponds to human intuitive perception, but rather formed with

respect to the discriminative capability of data-driven classifiers. It has been

suggested that buildings, for instance, are not a ‘good’ class since they come

in many styles and appearance; rather ‘stonework’ is a better choice due to its

simple and ‘homogeneous regular texture’ for discrimination [75].

5.1.2.2 Perceptual constancy It is hard to overstate the importance of per-

ceptual constancy of representation. A stable perception of semantic objects is

not possible without some level of constancy that maintains stable and robust

representation despite the myriad of their appearances caused by extraneous

conditions, such as viewing distance and direction, illumination, occlusion, and

others. Despite much research effort expended on the class-wise variation due

to the appearance differences across member objects, the issues of representa-

tional constancy of objects in visual categorization remain largely unexplored

in the literature.

It is rare for existing models of object class segregation to consider more than

a specific view of object instances at a particular scale. A limited extension of

these view specific approaches is to infer the object embedding by flipping the

view specific prototypes along the horizontal axis [164]. The 3DLCCRF [60]

uses a decision forest to model a multiple appearance models for car parts from

four different viewpoints, one for each 45◦ viewing range. It is able to recover

object instances from different points of view, but with ‘prohibitive compu-

tational time’ and rather weak object boundary alignment. This however

64



represents a rudimentary attempt to address a very important but seriously

under-explored issue in visual categorization.

Similarly, there is no explicit representational scheme to encode scale depen-

dent appearances of object instances. The term ’multiscale’ is adopted in

the literature as usually referring to the level of granularity, i.e., the size of

neighborhood from which local classifiers pool information to compute their

responses. The issues of scale are sometimes addressed by resizing the pro-

totypes in the visual vocabulary to a small number of fixed scales [60]. This

is hardly a general solution to the problems of scale constancy of visual rep-

resentation. The advantages of scale space representation which successively

reduces minute details and emphasizes salient perceptual structures, have not

been systematically exploited9.

The formation of a scale insensitive perception requires more than a scale-space

representation. The appearance indeed changes as the viewing distance varies.

The canopy of a forest may be easily recognized from a distance by some regu-

lar texture, which is completely insufficient for a close up view where the tree

trunks, branches and leaves become salient in the scene. Similar to their view-

point counterparts, scale insensitive representations have to take into account

the emergence and disappearance of saliency features as they move towards or

away from the observer. Visual representation with perceptual constancy is a

yet to be explored area of research. Until these issues are properly addressed,

9The exceptions include the approaches of segmentation based on adaptive segregation
of saliency regions into a hierarchical structure of scale varying representation [14].

65



‘object class segmentation’ falls short of the claim of segregating objects.

5.1.2.3 The issues of representation for abstract visual concepts The pre-

vailing models of feature-based classification lack adequate mechanisms of or-

ganization and abstraction that are essential for developing informative and

parsimonious representations of complex visual concepts. There are certainly

circumstances, especially those affording strong10 a priori knowledge of ob-

ject classes, that a simple conjunction of a few image features is sufficient for

classification. Certain object classes, under the assumption of simple scene

conditions, can be satisfactorily recognized or classified by some features or

parts without considering the full complexity of the formation of an object as

a whole [6]. These circumstances may not be rare but they constitute only

limited cases among the manifold and diverse energy patterns that can be em-

anated in the natural, visual environment.

Yet, both theoretical and empirical studies have emerged from a broad spec-

trum of vision research, suggesting the essential roles of complex pattern in-

tegration and perceptual abstraction in semantic-based visual tasks [36, 5, 6,

108, 83, 7, 137]. It is questionable how far the current models can be ex-

tended beyond those limited cases, using simple mappings of primary image

features to semantic classes without introducing the necessary organization

and abstraction of perceptual patterns.

10These are the circumstances where both the variability of visual appearance are low
and the number of expected object classes are small.
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5.1.3 The issues of inference in visual segmentation Inference has

been a central problem in the literature of object class segmentation. Many

inference models and approximation techniques are extensively explored in the

context of object class classification. Indeed, it would be no exaggeration to

attribute many advances in semantic-based segmentation to the recently de-

veloped ideas and techniques of probabilistic inference that have been applied

to the problems.

