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Abstract

Mapping technology is an essential component of autonomous robotic systems.

The ability of a vehicle to establish its location with respect to some environmental

representation allows the vehicle to navigate and reason about the environment.

This process of estimating vehicle motion while fusing sensor data to acquire a

map of the environment is called simultaneous localization and mapping or SLAM.

Existing SLAM formulations are unable to effectively address the problem of non-

stationary sensor noise in the sensor model. Yet orientation or location dependent

noise sources are commonplace in real-world scenarios. The use of standard noise

models (which assume stationary noise) leads to instability or reduced accuracy

of the resulting map within traditional SLAM solutions. By parameterizing the

non-stationary aspects of the noise model and estimating these parameters simul-

taneously with the map and sensor location, a stochastic formulation for SLAM is

developed.

The general Bayesian framework developed in this dissertation is applicable in

many domains, however this work focuses on the underwater environment. Stereo

video cameras and inertial sensors are utilized to solve SLAM in the underwater

environment. The resulting algorithm is used to recover models of complex under-

water structures. Incorporating a non-stationary noise model within a Bayesian

SLAM formulation reduces the error in the resulting trajectory and map by simul-

taneously estimating the location-based (non-stationary) noise in the environment,

the trajectory of the sensor, and an accurate map of the environment.
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CHAPTER 1

Introduction

Mapping technology is an essential component of autonomous robotic systems. If

a map of the environment is known prior to vehicle deployment, it can be used to

represent and accurately estimate the position of the vehicle. The ability of a vehi-

cle to establish its location with respect to its environmental representation enables

autonomous navigation and real-time reasoning. In an environment where things

do not move or change state it may be possible to use an a priori known map.

However, the reality is that the positions of objects change, many environments are

dynamic and a static representation is rapidly invalidated. In other situations, such

as exploration of new environments, it is not possible to have a map on hand prior

to deployment. Thus, a critical task for autonomous vehicles is the development of

technologies and sensors to enable a vehicle to explore the environment and create

a map representation suitable for self-navigation. Maps aid in path planning, in the

assessment of possible obstacles, and enable a wide range of autonomous abilities.

Autonomous vehicles may operate in a multitude of environments such as outer

space, underwater, or on land. Applications for autonomous vehicles include nav-

igation (e.g. DARPA Grand Challenge, autonomous military convoys), inspection

(e.g. oil-pipelines, satellites, ship-hulls), and exploration of new environments (e.g.

the Mars rover). Often, the goal of robotic exploration is to estimate a map of the

environment to be used for measurement purposes or to be used at a later date for

localization.

Mapping is accomplished through the use of sensors attached to the robot.

For wheeled robots, odometry provides an estimate of the vehicle’s motion rela-

tive to some previous point in time. Using a series of relative transformations,

measurement data can be transformed into a world coordinate frame. Continually

updating both the vehicle position and estimates of feature locations in the environ-

ment into a common frame of reference allows the robot to maintain its trajectory
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while simultaneously estimating the locations of the features in the environment

(i.e. the map). This process of simultaneous self-localization and map-building is

commonly referred to as Simultaneous Localization and Mapping or SLAM (see

[Thrun et al., 2005]).

There are many realities of the SLAM problem that make it a difficult problem

to solve. Since sensors measure physical quantities, unknown factors in the envi-

ronment degrade sensor performance. In existing algorithms these error sources

are typically assumed to be known, negligible, or stationary such that a calibration

phase can be performed prior to deployment to fully characterize the sensor error

and performance. Pre-calibration phases use a mathematical model of sensor per-

formance in the presence of these error sources to properly characterize how the

error changes in specific situations. Pre-calibration phases are not always suitable

(and may even be impossible) for complex environments. Dynamic sources of error

cannot be modelled effectively through pre-calibration and noise sources are not

necessarily position independent (i.e. some errors are dependent on how you sense

the environment, where the vehicle is relative to the object, etc.). Un-modelled

dynamic errors affect the quality of the map (since they are constructed through

sensor data fusion) and in some cases may lead to algorithmic inconsistency.

This dissertation explores methods of automatic three-dimensional (3D) map

creation suitable for autonomous vehicle operation. In particular, the focus of this

work is on developing algorithms that permit more general sensor models than

assumed in existing approaches. Methods for integrating sensor data are utilized

to develop a new framework for simultaneous localization and mapping of a vi-

sual sensor-based robot moving in an unknown six-degree-of-freedom environment.

Although the primary application domain for this work is the underwater realm,

experiments demonstrate the approach is capable of addressing the SLAM problem

for a wide range of environments.

1.0.1 Notational Conventions

Throughout this dissertation, subscripts such as st denote a particular value of a

random variable at time t where superscripts such as st denote a set of values.

2



Vehicle/sensor locations/pose are always denoted by st, observations such as range

or bearing to landmarks are always denoted as {z1, z2, . . . , zt} = zt. Control inputs,

such as odometry, are always denoted as ut and the map is denoted as Θ. Note

that a time-varying map would be denoted as Θt and the set of all maps over all

time would be denoted as Θt. Probabilistic density functions are always considered

to be continuous unless otherwise stated and are denoted as p(x) where x is a

random variable. The notation x̂ denotes an estimated value not the true value of

the variable. When discussing sampling approaches to estimation of a probability

density function, superscripts such as x(j) are used to denote the value of the j-th

particle in the distribution or particle set. When discussing Kalman filtering and

recursive estimation, the predicted state at time k is denoted as x̂−k and the updated

posterior estimate is denoted as x̂+
k .

1.1 SLAM

Smith, Self, and Cheeseman [Smith and Cheeseman, 1986, Smith et al., 1990] were

among the first researchers to explore simultaneous self-localization and the esti-

mation of spatial relationships of landmarks. They formulated the problem in a

stochastic manner to accommodate for uncertainty in the system. They used a

probabilistic representation to model uncertainty in the sensor data; measurements

are biased by noise, the sensor has limited resolution, and environmental factors

play a role in the accuracy of the sensor data. A stochastic formulation enables

the fusion of uncertainty from multiple error sources increasing landmark position

accuracy. The basic approach (as described in [Smith and Cheeseman, 1986]) is

to estimate the first two moments (mean and covariance) of the joint probability

distribution of the robot pose and landmarks in the map.

The SLAM problem can be formally defined — as in

[Durrant-Whyte et al., 2003] — in terms of estimating a joint probability distribu-

tion over the robot pose st and the map feature locations Θ = {θ1, θ2, . . . , θn},

p(st,Θ).

Information about the scene is given in the form of control inputs ut =
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{u1, u2, . . . , ut}, sensor measurements zt = {z1, z2, . . . , zt}, and data associations

(the mapping between each measurement and map feature) nt = {n1, n2, . . . , nt}.
Using this data, the joint probability can be described through a conditional rela-

tion

p(st,Θ|zt, ut, nt).

Traditionally, range and bearing to landmarks are provided as measurements to

solve the SLAM problem. The control inputs are provided in terms of vehicle

odometry; the data associations — typically unknown — are estimated through

a separate optimization process [Cox, 1993, Hahnel et al., 2005]. Estimating the

joint probability maintains estimates of the landmark locations (mapping) and the

vehicle pose (localization) simultaneously. By applying appropriate definitions of

conditional probability and incorporating other assumptions — perhaps most im-

portantly the Markov chain assumption — a recursive estimation process is real-

ized. Smith and Cheesman [Smith and Cheeseman, 1986] originally formulated this

estimation process using a Kalman filter [Kalman, 1960] framework. In a Kalman

filter framework, the algorithm functions by updating a state estimate by optimally

weighting the error between the received measurement and what was expected given

estimates of the current state. Solving SLAM with a Kalman filter imposes several

assumptions on the pdfs and the motion model. The underlying probability distri-

bution is assumed to be a Gaussian, i.e. fully modelled by the mean and covariance

estimate of the distribution and both the vehicle dynamic and measurement models

are assumed to be described by a linear process. Violating these assumptions can

lead to a divergence of the filter, or more commonly, inaccurate estimates resulting

from either over or underestimating the state variables. If the measurement and

noise processes are realistically modeled, the sensor data can be corrected by com-

pensating for the appropriate amount of error currently affecting the measurement

and the state is updated with higher accuracy. If the measurement includes errors

that are un-modeled (e.g. the error violates the Kalman assumptions) then the state

will be over or under-estimated resulting in a system that has a high amount of

uncertainty. Such a situation leads to an inaccurate robot trajectory and uncertain

map.
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A number of extensions to the Kalman filter algorithm have been developed

to address non-linear systems including the extended Kalman filter (EKF, see

[Welch and Bishop, 1995]) which estimates non-linearity in the motion and mea-

surement models by estimating the first-order terms of the Taylor series of these

processes. The unscented Kalman filter (UKF, see [Julier and Uhlmann, 1997]) ad-

dresses the non-linearity by directly using the non-linear models within the frame-

work and re-estimating the mean and covariances through a sampling approach.

Other sampling-based representations (commonly known as Monte Carlo estimators

or Particle filters, see [Gordon et al., 1993, Doucet et al., 2001, Ristic et al., 2004])

have been developed to address non-linear and non-Gaussian processes at the ex-

pense of computational power.

1.1.1 Limitations of current approaches

Current approaches to SLAM can be efficient and reliable in the application domain

for which they are intended. They do, however, have limitations that often preclude

their direct application to more generalized environments (such as the full 6DOF

underwater realm). These limitations include

• The use of an over-simplified model of the environment and vehicle motion.

Even in the airborne and underwater realm, existing SLAM approaches often

assume a planar (2D) world model with heading (for 3DOF). They often

assume altitude (or underwater depth) plus a planar model for mapping 3D

environments.

• Sensors are typically treated as black boxes with a probabilistic measurement

process. Existing systems typically assume that sensor noise is fully known

a priori, is stationary, and independent of landmark and vehicle pose (or

trajectory).

• Sensor calibration must be known or pre-tuned prior to deployment.

• Multi-sensor independence. Each sensor (and each measurement) is assumed

to be independent of all other sensors (and measurements).
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Traditionally, the observation model in SLAM is treated as though the mea-

surements did not come from a dynamic process. The sensor itself is modelled as

a stationary stochastic process biased by a zero-mean Gaussian error model. This

type of error model is reasonable for sensors that contain very little error on a

per-measurement basis and that allow for proper modelling using a conservative

Gaussian model. Unfortunately, many sensor error processes are not well modelled

using a single stochastic process. It may be that the underlying process is more

complex than a simple Gaussian model. For example, the sensor errors may be

modelled better by the sum of a Gaussian plus some non-Gaussian outlier process.

Sensor measurements are often assumed to be independent of each other, which is

not necessarily the case even with “clean” sensors such as laser rangefinders. The

sensing process is complex; thus, it is often impossible to compute an explicit closed-

form error model, or to have a reasoned mechanism for estimating a Gaussian-like

error model for the sensor.

1.1.2 Applications

Modelling the sensor noise parameters successfully within the SLAM framework

impacts many application domains. This dissertation concentrates on the applica-

tion of SLAM in underwater environments. The underwater environment presents

numerous challenges for the design of robot vision sensors and algorithms. Yet it

is these constraints and challenges that make this environment almost ideal for the

development and evaluation of robotic sensing technologies. Vehicles and their sen-

sors operating in this environment must cope with unknown motion due to external

forces such as currents, surf, and swells. These actions can produce unwanted and

unpredictable 6DOF motion of the sensor. In spite of these complexities, the under-

water environment provides a vast range of applications for which environmental

reconstruction is desirable including inspection and entertainment applications.

Most importantly in the underwater realm, 6DOF vehicle motion is not well-

modelled due to the effect of unknown forces — such as current or surge — acting on

the vehicle body. This creates a necessity for the SLAM algorithm to rely heavily

on sensor measurements to determine vehicle motion and map the environment.
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Yet the sensor measurements that are available in the underwater domain are often

more complex than the measurements assumed by traditional SLAM algorithms.

The primary sensor of concern in this dissertation is a stereo vision camera.

Stereo-vision algorithms are often used by autonomous robots to extract dense range

information enabling the creation of dense 3D models of the environment. Visual

odometry is often complimented by other sensors, such as inertial measurement

units (IMUs), to provide more precise measurements either at a faster rate or in

situations where visual measurements cannot be made. IMUs measure the linear

acceleration and angular rates applied on all axes. These measurements are then

integrated to provide accurate 3DOF orientation estimates.

This environment and our choice of sensors allows us to examine potential er-

ror sources that affect the SLAM estimate in the field. These include errors that

are static but unknown (such as fixed intrinsic and extrinsic camera calibration

parameters); dynamic but environment-based errors (such as color resolution and

lighting which change with underwater depth); dynamic but environment and po-

sition based errors (such as the disparity range used in the stereo algorithm which

depends on what the world looks like and where the camera is relative to the world).

1.2 Objectives of the dissertation

In this dissertation, it is argued that the proper estimation of the sensor parameters

is important for SLAM when using sensors in which there are multiple error sources

per measurement. These errors may be induced by unknown, or un-modelled, in-

trinsic calibration parameters, time-varying biases, or even map/location dependent

external factors. Estimation of these parameters should be performed as part of the

SLAM algorithm rather than as an offline process. This is especially true for appli-

cations where the sensor parameters are a function of the map and vehicle location.

Such situations occur in many application domains including the underwater realm

which is examined here.

This dissertation contributes to existing research in the following ways,

1. It provides a validation of underwater stereo-inertial integration for trajectory
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and 3D model recovery. It shows that the utilization of IMU data improves

the accuracy of ego-motion estimation when using 2D/3D feature tracking

with underwater stereo images.

2. It develops a theoretical exploration into the use of sensor parameters within

the probabilistic SLAM framework.

3. It develops an algorithm (SensorSLAM) to simultaneously estimate sensor

calibration parameters, the robot location, and the map.

4. It provides experimental validation of the SensorSLAM algorithm for 6DOF

underwater applications.

The main contribution of this dissertation is to explore the integration of sen-

sor parameter estimation into the SLAM framework. Simulations are performed

to validate the solution and an algorithm is developed under various assumptions

that enable estimation specifically for 3D reconstruction in the underwater domain.

Traditionally these error sources are pre-calibrated through a separate calibration

methodology however this assumes that the parameters are fixed for the duration of

the experiment or uniform and fixed over the capture volume. This work provides

a general framework to incorporate the estimation of the parameters, the location,

and the map simultaneously. Provided that the parameters are stationary in either

of time or space, the general framework is able to capture the other non-stationary

noise components of the model. An application relevant to the thesis which can

be accommodated by the framework is the use of an amphibious vehicle. Given

a vehicle that can perform sensing on land and in the water and be able to tran-

sition smoothly between the two environments, the framework is able to capture

the map-dependent (non-stationary) sensor noise in either (or both) of the environ-

ments. The calibration parameters of visual sensors must be modified depending on

whether the robot is being operated on land or in the water. Other situations oc-

cur where noise is map/pose dependent which can be modeled using this approach

such as areas with fog coverage. As the sensor goes from areas of little or no fog to

areas which have a high fog component affecting the visual sensors, different sensor

parameters may have to be used to reconstruct the environment and eliminate the
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effects induced by the fog. Another example of a situation are areas that transition

from very bright lit areas to very dimly lit areas (commonly found in space mis-

sions), in this situation the noise parameters must be chosen correctly to operate

effectively within some reasonable error bound. The approach developed in this

thesis is designed to accommodate such situations.

1.3 Structure of the dissertation

This dissertation is organized into the following chapters:

• Chapter 2 presents previous work and discusses the limitations of current

SLAM algorithms in the context of sensor modelling and 3D reconstruction.

• Chapter 3 presents 3D reconstructions obtained using a vision-based approach

in a real-world underwater application and illustrates the difficulties in ob-

taining accurate maps.

• Chapter 4 presents the theoretical foundation for SensorSLAM: an approach

to the SLAM problem that provides a more general approach to sensor mod-

elling and auto-calibration.

• Chapter 5 presents a set of experiments that illustrate the effectiveness of

the approach and contrast it with the results obtained from the algorithm

presented in Chapter 3.

• Chapter 6 discusses the results and provides directions for future work.

1.4 Previously published material

Much of the work described in this dissertation has been pre-

viously published at these refereed conferences and journals:

[Jenkin et al., 2008, Hogue et al., 2007a, Jenkin et al., 2007, Dudek et al., 2007,

Hogue and Jenkin, 2006b, Hogue et al., 2006a], presented as posters at conferences

[Hogue and Jenkin, 2003a, Hogue and Jenkin, 2003b, Hogue and Jenkin, 2004a,
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Hogue and Jenkin, 2004b, Hogue and Jenkin, 2005a, Hogue and Jenkin, 2005b,

Hogue and Jenkin, 2005c, Hogue and Jenkin, 2006a, Hogue et al., 2006b,

Hogue et al., 2007b, Hogue and Jenkin, 2007] and a land-based human mod-

eling application using the approach has been developed and published

[Hogue et al., 2007c].
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CHAPTER 2

Related work

Even though SLAM is a relatively recent development (dating back only to the

early 1980’s), the relevant research/literature is vast. Consequently, it is not pos-

sible to review all of the material related to SLAM here. Detailed surveys of the

mapping and localization field can be found in [Thrun, 2000, Thrun, 2003] and in

[Thrun et al., 2005]. In this dissertation, the review of SLAM is targetted specif-

ically at the error models used and the requirements of existing algorithms for a

priori error models. In addition to SLAM, also relevant to the discussion at hand

are topics in photogrammetry and structure from motion (SFM). A review of the

relevant literature from these fields is also presented here. In order to put this

work in context, this chapter begins with an introduction to some of the problems

involved in the development of autonomous underwater vehicles.

