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Abstract

This paper outlines some major ideas and principles of probabilis-

tic reasoning that provide an essential foundation for probabilistic ap-

proaches to natural scene segmentation. Despite this immediate con-

text, the discussion may be found relevant beyond image segmentation

in a broader scope of image processing and visual analysis. The or-

ganization of the paper corresponds to two recurrent themes in the

literature of probabilistic approaches to the problem: the representa-

tional framework of probabilistic graphical models and the framework

of probabilistic inference in natural scene labeling. After a brief dis-

cussion of both the directed and undirected graphical models, the first

part of the paper mainly focuses on the undirected graphical models

of stochastic random fields, which have been widely adopted to repre-

sent the inference problems of natural scene analysis. Some details are

also covered of the distinction between generative random fields and

conditional random fields. Irrespective of the choice of representational

language, the probability theory of inference plays a critical role in the

probabilistic approaches to natural scene segmentation. The second

part of the paper discusses three major themes of probabilistic inference

in the literature of probabilistic approaches to object class segmenta-

tion, namely, the problems as to (1) inference of stochastic models of

natural scene labeling, (2) inference of visual labeling of natural images,

and (3) distribution approximation of probabilistic models.
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1 Introduction

Object class segmentation seeks to segregate instances of semantic categories

or object classes from a scene along the semantic boundaries pertinent to

meaningful objects of human intuition. The problem is usually formulated as

some form of probabilistic inference. An image is viewed as stochastic events,

or samples drawn from image ensembles, which can be described, represented,

analyzed and interpreted in terms of probability distributions of plausible vi-

sual interpretations, i.e., scene descriptions. In particular, object class segmen-

tation is conceptualized as a stochastic mapping of visual patterns recoverable

from image data to object class membership. This mapping encodes a priori

knowledge of image semantics and the rules of interpretation and is completely

specified by the probabilistic models of membership assignment given observa-

tion over the solution space. Image segmentation and object class segregation

can then be defined by an assignment of labels to pixels in a 2D grid or sub-

sets of pixels that form regions or super-pixels. These principles constitute a

unified framework for different computational approaches to object class seg-

mentation, which collectively referred to as the probabilistic approaches to

object class segmentation.

This paper does not aim at a survey of different approaches to the problem1.

Instead, it outlines the major ideas and principles of probabilistic reasoning,

which are widely adapted in the recent development of computational frame-

1A review paper on the probabilistic approaches to object class segmentation is under
preparation.



works for object class segmentation. The organization of the paper corresponds

to two recurrent themes in the literature of probabilistic approaches to object

class segmentation: the representational framework of probabilistic graphical

models for formal description of the inference problems and the framework of

probabilistic inference of natural scene description. Its motivation notwith-

standing, the ensuing discussion will also be found relevant beyond its imme-

diate context of image segmentation in a broader scope of image processing

and visual analysis; for further discussion, see [18, 37, 89, 38, 11, 80, 87].

It is an emerging theme in the literature to encode the statistical regularities

and configurations of visual patterns pertinent to object classes in the language

of probabilistic graphics models, or graphical models for short [62, 31, 17, 6].

A graphical model associates a probability distribution with a graph. The sites

(nodes) of the graph represent the random variables on which the distribution

is defined, and the edges (or links) between these variables express the proba-

bilistic relationship between these variables. It gives explicit expression for the

dependence relations among important variables of the system, thus allowing

a simple and intuitive way to visualize as well as to specify the structures of

an inference problem. These structures can usually give insights into the influ-

ence of a set of random variables on the distribution over the other parts of the

system. Two classes of graphical models are widely adopted for probabilistic

representation of the problems of visual inference, viz, the directed graphical

models, i.e., probabilistic models defined over directed graphs, and undirected

graphical models, that is, probabilistic models defined over undirected graphs.
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In general, directed graphical models or Bayesian networks are more useful

for describing causal relationships between variables, whereas the undirected

graphical models or random fields provide an efficient tool for representing con-

textual constraints between spatially related variables. The latter also provide

more convenient graphical semantics that allows more explicit expression, and

thus also more efficient way to specify the structures of conditional indepen-

dence [17, 6]. Although both classes of graphical models has been applied

to modeling image ensembles for image analysis, the properties of graphical

semantics has made the undirected models a choice of representational frame-

work for a wider range of problems in visual inference as well as natural scene

segmentation; for further discussion, see [57, 11, 80]. After a brief discussion

of the distinction between these two classes of graphical models in the context

of natural scene segmentation, the first part of this paper focuses on the ba-

sic ideas of the undirected graphical models and their underlying theoretical

properties. Also highlighted in the discussion are the important distinctions

between the generative and conditional random fields.

A probabilistic model is a mathematical description of an inference problem.

Irrespective of the choice of language, stochastic fields or otherwise, deployed

to encode the problem, probabilistic inference plays a critical role in the prob-

abilistic approaches due to their common assumption that natural scene anal-

ysis is essentially part of the perceptual processes which infer the states of the

external environment from visual input. The second part of the paper shifts

its focus to those theoretical principles of probabilistic inference that consti-
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tute a unified theoretical framework for different probabilistic approaches to

object class segmentation. The discussion is organized in terms of three major

themes, namely (1) inference of probabilistic models, (2) inference of visual

description, and (3) distribution approximations.