At present, however, the capacity of many existing approaches is indeed greatly

constrained by the complexity of inference. Stochastic search approaches,

such as image parsing [157], remain very expensive in sampling the solution

space, even though the scene is modeled in terms of few and simple object

classes with little variations. Many object classification algorithms for fore-

ground/background segregation are also expensive. Few authors explicitly

mention the computational cost of their segmentation, but there are reports

on experiments that take prohibitive amount of time in inference – see [165, 60]

for instance.

The complexity problem of inference is not restricted to specific algorithms,

but has general implications for probabilistic approaches to visual segmenta-

tion across the board. A probabilistic model is essentially a system of nor-

malized energy defined over a solution space. As mentioned, the partition

function contains all the information over all possible states – a space which

increases combinatorially with the number of visual categories. Approximation

solutions are the only practical options for many inference problems in object
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class segregation due to their computational complexity, including many mes-

sage passing algorithms developed for non-tree structured graphical models.

Many of these approximations help keep the cost feasible but it may rise fast

as the states proliferate with the number of visual categories. How well the

underlying correlation between explanatory factors can be encoded is limited

by the approximation assumptions leading to lower accuracy and, in some

cases, greater instability. These problems may be further exacerbated by the

increasingly complex surfaces of model energy, due to rising number of visual

categories, higher variability of object class appearance, and more complex

relationship between object classes in the feature space.

That inference is too computationally demanding for many visual problems

remains a strong drive to develop less expensive and more flexible frameworks

of visual inference. To avoid the complexity associated with normalization,

there is active research in the recognition community on (non-probabilistic)

energy-based models, that have been less explored in the context of object

class segmentation [57, 85, 83, 84, 130]. At present, the complexity of in-

ference techniques places stringent restrictions on the usefulness of current

models. Reducing these restrictions is critical for the further development of

the framework into a viable approach for natural scene segmentation in unre-

stricted settings.

It should be noted that inference and representation are strongly coupled in

any solution to the problem of visual understanding. Without an adequately

organized representation, the mapping from visual appearance into seman-
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tic categories becomes highly intricate and non-linear. Working with a crude

representation inadvertently places enormous computational burdens of visual

interpretation completely upon the inference procedure – thereby greatly ex-

acerbating their complexity. The prevailing approaches are indeed unified by

a common theme, which seek in different ways to apply the classical segmen-

tation criteria, region-based or edge based, to local classifier responses. Due

to the high dimensionality of the feature spaces required by inter- and intra-

class variations, extremely lengthy training periods are usually required for

binary or multi-class labeling11. Alternatively, visual representation can be

organized in a more expressive and flexible way to enhance the discriminative

capability, therefore alleviating the burden on the inference. Apart from the

benefit of lower cost, simpler inference problems demand less approximation

and therefore higher accuracy and greater stability. This latter path is rarely

taken.

5.1.4 The issues pertinent to the relations between segmentation

and categorization The conceptual as well as computational relations

between segmentation and classification/recognition are issues at the core of

object class segmentation. In the prevailing models, semantic-based segmen-

tation may be thought of as a special class of visual categorization, viz, the

pixel/superpixel classification. The focus is on the issues of modeling semantic-

11Even scene segmentation, despite its coarse-grained representation and the lack of
object segregation capability, may be computationally expensive, taking as long as 14, 000
hours to train a classifier on a 21 class training set of 276 images on a 2.1 Ghz machine with
2GB memory if random feature selection is not used [149].
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based influences on pixel classification. Iterative processes of region growth

are arguably a rudimentary form of these influences in the general framework

of visual segmentation based on classification. Starting with a number of

seeds selected based on classifier responses, some spreading (or refinement)

processes are set in motion, which aggregate visual inputs into object class

embedding regions through negotiation and competition among visual cate-

gories; see [103, 80, 79]. These approaches invert the classical order of visual

processing between image-based and semantic-based perceptual processes. In

their own ways, the stochastic search approaches eliminate the distinction be-

tween segmentation and recognition by merging the two processes within a

single inference structure of sampling segmentation models [157].