2.1 Autonomous underwater vehicles and associated prob-

lems

Autonomous Underwater Vehicles (AUVs) are an emerging technology for a range

of scientific endeavours [Clarke, 2003]. AUVs are used to explore and collect infor-

mation about the underwater environment; an environment which can be extremely

hazardous to human explorers. Figure 2.1 shows examples of existing autonomous

underwater vehicles. Not surprisingly, there has been much work done in the design

and control of AUV systems. See [Rodseth and Hallset, 1991, Caccia et al., 1999,

Caccia et al., 2000, Bruzzone et al., 2001, Caccia et al., 2001, Caccia et al., 2005,

Caccia, 2006] for representative work. Examples of notable AUV projects in-

clude Kambara [Reynolds, 1998, Fitzgerald, 1999, Bryant, 2000, Biddle, 2003],

Orca [Turner, 1995], the Mako Project [Braunl et al., 2004] and the AQUA project
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(a) (b) (c) (d)

(e)

ing the fusion and use of vision and inertial sensors to
achieve similar performance whilst requiring no external
infrastructure to perform the mission at a vehicle cost of
the order of magnitude less than current vehicles. There
is a small amount of research being performed for nav-
igation in such reef environments [Eustice et al., 2004;
Williams and Mahon, 2004], however, although promis-
ing research, their methods currently require expensive
hardware and offline processing to assist in localisation
which is limiting for performing broad-scale surveying
tasks.

Development of smaller lower cost Autonomous Un-
derwater Vehicle’s (AUVs) has received some attention
in recent years with work by WHOI [Prestero, 2001]
and Virginia Polytechnic [Stilwell and Wick, 1999] be-
ing prime examples. However, these are torpedo style
vehicles with limited sensing (no vision) or manoeuvring
capability which is considered essential in reef environ-
ments. Other larger commercially available AUVs are
considered too expensive and the tether and endurance
are considered restricting factors.

In light of current technology, there is a need for an
autonomous underwater system for performing reliable
and efficient in-field environmental monitoring tasks at
a much reduced cost then currently available vehicles.
This paper describes a system that addresses this need of
a low-cost vehicle which uses low-resolution sensors and
hardware fused intelligently together to provide reliable
localisation estimates and navigation information.

A principle aim of this research was to con-
struct a fully autonomous underwater vehicle for less
than AUS$10,000 which requires less than one per-
son/operator per AUV. Additionally this investigation
focussed on not only developing an AUV to perform en-
vironmental management tasks, but to develop an au-
tonomous systems “capability” which can be scaled ap-
propriately to achieve a variety of unspecified tasks. This
capability would allow AUVs to operate in highly un-
structured environments with minimal to no human in-
tervention or external positioning infrastructure.

1.1 Paper outline
The remainder of this paper is structured as follows.
Section 2 provides an overview of the vehicle and the
philosphy behind its design, with Sections 3 and 4 outlin-
ing the sensors and new technology used on the vehicle.
Section 5 describes the vision-based motion estimation
technique employed. Finally, Section 6 presents some
experimental performance results for the vehicle.

2 Vehicle Overview

The autonomous underwater vehicle developed in this
research had an overarching goal of being significantly
less expensive than other research and commercial plat-
forms (less than AUS$10,000) and that it must be small
enough to be deployed from small boats, jetties or from
the foreshore. Also it is desired to reduce the ratio of

AUVs that can be deployed and operated per person to
be greater than one.

The vehicle must be capable of performing the envi-
ronmental monitoring tasks required by the reef moni-
toring organisations [English et al., 1994]. The primary
tasks to be performed are video transect surveys and
water quality measurements. In order to achieve these
tasks, the vehicle must be capable of navigating over
highly unstructured surfaces at fixed altitudes (down to
300mm from sea floor) at depths in excess of 100m in
cross currents of 2 knots. The required positional accu-
racy in linear transects must be less than 5% of total
distance travelled to ensure repeatable transects.

Additionally, in order to effectively navigate around
this environment, the physical properties of the AUV
must decrease in size and increase in manoeuvrability.
Also the size and power requirements of the sensor suite
must decrease whilst still providing a speedy and efficient
monitoring platform. It is also considered essential that
the vehicle be untethered to reduce risk of entanglement,
the need for support vessels and reducing drag imposed
on the vehicle during strong currents. Figure 2 shows
the vehicle design named “Starbug” in its concept form
and its current physical configuration.

(a) Concept

(b) Actual

Figure 2: The “Starbug” Autonomous Underwater Ve-
hicle.

(f)

(g) (h)

Figure 2.1: Examples of autonomous underwater vehicles (a) Autonomous Ben-

thic Explorer [Jakuba and Yoerger, 2003], (b) Autosub [Brierley et al., 2002], (c)

KAMBARA [Wettergreen et al., 1998], (d) Oberon [Majumder, 2001], (e) HUGIN

[Hagen et al., 2003], (f) Starbug AUV [Dunbabin et al., 2006], (g) SeaBED AUV

[Singh et al., 2004a], (h) The AQUA Robot [Dudek et al., 2007].
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[Dudek et al., 2007].

One motivation for the development of AUVs is the need to monitor coral

reef health more effectively. Coral reefs are indicators of global climate change.

Their health changes rapidly due to small fluctuations in oceanic temperatures.

The coral bleaching event in 1998 in Okinawa — where an estimated 80% of the

coral died — was due to a global increase in ocean temperature of only a few

degrees [Furushima et al., 2004]. To understand and monitor coral health, a survey

program called “Reef Check” was instituted globally in 1996 to enlist the aid of

the public in the assessment of global coral health [Hodgson, 1999]. Reef Check is

an “easy-to-learn” method that systematically assesses the variety of fish, inver-

tebrates and substrate in a given region but can be time consuming and is prone

to human error. AUVs designed specifically to perform coral surveys have been

deployed [Williams and Mahon, 2004a, Singh et al., 2004a, Dunbabin et al., 2004,

Dunbabin et al., 2005a, Dunbabin et al., 2005b, Armstrong et al., 2006,

Dunbabin et al., 2006]. In addition to coral monitoring, other applications for

AUVs include underwater archaeology [Caiti et al., 2006, Ludvigsen et al., 2006],

the evaluation of organism density under sea ice in the Antarctic

[Bone et al., 1994, Bono et al., 1998, Bono et al., 1999, Brierley et al., 2002],

underwater cable tracking [Ortiz et al., 2002], automatic visual pipeline in-

spection [Hallset, 1991a, Hallset, 1991b, Hallset, 1992], ship-hull inspection

[Negahdaripour and Firoozfam, 2006] and covert environmental assessments for

military applications [Hagen et al., 2003]. Acoustical sensors have been used

to reconstruct shallow archaeological sites (e.g. boat wrecks and coral reefs) in

[Plets et al., 2008] and laser scanners have also been used to extract 3D information

of coral reef as in [Holmes, 2008].

A popular method used to acquire high resolution imagery/maps for AUVs

is the use of photomosaicking algorithms to stitch and blend sequences of im-

ages together [Xu and Negahdaripour, 1997, Singh et al., 2002, Singh et al., 2004b,

Singh et al., 2007]. Developing computer vision techniques for use underwa-

ter is important for visually guided AUVs (e.g. [Wettergreen et al., 1998] and

[Dudek et al., 2007]). Issues related to underwater imaging include (but are not lim-

ited to) dynamic lighting, refraction and color resolution that is based upon the sen-
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sor depth [Duntley, 1963, Kwon, 1999b, Schechner and Karpel, 2004]. These fac-

tors complicate vision-based sensing in the underwater environment. Recent trends

and problems with underwater imaging were discussed in [Shortis et al., 2007,

Kocak et al., 2008].

Underwater mapping and localization using acoustical (sonar)

imaging devices has been widely studied (see [Ribas et al., 2007b,

Williams and Mahon, 2004b, Bono et al., 1994, Caccia et al., 1997,

Jakuba and Yoerger, 2003, Yoerger et al., 2005, Yoerger et al., 2007]). These

techniques have been deployed in marine environments [Ribas et al., 2007a],

partially structured environments [Ribas et al., 2006], man made envi-

ronments [Ribas et al., 2008] and natural underwater caves and tunnels

[Fairfield et al., 2006, Fairfield et al., 2007]. Determining an accurate motion model

for an autonomous underwater vehicle is a complex task. Other than forces applied

by motion commands and kinematics, unknown three-dimensional forces such as

current (a uni-directional force) or surge (a sinusoidal-like force) continually affect

the vehicle displacement (see [Makarenko et al., 1997] for an example of a hydrody-

namic model for a submersible). Propellors or legs associated with the vehicle create

vortices that change the vehicle dynamics, and tethers attached to vehicles com-

plicate matters. Many algorithms have been developed to extract vehicle motion

from imagery including [Negahdaripour et al., 1990, Yu and Negahdaripour, 1993,

Negahdaripour and Lanjing, 1995, Negahdaripour et al., 1996,

Negahdaripour et al., 1998, Negahdaripour et al., 1998]. Stereo vi-

sion systems are also popular in the underwater research commu-

nity, for example passive stereo systems [Negahdaripour et al., 1995,

Khamene and Negahdaripour, 1999, Negahdaripour et al., 2002,

Negahdaripour and Madjidi, 2003, Negahdaripour and Firoozfam, 2006,

Hogue and Jenkin, 2006b, Hogue et al., 2007a, Jenkin et al., 2008] as well as

active vision systems have been investigated [Strickrott and Negahdaripour, 1997].

The measurement of reef fish lengths is difficult to determine accurately since

the typical algorithm is to have divers visually inspect and report the type of

fish and their lengths to aid in determining the health of the coral environment.

In [Harvey et al., 2001], the diver visual inspection accuracy is determined by
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using a passive stereo-video system to extract metric information of the fish

lengths. This requires robust calibration algorithms which were described in

[Harvey and Shortis, 1998].

2.2 Maps and their representations for 2D/3D environ-

ments

Maps are an enabling technology for many human endeavors including autonomous

underwater vehicles. Maps are fundamental tools that aid self-navigation and au-

tonomous operation. Thus, it is not surprising that there is a long history of map

construction and the development of tools and techniques to support map building.

There is evidence that humans have been building maps since the Upper Paleolithic

era (10,000 to 40,000 years ago); however, the Babylonians are credited for making

the earliest recorded attempt at a reasoned conception of the universe using graph-

ical mapping techniques [Harley and Woodward, 1987]. Although maps had found

wide use in land-based and near shore environments, it wasn’t until the invention

and adoption of navigational tools such as the compass, telescope, and sextant

(from the 13th to 17th centuries) that the map-building process was suitable for

navigating the oceans.

In the robotics literature, maps are generally thought of as a collection of

entities describing the spatial distribution and relationships between objects or

features in the environment located on a 2D Cartesian grid (or 3D volume).

That being said, there are many different map representations including topo-

logical maps [Kuipers and Byun, 1991, Simhon and Dudek, 1998, Thrun, 1998,

Choset and Nagatani, 2001], 2D metric occupancy grids [Elfes, 1989b], 3D vol-

umetric grids [Foley et al., 1990] and 3D hierarchical volumes such as Octrees

[Gervautz and Purgathofer, 1988].

A commonly adopted map representation for robotics applications is the 2D

occupancy grid due to its simplicity both computationally and conceptually. This

representation is sufficient for environments that are planar, (or locally planar)

such as man-made office spaces, levelled outdoor environments, and even out-
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door environments that are locally planar with gentle slopes. However, 2D grids

do not sufficiently characterize environments that are naturally 3D. If the ve-

hicle is capable of 6DOF motion through a 3D environment, it is necessary

to utilize higher order representations (at higher computational and algorithmic

cost). Examples of such 3D environments include outerspace, underwater, and

even land-based environments containing 3D structures that do not lend them-

selves well to 2D projection such as tunnels, or highly variable mountainous re-

gions. Other non-feature based representations for models and maps exist such as

scalar fields or implicit functions [Bloomenthal, 1988, Wang et al., 2005], Level-

Sets [Bærentzen, 2002, Bischoff and Kobbelt, 2003, Gomes and Faugeras, 1999,

Houston et al., 2004], or distance fields [Jones et al., 2006, Sigg et al., 2003,

Frisken et al., 2000, Perry and Frisken, 2001] which have yet to be explored in the

context of SLAM.

2.3 Localization given a map

Localization — the ability to determine the location of the vehicle — is a common

robotics problem. When a suitable map of the environment is known a priori, it is

sufficient to find the associations between sensor data and known feature locations

in the map. Given this knowledge, an accurate transformation can be determined

to denote the vehicle location. For example, in an autonomous museum guidance

application, museums have a very well defined floor plan that is known accurately. A

robotic vehicle can use this prior knowledge of the environment to self-navigate. The

map can be acquired in many ways prior to autonomous operation, possibly from a

tele-operated session, or manual map creation using blueprints/CAD drawings. The

Minerva project (see [Thrun et al., 2000a]) developed such an autonomous museum

guidance robotic vehicle.

Many robotic systems have utilized this approach. Leonard and Durrant-Whyte

developed a localization method using an extended Kalman Filter (EKF) framework

[Leonard and Durrant-Whyte, 1991]. In this work, an EKF was used for robot pose

estimation through the observation of known geometric-beacons in the environment.

Planes, cylinders and corners were used as distinctive geometric entities that could
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be reliably extracted from the sonar sensor data. The map is a set of known beacon

locations and were assumed to be static and naturally occurring in the environment.

Using the robot location and error model from the EKF, a method was devised to

acquire accurate data association using the known beacon locations for the next

EKF update. In [Cox, 1991], range data from an optical rangefinder was used to

acquire a 360 degree range image around the vehicle. Line segments extracted

from the range data were matched through an iterative least squares approach to

a known map to determine the vehicle location.

2.4 Mapping given localization

In the reverse problem — knowledge of the robot location in the world co-

ordinate frame — sensor data is fused together to generate a map represen-

tation of the environment assuming some independent mechanism to maintain

the pose of the vehicle. The occupancy grid introduced by Elfes and Moravec

[Moravec and Elfes, 1985, Elfes, 1989b, Elfes, 1989a] (see Figure 2.2) is an example

of such an approach. In an occupancy grid, the environment is represented as a

fine-grained grid where each cell is in either an occupied, empty, or unknown state.

Each cell of the grid maintains a probability representing the degree of certainty

that it is occupied. As range data is gathered from the sensors (in this case sonar

range sensors are used), empty and occupied cells are identified. The cells between

the current robot location and the sensed range are set to an empty state due to

the assumed line-of-sight properties of sonar technology. Similarly, the cells at the

sensed range are updated to an occupied state. In Elfes’ Thesis [Elfes, 1989a], the

process of updating the occupancy grid is described as:

1. The sensor reading is converted into a probability distribution using a stochas-

tic sensor model.

2. Bayes rule is applied to update the cell probabilities.

3. If desired, the maximum a posteriori (MAP) decision rule is applied to label

the cell as being either occupied, empty, or unknown.
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(a) [Elfes, 1989b] (b) [Thrun et al., 2000a]

Figure 2.2: Examples of Occupancy Grids

For many robotic tasks, it is sufficient to use the probabilistic represen-

tation of the occupancy grid; it is rare that the final MAP stage is ap-

plied. The occupancy grid representation has received much success in the

field robotics community and has also been applied in situations within which

localization is not assumed, (see [Buhmann et al., 1995, Guzzoni et al., 1997,

Lu and Milios, 1997, Burgard et al., 1999, Thrun et al., 2000a]). It is still used at

the core of more recent algorithms such as DP-SLAM (see [Eliazar and Parr, 2003,

Eliazar and Parr, 2004]) and is used as a visualization tool for others (see

[Montemerlo et al., 2002, Sim et al., 2007]).