At its core, probabilistic approaches conceptualize image interpretation in ob-

ject class segmentation as a stochastic mapping of visual patterns recoverable

from image data to object class membership. This mapping is completely

encoded by the conditional probability of membership assignment given ob-

servation over the solution space. Visual appearances of natural scenes are

known to be highly complex, varying and ambiguous. It becomes overwhelm-

ing to construct a probabilistic models on a case-by-case basis for each class of

natural scenes. One recurrent theme running through the current approaches

of object categorization and semantic-based image analysis is to generate a

predictive model for a given class of scenes from a set of parameterized model

classes through adapting their structure and parameters to match empirical

observation. The goal of inference is therefore to generalize the knowledge

derived from a subset of interpreted data to a general model capable of evalu-

ating observational data of the category as a whole. This empirical approach

to model specification serves as a cornerstone of the computational proce-

dures of inferring the underlying causes of observation in many probabilistic

approaches to natural scene analysis. Visual inference entails two different

problems, viz, model selection and interpretation selection. The first problem

is concerned with searching over the space of model parameters for the best
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member from a given family of models in terms of their ability to provide

the best segmentation prediction for a set of training images and to gener-

alize the performance over a general class of natural images. Interpretation

selection aims at an optimal assignment of scene description that incurs the

least expected risk due to misclassification, according to a trained probabilistic

model. The probabilistic models that describe natural scene are usually too

complex to allow exact inference. In practice, probabilistic approaches must

resort to an approximation to the exact solution. This part concludes with

two major classes of distributional approximation which are recurrently used

in the literature of object class segmentation, viz, stochastic and deterministic

distribution approximations.
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2 Probabilistic Graphical Models

Natural scene segmentation entails giving meaning to different parts of an im-

age, usually in terms of semantic categories. Probabilistic approaches seek

the probability distributions over the space of image description, such that

different parts of an image may be assigned the object class membership that

is most likely under the distribution given some local patterns of visual input

or responses of classifiers. An essential problem is how to represent knowledge

about observation and to encode its underlying interpretation. For natural

scene analysis, it oftentimes involves complex, non-linear relationships of con-

textual interactivity and influence between observable patterns, object class

membership, explanatory constructs and a priori beliefs. It is a recurrent

theme among the probabilistic approaches to encode the inference problem in

the language of probabilistic graphical models, or graphical models for short2.

The cornerstone of these approaches is the graphical structures of represen-

tation and inference [62, 31, 17, 6]. A probability distribution is associated

with a graph, where its sites (nodes) represent random variables and its edges

(links) the probabilistic relationship between these variables. The state of a

site is defined by the local responses or computational decisions associated with

the site. These representations provide an intuitive description of the spatial

structures and contextual interactivity of image features and computational

decisions among different sites. The modular structure of these relationships

are captured by decomposition of the joint distribution in terms of the neigh-

2For other approaches, see, for examples, [40, 9, 8, 53, 51, 10].
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borhood structure of the underlying graph, such that, each variable depends

on only a subset of other variables in a local neighborhood. That is, given the

state of its neighborhood, the variable is statistically independent of the rest

of the graph.

2.1 Directed Graphical Models

Both directed graphical models and undirected graphical models have been

applied to object class segmentation. The two families are distinct by their

underlying graphical representation. The former associated a probability dis-

tribution with a directed acyclic graph on a set of random variables, where the

joint distribution is given by the product, over all the sites of the graph, of the

conditional probability one for each variable conditioned on the variables cor-

responding to its parents [17, 6]. A tree-structured belief network, for instance,

is proposed for natural scene labeling. A scene description is inferred from ob-

servation based on a prior model of scene description and the prediction of

description conditioned on observation. The latter is given by the response of

a set of trained classifiers. A belief network is deployed to encode the prior

model of scene descriptions across scales of granuity [16]. The description as-

sociated with a node in the belief tree is dependent only on the coarser scale

description at its parent node given those at all coarser scale nodes. The com-

mon core of the latent class approaches3, rests on their representation with

3Latent class approaches refer to those inference approaches that extend the probabilistic
latent Semantic analysis (PLSA) [27, 28] or latent Dirichlet allocation (LDA) [7] to semantic-
based visual analysis. LDA can be viewed as an extension of PLSA with an additional
Dirichlet prior for the probability distribution of the latent topics.
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directed graphical models of the generative processes of observation. The key

idea is to explain observation in a high dimensional and usually sparse feature

space by a set of latent topics populated in a lower dimensional probabilistic

semantic space. The joint distribution of observation is factorized into a prod-

uct of local condition distributions of visual patterns given the latent topics

and the distribution of the topics. In the context of object class segmenta-

tion, each subimage, usually an over-segmented superpixel, is modeled as a

mixture of the latent topics. These latent topics are inferred from a set of dis-

criminative visual patterns extracted by image-based techniques [67, 75, 24].

The recovered topics are then mapped to object class membership. Under the

framework of image parsing, a hierarchical parsing graph is deployed to repre-

sent the decomposition of an image into constitutive components in successive

level of details [74]. The parsing graph is built upon a directed structure of

part relationships with lateral, undirected connections between parts on the

same level of decomposition for describing spatial relationships between visual

patterns. The parsing graph of an image is reconfigured on the fly for an

image, using reversible jump Markov Chain Monte Carlo. These approaches

attest the usefulness of the language of directed graphical models in semantic-

based visual analysis.

Images are more often represented as stochastic random fields, which associate

a potential function for each variable corresponding to a site of an undirected

graph for each maximum clique4 [57, 11, 17, 80]. An undirected graphical

4A clique is a set of sites where any two different elements of the set are neighbors [80].
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model can be interpreted as a normalized energy model which provides an

efficient and intuitive tool for encoding statistical regularities for visual infer-

ence. It is therefore no surprise that stochastic random fields have increasingly

been adopted as a common language for expressing many inference problems

of natural scene segmentation; for examples see [25, 44, 26, 43, 56, 64, 81, 68,

82, 29, 66, 75]. The following discussion5 is concerned mainly with the central

concepts of undirected graphical models, that are essential to understanding

the workings of many recent approaches to object class segmentation.