These approaches recast the problem of segmentation in a fundamental way. In

the classical paradigms, segmentation is pursued in order to delineate salient

regions that correspond to significant visual events or to provide perceptual

units for knowledge-guided visual analysis. Associated with this view are

strong tendencies to postulate sharp distinctions between different perceptual

processes and unidirectional visual pathways [100, 101, 102]. Yet, a need for

more complex interactions between different visual processing areas has been

recognized since the early years of vision research, in addition to the purely

feedforward communication which allows only one-way signal transmission.

The focus of many earlier approaches, such as those emphasizing the cycle

of representation, was placed upon the organizational architectures, many of

which involve feedback and recurrent processes of visual reasoning; for fur-
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ther discussion, see [65, 117, 155]. Recent research has been providing ev-

idence for interactive processes underlying human perception; for segmenta-

tion and object segregation, see [126, 127, 160, 125, 119]. Computational

models are sought to overcome the limitations resulting from these restric-

tions by re-introducing interaction between segmentation/grouping processes

and semantic-based processes.

It can be hardly overemphasized that the discovery of the semantic-based in-

fluences on perceptual formation of objects and their segregation does not

eliminate the relatively independent and indispensable functions of unit for-

mation processes. Viewing segmentation as a classification problem, however,

many current approaches to object class segmentation reduce the role of seg-

mentation to delineating the spatial extent of object instances after they are

recognized. The alternatives are those strategies that use superpixels gener-

ated by image-based partitioning techniques. Semantic-based segmentation is

accomplished by classifying these superpixels in terms of membership in visual

categories. The contribution of the influence of complex and abstract visual

concepts is restricted to classifying preprocessed regions.

Common to these strategies, with some rare exception [71], is their feedforward

approach to visual representation. Thus no means are available for different

perceptual processes to collaborate in determining the significance and impli-

cations of visual features across levels of scale and abstraction. For instance,

there is no way to redefine superpixels in light of their semantic-based char-

acteristics – perhaps the simplest form of collaboration between image-based
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and semantic-based segmentation processes.

These approaches may be helpful for image processing applications such as

object-based edition or for providing perceptual cues for content-based anal-

ysis, but greatly reduce the role of segmentation and grouping processes in

encoding visual abstraction and symbolic constructs. From the broader per-

spective of visual analysis, segmentation is nothing less than an integral part

of pattern organization and visual abstraction in the very formation of percep-

tion. When scene segregation is viewed as an integral part of object perception

formation, no computational account of the phenomena would be sufficient

without considering the interconnections between different processes that sub-

serve perceptual representation and segregation. Indeed, natural scene seg-

regation provides a unique opportunity to explore these important aspects

of computational perception; and yet they are in general overlooked in the

literature of image segmentation

5.1.5 The issues pertinent to the systematic properties Lacking

so far is a general, theoretical approach to the issues concerned with the ca-

pacity, generalizablity, robustness and adaptivity of visual categorization pro-

cesses in the probabilistic approaches to categorization/recognition and visual

segregation. These functional properties together with view/scale constancy

are referred to collectively as systematic properties or functions. There is no

dispute over the importance of these properties. However, it is nontrivial to

address these issues under the prevailing paradigm of visual categorization

and segmentation. One cause of the problems is the theoretical structure of
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the current approaches to visual categorization – the structure which makes it

very difficult to deal with the systematic issues in a general way.

As discussed, the categorization framework is built with a shallow structure

where image features are extracted and then classified into visual categories

through a trained probabilistic model. Therefore, few options are available

to address the systematic issues other than looking for a rich feature space so

that probabilistic inference is afforded a distinctive representation to describe

a scene in terms of a sufficiently large number of complex categories. In princi-

ple, the task would become more tractable if features associated with different

categories can be separated from each other by a relatively sparse background

with discernible margins. To this end, a feature space is sought to project

the characteristic visual properties of the categories onto a finite number of

compact regions. This rich feature space is in general of very high dimension.

High dimensionality certainly comes with a cost in terms of computational

complexity.