2.5 SLAM

Chatila and Laumond in [Chatila and Laumond, 1985] were among the first to de-

velop the idea of simultaneous localization and mapping. They argued that in order

for a robot to understand its environment, it must be able to create a consistent

world model of the environment and locate itself within this model. The algo-

rithm attempted to create three types of environment models: a geometric model

using metric sensor data, a topological model to express areas that are connected

for navigation, and a semantic model to add semantic meaning to objects for a

higher-level decision making process. They also employed three types of local-

ization. First, absolute positioning was determined using known beacons in the

environment. Second, the trajectory of the vehicle was integrated using odometric
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and inertial information both of which are subject to drift. Third, relative posi-

tioning was performed with respect to objects or other distinctive features that are

characteristic of the environment. The authors observed that if an estimate of the

robot position is maintained along with appropriate uncertainties derived from the

motion and odometric/inertial error model, overlapping sensor information could

be used in a position correction stage. As the robot moves in the environment, its

sensor information (range to walls in this case) contains an area that has already

been seen. Thus, given the approximate (but noisy) estimate of the current robot’s

motion, the sensor data can be used to update the map and the robot’s position.

The uncertainties in the measurements are modelled as zero-mean Gaussian error

functions and the update method incorporates the uncertainty of the measurements

by computing a weighted average. This update scenario is a direct pre-cursor to

using a more general Kalman filter formulation.

Building on the principles developed in [Chatila and Laumond, 1985] — us-

ing the idea of estimating a map while localizing the vehicle and using proper

uncertainty models for the measurements — Smith, Self, and Cheeseman

[Smith and Cheeseman, 1986, Smith et al., 1990, Smith et al., 1991] introduced a

more formal and general approach to the SLAM problem by developing a prob-

abilistic framework to model the spatial-relationships between landmarks in the

environment. They placed the mapping and localization problem within a formally

defined stochastic parameter estimation framework. Their framework of choice was

a linear least-squares optimal recursive filter, namely the Kalman filter. Smith et

al. argued that mapping is an extension to localization and provided a rigourous

estimation-based algorithm. They did not describe the important side-effects of

this type of SLAM formulation. As Csorba argues in his thesis [Csorba, 1997], the

main effect that the probabilistic formulation of SLAM has, is that the errors be-

tween the vehicle and feature estimates become fully correlated in the limit as the

number of observations grows. He argues that it is these correlations that “capture

the essence of the SLAM problem.”1. Csorba also provided a rigourous theoretical

investigation into the SLAM problem and examined the convergence of the solu-

1[Csorba, 1997], pg 9.
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tion. Since then, SLAM has been applied in many domains including underwater

[Williams and Mahon, 2004b, Eustice, 2005], underground [Thrun et al., 2004b],

on land — indoors [Takezawa et al., 2004] and outdoors [Newman et al., 2006,

Wang et al., 2007a] — and in the air [Elfes et al., 1998, Kim and Sukkarieh, 2007,

Bryson and Sukkarieh, 2007, George and Sukkarieh, 2007a].

Smith et al. formulated SLAM as a recursive state estimation process. The state

vector they wished to estimate included the robot pose (position and orientation),

as well as the landmark positions. For the robot pose, the 2D robot position and

orientation along with its covariance are estimated

x̂pose =

 x̂

ŷ

θ̂

 , Ĉpose =

 σ2
x σxy σxθ

σyx σ2
y σyθ

σxθ σyθ σ2
θ

 .
Given N landmarks, the 2D position in the world frame of landmark i is estimated

as

x̂i =

[
x̂i

ŷi

]
To simplify notation, the pose state vector and each landmark state vector are

concatenated into a (3 + 2N)× 1 state vector, x, that they wished to estimate. To

parameterize the state vector distribution, they estimate the mean x̂,

x̂ =



x̂pose

x̂1

x̂2

...

x̂n


.

and the jointly estimated covariance matrix, Ĉ,

Ĉ =


Ĉ(xpose) Ĉ(xpose, x2) · · · Ĉ(xpose, xn)

Ĉ(x1, xpose) Ĉ(x1) · · · Ĉ(x1, xn)
...

...
. . .

...

Ĉ(xn, xpose) Ĉ(xn, x2) · · · Ĉ(xn)


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where each Ĉ(xi) is a 3× 3 covariance matrix and the following relationships hold

Ĉ(xi, xj) = E
(
(xi − x̂i)(xj − x̂j)T

)
,

Ĉ(xj, xi) = Ĉ(xi, xj)
T .

Of importance are the off-diagonal entries which denote the covariances between

landmarks (and also between the landmark and the robot pose). These encode the

relationships between each pair of landmarks and also between the robot pose and

each landmark. The simplest model to use mathematically to manipulate these

random variables is the Gaussian distribution as it only relies on the mean and

covariance of the distribution.

The state is estimated recursively through a predict-correct loop implemented

using a Kalman filter (see [Kalman, 1960]). The prediction stage incorporates the

motion model of the vehicle as

x̂t = f(x̂t−1, ut−1, 0)

C(x̂−t ) = AtC(x̂t−1)ATt +WtQt−1W
T
t

where f(·) is a function that describes the motion of the vehicle. This motion

model projects the state forward given the previously estimated state (x̂t−1) and

the control input (ut−1). Qt−1 is the system process noise, Wt is the process noise

Jacobian and At is the system Jacobian that relates the motion model to the state.

For the estimator to be optimal, the motion model must be a linear function however

the use of an extended Kalman filter, that linearizes the non-linear motion model,

while being suboptimal performs well in practice.

The correction step is given by

x̂+
t = x̂−t +Kt

[
zt − ht(x̂−t )

]
C(x̂t) = C(x̂−t )−KtHtC(x̂−t )

Kt = C(x̂−t )HT
t

[
HtC(x̂t)

−HT
t + C(v)t

]−1

where Kt is the Kalman gain, x̂−t is the predicted state at time t, x̂+
t is the corrected

state given the error between the measurements and what was predicted using the

measurement function ht(·), and v represents the measurement noise.

21



This algorithm makes assumptions — as stated in [Smith et al., 1991] — that

are reasonable for most applications. These assumptions can be summarized as

• Functions on the random variables are relatively smooth around the estimated

means within one standard deviation.

• It is sufficient to estimate the first two moments of the distribution.

The algorithm by Smith et al. utilizes the extended Kalman filter equations as the

robot motion and measurement models are nonlinear and as such is considered to

be sub-optimal however it approaches optimality if an iterated extended Kalman

filter [Maybeck, 1979] is used.

2.5.1 Formal Bayesian definition

A Bayesian approach to robot mapping was formalized in [Thrun et al., 1998] and

[Durrant-Whyte et al., 2003]. Most formulations have since used this notation as a

basis. A Bayesian probabilistic framework for SLAM represents each of the robot

position and map locations as pdfs. Within this framework, the goal is to estimate

the posterior density of maps Θ and poses st given knowledge of the observations

zt = {z1, z2, . . . , zt}, the control inputs ut = {u1, u2, . . . , ut} and data associa-

tions nt = {n1, n2, . . . , nt} which represent the mapping between map points in

Θ and observations in zt. The SLAM posterior, as defined in Montemerlo (see

[Montemerlo et al., 2002]), is given by

p(st,Θ|zt, ut, nt). (2.1)

The system dynamics motion model assumes the Markov property

p(st|st, ut) = p(st|st−1, ut)

and the sensor measurement model is

p(zt|st,Θ, nt).

The derivation of the SLAM posterior is detailed in [Montemerlo et al., 2002]

but it is worthwhile to repeat here in detail since it provides insight into the SLAM
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problem and how successful solutions are modeled. The first step in deriving the

SLAM posterior is to apply Bayes rule. Bayes rule (see [Stark and Woods, 2002])

relates conditional probabilities as

p(A|B) =
p(B|A)p(A)

p(B)

= ηp(B|A)p(A)

where η−1 = p(B) is a normalization factor ensuring that the resulting value is a

probability. Also useful is the similar extension to Bayes rule

p(A|B,C) = ηp(B|A,C)p(A,C) (2.2)

and by using the substitutions from our problem domain, namely A = {st,Θ},
B = zt, and C = {zt−1, ut, nt}, Equation 2.2 becomes

p(st,Θ|zt, ut, nt) = ηp(zt|st,Θ, zt−1, ut, nt)p(st,Θ|zt−1, ut, nt). (2.3)

where η is a normalizing term. The p(zt|st,Θ, zt−1, ut, nt) term can be simplified by

assuming the measurements are independent of each other, thus zt is independent

of zt−1 and all other measurements. The measurement at this time step is also

independent of the control input. This allows for the following simplification

p(zt|st,Θ, zt−1, ut, nt) = p(zt|st,Θ, nt).

and the SLAM posterior (Equation 2.3) can be re-written as

p(st,Θ|zt, ut, nt) = η p(zt|st,Θ, nt)︸ ︷︷ ︸
Measurement Model

p(st,Θ|zt−1, ut, nt). (2.4)

The next step is to evaluate the last factor in Equation 2.4, p(st,Θ|zt−1, ut, nt).

The theorem of total probability (see [Stark and Woods, 2002]) enables the use of

the prior history of the robot motion. Assuming that the previous state and the

odometry contains all of the necessary information required to predict the motion

of the vehicle (Markov Assumption). This simplifies the pdf as

p(st,Θ|zt−1, ut, nt) =

∫
p(st,Θ, st−1|zt−1, ut, nt)dst−1

=

∫
p(st|Θ, st−1z

t−1, ut, nt)p(st−1,Θ|zt−1, ut, nt)dst−1.
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and the SLAM posterior can now be re-written as

p(st,Θ|zt, ut, nt) = ηp(zt|st,Θ, nt)
∫
p(st|Θ, st−1, z

t−1, ut, nt)

p(st−1,Θ|zt−1, ut, nt)dst−1.

If the map is dynamic then a new map is possible at each time step as denoted by

the subscripted Θt. In this case, the SLAM posterior to be estimated is given by

p(st,Θt|zt, ut, nt) = ηp(zt|st,Θt, n
t)·∫∫

p(st|Θt, ut, st−1, z
t−1, nt)p(Θt|st−1,Θt−1, z

t, ut, nt)·

p(st−1,Θt−1|zt−1, ut−1, nt−1)dst−1dΘt−1.

This is computationally very difficult, so the most common assumption in SLAM

algorithms is a static map

p(st,Θ|zt, ut, nt) = ηp(zt|st,Θ, nt)·∫
p(st|st−1,Θ, ut, z

t−1, nt)·

p(st−1,Θ|zt−1, ut−1, nt−1)dst−1.

Under the Markov assumption, the robot pose at time t, denoted by st, is condi-

tionally independent of all variables except its own pose in the previous time step

st−1 and the current control input

p(st|st−1,Θ, z
t−1, ut, nt) = p(st|st−1, ut).

which gives the standard robotic motion model. Under this assumption, SLAM can

be re-expressed as

p(st,Θ|zt, ut, nt) = ηp(zt|st,Θ, nt)∫
p(st|st−1, ut)︸ ︷︷ ︸

Motion Model

p(st−1,Θ|zt−1, ut, nt)dst−1.

Since ut = {u0:t−1, ut} and nt = {n0:t−1, nt} and as ut, nt do not influence the

previous measurement and pose, zt−1, st−1, they can be eliminated. Finally the
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Bayesian filtering equation for SLAM can be written as a probabilistic framework

(as in [Montemerlo et al., 2002]) as

p(st,Θ|zt, ut, nt) = η p(zt|st,Θ, nt)︸ ︷︷ ︸
Measurement Model∫
p(st|st−1, ut)︸ ︷︷ ︸

Motion Model

p(st−1,Θ|zt−1, ut−1, nt−1)︸ ︷︷ ︸
Recursive formulation

dst−1

(2.5)

Note that the second term in the integral — p(st−1,Θ|zt−1, ut−1, nt−1) — is the

SLAM posterior for the previous time step thus realizing a recursive estimation

process suited towards Kalman filtering. This is the traditional Bayesian formu-

lation of the SLAM problem as is realized in modern implementations for map-

creation. SLAM essentially is defined as estimating the joint probability of the

current robot location (st) and the map (Θ) given knowledge of the observations

(zt = {z0, z1, . . . , zt}), the robot control inputs (ut = {u1, u2, . . . , ut}) and data

associations (nt = {n1, n2, . . . , nt}). Equation 2.5 incorporates a probabilistic mea-

surement model p(zt|st,Θ, nt) and a system dynamics motion model p(st|st−1, u
t)

into a single expression and is suitable for recursive estimation through the use of

the Markov assumption for robot locations.

Placing SLAM in this framework involves providing explicit mechanisms for

representing the pdf’s used in the representation and developing mechanisms for

interpreting the resulting pdf’s as maps and position estimates. Two traditional

approaches to solving this problem are described below.

2.5.2 Kalman filter-based SLAM

One approach to SLAM implements the probabilistic framework using recursive

estimation techniques and Gaussian pdfs. The standard approach utilizes an ex-

tended Kalman filter, detailed in [Smith and Cheeseman, 1986, Smith et al., 1990,

Smith et al., 1991, Newman, 1999]. Each of the pdf’s in the above probabilistic

formulation are assumed to be Gaussian in nature allowing the use of the Kalman

filter framework. The motion model and the measurement model are assumed to

be almost linear so that a first-order Taylor-series is a valid approximation that
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properly represents the nonlinearity in the system. The ease of implementation

is the main advantage to approaching SLAM in this way. The most straightfor-

ward implementation uses a Kalman filter with the state vector to estimate the

position, and possibly velocity, of the robot and each of the landmarks in the

map. If the number of landmarks are known prior to operation, the state stays

the same size. If new landmarks must be estimated then the state vector increases

in size proportionally to the number of landmarks. This necessitates the usage

of an appropriate data structure for the map. The main disadvantage to using

the Kalman approach or an extended Kalman filter approach is that the motion

and measurement models must be linear (or locally linear) and the noise models

must be appropriately modeled using a Gaussian. These two assumptions in the

Kalman filter are easily invalidated ([Tanizaki, 2003]) when navigating through real

environments. Computational issues plague EKF based SLAM such as the com-

plexity due to matrix inversion2, however there have been recent advances that

reduce standard EKF SLAM updates to O(n) using a divide and conquer strategy

[Eustice et al., 2005c, Eustice et al., 2005a] when formulating the SLAM problem

in a delayed state information form.

EKF SLAM operates on discrete sets of salient features to represent the map

and reduce processing time. This can be detrimental to algorithm performance

if saliency is determined more globally rather than locally. Sensors produce a

large amount of data about the scene, laser range scanners produce many measure-

ments per second as do stereo cameras creating a large density of range informa-

tion. Work has been done to use the dense data set within a SLAM framework

to incorporate the large amount of data appropriately into the map representation

[Mahon and Williams, 2003, Nieto et al., 2006b]. Recently, other map representa-

tions such as using B-Splines have also been proposed [Pedraza et al., 2007].

2The algorithm presented in [Coppersmith and Winograd, 1987] performs matrix inversion in
O(n2.376) at each update is approximately O(n3), but few people use such optimized implemen-
tations in practice.
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Sparse extended information filters (SEIF)

A practical issue in Kalman filter approaches is how to handle new measurements.

The state vector must be dynamically sizable to accommodate a new measurement,

however more problematic is the need to dynamically update the size of the covari-

ance of the state vector and update the covariance entries appropriately. Given this,

there has been a thrust in developing SLAM solutions using techniques that make

the filter update more computationally efficient. Most notably here is the work

by Nettleton and others [Maybeck, 1979, Nettleton et al., 2000] using Extended

Information Filters (EIF). The EIF algorithm is analogous to the EKF algorithm

described previously, however instead of maintaining a covariance matrix, the infor-

mation matrix (the inverse of the covariance matrix) is maintained and the update

equations are changed to accomodate this formulation. The use of information

filters for SLAM was proposed in [Frese and Hirzinger, 2001] and implemented in

[Thrun et al., 2004a], and is related to the work in [Lu and Milios, 1997]. Due to

the structure of the SLAM problem, the landmark estimates become fully correlated

over time [Newman, 1999] and the normalized information matrix corresponding to

the SLAM solution is almost sparse. The non-zero elements in the information

matrix represent constraints on the relative positions of features in the map. The

larger the value of the entry in the information matrix, the stronger the link between

the two encoded features. Features that are further apart tend to have weaker links

between them. Exploiting this information allows for a faster update since only

elements that are near the robot need to be updated instead of updating all of the

relationships between each landmark in the map. The links also encode information

about the robot pose relative to the map. At each step of the algorithm, weak off-

diagonal elements are removed from the information matrix to guarantee sparsity.