2.2 Undirected Graphical Models

2.2.1 Stochastic random fields.

An undirected graphical model is a random field defined over an undirected

graph, G(V , E), where V is the set of sites (or nodes) and E the set of edges

(or links) of G. Consider a set of sites, {ςi ∈ S}, each representing a random

variable defined over a space Xςi of states, xςi . Each of these sites corresponds

to a node in the underlying graph, and their spatial interactions are encoded

by the edges (or links), each of which connects a pair of sites. The variable at

each site takes on a state xςi ; the totality of these states constitutes a state of

the graph, and is referred to as a configuration, x ∈ X =
∏
ς∈S

Xς . An undirected

graph induces a neighborhood system6, N = {Ni : ςi ∈ S}, through which the

5The major sources for this brief review on the central concepts of random field modeling
include Geman and Geman [20], Besag [4], Kato [36], Kopparapu and Desai [41], Li [57], Won
and Gray [83], Chan and Shen [11], Bishop [6], LeCun, Chopra, Hadsell, Ranzato, and Huang
[50], Winkler [80], and Grenander and Miller [22], which are not cited separately.
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sites relate to each other. The families of random fields deployed in object

class segmentation are characterized by two properties with respect to the

neighborhood system N . The property of positivity (RF-Pos), pr(X ) > 0, and

the property of Markovianity (RF-Mar), pr(Xςi|XS/{ςi}) = pr(Xςi|XNi
), where

S\{ςi} is the set of sites of the model with {ςi} removed, and XNi
is the states

of the neighborhood Ni. RF-Pos is a technical requirement for deriving some

important theoretical properties of the random fields and can be easily fulfilled

in modeling, whereas RF-Mar is concerned with the structural dependency of

the random fields. Under this latter property, only neighboring states have

direct interactions; the conditional probabilities of the field globally determine

the joint distribution. Markovianity is therefore central to the class of random

fields that are decomposable into local components with a joint distribution

factorizable as a product of functions defined over the neighborhood system.

The terms ‘undirected graphical models’ and ‘random fields’ hereafter refer to

those models that follow these properties, unless otherwise is specified.

From the modeling point of view, random fields can be viewed as normalized

energy-based models. An energy-based representation captures dependencies

by associating a scalar function, oftentimes referred to as an energy function, or

simply energy, to each configuration of variables. These energy functions can

take on many different forms, measuring the compatibility of observations and

6A neighborhood Ni of the site ςi is the set of sites such that (1) ςi /∈ Ni, i.e., no site
ςi is its own neighbor, (2) for any site ςj , ςi ∈ Nj ⇐⇒ ςj ∈ Ni, that is, the neighborhood
relations are mutual, and (3) for any ςj ∈ Ni, there exists an edge in E that connects ςi and
ςj . A subset C of sites is referred to as a clique if two distinct members are neighbors, i.e.,
ςi, ςj ∈ C =⇒ ςi ∈ Nj , ςj ∈ Nj ; a clique system, C = ∪C, is the set of cliques.
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interpretation in arbitrary units and scales. In addition to the obvious reasons

that require local energies to build a global representation, different energies

corresponding to different sources of observation, descriptions and semantics

are combined to encode a complex scene in semantic-based image modeling.

Transforming energies into probability distributions provides a consistent way

to build complex energy models based on local energies. That is, an energy is

mapped to the interval (0, 1] such that it is summed to one over all possible

configurations in the output space.

2.2.2 Gibbs random fields: normalized energy-based models. It is

common to cast the normalized energy in an exponential form, known as Gibbs

(or Boltzmann) distribution,

pr(X ) =
1

Z
exp

{
− β

∑
C∈C

ΨC

(
XC

)}
, (1)

where XC is the set of sites in the clique C, ΨC is the energy function defined

over the clique, β = 1
τ

is a scaling factor, known as the inverse temperature7,

and the partition function,

Z =
∑
x∈X

exp{−β
∑
C∈C

ΨC(x)}, (2)

7The inverse temperature β controls the confidence of belief regarding probable occur-
rence of the states. All configurations tend to be similarly likely at a low temperature,
that is, a high inverse temperature, β. At the limit, lim

β→∞
pr(X ) = 1

|X | , that is, all possible

configurations are equally likely. As the temperature τ drops, the mass of density gets con-
centrated around a finite number regions, or global energy minima, corresponding to the set
of most likely configurations. In many models, the temperature τ is set to 1.
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is the normalizing factor. A random field with a Gibbs distribution is called a

Gibbs random field. An energy, Ψ =
∑

ΨC , is defined for each possible con-

figuration in such a way that lower energies are associated with more probable

configurations.

An energy function of each configuration, given in Eq. (1) is a linear combina-

tion of local energies defined for neighboring sites in a clique. Global energy

is expressible in terms of local energies encoding important contextual con-

straints. Although the range of interaction can be adapted by the choice of

cliques, in practice, most approaches to image modeling are restricted to short

range interactions defined by unary and pairwise energy functions due to the

complexity of inference with larger clique sizes. Very few restrictions are placed

upon the forms of these local energies, where complex energy models can be

generated by combining simpler ones. It is easy to encode contextual con-

straints originating from different sources of information and analysis. More

importantly, the resulting random fields are characterized by the Markovian

structure defined by the RF-Mar property according to the Markov-Gibbs

equivalence theorem, often known as Hammersley-Clifford theorem: A ran-

dom field characterized by the properties RF-Pos and RF-Mar with respect

to a neighborhood system N of a graph G defined over S if and only if it is

a Gibbs random field with respect to N . Note that a random field accord-

ing to Markovianity is defined in terms of the conditional probability while

the definition of a Gibbs random field is based on the joint distribution. By

establishing the equivalence between the two formulations, the theorem also

12



establishes the connection between the probabilistic models and energy based

models. One can therefore model an image ensemble in terms of a set of local

clique energies, knowing that a joint distribution can be expressed in a globally

consistent way according to Eq. (1).