The complexity of visual categorization arises from a visual environment which

demands highly organized processes of perceptual integration and abstraction

to unravel the physical energy patterns in terms of perceptual concepts. In the

absence of adequate support of functional organization, other than a few sim-

ple layers of feature-extraction and classification, visual categorization is torn

between, on the one hand, the high dimensionality of a rich feature space and

the complexity of classification models sufficient for the systematic properties

of the system and, on the other hand, the simplifying assumptions of approx-
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imation and computational heuristics required for probabilistic inference. In

practice, computational feasibility takes priority over relevancy.

Obvious from these observations are two classes of solutions for further ex-

ploration. It should be noted that despite their different approaches to the

problem, these solutions are not necessarily exclusive and competing. In prin-

ciple, the systematic issues can be addressed by developing effective inference

structures that are adequate for complex probabilistic models defined over a

rich feature space without undue approximation restrictions.

The second class of solutions emphasizes the central ideas of perception forma-

tion and the importance of its organization. In particular, the representational

capacity and the related systematic properties of a visual system are by and

large determined by its own organizational structure, whereby the content of

visual stimuli can be unraveled, abstracted and reorganized for better dis-

criminability and easy read-out. Indeed, studies in pattern classification and

pattern theory make similar observations that pattern models with deeply-

structured and well-organized architecture are capable of discerning the order

of complex data patterns through interactive stages of pattern transformation;

see [83, 84, 7, 51]. Evidence from vision research also attests the essential role

of recurrent stages of perception formation in visual categorization. In par-

ticular, perceptual groupings, contours, surfaces and objects are important

perceptual structures in organizing visual representations for categorization as

well as recognition.
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5.2 Summary

This paper provides a conceptual account of the theoretical structures that

drive the current advances in natural scene segmentation. These structures

are elucidated in terms of the guiding ideas and computational principles of

image segmentation. A strong theme in this development is the view of image

segmentation as an inference over image representations. These representa-

tions are models of visual patterns that capture the characteristics of visual

coherence pertinent to the interpretative criteria of segmentation based on

discriminative clues afforded by the visual appearance of subimages (regions)

and their boundaries. Image-based segmentation may be concerned with some

homogeneous or smooth intensity patches or piecewise smooth contours. The

relevant classes of visual patterns proliferate as increasingly richer semantics

are introduced to capture the underlying structures in visual appearance of

perceptual categories that are highly variable over some complex measurement

spaces. This leads to a fusion of image segmentation and pattern recognition

– an approach that has pioneered clustering/classifier-based segmentation and

has been increasingly adapted in many semantic-based precursors as men-

tioned in the previous discussion.

To understand complex scene composition in terms of semantic categories that

rely on conceptual distinctions rather than visual differences, visual patterns

can no longer be easily and unambiguously mapped to a scene configuration

in the solution space. It is necessary to introduce semantic explanation and

abstraction to bridge the semantic gap. To capture the richer semantics of seg-
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mentation, an adequate method must be equipped with sufficient structures

of representation and inference to incorporate a wide range of discriminative

criteria and to integrate computation of diverse recognition and segmentation

processes across different layers of abstraction. To cope with the complexity of

scene composition, it would be more feasible to model an image as stochastic

processes in terms of some underlying statistical structures and plausible inter-

pretations. This provides strong motivation for viewing image segmentation

as an optimization problem seeking the best interpretation over all plausible

ones. Energy based representation in its various formulations provides an ef-

ficient and well-studied framework for modeling observation, image semantics

and segmentation constraints.

The bulk of the paper discusses the recent developments of probabilistic ap-

proaches, which seek object-embedding subimages enclosed by object-specific

boundaries. With the benefit of the recent advances in semantic-based vi-

sual analysis on one hand and those in probabilistic modeling and inference

on the other hand, these methods attempt to forge bridges between the se-

mantic properties of natural scenes and visual features discovered by a set

of object-specific probes, i.e., filters/classifiers. From a historical perspective,

these approaches may be viewed as applying the basic principles of image-

based segmentation to parsing an image into meaningful categories based on

content-specific visual patterns.