By exploiting the sparsity of the information matrix, the algorithm complexity is

reduced from the EKF’s O(n3) to O(n). The most important update equations can

be performed in constant time. The time complexity for each update is indepen-

dent of the number of landmarks being estimated in the map. Even though the

algorithm requires constant time for a measurement update, the relaxation pro-

cess used introduces small errors in the resulting map that affects negatively the
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overall map fidelity. Recent advances in this area are due to Eustice’s work on Ex-

actly Sparse Delayed State Filters or ESDF [Eustice et al., 2005a]. Eustice showed

that if the SLAM problem is re-formulated as a view-based delayed-state informa-

tion form, the information matrix is exactly sparse and does not require the extra

sparsification stage. Instead of estimating the map feature locations, a view-based

representation is defined and the estimation problem becomes one of estimating the

current robot pose and a sampling of the previous poses. The ESDF formulation

is closely related to structure from motion algorithms such as bundle adjustment

that exploit the sparsity between the camera pose and the 3D scene locations to

effectively solve a large system of equations that recover the camera trajectory and

3D locations. The algorithm was shown to be effective in solving for the trajectory

of an underwater ROV that surveyed the RMS Titanic in [Eustice et al., 2005b]. A

3D surface model was subsequently extracted by triangulating the tracked features

using the ESDF estimated trajectory. Related to these approaches is the D-SLAM

algorithm [Wang et al., 2007b]. Wang and colleagues decoupled the SLAM prob-

lem into two concurrent but distinct processes. This results in the drawback that

the robot location does not inform the mapping process. The advantage is the low

computational complexity of the algorithm since they use an SEIF-like approach

with a separate mapping process that retains correlations between landmarks.

2.5.3 Particle filter-based SLAM

Kalman filter approaches to SLAM impose restrictions on the way the pdfs are

modelled. Gaussian (or Gaussian-like) models are integral to the derivation of the

recursive update routine. When error models are not well modelled by a Gaussian,

the filter may diverge. Particle filters model the pdf’s through a sampling approach

(see [Fox et al., 2001]). A large number of samples are used that are intended to be

representative of the pdf. Each sample is propagated through the dynamic process

and the covariance is estimated for each sample. The samples are weighted by their

covariance and the entire pdf is re-sampled from this distribution. This general

approach removes the Gaussian restriction in favour of a more computationally

complex algorithm. Within the robotics literature, particle filters have been ap-
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plied to pure localization (e.g., [Fox, 1998, Thrun et al., 2000b]), and SLAM (e.g.,

[Eliazar and Parr, 2003]).

The major advantage that particle systems have over Kalman filtering ap-

proaches is their ability to represent multi-modal distributions that occur from

single or the combination of non-linear functions. Weaknesses include issues re-

lated to proper sampling of the pdf. This can lead to particle diversity problems

and an inability to effectively track the process. Computational requirements are

also a problem as particle filters require many particles to track an unknown dis-

tribution. As the distribution to be tracked becomes more complex in nature, i.e.,

due to the underlying sensing process, the filter may require more samples than can

be computed in a reasonable amount of time on modern processors.

Most particle filter systems rely on Rao-Blackwellisation in order to re-

alize efficiency in the sampling process. The term Rao-Blackwellisation (see

[Doucet et al., 2000, Murphy and Russell, 2001]) refers to the process of transform-

ing a crude estimator into an optimal estimator. The Rao-Blackwell theorem pro-

vides a mechanism to improve on any estimator by integrating out an ancillary

statistic (see [Casella and Robert, 1996]). This transformation ensures that the

conditional expected value that is estimated is no worse than the untransformed

version and typically more convenient to compute. This has the important result

of being able to marginalize out some of the variables in the pdf thus reducing the

size of the state space.

FastSLAM

The FastSLAM algorithm, introduced by Montemerlo (in

[Montemerlo et al., 2002]), takes a Rao-Blackwellized Particle Filter (RBPF)

approach to SLAM. In traditional Kalman filter SLAM, the landmark estimates

become fully correlated as time approaches infinity. This is due to the inherent

correlation between landmarks and successive robot locations. Since the robot

views all of the landmarks, the uncertainty of each landmark is tied not only to

the robot motion, but also to the other landmarks due to the indirect correlation.

If the robot location is known without error, the correlation between landmarks
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disappears. In the Dynamic Bayes Network literature the robot path is said to

d-separate (see [Pearl, 2000]) the landmark nodes in the graph. This implies that

if the entire robot path is known, gaining knowledge of one landmark position does

not affect the uncertainty of any other landmark in the set. It is sufficient to have

knowledge of the robot path in order to properly characterize the distribution.

This removes the conditional dependency between all landmarks and as such

given the robot path, the landmarks can be estimated separately. Montemerlo

(building on work done in [Murphy, 1999]) exploited this fact to marginalize the

SLAM posterior over the robot motion. An implementation of this effect can

be realized by using a particle filter to sample the entire robot trajectory. Each

sample estimates its own version of the map and through the effects of statistical

re-sampling, trajectories with lower errors (and higher fidelity maps) survive.

FastSLAM estimates a slightly different posterior than the regular stochastic

mapping approach

p(st,Θ|zt, ut, nt) (2.6)

where st = s1, s2, . . . , st is an entire robot path or trajectory. Thus, given the robot

path, each landmark Θi is independent from the rest of the landmarks and can be

estimated separately. This enabled Montemerlo to factor the SLAM posterior into

the following form

p(st,Θ|zt, ut, nt) = p(st|zt, ut, nt)︸ ︷︷ ︸
path posterior

N∏
i=1

p(Θi|st, zt, ut, nt)︸ ︷︷ ︸
N landmark estimators

. (2.7)

Due to the decoupling of the pose and the landmarks, SLAM estimation can be sep-

arated into a particle filter that estimates the robot pose, followed by N -landmark

estimators (a single Kalman filter per landmark). Thus, the SLAM problem is

partitioned into two parts: a localization problem and a mapping problem. Fast-

SLAM addresses the localization problem through the use of the particle filter that

samples the pdf of the robot trajectory and the map is constructed using a set of

independent EKFs, one per landmark.

FastSLAM’s strength is its algorithmic simplification of the SLAM framework to

multiple independent SLAM instances. Its weaknesses lie in the map representation,
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and issues related to particle filters in general such as algorithmic consistency,

particle depletion and divergence (see [Bailey et al., 2006, Kwak et al., 2007]). In

[Bailey et al., 2006], the authors show that FastSLAM is guaranteed to diverge over

time and this divergence is independent of the number of particles used and of the

observed landmark density. Recent examples of using FastSLAM like techniques

for a vision-based robot can be found in [Barfoot, 2005] and [Sim et al., 2007].

DP-SLAM

DP-SLAM — [Eliazar and Parr, 2003, Eliazar and Parr, 2004] — is a pure particle-

filtering approach to solving SLAM. It uses a particle filter to maintain a joint

probability density over robot position as well as the possible map configurations.

This approach removes the need to maintain separate EKFs for the landmarks as

in FastSLAM. DP stands for Distributed Particle mapping and allows for efficient

maintenance of hundreds of candidate maps and robot poses. The authors noted

that since the map requires the most memory, only a single copy of the map should

be maintained. They chose to associate the particles with the map instead of the

standard approach of associating a map with each particle. The data structure used

in DP-SLAM plays a key role in the efficiency of this algorithm. In each grid-cell,

a balanced tree is kept of all of the particles that have updated this cell. A second

data structure, called the ancestry tree, is also maintained per particle describing

the relationship between each particle at time t and the sampled particle at time

t + 1. An update consists of the following; when a particle makes an observation

about a particular grid cell, an identification number (ID) of that particle is inserted

into the balanced data structure stored in the cell. In order to check the occupancy

state of that cell, the particle looks into its ancestry tree and finds an ancestor that

has updated this cell previously. If no ancestor is found then the state of the cell is

currently unknown to this particle. In this way, each particle is able to efficiently

maintain its own version of the map (i.e. thus multiple maps are estimated).

An important advantage of this algorithm over most SLAM solutions is that

there is no need for explicit data association or external loop-closing. Since the

algorithm maintains multiple maps and robot locations, the proper data associa-
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tions are estimated and loops are automatically closed. The algorithmic complex-

ity of this algorithm was analyzed to be log-quadratic in the number of particles

[Eliazar and Parr, 2003].

Subsequently, an addendum to the original DP-SLAM algorithm called DP-

SLAM 2.0 [Eliazar and Parr, 2004] was developed which proposed improvements

to the laser sensor model of DP-SLAM. In the original DP-SLAM algorithm there

was an inconsistency with the laser model since they assumed it was a perfect sensor

for the mapping problem, but assumed it was noisy for localization. A probabilistic

laser penetration model was later developed that is dependent upon the distance

the laser has travelled through each grid cell. Using this method, the occupancy

grid was refined from storing binary states (occupied or empty) to a more stochastic

representation. Each cell has a probability associated with the laser penetration

model, the higher the probability the more likely the cell is to be occupied. The

search method for the localization stage was also improved. When an update oc-

curs each particle is required to search through its ancestry to determine if any of

its ancestors have updated this cell before. The new method uses a more efficient

search method using a batch search of all ancestors at the same time. Simplifi-

cations can then be made to the algorithm using sorting methods and the overall

time complexity is reduced from log-quadratic to simply quadratic in the number

of particles [Eliazar and Parr, 2004]. The disadvantage to using this algorithm is

the need for a tremendous number of particles (on the order of thousands to tens

of thousands) to estimate a large map thus increasing processing time. The imple-

mentation of such an algorithm is complex and requires a tremendous amount of

care for memory management.

2.5.4 SLAM with visual sensors

As high resolution video cameras have become less expensive, there has been re-

newed interest in using imagery and video as input to SLAM as opposed to the

laser-like range sensors assumed in algorithms such as FastSLAM and DP-SLAM.

Vision-based approaches have been coined Visual SLAM. Visual SLAM is related

to the structure-from-motion (SFM) field in that algorithms in both of these fields
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attempt to address the same issue — creating a map/model of the world and

maintain the trajectory of the camera — but in very different ways. Typically in

SFM, the motion of the camera is estimated through a series of nonlinear numer-

ical minimizations using geometric constraints on the movement of image features

throughout the video stream. SFM algorithms focus on accuracy, while Visual

SLAM algorithms tend to focus on realtime performance. Visual SLAM algorithms

also immerse the problem in a blanket of probabilistic theory to estimate the un-

certainty of the visual features and world model. The uncertainty of the features is

highly correlated to the uncertainty of the camera motion, the observation process,

and other probabilistic processes.

Visual SLAM algorithms have been developed for both monocular (e.g,

[Davison, 2003]) and stereo (e.g, [Takezawa et al., 2004]) camera systems. Differ-

ences between Visual SLAM and traditional SLAM with laser ranging or sonars

include:

• Cameras are 2D area based sensors while lasers provide 1D range data. Laser

ranging sensors need to be swept through the environment in order to acquire

a linear range stripe.

• Cameras provide color or visual structure to the scene and can be used to

analyze more salient features (rather than simply corners or other features in

depth).

• A single camera does not produce a range estimate but rather gives an esti-

mate of bearing to objects.

• Range extracted from stereo cameras are less accurate in general than laser

sensors. Stereo camera accuracy is related to the baseline between the cam-

eras, the resolution of the cameras, and the distance of the object.

• Stereo cameras typically produce more noisy range estimates than laser scan-

ners at larger distances.

• Laser noise models are simpler than noise models for stereo and more easily

integrated into SLAM.
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• Computational requirements are greater for stereo algorithms than for using

laser data-based systems.

Monocular camera based SLAM algorithms (e.g. [Davison, 2003,

Montiel and Davison, 2006, Civera et al., 2007, Davison et al., 2007,

Pinies et al., 2007, George and Sukkarieh, 2007b, Civera et al., 2008] ) use the fact

that a single camera is not a range device, but rather is a “bearing-only” sensor.

Thus, for each interesting feature in the image, the bearing from the camera to

the feature is well-known (this assumes accurate knowledge of intrinsic calibration

parameters of the camera). As the camera moves through the scene, these salient

features are tracked while estimates of the camera pose are generated using the

projection error of the predicted image feature locations versus the measured

image feature locations. The algorithm presented in [Davison et al., 2007] operates

at realtime rates (30Hz) on low power mobile processors with accuracies within a

few centimeters over movement around a known one meter square area.

Stereo vision-based SLAM algorithms (e.g. [Takezawa et al., 2004,

Garcia and Solanas, 2004, Diebel et al., 2004, Herath et al., 2006,

Marzorati et al., 2007, Hogue et al., 2007a, Zhang and Negahdaripour, 2008])

use stereo cameras as ranging devices. Perhaps the first to use

stereo in an online Visual SLAM algorithm was Davison and Murray

[Davison, 1998, Davison and Murray, 1998, Davison and Murray, 2002]. Their

approach to incorporating stereo into the SLAM algorithm is to extract salient

features in the images, track their motion temporally and utilize stereo disparity

extraction algorithms to estimate the 3D location of the salient features. These

salient 3D features are then thrust into a traditional SLAM algorithm with an

appropriate error model for the disparity algorithm utilized.

Stereo-vision algorithms are not without their problems. Errors in calibra-

tion can cause highly inaccurate results. Each camera has its own intrinsic cal-

ibration parameters including the focal length, lens distortion, and camera pro-

jection centers must all be known accurately. The extrinsic rotation and trans-

lation between cameras must be known in order to rectify the images for effi-

cient image search. Well-known algorithms exist to pre-calibrate these parameters
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Figure 2.3: Stereo Error modeling illustration. The dotted lines show the intersected

actual 3D points at two different depths. The shaded area is the uncertainty bound due

to ±0.5 pixel error. As can be seen, the error bound is not an ellipse but rather a diamond

shape that is elongated along the Z-axis. At further depths, the non-symmetric nature

of the error becomes more pronounced.

(e.g. [Tsai, 1987, Zhang, 2000]) and excellent treatments of error modeling for stereo

vision can be found in [Matthies and Shafer, 1987] and [Murray and Little, 2000].

Another issue with stereo vision algorithms is the existence of depth-dependent

errors. When estimating the range to a particular landmark, the light rays that

project from a 3D point through the observed image locations for each camera must

be intersected to obtain the 3D location. Due to the discrete nature of image projec-

tion onto the image sensor, the actual 3D location is bounded by a diamond-like er-

ror bound (see [Matthies and Shafer, 1987, Marzorati et al., 2007] and Figure 2.3).

This error is typically modeled by a Gaussian, however a Gaussian model fails to

capture the longer tail of the distribution. This is almost negligible for points near

the cameras, however for more distant points, the tail becomes significant affecting

the overall quality of the 3D location. One might think of the error as being map

and location dependent since it changes depending upon the pose of the camera

and the sensed structure of the environment.

Structure from motion is a vast research area whose goal is to extract metric

measurements from image sequences or video. The most typical scenario uses fea-

ture extraction and tracking to evaluate the motion of the camera throughout the

video sequence. Projective geometric constraints are applied to the feature tracks
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and relative motion relationships, namely the Fundamental matrix and Trifocal ten-

sor [Hartley and Zisserman, 2000, Faugeras and Luong, 2001], estimated to denote

the relative pose and motion of the camera. The set of features are tracked through

as many images as possible. The goal is to estimate the 3D structure (3D locations

of the 2D features) and the pose of the camera per frame. The tracked feature set

constitutes a (very) large constrained least-squares problem that, with appropri-

ate assumptions, can be solved using a technique called Bundle Adjustment (see

[Triggs et al., 2000]). This method essentially solves for the 3D locations of the

features and the camera pose simultaneously using standard non-linear minimiza-

tion algorithms, the most notable being the Levenberg-Marquardt minimization

(see [Press et al., 2002]). If the calibration parameters of the camera are known,

the 3D reconstruction can be upgraded to a metric reconstruction, or the cali-

bration parameters can be computed through non-linear minimization as well (see

[Pollefeys, 1999]).

The strengths of this approach include a basis on well defined and rigourous

mathematical and geometric principles. Commercial software such as Autodesk

Maya3, and 2d3’s Boujou4 utilize this approach to accurately extract the camera

motion for use in entertainment applications for inserting digital characters into

captured video. Algorithmic approaches developed in the photogrammetry litera-

ture typically emphasize accuracy over processing speed. Although fully automated

systems have been developed that estimate the camera motion, 3D feature loca-

tions, and models from video sequences (e.g. [Pollefeys, 1999, Nister, 2001]), these

algorithms can take on the order of days to process relatively short sequences.

Unfortunately, the computational requirements for these algorithms prohibit their

use in robotic applications which require algorithms to provide accurate data in a

timely manner for online processing.

3Autodesk, http://www.autodesk.com
42d3, http://www.2d3.com

36



2.5.5 SLAM in large-scale environments

The above methods for addressing the SLAM problem are capable of maintaining

valid representations of maps and vehicle pose for environments that are not very

large, i.e. indoor applications and fixed size outdoor environments. Kalman filter

approaches require that the state contains all of the feature information. In an

exploration type of application, the number of landmarks are not known a priori. As

the vehicle moves throughout the environment, the number of landmarks increases,

thus increasing the size of the Kalman state vector. This poses a computational

problem for large environments (i.e. areas larger than about 1000 square meters).

Even though some could argue that they have addressed the issue of large scale

environments for FastSLAM (e.g., [Hähnel et al., 2003]), any RBPF is bound to

have issues with particle depletion and degeneracy (see [Kwak et al., 2007]). There

has been much work attempting to address the problem of large-scale environments

for SLAM. Perhaps the most effective is the utilization of a sub-map approach.