Stochastic field theory thus significantly expands the scope of admissible prob-

abilistic models that has traditionally been restricted to a number of standard

families of parametrized distributions. Flexibility is gained for describing the

essential characteristics of the ensemble by capturing local behaviors through

the clique energies. However, the convenience of modeling comes at the ex-

pense of the complexity of inference. In contrast to the standard families

of parameterized distributions, the energy functions and consequently the loss

functions8 required for an arbitrary image are usually characterized by complex

surface topologies with many extrema, both global and local. The normalizing

factor, i.e., the partition function involves the sum of energies that contain the

model parameters over all configurations. As a consequence, parameter esti-

mation and model selection require the evaluation of this function for different

realizations of the parameters. The evaluation is however intractable for any

nontrivial state space. Since Geman and Geman [20], much research has been

motivated by this problem to reduce the computational resources expended

on evaluating the function or for some special model, to avoid it all together.

Greater elaboration on this problem is provided in Section 3.

8For a discussion of loss functions, see Section 3.
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2.2.3 Generative random fields. The application of random fields to

image modeling is traditionally associated with the probabilistic generative

framework9 that seeks to model the joint probability of the observed data and

image labels. The recent proliferation of conditional random fields in object

class segmentation highlights the paradigmatic shift towards a more direct ap-

proach to the problem, building interpretations around an explicit definition

of the conditional probabilistic model, pr(A|D), instead of a generative model

as a whole. In general, random fields are widely adopted for modeling spatial

interaction. Contextual constraints that characterize configurations of visual

patterns are usually encoded by the Gibbs energy with unary and pairwise

potentials, Ψ(x) =
∑

{i}∈C1
Ψ1(xi) +

∑
{s,t}∈C2

Ψ2(xs, xt). The unary energy

encodes the compatibility of an object class membership to the local measure-

ment at the site, usually according to some class-specific models [44, 26]. The

simplest variant of the pairwise energy term, Ψ2, used for binary decision is

the well known Isling model given by Ψ(x) =
∑

{s,t} βs,txsxt, where β.,. are

interactive coefficients. This model is usually used to bias for interpretations

that give coherent foreground and background instances[44]. In multi-state

labeling problems, highly fragmented solutions are discouraged by the Potts

model Ψ(x) =
∑

{s,t} βs,t1{xs=xt}, where 1A is the indicator function over the

9Generative random fields have been widely deployed as a modeling framework in many
visual applications; for related discussion, see [20, 4, 12, 83]. This class of generative models
is usually referred to in the literature of image modeling as the Markov random field, a
term that is used among the researchers of probabilistic graphical models to cover all the
undirected graphical models, generative or otherwise. To avoid confusion, this paper adopts
a less ambiguous term “generative random fields” to refer the restricted class of probabilistic
generative models defined over undirected graphs.
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set A [91]. Common among the probabilistic approaches to object class seg-

mentation are homogeneous and isotropic models where the energy terms are

independent of location. The homogeneous Isling model, for instance, is the

special case with the interactive coefficients βs,t set to a constant. The energy

form given by Ψ(x) =
∑

{s,t}−βs,t|xs−xt|k represents a more general measure

of compatibility among multi-state configurations [81, 56]. These smoothness

priors can be interpreted as some form of regularization [57, 58, 59].

Prior models in the generative framework represent belief before observation

and therefore incorporate no empirical terms. This complete separation of se-

mantics and observation has been challenged in recent years. According to this

view, state compatibility between sites may be better decided conditionally on

local image structures in many visual tasks [46]. For instance, state transitions

may be anticipated across sites where discontinuities in some feature spaces,

such as color, texture, and intensity, are observed. Spatial discontinuities can

be directly modeled, such as introducing hierarchical fields which represent the

dual stochastic processes of intensity and line [20]. The constraint is relaxed

in the discriminative approaches; their direct focus on the conditional proba-

bility models makes it possible to incorporate empirical measurement in the

random fields of spatial configurations. The data-dependent interaction can be

encoded by an energy form with an empirical term, which either modulates the

pair-site interactions [81] or their coefficients [26, 56]. In the latter case, the

energy is no longer homogeneous and isotropic, that is, the interactive coeffi-

cients, βs,t, vary by sites with magnitude depending on the local measurement
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of image structures. Similarly, observation can also be allowed to modulate

the unary energy term. For example, the empirical distribution of states ob-

served from the training set may be introduced to ensure approximate match

in the actual distribution of labels [26]. This energy term may be viewed as an

approximation of KL entropy between the distribution of states in the image

ensemble and the image distribution in a particular interpretation10.

The observation model, pr(D|A), a forward model involving stochastic pro-

cesses, represents the mapping of the underlying states to empirical measure-

ment. The degradation model, taking a classical example in image restoration

for illustration, is a nonlinear transformation of image intensity corrupted

by a Gaussian noise process [20]. From the generative point of view, the

observation model captures our understanding of the underlying causes of

observation and provides a very important test for its explanatory and pre-

dictive power. Image synthesis by drawing random samples from the model

provides important evidence of how well they resemble the observed signal

generated in similar conditions [60]. Image interpretation is therefore not

solely dictated by what is observed but also taking into account the theo-

retical and semantic properties of a scene [15]. To this end, it is common

for observation models to incorporate filter responses, classifiers and descrip-

tors, for instance, mixture models, histograms, shape descriptors, principle

components and others, to capture the class-specific patterns underlying the

10The incorporation of filter responses in the energy terms that govern the configurations
of patterns were first introduced in FRAME for texture modeling [88, 90, 57, 89].