At present, there are many open questions that should be addressed in future

research. The performance of existing approaches are greatly constrained by
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the complexity of inference techniques and more efficient procedures are re-

quired. There is a pressing need to devise effective methods for investigating

the functional/performance properties of segmentation systems. The exist-

ing approaches fail to adequately provide organized representations to capture

the complex relationships between image appearance and visual categories

under general conditions of natural scene segmentation. Figure/ground segre-

gation of individual objects remains an unsolved issue in most of the current

frameworks. The problems pertinent to perceptual constancy and the system-

level organizational principles of natural scene perception have rarely been

addressed in the literature. The functional roles of semantic-based segmenta-

tion in the context of object perception should be clarified in a more theoretical

and systematic manner. Context modulation of scene segmentation by other

computational processes, in particular, those responsible for non-local, com-

plex and abstract object perception have yet to become a focal area of inquiry.
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Appendix

This appendix presents supplementary materials in support of the discussion of

the current developments in the text, and in particular, the remarks presented

in Section 5. All algorithms discussed in this paper use qualitative evalua-

tion by visual inspection of segmentation results for assessing and comparing

performance. A selected set of reported segmentation results is presented in

Figure 16, which may provide some ideas of the performance of representative

algorithms. Also included in this appendix are summaries of the algorithms.

Table 1 which highlights the algorithmic features and theoretical properties of

the representative probabilistic approaches, and Table 2 summarizes the major

aspects of empirical experiments used for performance evaluation.
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Ren et al. [134]

Image parsing [157] Jigsaw Approach [15, 17]

Borenstein et al. [14] Spatial-LTM[23]

Implicit shape model (ISM) [89, 92, 88]

Zöller et al. [172] Ren et al. [132]

Figure 16: Performance of object-class segmentation: results of selected ap-
proaches.
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Obj-cut [80, 79]

MoCRF He, Zemel, and Ray [55] Bosch et al. [18]

Layout consistent CRF (LCCRF) [165]

3D Layout consistent CRF (3DLCCRF) [60]

TextonBoost [149] Hierarchical CRF [135]

Figure 16: Performance of object-class segmentation (contd): results of se-
lected approaches.

80



T
ab

le
1:

A
lg

or
it

hm
ic

fe
at

ur
es

of
se

le
ct

ed
ap

pr
oa

ch
es

.
A

no
te

of
ex

pl
an

at
io

n
is

fo
un

d
at

th
e

en
d

of
th

e
ta

bl
e.

A
lg

or
it

hm
s

A
pp

ro
ac

he
s

O
cc

lu
si

on
V

ie
w

R
em

ar
ks

Im
ag

e
pa

rs
in

g
[1

57
]

St
oc

ha
st

ic
se

ar
ch

;
P
ar

si
ng

gr
ap

h;
D

is
cr

im
in

at
iv

e/
ge

ne
ra

ti
ve

m
od

el
in

te
gr

at
io

n.

×
sp

ec
ifi

c
T

he
or

et
ic

al
ly

w
el

l
gr

ou
nd

ed
;

O
nl

in
e

de
te

rm
in

at
io

n
of

nu
m

be
r

of
se

gm
en

ts
;

N
on

-
tr

iv
ia

l
to

de
si

gn
ir

re
du

ci
bl

e
ch

ai
n;

C
om

bi
ni

ng
im

ag
e-

an
d

cl
as

s-
ba

se
d

fe
at

ur
es

;
A

ss
um

in
g

ob
je

ct
s

w
it

h
lit

tl
e

va
ri

ab
ili

ty
;

W
ea

k
re

su
lt

s;
Sl

ow
.

R
en

et
al

.
[1

34
]

St
oc

ha
st

ic
se

ar
ch

;
m

er
gi

ng
im

ag
e-

ba
se

d
se

gm
en

ts
w

it
h

ob
je

ct
cl

as
s

gr
ou

pi
ng

cu
es

.

∼
∼

C
om

bi
ne

im
ag

e-
ba

se
d

se
g-

m
en

ta
ti

on
w

it
h

ob
je

ct
cl

as
s

cu
es

;f
ra

gm
en

t
in

di
vi

du
al

ob
-

je
ct

;
ex

pe
ns

iv
e;

no
ob

je
ct

la
-

be
ls

.