The main idea here is that the world can be subdivided into many large (possibly

overlapping) maps. One such algorithm, Atlas [Bosse et al., 2003], generates a

hybrid topological-metric map. The advantage of this algorithm is the constant

time update per landmark encountered. The algorithm keeps a bounded (or fixed)

set of robot pose hypotheses that are used to determine which map is the best

fit for the sensor data. As the robot traverses the environment it creates a graph

of coordinate frames. Each node in the graph is a local frame of reference where

the edges represent traversibility between adjacent frames. Each frame contains a

metric map of the environment represented using traditional Kalman filter SLAM

approaches. The algorithm uses an efficient map-matching algorithm to detect and

close large loops. The local maps are used for reasoning about the world locally

(i.e. obstacle detection, local path planning) while the topological map is used for

larger scale reasoning. Hierarchical SLAM formulations have also been investigated

in [Estrada et al., 2005].

Also related to large scale environments are scan-matching, or scan registration,

approaches [Lu and Milios, 1994, Nieto et al., 2006a, Nieto et al., 2007]. The goal

of scan registration is to determine the rigid transformation(s) that aligns two or
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more sensor scans to minimize an objective error function. It is important to note

that the transformation that aligns two scans is directly related to estimating the

pose of the sensor that generated the data relative to the previous pose.

The iterative-closest-point algorithm (see [Besl and McKay, 1992]) is popular

in the scan-matching literature. The algorithm assumes the existence of two dense

sets of 3D points that have significant geometric overlap. The goal is to determine

the six-degree-of-freedom rotation and translation that needs to be applied to one

scan to minimize the error between the sets of points. The algorithm is iterative

and in general requires many iterations to converge, however in practice it can be

employed quite effectively if the sensor motion is small.

Alternative methods for scan matching were developed in [Lu and Milios, 1994]

and also in [Schiele and Crowley, 1994]. These algorithms iteratively match line

segments extracted from the range data with the map to determine correspon-

dences and minimize the global registration error. The major problem with these

approaches is the need to iterate over the entire trajectory and incorporate all scans

since its goal is to minimize the global error.

2.6 Sensor modelling for SLAM

For the purposes of this thesis, a sensor is defined as an electronic device that mea-

sures a physical entity. There are many types of sensors used in robotics literature

including acoustic ranging (sonar), laser range finders, cameras, accelerometers, rate

gyroscopes, magnetometers (compass), optical joint encoders, GPS units, thermal

arrays, and infrared sensors. See Figure 2.4 for examples of range sensors and

Figure 2.5 for examples of orientation sensors commonly found in robotic systems.

More details of robotic sensors can be found in [Everett, 1995]. It is necessary to

transform the raw output of each sensor into a usable value. This requires sev-

eral types of parameters, such as bias, gain, multiplicative factors, which when

set accurately allows the algorithm to transform the raw output into a value that

is meaningful. The process of determining these parameters is called calibration.

Typically, the calibration process is performed off-line prior to using the sensor.
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(a) SICK LMS-200 (b) MESA Imaging SR-3000

(c) Point Grey Bumblebee2 (d) Point Grey XB3

Figure 2.4: Examples of range sensors commonly used in robotics. (a) Laser Scanner

courtesy of SICK AG (http://www.sick.com) (b) LIDAR Time of Flight courtesy of

MESA Imaging (http://www.mesa-imaging.ch) (c)-(d) Stereo vision courtesy of Point

Grey Research Inc. (http://www.ptgrey.com/).
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When using multiple sensors fixed together, other parameters such as the rigid-

body transformation necessary to bring the sensors into a common reference frame

must be known. It is impossible to know the values of the calibration parameters

perfectly. It is typical in SLAM to think of sensors as a black-box, where the under-

lying principles and internal parameters are unknown. This is true in many robotic

applications that use a laser range-finder for localization and mapping. Laser range

finders provide very accurate data, however it is a common misconception that the

data can be used without conditioning. It is advantageous to the algorithm to

take into account a statistical error model (determined through empirical means)

to gauge the error of each measurement [Thrun et al., 2005]. Other difficult to

measure factors influence the accuracy of the data. For example, in the case of

laser range-finders, the type of material that the laser is shining upon affects the

quality of the measurements. Transparent materials such as glass and reflective

surfaces such as mirrors cannot be measured properly. The incidence angle of the

laser beam to the surface is important as well; the reflected light pulse may not be

detected properly if the incident angle falls outside of some range around the local

surface normal.

In the SLAM literature, the measurements are typically assumed to be biased

by a white, zero-mean Gaussian noise process. This assumption works in practice

in many situations however when the measurement noise process violates the Gaus-

sian assumption, is temperature dependent, time-varying, or position dependent,

Kalman filter-based algorithms are prone to failure. There have been efforts to

support more general sensor models. For example in [Marzorati et al., 2007], the

sensor process is modeled using a particle filter allowing the estimated error of the

sensor to take on a non-Gaussian process that is more representative of the actual

values.

To characterize the uncertainty of a sensor, an appropriate probabilistic model

must be used and known. In [Thrun et al., 2005], a sensor model of a general range

sensor is developed. The model is applicable to laser range finders and other ranging

devices. The probabilistic model is a combination of four distributions:

• A Gaussian distribution phit which denotes the uncertainty of a range mea-
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(a) Inertiacube2+ (b) MotionNode

(c) Xsens MTi (d) Xsens MTiG (IMU with GPS)

Figure 2.5: Examples of 3DOF orientation sensors commonly used in robotics.

(a) courtesy of Intersense (http://www.isense.com) (b) courtesy of MESA Imag-

ing (http://www.motionnode.com) (c)-(d) courtesy of Xsens Technologies B.V.

(http://www.xsens.com/).
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surement centered around the reported range value. The mean and covariance

to this distribution must be identified through a calibration phase.

• An exponential distribution pshort which denotes the probability of sensing an

unexpected object which reduces with range to the sensor, i.e. the sensor is

more likely to hit an unexpected object if the sensed range is far from the

sensor.

• A uniform distribution pmax denoting a missed measurement due to specular

reflections or sensor failure.

• A uniform distribution prand which denotes other random noise that affects

the measurement.

These four distributions are mixed with appropriate weighting parameters. The

weighting parameters, as well as the intrinsic parameters for each distribution, are

computed through an iterative maximum likelihood (ML) estimation process, i.e.

learned from data offline. This may be effective for stationary error models, however

any non-stationary noise source will be detrimental to the algorithm. An example of

such an error source is a location-dependent error, i.e., the sensor functions poorly

in specific but unknown areas of the environment.

More formally, Thrun models a general range finder sensor measurement model

for time t and measurement k as a mixture of the following pdfs

p(zkt |st,Θ) =


whit

wshort

wmax

wrand

 ·


phit(z
k
t |st,Θ)

pshort(z
k
t |st,Θ)

pmax(zkt |st,Θ)

prand(zkt |st,Θ).


Here, the output of the measurement model is a weighted sum of the pdfs with

weights whit + wshort + wmax + wrand = 1. The probability functions above are
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defined as

phit(z
k
t |st,Θ) =

{
ηN (zkt ; zk∗t , σ

2) if 0 ≤ zkt ≤ zmax

0 otherwise

pshort(z
k
t |st,Θ) =

{
ηλshorte

−λshortz
k
t if 0 ≤ zkt ≤ zk∗t

0 otherwise

pmax(zkt |st,Θ) = I(z = zmax) =

{
1 if z = zmax

0 otherwise

prand(zkt |st,Θ) =

{
1

zmax
if 0 ≤ zkt < zmax

0 otherwise

The pdf for phit(z
k
t |st,Θ) is a Gaussian distribution centered around the mean zk∗t

(which is computed by raycasting from st within the map Θ) with standard devi-

ation σ2. The normalizer η in this case is the integral of the distribution over the

range of measurments or

η =

(∫ zmax

0

N (zkt ; zk∗t , σ
2
hit)dz

k
t

)−1

.

The pdf for pshort(z
k
t |st,Θ) is an exponential distribution that takes into account

short-range dynamic obstacles. The likelihood decreases with distance and is pa-

rameterized by λshort for specific sensors. The normalizer η is computed as

η−1 = 1− e−λsk∗
t .

Dealing with sensor failures is handled by the pdf pmax(zkt |st,Θ) as a point-mass

distribution centered around the maximal range. In laser range finders, if the sensor

provides erroneous data the maximum value is generated and passed back to the

calling function. Finally, the pdf prand(zkt |st,Θ) is used to explain unexplainable

measurements and is denoted as a uniform distribution over the entire measurable

range.

Camera calibration

The goal of camera calibration is to determine the parameters necessary to describe

the projection of a 3D point to a 2D image location. The world is inherently three-
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dimensional. Cameras provide us with a mechanism to capture an instant of time

in a two-dimensional form. This is accomplished through projection through a lens

onto a CCD or other type of sensor. Cameras and lenses are complex and require

several parameters to be defined accurately in order to use the information for

metric purposes. Parameters important to using cameras include the focal length,

the radial distortion parameters, the skewness of the sensor, and the location of

the true image center. For a single camera system, these parameters are sufficient

to begin to utilize images for metric evaluation of distances between objects (see

[Criminisi et al., 2000]). Projection of a 3D point, (X, Y, Z), onto a pinhole camera

image plane is described by a projection matrix that converts 3D world points into

2D image points, (u, v) as

uv
1

 = P3×4


X

Y

Z

1

 (2.8)

The projection matrix encodes both intrinsic and extrinsic parameters of the

camera. Examples of intrinsic parameters typically used are the focal length (fx, fy),

image center (cx, cy), and skewness factor (α). Extrinsic parameters describe the

orientation of the camera coordinate frame relative to the world coordinate frame,

e.g. rotation matrix (R3×3) and translation vector (~t3×1) that denote the camera’s

orientation. For the context of this thesis, these operations can be defined as

uv
1

 =

fx α cx

0 fy cy

0 0 1


1 0 0 0

0 1 0 0

0 0 1 0

[RT
3×3 −RT

3×3
~t3×1

01×3 1

]
X

Y

Z

1

 (2.9)

Once the 3D world point is transformed into the 2D image plane, lens distortion

must be corrected. Physical lenses introduce abberations and distrotions to the

resulting image points. It is important to correct these distortions when extracting

metric information using single-view photogrammetry, or multi-view stereo algo-

rithms. Commonly, radial and tangential distortions are corrected using the fol-
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lowing model. Here xn =

[
x

y

]
is the undistorted point projected using the pinhole

model. The distorted point that is viewed (xd) can be described by

xd =

[
ud

vd

]
= (1 +K1r2 +K2r3 + . . .)xn (2.10)

where r = x2 + y2 is the radial distance from the image center. There are more

complex models for radial distortion that includes tangential distortions and more

parameters such as those found in [Heikkila and Silven, 1996, Bouguet, 1999], how-

ever for this thesis it is sufficient to describe the distortion completely with the first

two radial parameters K = [K1, K2]. Applying these parameters is performed by

pre-computing an inverse warp look-up table and performing bi-linear interpolation.

Developing robust algorithms to estimate these parameters is a research

field on its own but the problem is largely considered to be “solved.”

Many off-line algorithms exist to provide estimates of these values, namely

[Abdel-Aziz and Karara, 1971, Tsai, 1987, Bouguet, 1999, Zhang, 2000]. Multi-

camera self-calibration algorithms such as [Hemayed, 2003, Svoboda et al., 2005]

also exist.

Refraction

When cameras view environments through a lens into a different medium such

as water, light rays tend to bend upon entering/exiting the interface between the

mediums. Underwater vision applications are plagued by this problem since you

must place the camera in a watertight housing that is then placed underwater.

Light rays viewed by the camera must first exit the water make its way into the

air surrounding the lens prior to activating the light sensitive CCD in the camera.

When light crosses into a different medium, it will bend depending on its angle of

incidence described by Snell’s Law (see Figure 2.6) which can be described as

η1 sin(θ1) = η2 sin(θ2) (2.11)

where η1, η2 are the index of refraction of both media and θ1, θ2 are the angles of

the light ray to the normal of the interface between the two media. Thus, given
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θ1

θ2

η1

η2

Water

Air

Light Ray

Figure 2.6: Snells’ Law. As light enters a new medium, the angle of the light ray

changes depending on the ratio of the index of refraction of both media. Diagram

shown assumes that light is coming from the underwater medium and entering an

air filled tube containing a camera.

the angle of incidence in one medium, the resulting angle may be computed as

θ2 = sin−1

(
η1

η2

sin(θ1)

)
(2.12)

It can be seen that there are a couple of ways this affects the image projection

model. First, as points at the same depth from the camera move away from the

camera axis (and water-air interface), the angle of incidence will change. Thus the

light will refract differently depending on its distance from the center of projec-

tion. This creates a radial like distortion near the edges of the image. Second,

as the objects change depth, the angle of incidence will also change. Thus the

light will also refract differently depending on its distance causing another radial-

like distortion (see [Kwon, 1999b]). If the depth from the camera didn’t affect

the angle of incidence, this would not be problematic for image analysis, however

this added distortion is not easily corrected optically nor mathematically. In Fig-

ure 2.7, the effects of refraction on image formation can be seen when light travels

from the water medium to air before being imaged. Note that these scenarios are

46



for a single image only. In a stereo-vision situation, the refraction errors become

even more dangerous since for a single world point there are two different distor-

tions due to the refraction since there are two centers of projection. Methods for

calibrating the distortion have been developed for underwater stereo systems (see

[Harvey and Shortis, 1998] for details). The system however utilizes a large control

frame whose measurements are precisely known (approximately 2 meters by 2 me-

ters by 1 meter). The frame is required into the viewing volume of the stereo system

and rotated to at least four different orientations requiring at least one other diver

for calibration deployment. The distortion is approximated as a radial distortion

in the image plane which minimizes the error for that particular volume. Similarly,

in [Kwon, 1999a, Kwon and Lindley, 2000], a control-frame is used in the viewing

volume to approximate the distortion, however as stated in [Kwon, 1999b], using

a fixed radial distortion model is erroneous since the amount of distortion is de-

pendent upon object location thus a direct linear transform (DLT) method is used

instead.

2.7 Open problems in SLAM

Simultaneous localization and mapping is a highly active field of research. The basis

of successful real-time SLAM algorithms is a probabilistic framework which is ap-

propriate since uncertainty is inherent in any robotic system. In the approaches to

SLAM described previously, a number of common issues are apparent. The Marko-

vian assumption, and most importantly in terms of this thesis, the measurement

noise models for the sensor is assumed to be fixed (stationary) and known prior to

the experimental trials. In general, sensor modelling is a challenge that needs to

be addressed for SLAM. While in typical situations the standard models work well,

in reality there are many situations where these assumptions are violated. Envi-

ronments such as outer-space or underwater have characteristics that affect sensors

in ways that are not modelled well by a Gaussian noise function. It is possible

that the sensor used to observe the world changes its parameters over time, or that

the current environment map and robot pose influences either the characteristics
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(a) (b)
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!p2
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Camera Center

Image Plane

Water-Air interface
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Figure 2.7: Refraction Effects on Imaging. (a) Difference between incident and

refracted light rays as a function of incident angle. (b) Shows how the incident

angle changes with camera depth for a fixed distance from the camera axis. (c)

Shows the error in pixels between the actual projection (using a pinhole model)

and the projection of the refracted ray onto the image. As can be see in (c), the

projection error ranges from 20 to 600 pixels in the image depending on the depth

of the point from the camera center. (d) Refraction of points at different depths

from the camera

48



of the sensor or aid in extracting information from the sensor itself. The lack of

a model to account for sufficient malleability in sensor calibration parameters in

SLAM can cause failure of the algorithm if the sensor parameters do not fit the

assumed error model. As a specific real-world example, consider the existence of

magnetic field distortions in the environment and their effect on a magnetometer

contained in typical 3DOF IMU sensors which contain accelerometers, gyroscopes

and magnetometers.

A common sensor used for earth-based navigation is the compass or magne-

tometer [Everett, 1995]. Magnetometers measure the strength of the horizontal

component of the earths’ magnetic field to provide a heading direction. The output

of the sensor is a vector denoting the direction to magnetic north. Magnetometers

are prone to local distortions due to changes in the local magnetic field that arise

from the presence of ferrous material in the vicinity, electrical motors (abundant in

robotic applications), electrical cabling, or any other magnetic object.

If the compass is to be used in known locations, the local distortions can be

determined through an intensive pre-calibration phase. For navigation in an un-

known environment this is not possible. This is especially true in man-made in-

door environments where the existence of magnetic material is plentiful. Out-

door environments are less prone to distortion however the existence of dynamic

man-made objects such as automobiles or boats can bias the measurement. In

[Skvortzov et al., 2007] the authors provide a mechanism to utilize the magnetome-

ter measurements to determine whether the measurement is being affected by local

distortions or not. This type of information could be valuable to any robotic plat-

form relying on its compass for heading. Without the knowledge of the local mag-

netic distortions, SLAM algorithms that do not take this information into account

will undoubtedly be inconsistent with the actual environment being traversed since

the errors in the magnetometer readings bias the robot orientation estimate, thus

through integration these errors will accumulate.