16



image generation [81, 44, 73]. For mathematical simplicity and computational

tractability, observation models usually assume a factorized form given by

pr(D|A) =
∏

i∈S pr(Di|Ai). That is, observed data are assumed to be con-

ditionally independent given the labels. Suppose a prior model represented

by a random field, Ψ, for instance, Ψ =
∑

C1
Ψ1 +

∑
C2

Ψ2, that specifies the

spatial dependencies among image labels. The posterior model is then given

by pr(A|D) = 1
Z

exp{
∑

log pr(Di|Ai) + Ψ}, which is also a random field. The

theoretical properties of the prior model are preserved after the belief is up-

dated with the observation as long as the independence assumption holds for

the generating processes. A broad range of probabilistic models is admissible

for approximating the generating processes, allowing a very flexible way to

represent the class-specific causes of observation.

2.2.4 Conditional random fields. The conditional approaches provide

an alternative for those who find the limitations of generative models to be

too stringent for semantic-based image analysis. Interpretation via image la-

beling is the goal of image modeling and inference. The generative approaches

expend too much effort on modeling data generating processes which is, for

the most part, irrelevant to predicting image labels. In many cases, these

processes are unknown or impractical to specify explicitly and formally. Fur-

thermore, the conditional independence assumption is too restrictive for many

semantic-based visual tasks as data are usually contextually dependent. The

explanatory and predictive power of the model is significantly curtailed by

rendering inadmissible those descriptors that seek to capture interactions over
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longer ranges or across scales [45, 25, 63, 46]. These considerations motivate

a new class of random fields, known as conditional random fields, which were

first introduced in sequence data analysis [47] and subsequently adapted for

the task of object class segmentation.

According to the conditional principle, the random fields represent the condi-

tional probability, pr(X|D), defined over an undirected graph. Conditional on

the data, D, the probability distribution of system states, X , is characterized

by RF-Pos and RF-Mar with respect to the neighborhood system N . The def-

inition of the new class addresses many issues raised against their generative

counterparts. Only the conditional model, pr(X|D), is specified explicitly. The

image labels may be inferred directly from the input pattern; thus, the system

states, X = A, consist of only the unknown assignment of labeling sites. For

image models with hidden variables, H, the system states, X = (A, H), are de-

fined over the product space of assignment and hidden processes. For simplicity

and clarity of exposition, we consider for the moment the cases without hidden

variables. Extensions to the other cases are conceptually straightforward. Ac-

cording to the Markov-Gibbs equivalence (also known as Hammersley-Clifford)

theorem, the conditional model can be directly expressed in terms of a nor-

malized energy field: pr(X|D) = 1
Z

exp{Ψ(X|D)}. The common definition of

model energy11 involves only unary and pairwise interaction terms, formally,

11Different visual tasks may motivate other variants of this basic form extended to in-
corporate, for example, hidden variables or other neighborhood systems (for examples, see
[26, 34, 82, 29]). Alternatively, the conditional model may also take on a conditional form
of product of experts in the form: pr(X|D) = 1

Z

∏
α prγα

α (X|D), where the parameters, γi,
control the weights of the corresponding experts in the final decision. (for example, see [25].)
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Ψ(X|D) =
∑

{i}∈C1
Ψ1(Xi|D) +

∑
{s,t}∈C2

Ψ2(Xs,Xt|D). In any case, the Gibbs

energy associated with each Xi is defined over all observation D as well as

the system states, XNi
in the local neighborhood. Without having to assume

conditional independence in the observed data, conditional random fields sig-

nificantly extend the model space by representing the conditional behavior of

system states. Since conditional random fields preserve the stochastic proper-

ties of undirected graphical models, both the theory and algorithms developed

in the latter context are also applicable to the new class of conditional models.

Conditional random fields can be interpreted as a network of pattern predictors

communicating with each other to exchange information in labeling decision

[34]. Many object class specific structures can be captured through a broad

range of experts, such as neural and linear classifiers, textons, boundary de-

tectors, shape descriptors, spatial maps, appearance fragments, to name just

a few; for examples, see [25, 64, 26, 34, 56, 68, 82, 29, 66].
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3 Probabilistic Inference

The idea of visual segmentation as probabilistic inference is cen-

tral to the probabilistic approaches to object class segmentation across differ-

ent frameworks. This section provides some background information on prob-

abilistic inference as applied in the context of object class segmentation. In

general, probabilistic approaches involve two distinct and yet related problems

of inference, viz, interpretation selection and model selection. The purpose of

interpretation selection in visual segmentation is to identify the most plau-

sible interpretation, Â, with respect to the posterior model, pr(A|D), with

the observation D fixed, according to some selection (i.e., optimization) crite-

ria. It relies on the model representing the inference problem adequately. In

the literature, model structures are fixed in the definition of modeling frame-

works. Model selection is therefore concerned with identifying from a family,

the members with behavior that is most compatible with a given visual task12.

The probabilistic approaches consist of a wide variety of stochastic models

of varying complexity, which may be built upon layers of simpler models or

classifiers, and which capture different aspects of the segmentation problem.

By their unique constructions and constraints, these models dictate the choice

of inference techniques. A comprehensive account of the individual techniques

employed in the literature could easily turn into a compendium on statistical

inference and machine learning. Rather, the following discussion is restricted

12These processes are often referred to in the literature as learning probabilistic models
from data.
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to a general review of the key concepts, common conceptual principles and

major classes of probabilistic inference that are relevant to the search for an

optimal interpretation of a natural image.

3.1 Inference of Probabilistic Models13

The purpose of inference under the probabilistic generative framework is to

revise the knowledge of some unknown quantities on the basis of observation.