Ji
gs

aw
[1

5,
17

]
U

se
a

co
de

bo
ok

of
vi

-
su

al
pa

tt
er

ns
×

sp
ec

ifi
c

P
io

ne
er

ap
pr

oa
ch

;
Si

m
pl

e;
N

ot
su

it
ab

le
fo

r
cl

as
se

s
w

it
h

gr
ea

t
va

ri
ab

ili
ty

;
H

ug
e

co
de

bo
ok

;
Se

gm
en

t
si

ng
le

in
st

an
ce

C
on

ti
nu

ed
..

.

81



T
ab

le
1

–
co

n
ti

n
u
ed

A
lg

or
it

hm
s

A
pp

ro
ac

he
s

O
cc

lu
si

on
V

ie
w

R
em

ar
ks

B
or

en
st

ei
n

et
al

.[
14

]
C

om
bi

ne
jig

sa
w

ap
pr

oa
ch

es
an

d
im

ag
e-

ba
se

d
vi

su
al

pr
oc

es
si

ng
cr

os
s

sc
al

es
.

×
sp

ec
ifi

c
M

ay
im

pr
ov

e
on

th
e

bo
un

d-
ar

y
al

ig
nm

en
t;

N
ot

ab
le

to
se

gm
en

t
co

m
pl

ex
ob

je
ct

s;
N

ee
d

hu
ge

co
de

bo
ok

fo
r

va
ri

-
ab

le
cl

as
se

s.

L
ev

in
et

al
.
[9

4]
C

od
eb

oo
k

of
vi

su
al

pa
t-

te
rn

s;
C

R
F
;C

om
bi

ne
ob

-
je

ct
cl

as
s

an
d

im
ag

e-
ba

se
d

cu
es

.

×
sp

ec
ifi

c
Fe

at
ur

e
se

le
ct

io
n

an
d

im
ag

e-
ba

se
d

cu
es

he
lp

to
re

du
ce

th
e

si
ze

of
co

de
bo

ok
pa

tt
er

ns
;
N

ot
su

it
ab

le
fo

r
co

m
pl

ex
ob

je
ct

s
w

it
h

hi
gh

ly
va

ri
ab

le
fo

rm
s

an
d

ap
pe

ar
an

ce
s.

IS
M

[8
9,

92
,
88

]
U

se
co

de
bo

ok
of

vi
su

al
pa

tt
er

ns
;
C

on
fig

ur
at

io
n

m
od

el
in

g.

√
sp

ec
ifi

c
A

llo
w

m
ul

ti
pl

e
in

st
an

ce
s;

N
ot

su
it

ab
le

fo
r

cl
as

se
s

w
it

h
gr

ea
t

va
ri

ab
ili

ty
in

fo
rm

s;
V

oc
ab

ul
ar

y
si

ze
is

en
or

m
ou

s
fo

r
co

m
pl

ex
ob

je
ct

s.

C
on

ti
nu

ed
..

.

82



T
ab

le
1

–
co

n
ti

n
u
ed

A
lg

or
it

hm
s

A
pp

ro
ac

he
s

O
cc

lu
si

on
V

ie
w

R
em

ar
ks

K
ok

ki
no

s
et

al
.

[7
1]

U
se

co
de

bo
ok

of
vi

su
al

pa
tt

er
ns

;
M

or
ph

ab
le

m
od

el

lim
it

ed
sp

ec
ifi

c
A

llo
w

se
m

an
ti

c
in

flu
en

ce
on

se
gm

en
ta

ti
on

m
od

ifi
ca

ti
on

;
N

ot
su

it
ab

le
fo

r
cl

as
se

s
w

it
h

gr
ea

t
va

ri
ab

ili
ty

in
fo

rm
s;

lli
m

it
ed

re
pr

es
en

ta
ti

on
ca

pa
ci

ty
.

M
ar

t́ı
et

al
.