Figure 2.9 and Figure 2.8 illustrate the effect a magnet has on the output of

a commonly used 3DOF orientation sensor that uses magnetometers to determine

the north direction. The maximal yaw error is upwards of 200 degrees making the

output of the orientation sensor entirely unusable at this location. Note that the
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error distribution is not elliptical at any of the spatial locations, and also note that

the shape is different depending on where the IMU is placed. The noise model

is not well-modeled by a Gaussian. The experiment performed was to place the

IMU at various locations on a grid and record the orientation estimate provided

for a few seconds. The IMU was placed at 4 distinct orientations at each grid

point, i.e. at 0, 90, 180, 270 degrees. The data was collected with and without a

magnet present in the environment. The magnet was stationary for each data point

and was placed at a location (−6.4, 25)cm from the origin. To visualize the error,

the error between the magnet and non-magnet data was computed for each grid

location and a unit vector representing the orientation was scaled by the computed

error. A cubic polynomial was fit through the four data points at each grid location

and is drawn to show the effect of the magnet with relation to sensor position and

orientation. As can be seen, the error is non-Gaussian, not symmetric, and can be

quite severe as the sensor moves close to the distortion. This non-Gaussian error

can wreak havoc on SLAM algorithms that assume Gaussian noise models and will

clearly bias the resulting orientation estimate.

2.8 Summary

There has been a vast amount of research in the robotics community related to

simultaneous localization and mapping. The SLAM problem has been formulated

in various ways, most successfully using a stochastic formulation. A Bayesian ap-

proach is a general way to represent the SLAM problem in terms of probability

density functions. Using various common assumptions such as Gaussian models

to represent the pdf’s allows for the use of the Kalman filter recursive algorithms

to solve for both the map and robot location simultaneously. Various adaptations

have been studied, such as the use of particle filters — as in DP-SLAM — to rep-

resent the pdf’s more generally and hybrid solutions such as FastSLAM have been

successful in addressing the problem on land.

The underwater domain presents various challenges for SLAM such as the in-
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Figure 2.8: Inertiacube2 orientation error when positioned near magnet. The IMU

orientation was sampled at each location in the grid at 4 distinct orientations

(0,90,180,270 degrees) with and without a magnet placed at one of the grid cor-

ners. The error was calculated and a cubic-polynomial is fit through the scaled

orientation vectors to show the estimated error as a function.

51



0 1000 2000 3000 4000 5000 6000
−60

−50

−40

−30

−20

−10

0

10

Time (data frames @ 180Hz)

Ya
w 

(H
ea

di
ng

) A
ng

le
 in

 D
eg

re
es

The Effect of Dynamic Magnetic Distortion on a Stationary IMU

Figure 2.9: The effect of a spatially-varying magnetic source on the reported yaw

value of a stationary Intertiacube2 as it comes near to the IMU and passes it. The

graph shows the yaw angle reported back from the IMU over time. Note that for

the duration of this experiment, the IMU was stationary. The magnetic source

was a hard drive magnet. The reported error peaks at around -53 degrees for this

experiment.
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troduction of position or map dependent non-stationary noise sources. Without

the proper modelling of these sources, traditional algorithms may diverge when

mapping in the underwater environment. Additional techniques must be studied

to address the interaction between the sensor errors, the pose, and the map. The

following chapter describes a stereo video sensor system that was developed to ex-

amine the interaction between sensor error, pose, and the map in terrestrial and

underwater domains.
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CHAPTER 3

A sensor for 3D surface modelling

This chapter investigates the use of stereo vision and inertial sensing in an un-

derwater setting. Both land-based and underwater experiments are provided to

show the effectiveness and accuracy of ego-motion estimation using stereo-vision

in these domains, and to illustrate the need for proper calibration of the sensor

system. A discussion of the development of the AQUASENSOR hardware platform

details some of the difficulties in underwater field-robotics. Selected material in this

chapter has been published previously in [Jenkin et al., 2008, Hogue et al., 2007a,

Jenkin et al., 2007, Hogue and Jenkin, 2006b, Hogue et al., 2006a] and land-based

applications based on this work have been published in [Hogue et al., 2007c]. A

natural sensing choice for autonomous scene reconstruction is to use cameras and

computer vision techniques. In the terrestrial domain, sensing technologies such

as stereo vision coupled with good vehicle odometry have been used to construct

2D top-down maps and 3D models of the environment. The lack of such pre-

dictable vehicle odometry in the underwater domain necessitates solutions which

are more dependent upon sensor information than is traditional in the terrestrial do-

main. This has prompted recent research in robotic vehicle design, sensing, localiza-

tion and mapping for underwater vehicles (see [Eustice et al., 2005a, Eustice, 2005,

Pizarro et al., 2004, Williams and Mahon, 2004b]).

3.1 Sensor hardware design

The hardware design goal for the stereo-video platform (known as the AQUASEN-

SOR) was to construct a compact, fully-contained unit that is sufficiently portable

to be used by a single diver and whose components, suitably repackaged, could

later be integrated within the AQUA robot [Dudek et al., 2007]. Range informa-

tion extracted from the stereo video is integrated with 3DOF orientation from an
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Figure 3.1: AQUASENSOR V1.0. Trinocular stereo rig and example reference

images with corresponding dense disparity.

inertial measurement unit (IMU) to simultaneously estimate a dense 3D model of

the environment and the sensor trajectory. It is important to note that although

the AQUASENSOR does not process the collected data in real-time, the algorithms

used to analyze the data were developed with real-time performance in mind.

Developing a sensor for underwater usage is a non-trivial task. There are many

challenges for such a system; although ensuring the electronics are protected by

a watertight housing is perhaps the most critical. During the course of this work

multiple camera housing designs were built and tested, the details of each housing

can be found in [Hogue et al., 2006a] and see Figures 3.1 and 3.2 for images of each.

AQUASENSOR V3.0

The third and most recent design of the sensor can be seen in Figure 3.3. A

single tube was purchased to house all of the components. Learning from previous

hardware designs, smaller and components with lower power requirements were

used. An embedded board and lower power cpu was used which reduced the amount

of heat it produced alleviating much of the instability issues. A fan was strategically
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(a) (b)

(c) (d)

(e)

Figure 3.2: AQUASENSOR V2.0 (a-c) and V2.1(d-e). (a) Hand-held unit (b)

Hand-held unit with Bumblebee (c) Complete unit (d) Final system (e) Closeup of

revised Hand-held unit
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placed inside to circulate the air with the intention of moving hot air away from

the CPU and hard disks. This reduced the number of pockets of hot air that would

concentrate over the components causing them to fail. The final tube is shorter in

length than Version 1.0, fully self contained and is extremely maneuverable by a

single diver. In fact, it has been deployed several times by a single diver throughout

the course of this work.

3.2 Data processing

Upon returning to the surface, data from the AQUASENSOR is offloaded to higher

performance computers and a larger disk array for processing5. Recovering ac-

curate depth from stereo imagery is performed by leveraging the optimized sum-

of-absolute-differences (SAD) algorithm implemented in the Point Grey Triclops

SDK6. This provides a dense set of 3D points per acquired image frame. To esti-

mate the motion of the camera, 3D point sets from different times are registered

into a common reference frame. The 6DOF position and orientation (pose) of the

sensor is estimated by utilizing the inter-frame 2D image motion and integrating

these motion estimates over time. This is accomplished by tracking “interesting”

features temporally creating a large set of 2D features containing outliers and errors.

This set of 2D feature tracks is pruned to contain only features that correspond to

3D locations. This results in two clouds of 3D points, one from the current frame

and another from the previous frame. The 2D feature tracks are used to estimate

the registration of these point clouds. A 6DOF rigid-body transformation is es-

timated between these point clouds using a least-squares algorithm. These delta

poses computed per frame are integrated to provide an estimate of the final pose

of the sensor. This also means that any error in the estimate will accumulate over

time. Also, since the intrinsic calibration parameters for the cameras are not known

perfectly, any error caused by calibration error will also accumulate causing the tra-

5Throughout this work, the basic stereo-vision algorithm evolved into the version described
here. Earlier versions of the AQUASENSOR used slightly simpler versions of the algorithm.

6http://www.ptgrey.com
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(a) Sensor with housing (b) Side view of sensor

(c) Schematic (d) Side view of schematic

(e) Sensor deployed underwater

Figure 3.3: AQUASENSOR V3.0. (a) Front view with underwater housing, (b)

Side view of sensor, (c) and (d) show a schematic representation of the device and

(e) shows the sensor in use scanning a sunken barge.
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jectory to diverge from reality. To reduce this error, a 3DOF inertial measurement

unit is used to provide independent complimentary information about the relative

orientation of the device between temporal frames.

3.2.1 Visual Ego-motion estimation

First, “good” features are extracted from the reference camera at time t using

the Kanade-Lucas-Tomasi feature tracking algorithm (see [Shi and Tomasi, 1994,

Lucas and Kanade, 1981]) and are tracked into the subsequent image at time t+ 1.

Using the disparity map previously extracted for both time steps, tracked points

that do not have a corresponding disparity at both time t and t+ 1 are eliminated.

Surviving points are subsequently triangulated to determine the metric 3D points

associated with each disparity. Depending on the characteristics of the stereo sen-

sor, a gate or threshold based on the individual 3D point uncertainty (as defined

in [Matthies and Shafer, 1987]) may be used to further prune the 3D points.

In underwater scenes, many objects and points are visually similar and thus

many of the feature tracks will be incorrect. Dynamic illumination effects, aquatic

snow, and moving objects (e.g. fish) increase the number of spurious points that

may be tracked from frame-to-frame. To overcome these problems, robust statistical

estimation techniques are employed to label the feature tracks as belonging to either

a static or non-static world model. This is achieved by estimating a rotation and

translation model under the assumption that the scene is stationary. The resulting

3D temporal correspondences are associated with stable scene points for the basis

of later processing. A further optimization would be to implement an algorithm

such as Epiflow [Zhang and Negahdaripour, 2008] which aids in feature tracking by

predicting the epipolar geometry for underwater imaging.

The camera orientation is represented as a quaternion and the position is rep-

resented as a 3D vector from the initial frame of reference. A least-squares best-fit

rotation and translation is computed for the sequence in a two stage process. First,

RANSAC [Fischler and Bolles, 1981] estimates the best linear least squares trans-

formation using Horn’s absolute orientation method [Horn, 1987] and is similar to

the method presented in [Michaels and Boult, 1999]. Given two 3D point clouds
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rt0 and rt1 at times t0 and t1 respectively, the rotation and translation required to

bring rt1 into accordance with rt0 are estimated. The centroid, r̄t0 , r̄t1 , of each point

cloud is computed and subtracted from the points to obtain two new point sets,

r′t0 = rt0 − r̄t0 and r′t1 = rt1 − r̄t1
To compute a function representing rotation, denoted as R(·) since it may sim-

ply be a matrix multiplication or a more complex operation such as a quaternion

rotation operator, the error function

n∑
i=1

||r′t0,i − sR(r′t1,i)||
2 (3.1)

is minimized. The rotation, R(·), and scale, s, are estimated using a linear least-

squares approach (detailed in [Horn, 1987]). After estimating the rotation, the

translation is estimated by transforming the centroids into a common frame and

subtracting.

Noting that the above method is prone to an imperfect result, the final step is

to refine the rotation and translation simultaneously using a nonlinear Levenberg-

Marquardt minimization [Press et al., 2002] over six parameters. For this stage the

rotation is parameterized as a Rodrigues vector [Weisstein, 2006] and the rotation

and translation parameters are estimated by iteratively minimizing the transfor-

mation error
n∑
i=1

||rt0,i − (R(rt1,i) + T )||2 (3.2)

In practice, the minimization takes only a few iterations to reduce the error

to acceptable levels and does not necessarily preclude realtime operation. This

approach to pose estimation differs from the traditional Bundle-Adjustment ap-

proach [Triggs et al., 2000] in the structure-from-motion literature in that it does

not refine the 3D locations of the features as well as the trajectory. The 3D struc-

ture is not refined during the minimization to limit the number of unknowns and

thus provide a solution to the system more quickly.
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3.2.2 IMU integration

Egomotion estimation via vision motion introduces at least two sources of error

in the estimate of 6DOF pose. First, the point-cloud registration computed from

feature tracks can never be perfect. As such, there is always a small residual error

in the registration per frame which accumulates over time. Second, the intrinsic

camera parameters are not known perfectly and any error in these parameters

introduces an error in each 3D point. In particular, the radial distortion estimate

of the lens is prone to error and the per-point error is non-uniform over the visual

field. This can introduce an artificial surface curvature in the 3D point clouds which

is subtle but noticeable when many frames are registered. This effect can be seen

in Figure 3.4a. Here, the registration error is small and the points line up very well

creating a visually “correct” model when viewed closely, however after registering

many frames it can be seen that there is an introduced curvature to the recovered

surface. To help counteract this effect, the 3DOF IMU is used to provide more

information about the orientation of the device. The IMU provides a quaternion

representing the absolute 3DOF orientation in 3D space. The change in orientation

as computed from the visual system must be consistent with the change in the

absolute orientation of the device. This is accomplished by transforming the IMU

orientation change,
IMUqδ = IMUqct−1 ∗ IMUqt (3.3)

into the estimated camera frame,

qt = CAMqδ
CAMqt−1

IMUqδ (3.4)

and then performing the Levenberg-Marquardt minimization using this new pose as

the initial guess. The effect of utilizing this information can be seen in Figure 3.4b

where the curvature has been reduced in the resulting model.

3.2.3 Reconstruction algorithm

The reconstruction algorithm is summarized below. Given stereo images at time t

and t− 1,
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(a) Visual motion only (No IMU) (b) Visual motion coupled with IMU

Figure 3.4: Resulting model with and without IMU information. Here, the 3D

model of a 2 metre section of coral bed on a mostly planar barge is shown with the

camera trajectory overlaid. It can be seen that the model in (a) exhibits significant

curvature due to per-point error while (b) shows a significantly more planar model

since the use of IMU information reduces the pose error incurred from the incorrect

calibration parameters. Qualitatively, the camera trajectory in (b) also matches

the real camera motion more closely.
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1. Perform the stereo disparity extraction algorithm and estimate 3D point cloud

at time t

2. Track salient features in Left image of stereo pairs from time t− 1 to t

3. Prune 2D feature set to only contain 2D feature matches with corresponding

3D points

4. Estimate 3D vision-only pose change using RANSAC, CAMqδ, Tt

5. Compute IMUqδ and qt as above

6. Refine qt, Tt using Levenberg-Marquardt minimization for only a few itera-

tions

7. Apply pose to point cloud and add to octree data structure

8. Optional: Extract mesh using a constrained elastic surface-net algorithm

[Gibson, 1998] or the Marching Cubes algorithm [Lorenson, 1987].

3.3 Experimental Validation

Experiments have been performed to both evaluate the accuracy of the reconstruc-

tion system and to create 3D models of real-world objects in the field. Results

from field experiments near Holetown, Barbados show the reconstruction of a coral

bed and sections of a sunken barge lying in Folkstone Marine Reserve. Sample

qualitative reconstructions from the underwater sequences are shown in Figure 3.5

and in Figure 3.6. Land-based reconstructions demonstrate the ability to use the

sensor to reconstruct terrestrial scenes captured with 6DOF hand-held motion. To

evaluate the accuracy of the sensor, experiments were performed and the recov-

ered trajectory compared with ground truth trajectory data. Experiments were

performed by estimating the handheld motion using the ego-motion algorithm de-

scribed above coupled with ground truth motion gathered by an auxiliary sensor
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(a) Section of Barge

(b) Polygonal Mesh

Figure 3.5: (a) shows the algorithm in action. The upper left quadrant displays the

3D point cloud representation of the currently estimated model. The upper right

quadrant shows the feature tracks for the current frame and the bottom displays the

current stereo vision images. (b) shows the corresponding polygonal mesh extracted

from the point cloud (untextured).
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(a) Reconstruction of Sunken Barge (b) 2D Mosaic of Sunken
Barge

Figure 3.6: (a) shows the model of a large section (18 metres) of the barge as a

point cloud with inset images to show close-up views of the 3D model that illustrate

scale and detail. A 2D mosaic of the barge (created manually) is shown in (d) with

the recovered section enclosed in a red box to place the 3D model in context.
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(IS-900). In one experiment, a scene with a colleague sitting in a chair is recon-

structed and in the second experiment, a more controlled setting with markers that

were placed at a known distance was reconstructed. The resulting 3D models can

be seen in Figure 3.7 and Figure 3.8. Two yellow markers were placed 63.5 cm

apart on a platform and the sensor was moved in approximately a straight line

from one marker to the other. Figure 3.8a and Figure 3.8b show the stereo pairs

associated with the first and the last image of the sequence. To estimate the error

of the reconstructed trajectory, an Intersense IS-900 tracking system was used to

provide absolute data and computed the error on a frame to frame basis.