The challenge of the task involves the computation of a posterior probability

distribution over the space of unobservable variables, U , the subject of interest

in various stages of the search for the optimal interpretation of the observed

data. These distributions encode the knowledge and belief about the unknown

quantities (or hidden variables) in light of past and present observations. The

problem of inference corresponds to identifying the conditional distribution of

the current configuration of observed and hidden variables given the configura-

tions corresponding to the sequence of past observations. Probabilistic models

of object class segmentation capture the prior knowledge and the information

of past observation. If a generative model, M, admits a representation of the

generative processes and the prior belief of plausible interpretation, the corre-

sponding posterior conditional on the observation, D, is given by the Bayes’

13It should be noted that inference problems may involve continuous or discrete variables.
The following discussion is equally applicable to both cases. When “information pooling” is
involved, as in the case for normalization, marginalization and others, the equations for only
the discrete case are given for the sake of compactness. Unless otherwise mentioned, they
can be easily translated into the corresponding discrete version by replacing the summation
with the integration over the relevant space.
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rule [19, 13, 2, 55, 6]:

pr(U|D,M) =
pr(D|U ,M)pr(U|M)

pr(D|M)
. (3)

The prior expectation, pr(U|M), represents the knowledge of the unknown

variables before taking into account the present observation. The likelihood

(or observation) model, pr(D|U .M), which captures the stochastic processes

that give rise to the observation, is a measure of how well the model predicts

the observed data. The evidence, also known as marginal density of the data,

pr(D|M), is a normalization constant. The posterior, pr(U|D,M), can be

viewed as the inversion of the observation model, pr(D|U .M), or updated be-

lief or expectation from the prior in light of the new observation. In either case,

it represents what is known about the hidden variables after all measurements

(or observation) are taken into account. It is essential to distinguish two sets

of unknown variables, U = H ∪ Θ, that constitute the interest of inference

in object class segmentation, where H denotes the hidden states of the world

and Θ is the set of the model parameters given the model family, M. The

most important quantities (variables) of interest in H for object class segmen-

tation are the assignment, A, of object class membership, that constitutes the

interpretation of an image. In the context of object class segmentation, the

configurations of image labels, HA, define image interpretations in terms of

object class membership. In general, H = HA ∪ HO, where HA is the set of

variables associated to segmentation labeling, whereas HO = H \ HA is the
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set of other hidden variables. These hidden variables (of the latter subset) in-

clude the intermediate, explanatory variables deployed to explain observation,

such as those related to, for instance, object part labeling [44, 43, 82], pattern

descriptors [73, 81], variability of visual appearance vis-à-vis some canonical

representation [81, 73, 82, 29], object localization [81, 54, 52, 91] and others.

The second class of quantities, Θ, of inference arises from the modeling tech-

niques adopted in probabilistic approaches to image segmentation. It is com-

mon to define a family of probabilistic models in terms of parametrized func-

tions. Thus the common structure, MS , can be conveniently expressed in

terms of functional forms and the specific “shape” of individual models of the

family via parameter specification. Well known parametric models such as the

exponential families [19, 31, 79, 70] and mixture models [19, 6] are common

tools for capturing the stochastic properties of visual processes in object class

modeling. It is also common to express the conditional distributions of more

complex processes in terms of parametrized energy functions in the graphical

models. In general, the exact configuration of the model parameters cannot

be determined a priori. Heuristics including trial and error may be involved

to tune the model. Probabilistic approaches primarily follow a more recent

alternative which sees the model parameters as unknowns and infers the opti-

mal configuration from experimental results or training sets empirically. Thus,

model parameters are represented by a set of random variables [3, 17]. Prob-

abilistic models or distributions defined over the parameters capture belief

about their plausible configurations, encoding prior knowledge and all infor-
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mation derived from past observation.

Consider the interpretative model as given by

pr(H|D,ZT ,MS) =
∑
Θ

pr(H|D, Θ,MS)pr(Θ|ZT ,MS) (4)

where ZT denotes the knowledge given by past observation, experimental re-

sults or interpretative exemplars. In many cases, interpretation selection is

concerned only with the configuration of image labeling. The conditional dis-

tribution of image labeling, pr(HA|D,ZT ,MS) =
∑

HO
pr(HA, HO|D,ZT ,MS),

captures what is known about the plausible interpretation of an image. In the

absence of any intermediate latent variables, that is, HO = ∅, the parameter

model, pr(Θ|ZT ,MS) depends upon the training data only. This allows a

simple solution to the inference problems for many probabilistic approaches

[25, 64, 68, 82, 66]. That is, a model can be selected prior to inferring the

model parameters independently of the image labeling.

In the presence of intermediate, latent variables, it is common to compute

the optimal configurations of hidden variables and model parameters either

under some iterative framework [44, 43, 81, 26] or with some stochastic search

procedure [65, 73, 72, 74] using Monte Carlo methods. Iterative solutions

13As previously mentioned, if the model, M, admits a representation of the generative
processes and the a priori belief of plausible configurations in the hidden variables, the
conditional model can be obtained through Bayes’ law:

pr(H|D,Θ,MS) =
pr(D|H,Θ,MS)pr(H|Θ,MS)∑
H pr(D|H,Θ,MS)pr(H|Θ,MS)
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find their inspiration in the framework of the expectation maximization (EM)

algorithm, a two-stage optimization technique for solving the inference prob-

lems with hidden variables [14, 19, 6]. Starting with an initial configuration

of model parameters, the algorithm updates the estimates interactively until

convergence in two steps: (1) the E-step computes the conditional distribu-

tion of hidden variables given the observed data and the current estimate of

the parameters, and (2) the M step re-estimates the parameters by maxi-

mizing the expected complete data log likelihood model with respect to the

conditional distribution given by the E-step. This strategy forms the basis of

many other variants developed to cope with the challenge of complex models

[14, 19, 61, 17]. In contrast, stochastic solutions rely on a class of stochas-

tic sampling algorithms. The model parameters and the unknown states are

inferred from a correlated sequence of samples generated from the first order

Markov process where the stationary distribution of the process, prS(Θ|ZT ),

converges to the target distribution pr(Θ|ZT ), independent of the initial config-

urations. Many approaches integrate some discriminative/classification steps

to approximate the probabilistic models based on local features and thus to

restrict the search space of inference to the most plausible solution regions for

tractability and efficiency [23, 89, 44, 73, 43, 72, 74] . To provide coarse re-

gions of plausible solutions or approximations to the inference problems, these

discriminative models are trained separately from the training data.
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3.2 Optimization Problems of Natural Scene Labeling