[1
03

]
In

te
rl

ea
ve

re
co

gn
it

io
n

an
d

sc
en

e
la

be
lin

g;
G

ra
ph

-b
as

ed
m

od
el

s
of

se
m

an
ti

c
re

la
ti

on
s

of
ob

je
ct

cl
as

se
s;

U
se

fu
zz

y
re

as
on

in
g.

∼
∼

N
ee

d
ve

ry
sp

ec
ifi

c
m

od
el

s
fo

r
ta

rg
et

sc
en

es
;
B

ou
nd

ar
y

al
ig

nm
en

t
m

ay
be

aff
ec

te
d

by
ov

er
-s

eg
m

en
ta

ti
on

;
N

o
in

st
an

ce
di

ffe
re

nt
ia

ti
on

;
M

or
e

su
it

ab
le

fo
r

vi
su

al
ca

te
go

ri
es

w
it

h
lit

tl
e

fin
e

de
ta

ils
;
L
im

it
ed

ca
pa

ci
ty

of
re

pr
es

en
ta

ti
on

.

C
on

ti
nu

ed
..

.

83



T
ab

le
1

–
co

n
ti

n
u
ed

A
lg

or
it

hm
s

A
pp

ro
ac

he
s

O
cc

lu
si

on
V

ie
w

R
em

ar
ks

T
od

or
ov

ic
et

al
.

[1
53

]
Su

bi
m

ag
e-

tr
ee

ba
se

d
re

pr
es

en
ta

ti
on

,
tr

ee
m

at
ch

in
g

li
m

it
ed

∼
T
oo

co
m

pl
ex

ex
ce

pt
fo

r
a

ve
ry

sm
al

l
tr

ai
ni

ng
se

t;
ro

ta
ti

on
in

va
ri

an
t

bu
t

w
ee

k
in

sc
al

e
an

d
vi

ew
in

va
ri

an
ce

;
W

ea
k

se
gm

en
ta

ti
on

w
it

h
m

is
si

ng
pa

rt
s;

N
ot

si
tu

ab
le

fo
r

co
m

pl
ex

cl
as

s
w

it
h

hi
gh

va
ri

ab
ili

ty
or

m
or

e
th

an
a

fe
w

sa
lie

nt
pa

rt
s;

L
ow

re
pr

es
en

ta
ti

on
ca

pa
ci

ty
;

V
er

y
ex

pe
ns

iv
e.

K
on

is
hi

et
al

.
[7

5]
Sc

en
e

la
be

lin
g;

C
on

di
ti

on
al

pr
ob

ab
ili

ty
m

od
el

of
la

be
lin

g
gi

ve
n

cl
as

si
fie

r
re

sp
on

se
s

∼
∼

Si
m

pl
e;

Fa
st

;
N

o
in

st
an

ce
di

ffe
re

nt
ia

ti
on

;
N

ot
su

it
ab

le
fo

r
vi

su
al

ca
te

go
ri

es
w

it
h

co
m

pl
ex

an
d

va
ri

ab
le

ap
pe

ar
an

ce
;
V

er
y

lim
it

ed
re

pr
es

en
ta

ti
on

ca
pa

ci
ty

.

C
on

ti
nu

ed
..

.

84



T
ab

le
1

–
co

n
ti

n
u
ed

A
lg

or
it

hm
s

A
pp

ro
ac

he
s

O
cc

lu
si

on
V

ie
w

R
em

ar
ks

R
us

se
ll

et
al

.
[1

40
]

L
at

en
t

to
pi

c
di

sc
ov

er
y

m
od

el
;
su

pe
rp

ix
el

cl
as

si
fic

at
io

n.

∼
∼

W
ea

k
ob

je
ct

bo
un

da
ry

al
ig

nm
en

t;
U

nc
er

ta
in

pe
rf

or
m

an
ce

w
it

h
vi

su
al

ca
te

go
ri

es
w

it
h

co
m

pl
ex

an
d

va
ri

ab
le

ap
pe

ar
an

ce
;
L
im

it
ed

ca
pa

ci
ty

of
re

pr
es

en
ti

ng
ge

ne
ra

l
cl

as
se

s.

Sp
at

ia
l-
LT

M
[2

3]
L
at

en
t

to
pi

c
di

sc
ov

er
y

m
od

el
;
su

pe
rp

ix
el

cl
as

si
fic

at
io

n.