The offset between the IS-900 sensor and the camera coordinate frame was

estimated manually to bring the measurements into alignment. The Euclidean

distance between the 3D camera positions of the vision-based reconstruction and

the IS-900 absolute position was used as an error metric and the resulting error is

plotted in Figure 3.9 for the two reconstructions. In the first error plot, the mean

error was found to be 2.1cm and in the second the mean error was 1.7cm. The error

is computed per frame with the euclidean distance as an error metric, namely

err =
∑
||(pi − Pi)|| (3.5)

where pi = [xi, yi, zi] is the position reported from our vision-based sensor and

Pi = [Xi, Yi, Zi] is the position reported by the IS-900 tracking system. The error

reported is quite low over the experiment, however there is a drift that is not

compensated for due to the manual alignment of the IS-900 frame.

3.4 Discussion

Traditional underwater sensing devices have relied on active sensors (sonar in par-

ticular) to recover three-dimensional environmental structure. Advances in stereo

sensing and data fusion technologies demonstrates that passive stereo is a suf-

ficiently robust technology to be applied in the aquatic domain as well. Al-

though the underwater domain presents unique challenges to traditional vision
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(a) (b)

(c)

Figure 3.7: Land-based Experiments 1. (a-c) Shows the reconstruction of a scene

with a colleague sitting in a chair. In the reconstruction, the computed trajectory

is shown in green while the absolute IS900 trajectory is shown in red.
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(a) (b)

(c) (d) (e)

Figure 3.8: Land-based Experiments 2. (a-b) Show reference stereo images from

two frames in the sequence. (c) shows the markers and two measured points with

a line drawn between them (in green). The distance between these points was

manually measured to be 63.5cm while the vision-based reconstruction reported a

distance of 63.1cm. (d-e) Show the reconstruction of the scene with the markers

placed within it. (f-h) show a second sequence of a colleague sitting in the chair. In

all reconstructions, the computed trajectory is shown in green while the absolute

IS900 trajectory is shown in red.
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Figure 3.9: Error plots for two trajectory reconstructions. The euclidean distance

error (plotted in meters) is shown over time (in frames). The error was computed

between the absolute position reported by the IS-900 tracking system and the cam-

era position reported from our vision-based reconstruction algorithm. There is a

slow error drift over time due to imprecision in the manual calibration between the

IS-900 sensor and the stereo coordinate frames.
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algorithms, robust noise-suppression mechanisms can be used to overcome many

of these difficulties. Results from land-based experiments demonstrate the accu-

racy of our reconstruction system. Results from underwater field trials demon-

strate the system’s ability to reconstruct qualitatively correct 3D models of the

aquatic environment. The entire reconstruction system operates at 2-4 frames per

second (depending on the stereo algorithm and feature tracking parameter set-

tings). The current speed limitation is primarily due to the stereo algorithm and

feature tracking which could be implemented in graphics hardware at near real-

time rates. Stereo disparity extraction has been implemented on modern GPUs

[Yang and Pollefeys, 2003, Yang et al., 2004], and the KLT and SIFT algorithms

have also been accelerated by GPUs [Sinha et al., 2006]. Leveraging the GPU could

increase the modeling frame-rate dramatically. Recovery of a long (18 metre) sec-

tion of sunken barge is shown containing approximately 35 million 3D points. To

place the model in context, a manually registered 2D mosaic from images of the

same barge is shown with with the area highlighted that corresponds to the recov-

ered 3D model.

The algorithm described in this chapter utilizes traditional computer vision

techniques — stereo range estimation plus visual motion registration — to acquire

3D models of the environment and maintain an estimate of the sensor trajectory.

Deploying the sensor in a particular environment requires solving for that envi-

ronment a range of calibration and parameter tuning issues. These are described

in the following section.

3.5 Issues with underwater stereo-vision

One major issue with using stereo-vision underwater is the need to re-calibrate

the sensor(s) when placed in water. Although this only needs to be performed

once (assuming that the cameras are fixed), performing calibration underwa-

ter is challenging, requires extra diver support and a precision calibration rig

[Harvey and Shortis, 1998]. This would seem straightforward, however even with

good underwater calibration, it is difficult to determine the parameters with high

accuracy due to refraction errors which is typically modelled as a radial distortion
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in the image (see [Kwon, 1999b, Treibitz et al., 2008, Kunz and Singh, 2008]).

Underwater, images acquired by the camera are subject to refraction due to

the air-water interface. Light rays bouncing off of the objects in the environ-

ment refract as they leave the water into the plexiglass (or glass) port of the

camera housing before reaching the camera lens. These errors induced by refrac-

tion are traditionally treated as radial distortion parameters in the image plane

(see [Harvey and Shortis, 1998]) however 3D errors are apparent (for example ob-

jects that are occluded may be visible after refraction) [Treibitz et al., 2008]. In a

stereo-vision application, this refractive error creates images that violate the epipo-

lar constraint. Thus, a stereo-vision system undergoing this type of refraction may

incorrectly match points and increase the error in the disparity estimate. An exam-

ple of this can be seen in Figure 3.10. These images were created with POV-Ray,

a free open-source ray-tracer. In all images, a plane was textured with a checker-

board and moved to various distances from the camera. The air-water interface

was placed at 10cm from the camera and extended beyond the working volume. As

illustrated, the curvature of the checkerboard lines changes noticeably depending

on the distance of the plane from the camera. The refractive error is an example

of a sensor parameter that can be modeled as depending on both the pose of the

sensor and the structure of the environment. The image error for each point in the

scene is different and should be estimated to properly characterize the error of each

3D point. One solution to this problem is to focus on objects within a particular

distance volume from the cameras and disregard the rest of the scene. The volume

can be calibrated by fixing calibration targets in a known lattice at known distances

and a lookup table can be precomputed and applied in the image space as done

in [Kwon, 1999a, Kwon, 1999b, Kwon and Lindley, 2000]. This solution is suitable

for a pool scenario however it becomes problematic to deploy in the field. The cal-

ibration method requires a large structure set up in the underwater environment.

Ensuring that this large (possibly 1-2 meters square) structure is stable in the field

is very difficult due to current and surge of the open waters. It also becomes a

three person job at minimum to deploy the sensor and perform the calibration.

The effects of this type of error is apparent not only in simulation but in real-

71



(a) Plane at 20cm with no Refraction (b) Plane at 20cm with Refraction

(c) Plane at 1m with no Refraction (d) Plane at 1m with Refraction

(e) Plane at 2m with no Refraction (f) Plane at 2m with Refraction

Figure 3.10: Effects of object depth on image formation. Simulation performed

using POV-Ray. (a,c,e) index of refraction = 1 (b,d,f) index of refraction=1.33.
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world situations as well. Figure 3.11 shows examples of reconstructions of a rela-

tively planar barge using different sets of radial parameters (found empirically). A

better solution is to utilize a method that takes into account the environment model

created from the sensor and estimate the parameters online to minimize the effects

of the refraction. It may be advantageous to use different sets of these parameters

in different situations. For example, for different disparity volumes a different set

of parameters may be chosen. In this manner, it would be interesting and useful

to develop a method that simultaneously estimates the sensor parameter values,

the pose of the sensor, and the map resulting from the measurements. Things

to consider when developing such an algorithm are that if the refraction error is

modeled as a radial distortion, then the amount of error is non-stationary as the

sensor moves in the environment generally. Obviously, if the sensor views the world

from exactly the same location this is not a problem. Nor is it a problem if the

sensor is always kept at a fixed distance from the environment. These scenarios are

uninteresting however as it is unrealistic to assume that the sensor doesn’t move

or that its motion is constrained in this manner. Thus, the noise model should be

kept general. The sensor parameters are thusly allowed to be dynamically chang-

ing and the noise is a function of the map and trajectory of the sensor itself. An

algorithm that provides such flexibility in its sensing paradigm — SensorSLAM —

is developed in the next chapter.

73



(a) Good choice of radial parameters (b) Bad choice of radial parameters

(c) Top view of (a) (d) Top view of (b)

Figure 3.11: Effects of Radial distortion parameters in real-world scenario. The

curvature in (b) is due to error in 3D points near the edges of the images. This

error is due to refraction effects coupled with the depth of the 3D point. The images

are improperly registered due to the improper radial parameters for this volume of

space thus violating the epipolar constraints. Matches are found due to similarity in

the image but the resulting 3D point is incorrect (shifted in depth). The top views

suggest the image registration is correct since the model is smooth and continuous.
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CHAPTER 4

SensorSLAM

One issue with existing SLAM formulations is their inability to address the problem

of non-stationary sensor noise within their sensor models. If sensor performance

were to degrade due to the orientation or position of the vehicle in the environment,

then standard noise models (which assume stationary noise) are invalidated and this

leads to instability and loss of accuracy in the resulting map and trajectory. With

camera sensors in underwater environments, non-standard noise manifests itself in

different ways. Here non-stationary is used to encapsulate the possibility of the

noise model being dependent on the map or pose of the vehicle but could also be

treated as a time-varying model. One could imagine a situation where both issues

occur, i.e. the sensor is affected by a moving distortion in the environment. For

the remainder of this dissertation however, only map/pose dependent noise sources

will be considered. For example, light is attenuated differentially by wavelength.

Red wavelengths are absorbed by the water column at a higher rate than blues and

greens. If the vision algorithms depend upon consistency in the red color channel for

tracking or segmentation, the algorithm accuracy and effectiveness will be degraded

differentially as a function of the vehicle’s state as the vehicle submerges. The total

amount of illumination is also depth-dependent (as well as weather dependent).

Another example is the radial-like image distortion when a planar camera model is

used underwater. Due to the refraction, light rays entering the sensor at the water-

glass or water-air interface are slightly bent. The effects can be alleviated (but not

elminated) in a single camera sensor using a properly mounted hemispherical lens

that surrounds the camera [Treibitz et al., 2008, Kunz and Singh, 2008] but when

using stereo sensors this becomes more difficult. The image distortion appears

as a magnification plus a radial component. Insidiously however, the amount of

distortion changes as objects move further from the camera. The distortion is

dependent on the interaction of map and pose.
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Although a range of solutions exist for the calibration of sensor param-

eters that are static (e.g., [Bouguet, 1999, Hemayed, 2003, Lavest et al., 2003,

Habib et al., 2002, Salvi et al., 2002, Personnaz and Horaud, 2002, Zhang, 2000,

Chatterjee and Roychowdhury, 2000, Wei and Ma, 1994]), how can we incorporate

such calibration when the calibration changes as a function of vehicle or map state?

Incorporating the sensor calibration parameters within the SLAM formulation re-

quires solving for the joint probability of the vehicle pose, st, the map, Θ, and the

sensor parameters, Pt. For the purposes of this work, this formulation is called

SensorSLAM. In general, it can be expressed as task of solving for the conditional

probability

p(st,Θ, Pt|zt, ut, nt). (4.1)

Essentially, the idea is to derive the joint pdf over the sensor pose, st, the

map of the environment, θ, and the current estimate of the sensor parameters, Pt.

This enables a recursive filtering algorithm to simultaneously estimate the sensor

parameters in the SLAM framework. For the following derivations, the sensor

parameters are denoted at time t with a subscript as Pt and the collection of such

parameters over time 1 . . . t is denoted with a superscript as P t = {P1, P2, . . . , Pt}.
We wish to estimate the joint probability of the robot location st, the map Θ =

{Θ1,Θ2, . . . ,Θn} which represents the world as a collection of n landmarks, and

the current sensor parameters Pt. We also have knowledge of sensor observations

zt = {z1, z2, . . . , zt}, control inputs ut = {u1, u2, . . . , ut}, and data associations

nt = {n1, n2, . . . , nt}.
The first thing to note about equation (4.1) is that certain forms of the condi-

tional probability of SensorSLAM permit simple solutions that reduce the problem

to traditional SLAM. If the sensor parameters are known then we do not have to es-

timate them as part of the joint distribution as they are conditionally independent.

The desired pdf could be factored in terms of

p(st,Θ|Pt, zt, ut, nt)p(Pt|zt, ut, nt). (4.2)

Specifically, for a conditional distribution function F (y|x,w) over variables y given
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X = x and W = w we can marginalize over W as in [Cox and Wermuth, 2003] as

F (y|x) =

∫
F (y|x,w)f(w|x)dw (4.3)

This relationship can be used to marginalize over the sensor parameters as

p(st,Θ|zt, ut, nt) =

∫
p(st,Θ|Pt, zt, ut, nt)p(Pt|zt, ut, nt)dPt (4.4)

resulting in the traditional SLAM pdf. Thus, assuming that the sensor parameters

are a function of observations only (i.e. not related to the map or pose) reduces

the entire problem to SLAM.

Another special case of the problem is to assume that the sensor parameters

are independent of both the pose, st, and the map, Θ, and only dependent on the

measurements. This implies that the pose is also not a function of Pt. Equation 4.1

can thus be factored as

p(st,Θ, Pt|zt, ut, nt) = p(st,Θ|zt, ut, nt)p(Pt|zt, ut, nt). (4.5)

Notice that under these assumptions the problem reduces to two independent sub-

problems. First, is the estimation of the traditional SLAM pdf, p(st,Θ|zt, ut, nt),
and second is the estimation of the sensor parameter pdf, p(Pt|zt, ut, nt). Further-

more, using the sensor parameter may be simplified since the knowledge of the data

associations and controls do not influence the parameters resulting in

p(Pt|zt, ut, nt) = p(Pt|zt) (4.6)

Using Bayes rule on Equation 4.6 obtains

p(Pt|zt) =
p(zt|Pt, zt−1)p(Pt|zt−1)

p(zt|zt−1)
(4.7)

Noting that the measurements are independent of each other and the current sensor

parameters are independent on the previous measurements, Equation 4.7 becomes

p(Pt|zt) =
p(zt|Pt)p(Pt)

p(zt)
(4.8)

= ηp(zt|Pt)p(Pt) (4.9)
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where η is a normalizing constant denoting the denominator resulting from Bayes

rule that ensures the result is a probability. Combining this result with equa-

tion (4.5) gives

p(st,Θ, Pt|zt, ut, nt) = ηp(st,Θ|zt, ut, nt)p(zt|Pt)p(Pt) (4.10)

This form however does not encapsulate possible interactions between the vehicle

location and the map with the sensor parameters and would be unable to accommo-

date any dynamic location-based bias in the sensor model. Furthermore, p(zt|Pt)
could be subsumed into the observation model of the traditional SLAM formu-

lation resulting in p(st,Θ, Pt|zt, ut, nt) = ηp(st,Θ|zt, ut, nt)p(Pt) which could be

considered equivalent to SLAM generally.