The primary interest of interpretation selection in the context of object class

segmentation is an optimal assignment that incurs the least expected risk due

to misclassification, according to a probabilistic model. A similar decision

may be required in model selection with respect to the model parameters that

provide the best explanation of the training set. The decision can be formally

viewed as a decision rule, z −→ x, from the observed to an estimate of the

unobserved according to some optimality criteria. These criteria are defined

as a loss function (also known as a cost function), L(x, x̂) > 0, which measures

the cost of estimating a true value x by x̂, and by convention, L(x, x) = 0

[80]. The optimal decision rule aims to minimize the total loss incurred by

a decision [6]. In the absence of a priori knowledge of the true value x, the

optimal solution is the one that minimizes the average loss with respect to

the conditional probability of the true value given an observation; formally,

x̂opt = arg min E[L(x, x̂)|z], where the a posteriori expected loss is defined

as E[L(x, x̂)|z] =
∫

L(x, x̂)pr(x|z)dx. Therefore the optimal decision rule de-

pends on the definition of the loss function. The “ 0/1” loss function14, for

instance, leads to the maximizer of the a posteriori mode and its additive

version15 yields the maximizer of the posterior marginals (MPM) [80]. These

14The “0/1” loss function is defined as Lε(x, x̂) = 1|x−x̂|≥ε, for some ε > 0, for scalar
continuous variables and L(x, x̂) = 1|x6=x̂| for scalar discrete variables, where 1A maps to
one if A is true and zero otherwise.

15The additive “ 0/1” loss function is the decomposable function defined as L(x, x̂) =
M∑
i=1

Li(xi, x̂i), where each summand Li is a “ 0/1” loss function.
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decision rules are generally adopted in both interpretation and model selection

in object class segmentation16. For other loss functions, see [55, 50].

Challenges often arise in computing the inference models which usually involve

components, such as computing marginal distributions17, and normalization,

that are not always tractable due to their non-local scope of information con-

sideration, [19, 13, 76]. Observation models or likelihoods are marginal prob-

abilities of the observed data, and thus their computation is a special case of

marginal probability computation. Computing the conditional distribution,

pr(Xα|Xβ), for disjoint subsets, Xα and Xβ, of the state space also involves

marginalization. Normalization, a general problem in cases where the pos-

terior involves a partition (normalization) function, requires integrating the

energy responses to every configuration in the solution space. In general, the

partition function is a function of the model parameters, where all parameters

are interdependent. Computation of this type involves integrating informa-

tion over an exponential number of configurations and is therefore generally

intractable in undirected graphical models [78, 17, 39].

In some special cases, the complexity of the problem can be reduced by exploit-

ing the probabilistic structures of specific models. If a probabilistic graphical

model can be described with a tree, for instance, each node and its descendants

induce a subgraph which is also a tree. This restricted class of tree-structured

16These rules are discussed for the cases of object class labeling, where X̂MAP = ÂMAP ,
and X̂MPM = Âi

MPM
.

17The marginal distribution, pr(Xα), is defined over a subset Xα ∈ X of the state space
or space of unobserved variables.
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distributions allows breaking down an inference problem over a graph into a set

of problems over the subgraphs recursively. Efficient inference can therefore

be implemented by means of exchanging information among local neighboring

nodes via message passing using dynamic programming of belief propagation

[62, 84, 79, 77, 42, 6, 76]. Ignoring the existence of loops, one may iter-

ate a belief propagation procedure to graphs with cycles until convergence –

hence these solutions are generally referred to as ‘loopy belief propagation’.

Although supported by many successful applications, loopy belief propagation

may not converge to a stable equilibrium, and the resulting marginals may not

be accurate [62, 84]. The clustering inference algorithm is a logical extension

of belief propagation to graphs with cycles, which transforms the model into

a probabilistically equivalent polytree through node merging. A methodical

and efficient way to implement this approach for probabilistic inference is the

junction tree algorithm, which projects the underlying graph of the model into

a clique tree subject to constraints of consistency18 across cliques; for details,

see [48, 33, 77, 32, 42, 76]. However, the computational complexity of the

algorithm is exponential in the size of the maximal cliques in the junction

tree, and thus it is feasible only for models with small cliques. For nontrivial

inference problems, the tree algorithm is generally prohibitively complex due

to enormously large state cardinalities [77, 76].

18These constraints are required since a given node in the model may appear in multiple
cliques. It is necessary to ensure that the assignment of marginals to these nodes in different
cliques is consistent.
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3.3 Approximations of Inference Models

Many inference models used in probabilistic approaches cannot be reduced

to these special cases. It is computationally impractical to produce an ex-

act inference due to the dimensionality of the solution space or due to the

complex functional forms of the distributions. Instead, a variety of approxi-

mation schemes are adopted to provide approximations to the exact solution.

These schemes fall naturally into two categories: stochastic and deterministic

distribution approximations.