∼
∼

E
xp

er
im

en
ts

in
cl

ud
e

on
ly

un
oc

cl
ud

ed
ob

je
ct

s;
N

o
ev

id
en

ce
fo

r
in

st
an

ce
di

ffe
re

nt
ia

ti
on

;
So

m
e

vi
ew

to
le

ra
nc

e;
U

nc
er

ta
in

pe
rf

or
m

an
ce

w
it

h
vi

su
al

ca
te

go
ri

es
w

it
h

co
m

pl
ex

an
d

va
ri

ab
le

ap
pe

ar
an

ce
;
L
im

it
ed

ca
pa

ci
ty

of
re

pr
es

en
ti

ng
ge

ne
ra

l
cl

as
se

s.

C
on

ti
nu

ed
..

.

85



T
ab

le
1

–
co

n
ti

n
u
ed

A
lg

or
it

hm
s

A
pp

ro
ac

he
s

O
cc

lu
si

on
V

ie
w

R
em

ar
ks

M
ar

ko
v

F
ie

ld
A

sp
ec

t
M

od
el

s
[1

62
]

L
at

en
t

to
pi

c
di

sc
ov

er
y

m
od

el
;
Sp

at
ia

l
co

he
re

nc
e

co
ns

tr
ai

nt
s

vi
a

ra
nd

om
fie

ld
s

∼
∼

C
oa

rs
e

re
gi

on
cl

as
si

fic
at

io
n;

po
or

ob
je

ct
bo

un
da

ry
al

ig
n-

m
en

t;
U

nc
er

ta
in

pe
rf

or
m

an
ce

w
it

h
vi

su
al

ca
te

go
ri

es
w

it
h

co
m

pl
ex

an
d

va
ri

ab
le

ap
pe

ar
-

an
ce

;L
im

it
ed

ca
pa

ci
ty

of
re

p-
re

se
nt

in
g

ge
ne

ra
l
cl

as
se

s.

O
b
j-
cu

t
[7

8,
80

,
79

]
E

ne
rg

y
m

od
el

(G
R

F
†)

;
Im

ag
e-

ba
se

d
an

d
ob

je
ct

cl
as

s
in

te
gr

at
io

n;
P
ar

t
co

nfi
gu

ra
ti

on
.

se
lf-

oc
cl

us
io

n
sp

ec
ifi

c
A

bl
e

to
se

gr
eg

at
e

ar
ti

cu
la

te
d

ob
je

ct
s;

ti
m

e
co

ns
um

in
g

fo
r

tr
ai

ni
ng

an
d

se
gm

en
ta

ti
on

;
A

ss
um

e
ri

gi
d

ob
je

ct
s;

Se
gr

eg
at

e
a

si
ng

le
in

st
an

ce
.

m
C

R
F

[5
4]

E
ne

rg
y

M
od

el
(C

R
F
);

Sc
en

e
la

be
lin

g;
M

ul
ti

pl
e

le
ve

l
of

sc
al

es

∼
∼

N
ot

ab
le

to
se

gr
eg

at
e

in
di

vi
du

al
ob

je
ct

in
st

an
ce

s
;

N
ee

d
tr

ai
ni

ng
se

t
of

su
bs

ta
nt

ia
l
si

ze
;
ex

pe
ns

iv
e;

B
et

te
r

pe
rf

or
m

an
ce

on
co

ar
se

sc
al

e
im

ag
e

w
it

h
re

la
ti

ve
lit

tl
e

fin
e

de
ta

ils

C
on

ti
nu

ed
..

.

86



T
ab

le
1

–
co

n
ti

n
u
ed

A
lg

or
it

hm
s

A
pp

ro
ac

he
s

O
cc

lu
si

on
V

ie
w

R
em

ar
ks

M
oC

R
F

[5
5]

E
ne

rg
y

M
od

el
(C

R
F
);

Sc
en

e
la

be
lin

g;
C

on
te

xt
co

ns
tr

ai
nt

s.

∼
∼

N
ot

ab
le

to
se

gr
eg

at
e

in
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