3.3.1 Stochastic distribution approximations The first class of ap-

proximations maps a target distribution to a randomly-generated approxima-

tion via numerical sampling of the distribution [6, 69]. Markov Chain Monte

Carlo (MCMC) is a framework commonly adopted in many inference prob-

lems of visual segmentation to sample from a complex distribution of high-

dimensional data. The basic idea of the approach is to generate samples by

exploring the state space in a Markov chain process that allows the chain to

realize the target model distribution as its limiting distribution. After a par-

tial realization of the limiting distribution, the chain spends more time in the

highly probable regions and consequently generates a sample which mimics the

one drawn from the target distribution [1, 5, 6, 80]. The Metropolis-Hastings

(MH) algorithm and its many variants have become the best known sampling

strategies for constructing a convergent chain. Many inference problems of

object class segmentation of natural images dwell in a varying dimensional

space. Except for some special cases, there is no a priori knowledge about the
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number of distinct regions in an image. A scene may be labeled in terms of

different object classes, which are represented by diverse families of class mod-

els in terms of varying number of explanatory factors. As a consequence, these

inference problems call for approximation schemes based on trans-dimensional

sampling techniques. Reversible jump MCMC is a an extension of MCMC that

constructs a reversible Markov chain according to a transition probability be-

tween subspaces of varying dimensions so that the chain with jumps across

different subspaces converges to the target distribution at its equilibrium. As

previously discussed, stochastic search looks for the most coherent interpreta-

tion by sampling different configurations of image partition. According to a

set of transition kernels, image parsing, for instance, specifies the reconfigu-

ration dynamics as a series of reversible Markov chain jumps governed by a

set of graph transformation operators, which either change pattern models or

node attributes, including the birth and death of visual patterns, splitting and

merging of regions, pattern model switching and boundary evolution. The re-

versible Markov chain in the space of parsing graphs ensures that fair samples

are generated from the invariant probability corresponding to the posterior

model.

3.3.2 Deterministic distribution approximations quad Alternatively,

deterministic approaches seek analytical approximations to a target distribu-

tion. Point estimators, such as the ML and MAP, may be viewed as the

simplest and the limiting variants19 of this general principle. Laplace ap-

19The point estimate of unknown variables or parameters, denoted by u, may be inter-
preted as an approximation of the distribution, pr(u), by the function δ(u− û), where û is
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proximation seeks a Gaussian approximation to a probability density defined

over a set of continuous variables using the second order Taylor expansion

about the modes of the function. These schemes may fail to capture signif-

icant, global properties due to their dependence on the local behavior of the

density function around particular configurations [49, 6]. Consequently, they

are not sufficient for the inference problems of natural scene segmentation due

to the fact that any adequate representation of the problems generally involve

complex probability distributions defined over discrete spaces.

Instead, many probabilistic approaches turn to a framework of deterministic

distributional approximations, called variational inference, that are applicable

to more general situations of probabilistic inference according to more global

approximation criteria. Variational inference turns an approximation into an

optimization problem by searching over a space of distributional forms for an

optimal member that is close to the target distribution. It also admits an

efficient evaluation scheme. The optimal approximation occurs at the mini-

mum of the Kullback-Leiber or KL entropy between the approximation and

the target distribution. With an unrestricted space, the variational free en-

ergy is maximized where the KL entropy vanishes, leading to an exact form

of the target distribution. Due to computational concerns, it is often neces-

sary to restrict the space to those distributional forms that admit an efficient

evaluation. The common classes of approximation in natural scene segmenta-

tion are those of factorized distributional forms, which in one way or another

the chosen point estimate of u.
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postulate some independence structures among the model components, i.e.,

independent groups of stochastic variables. Thus, individual components can

be inferred independently or interactively; for details, see [6]. Underlying

many inference algorithms used in object class segmentation is the reinter-

pretation of the EM algorithm [21, 61, 30, 2, 17, 6] and belief propagation

[86, 30, 35, 71, 79, 84, 85, 76] as a variational approximation, with the stan-

dard algorithms being the special case when the approximation distribution

equals the target distribution. Many approximation variants result from this

analysis for large classes of distributions, where no exact solutions are possible

under the standard frameworks.

3.3.3 Limitations of approximations in natural scene segmentation

The choice between stochastic approximation and variational inference is usu-

ally driven by an efficiency versus accuracy trade-off. Given adequate compu-

tational resources, stochastic sampling techniques can yield an approximation

to any arbitrary level of accuracy but they can be computationally demand-

ing. Inference, according to these schemes, may be too slow for many practical

problems of signal and visual analysis. As a consequence, their application is

usually limited to inference problems of small scales, otherwise the veridical-

ity of representation is compromised under simplifying assumptions [73]. It is

also non-trivial to determine whether the sample is generated from the target

distribution – an underlying factor for the accuracy of approximation. The

recent interest in variational inference is primarily motivated by the rising

computational cost of inference using Monte Carlo methods. This alterna-
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tive framework approaches the problem with analytical approximation to the

target distribution and seeks a configuration that is reasonably close to the ex-

act solution. The accuracy of approximation is largely limited by the choice of

tractable distributions available for the approximation. Determining an appro-

priate family of distributions for approximation is non-trivial, and oftentimes

the decision remains more art than science. In many cases, common approx-

imations take advantage of the independence structures of the distributional

forms for tractability and efficiency of evaluation. Thus, the choice of ap-

proximation family depends on how much dependence and correlation among

the stochastic variables can be ignored with acceptable accuracy. Figure 1

Adopted from [69]

Figure 1: Accuracy versus computational cost trade off in distributional ap-
proximation.

illustrates the trade-off between the two approaches; for further details, see
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[69, 76, 6].

This compromise is indeed not a unique problem of approximation inference.

In visual segmentation, models are designed with computational issues in

mind. By exploiting simplifying assumptions of independence for compu-

tational convenience, natural scene segmentation models are themselves, at

best, approximations at the very core of the representation. One may expect

that performance degrades when these models fail to account for some essen-

tial dependent and correlative structures of the underlying processes. Indeed,

the independence assumptions used in many segmentation models are incon-

sistent with the general properties of a natural image. For instance, one may

expect that color, intensity, texture, deformation fields or other filter responses

should be highly correlated over an object-based subimage. The presence of

redundant and strongly coupled structures in natural images stands in sharp

contrast to the common assumption of cross-pixel independence; for instance

see [81, 17]. Despite the many successes reported using these models, there is

reasonable ground for questioning their generalizability when considering the

myriad of possible scenes in their full complexity of visual appearance.

19Similar comparisons can be found in [69].
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