4.1 The general SensorSLAM derivation

Let us now turn to the general form of the problem. Assume that the form of the

SensorSLAM conditional pdf is not factorizable at the outset. To be as general as

possible, assume a dynamic map process. The desired pdf to estimate is

p(st,Θt, Pt|zt, ut, nt). (4.11)

This is to be contrasted with the traditional SLAM pdf (see [Thrun et al., 2005])

that does not incorporate the sensor parameters (and uses a static map)

p(st,Θ|zt, ut, nt) (4.12)

The following derivation parallels the derivation of SLAM as described in

[Montemerlo, 2003] and shown in Chapter 2. Using Bayes rule, Equation 4.11

can be converted into a posterior probability as

p(st,Θt, Pt|zt, ut, nt) =
p(zt|st,Θt, Pt, z

t−1, ut, nt)p(st,Θt, Pt|zt−1, ut, nt)

p(zt|zt−1, ut, nt)
(4.13)

For completeness this is shown explicitly. Given Bayes rule

p(A|B) =
p(A,B)

p(B)
(4.14)
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and substituting A = {st,Θt, Pt}, and B = {zt, ut, nt}, results in the following

expression

p(st,Θt, Pt|zt, ut, nt) =
p(st,Θt, Pt, z

t, ut, nt)

p(zt, ut, nt)
(4.15)

The numerator can be simplified by using the definition of conditional probability

— specifically that p(A,B) = p(A|B)p(B) — to isolate the current measurement

by substituting A = {zt} and B = {st,Θt, Pt, z
t−1, ut, nt} as

p(st,Θt, Pt, z
t, ut, nt) = p(zt|st,Θt, Pt, z

t−1, ut, nt)p(st,Θt, Pt, z
t−1, ut, nt) (4.16)

In the second term, st,Θt, Pt are isolated in the same manner to obtain

p(st,Θt, Pt, z
t−1, ut, nt) = p(st,Θt, Pt|zt−1, ut, nt)p(zt−1, ut, nt) (4.17)

Isolating the current measurement in the denominator of equation (4.15) results in

a denominator of

p(zt, ut, nt) = p(zt|zt−1, ut, nt)p(zt−1, ut, nt) (4.18)

Substituting equation (4.16), equation (4.17), and equation (4.18) into equa-

tion (4.15) and simplifying we get

p(st,Θt, Pt|zt, ut, nt) =
p(st,Θt, Pt, z

t, ut, nt)

p(zt, ut, nt)

equation (4.16)
=

p(zt|st,Θt, Pt, z
t−1, ut, nt)p(st,Θt, Pt, z

t−1, ut, nt)

p(zt, ut, nt)

equation (4.17)
=

p(zt|st,Θt, Pt, z
t−1, ut, nt)p(st,Θt, Pt|zt−1, ut, nt)p(zt−1, ut, nt)

p(zt, ut, nt)

equation (4.18)
=

p(zt|st,Θt, Pt, z
t−1, ut, nt)p(st,Θt, Pt|zt−1, ut, nt)p(zt−1, ut, nt)

p(zt|zt−1, ut, nt)p(zt−1, ut, nt)

=
p(zt|st,Θt, Pt, z

t−1, ut, nt)p(st,Θt, Pt|zt−1, ut, nt)

p(zt|zt−1, ut, nt)

The denominator does not depend on {st,Θ, Pt} and can be considered as a

normalizing constant. This can be shown explicitly by using the theorem of total
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probability: Given a set of hypotheses Ai that cover the sample space, we can

express the probability of B as

p(B) = p(B,A1) + p(B,A2) + . . .+ p(B,An) (4.19)

given that the sets denoted by theAi’s are disjoint. This can be expressed compactly

as

p(B) =
n∑
i

p(B,Ai). (4.20)

Through the definition of conditional probability

p(B,Ai) = p(B|Ai)p(Ai) (4.21)

which allows the above summations to be expressed as

p(B) =
n∑
i

p(B|Ai)p(Ai) (4.22)

To express the denominator of equation (4.13) in this form, however it is necessary

to first show that the following holds

p(B|C) =
n∑
i

p(B|C,Ai)p(Ai|C) (4.23)

Using the well-known relationship p(B,C) = p(B|C)p(C), equation (4.19) becomes

p(B,C) = p(B,C,A1) + p(B,C,A2) + . . .+ p(B,C,An)

= p(B|C,A1)p(C,A1) + p(B|C,A2)p(C,A2) + . . .+ p(B|C,An)p(C,An)

= p(B|C,A1)p(A1|C)p(C) + . . .+ p(B|C,An)p(An|C)p(C)

= p(C) · [p(B|C,A1)p(A1|C) + . . .+ p(B|C,An)p(An|C)]

p(B,C) = p(C)
n∑
i

p(B|C,Ai)p(Ai|C)

p(B,C)

p(C)
=

n∑
i

p(B|C,Ai)p(Ai|C)

p(B|C) =
n∑
i

p(B|C,Ai)p(Ai|C)
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and for continuous probability functions the summation becomes an integral as

p(B|C) =

∫
p(B|C,Ai)p(Ai|C)dAi

Going back to the SLAM formulation and by using the appropriate substitu-

tions, i.e.

p( zt︸︷︷︸
B

| zt−1, ut, nt︸ ︷︷ ︸
C

) and {st,Θt, Pt}︸ ︷︷ ︸
Ai

the denominator of Equation 4.15 becomes

p(zt|zt−1, ut, nt) =

∫
p(B|C,Ai)p(Ai|C)dAi

=

∫
p(zt|Ai, zt−1, ut, nt)p(Ai|zt−1, ut, nt)dAi

=

∫∫∫
p(zt|st,Θt, Pt, z

t−1, ut, nt)p(st,Θt, Pt|zt−1, ut, nt)dstdΘtdPt

= η−1

Typically, η−1 is thought of as a normalizing constant since it ensures the numerator

is a probability (i.e. between 0 and 1). For the remainder of this thesis we will view

the denominator η−1 as a normalization constant for notational convenience until

we are required to compute it directly. Substituting the denominator back into

equation (4.13) results in

p(st,Θt, Pt|zt, ut, nt) = ηp(zt|st,Θt, Pt, z
t−1, ut, nt)p(st,Θt, Pt|zt−1, ut, nt) (4.24)

Assuming that each measurement zt is conditionally independent of the previous

measurements zt−1, zt−2, . . . , z1 given knowledge of st,Θt, Pt (Markov assumption)

and control inputs equation (4.24) simplifies to

p(st,Θt, Pt|zt, ut, nt) = ηp(zt|st,Θt, Pt, nt)p(st,Θt, Pt|zt−1, ut, nt).

Note that p(zt|st,Θt, Pt, nt) is a probabilistic sensor measurement model that

represents the probability density of the sensor measurements. It depends upon the

given sensor parameters Pt, the pose of the vehicle st and the data associations, nt.
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The second term p(st,Θt, Pt|zt−1, ut, nt) is a more complex interaction of density

functions.

Assuming that the robot pose and sensor parameters are governed by Markov

chain processes — they are dependent not on their entire history but rather only

over the previous estimate — allows the marginalization over the previous pose and

previous sensor parameter estimate as

p(st,Θt, Pt|zt, ut, nt) = ηp(zt|st,Θt, Pt, nt)∫∫∫
p(st, st−1,Θt,Θt−1, Pt, Pt−1|zt−1, ut, nt)dst−1dPt−1dΘt−1

(4.25)

Using the definition of conditional probability, and using the shorthand

R = {zt−1, ut, nt}, to isolate the robot pose term results in

p(st, st−1,Θt,Θt−1, Pt, Pt−1|R) =p(st|st−1,Θt,Θt−1, Pt, Pt−1, R)·

p(st−1,Θt,Θt−1, Pt, Pt−1|R)

The first term of the right hand side of the equation above does not require in-

formation about the previous map and sensor parameters as it has knowledge of

the current information. Noticing that Θt−1, Pt−1 can be removed as they do not

provide any new information and simplifying gives

p(st, st−1,Θt,Θt−1, Pt, Pt−1|R) =p(st|st−1,Θt, Pt, R)·

p(st−1,Θt,Θt−1, Pt, Pt−1|R)
(4.26)

Re-arranging the last term of Equation 4.26 gives

p(st, st−1,Θt,Θt−1, Pt, Pt−1|R) =p(st|st−1,Θt, Pt, R)·

p(Θt, Pt, st−1,Θt−1, Pt−1|R)

Using the definition of conditional probability to isolate the current map and sensor

parameters results in

p(st, st−1,Θt,Θt−1, Pt, Pt−1|R) =p(st|st−1,Θt, Pt, R)·

p(Θt, Pt|st−1,Θt−1, Pt−1, R)p(st−1,Θt−1, Pt−1|R)
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Substituting back into equation (4.25) results in the following

p(st,Θt, Pt|zt, ut, nt) = ηp(zt|st,Θt, Pt, nt)·∫∫∫
p(st|st−1,Θt, Pt, z

t−1, ut, nt)·

p(Θt, Pt|st−1,Θt−1, Pt−1, z
t−1, ut, nt)·

p(st−1,Θt−1, Pt−1|zt−1, ut, nt)dst−1dPt−1dΘt−1

(4.27)

One last set of general simplifications can be made to the last term under the

integral by noting that a future control and data association cannot affect a past

state, thus the current terms ut, nt can be dropped which gives

p(st,Θt, Pt|zt, ut, nt) = η p(zt|st,Θt, Pt, nt)︸ ︷︷ ︸
Measurement Model

·

∫∫∫
p(st|st−1,Θt, Pt, z

t−1, ut, nt)︸ ︷︷ ︸
Vehicle Motion model

·

p(Θt, Pt|st−1,Θt−1, Pt−1, z
t−1, ut, nt)︸ ︷︷ ︸

Joint Map & Sensor Parameter pdf

·

p(st−1,Θt−1, Pt−1|zt−1, ut−1, nt−1)︸ ︷︷ ︸
Recursive Formulation

dst−1dPt−1dΘt−1

(4.28)

Solving this problem is certainly computationally expensive and infeasible for real-

time processing with modern computational systems since the algorithm would have

to compute all possible vehicle poses for each possible map given all possible sensor

parameters at each update time step. To develop an algorithm that approximates

this pdf, several reasonable assumptions must be made.

Static world model assumption

The first simplification is to assume the world model is static. This is a typical

assumption in SLAM and is valid for many applications. In situations where the

map is filled with highly dynamic objects this would not hold, however if the scene

contains a large set of static objects the assumption holds. If a small number of

objects are dynamic — such as small numbers of fish swimming in the scene — a
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separate, but more computationally feasible (and sub-optimal), method could be

used to label measurements as being either static or dynamic as in [Wang, 2004,

Wang et al., 2007a]. Incorporating the assumption of a static map/world model

reduces the problem to the following form

p(st,Θ, Pt|zt, ut, nt) = η p(zt|st,Θ, Pt, nt)︸ ︷︷ ︸
Measurement Model

·

∫∫
p(st|st−1,Θ, Pt, z

t−1, ut, nt)︸ ︷︷ ︸
motion model

·

p(Θ, Pt|st−1, Pt−1, z
t−1, ut, nt)︸ ︷︷ ︸

Joint Map & Sensor Parameter pdf

·

p(st−1,Θ, Pt−1|zt−1, ut−1, nt−1)︸ ︷︷ ︸
Recursive Formulation

dst−1dPt−1

(4.29)

Note that in the above simplification, the sensor parameters are still assumed to

be dynamic. An example of such a situation would be when the sensor parameters

vary on the position and/or orientation of the sensor relative to the map. One such

parameter might be an estimate of the current heading bias of a magnetometer in

an environment containing local magnetic distortions. Also, if the sensor parameter

model is time-varying, the appropriate model could be incorporated here as well.

Static map + constant but unknown sensor parameters

One further assumption would be to assume that the sensor parameters are constant

but are unknown. An example of such a situation includes modelling static but

unknown intrinsic camera parameters of the camera, e.g. the focal length. This
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would further simplify equation (4.29) to

p(st,Θ, P |zt, ut, nt) = η p(zt|st,Θ, P, nt)︸ ︷︷ ︸
Measurement Model

·

∫
p(st|st−1,Θ, P, z

t−1, ut, nt)︸ ︷︷ ︸
motion model

·

p(Θ, P |st−1, z
t−1, ut, nt)︸ ︷︷ ︸

Joint Map & Sensor Parameter pdf

·

p(st−1,Θ, P |zt−1, ut−1, nt−1)︸ ︷︷ ︸
Recursive Formulation

dst−1

(4.30)

In traditional SLAM, if errors occur due to sensor parameters, these will be assigned

as noise to the map prior pdf. In scenarios where the parameters are non-linear or

have a probabilistic model that is separate from the landmark error, this explicit

form allows for a more accurate map since the sensor error is represented explicitly.

This formulation decouples the error introduced by the sensor parameter noise from

the map feature uncertainty resulting in a higher accuracy map.

Static map + pose/map-dependent parameters

Given equation (4.29), the joint map and parameter pdf can be simplified in two

ways depending on the situation. First, splitting p(Θ, Pt|st−1, z
t−1, ut, nt) into a

map prior and a sensor pdf results in

p(Θ, Pt|st−1, Pt−1, z
t−1, ut, nt) = p(Pt|Θ, st−1, Pt−1, z

t−1, ut, nt)·

p(Θ, |st−1, Pt−1, z
t−1, ut, nt)

(4.31)

This form implies that the current state of the sensor parameters is dependent

upon both motion history and the map as well as its own history. Also, the map

is dependent only upon the previous state of the sensor parameters, measurements

and motion. Alternatively, the parameters can be isolated from the map as

p(Θ, Pt|st−1, Pt−1, z
t−1, ut, nt) = p(Θ|Pt, st−1, z

t−1, ut, nt)·

p(Pt|st−1, Pt−1, z
t−1, ut, nt)

(4.32)
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which implies that the sensor parameters depend only on its own history, the previ-

ous vehicle location, measurements and controls and does not depend on the map.

The map thus depends on the current state of the sensor parameters which suggests

that as the sensor parameters increase in accuracy, the map uncertainty decreases.

One way to think about equation (4.32) is to think of the problem as estimating

two types of maps spread out over the traversed area. The map and parameters are

tightly coupled so they can be represented in similar fashions. One environmental

“map” represents the feature locations and their uncertainties while the second

“sensorial parameter map” represents the current value and uncertainty of the

sensor parameters. At any point in time, the full map can be extracted from these

representations simply by multiplying the respective map elements together. To

illustrate this point, an example is developed that underlines this approach.

Example

As an example, take a robot that relies heavily on the use of a magnetometer for its

absolute heading in the world. The world contains a large amount of ferrous mate-

rial in some area thus creating static magnetic distortion biases that are location de-

pendent. The distortion is spread over the travelled area, thus the current estimate

of the bias changes depending on some model that incorporates the current map and

vehicle location. Odometry can be relied upon for a short period of time and as such

the motion model in the SensorSLAM framework (Equation 4.29) collapses to the

traditional vehicle motion model, namely p(st|st−1,Θ, P, z
t−1, ut, nt) = p(st|st−1, ut)

resulting in a posterior

p(st,Θ, Pt|zt, ut, nt) = ηp(zt|st,Θ, Pt, nt)·∫∫
p(st|st−1, ut)p(Θ, Pt|st−1, Pt−1, z

t−1, ut, nt)·

p(st−1,Θ, Pt−1|zt−1, ut−1, nt−1)dst−1dPt−1

(4.33)
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The motion model is independent of the sensor parameters. Thus the motion model

can be moved out of the interior integral as

p(st,Θ, Pt|zt, ut, nt) = ηp(zt|st,Θ, Pt, nt)·∫
p(st|st−1, ut)

∫
p(Θ, Pt|st−1, Pt−1, z

t−1, ut, nt)·

p(st−1,Θ, Pt−1|zt−1, ut−1, nt−1)dPt−1dst−1

(4.34)

Equation 4.32 explicitly denotes the relationship between the map and sensor pa-

rameter model

p(st,Θ, Pt|zt, ut, nt) = η p(zt|st,Θ, Pt, nt)︸ ︷︷ ︸
Measurement Model

·

∫
p(st|st−1, ut)︸ ︷︷ ︸

Motion Model

∫
p(Θ|Pt, st−1, z

t−1, ut, nt)︸ ︷︷ ︸
Map in Global Ref. frame

·

p(Pt|st−1, Pt−1, z
t−1, ut, nt)︸ ︷︷ ︸

Est. Local Sensor Bias in Map Ref. frame

·

p(st−1,Θ, Pt−1|zt−1, ut−1, nt−1)︸ ︷︷ ︸
Recursive Formulation

dPt−1dst−1

(4.35)

To simulate this scenario an OpenGL simulator was developed that uses a stan-

dard kinematic model for robotic motion (see Figure 4.1). Beacons (landmarks)

can be interactively placed in the environment that follow the set of walls. A

simulated laser beam measures the distance to beacons near the vehicle. Beacons

beyond a given distance threshold are not observed. The robot is controlled by the

user. While moving, the odometry, simulated laser observations and beacon IDs are

stored in a log file. A magnetic distortion source can be placed within the environ-

ment (represented as a distortion on the grid) and its strength can be modified and

controlled. The simulator uses a Gaussian error model for the magnetic distortion.

The SLAM implementation used as the gold-standard solution is the Matlab

EKF implementation by Tim Bailey7. Figure 4.2a shows the results of the SLAM

7http://openslam.org/
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(a) Top-Down View (b) Top-Down View

(c) 3D View

Figure 4.1: SLAM Simulator Images. Red dots are beacons, white lines are walls,

green lines denote laser beams. (a) shows a top down view of the environment,

the grid shows the amount of distortion applied to the sensor at each location (b)

another top-down view of a different environment with different distortion amounts

(c) the view from the simulated robot.
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(a) Gold Standard Method with known
data associations.
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(b) EKF SLAM without known data
associations.

Figure 4.2: Comparison of standard EKF-SLAM (a) with and (b) without known

data associations. Magnetic distortion is not applied to the measurements. Red-

plus signs (+) are the estimated beacon locations, red lines represent the current

laser beam to the measurements and black lines represent the estimated vehicle

location.

algorithm when run with the data and known data associations (the beacon identi-

fiers were used directly to constrain the problem) from a single traversal of a rect-

angular area. Figure 4.2b shows the results of traditional SLAM without magnetic

distortion but with unknown data assocations. A gated nearest neighbour search

was used to estimate the associations. The result is similar to the ground truth

scenario. Adding the magnetic distortion to the compass and re-running the SLAM

algorithm (without known associations) produces a result as shown in Figure 4.3a.

The map is incorrect and the trajectory is lost when the compass has a significant

bias in the measurements. Figure 4.3b shows the same data run with full knowledge

of the distortion at each pose. When the distortion parameters are fully known, the

SLAM algorithm returns the map to an accurate result. In this simple illustration,

it can be seen that knowledge of the distortion is beneficial to the map-making
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(a) EKF SLAM with unknown distortion

(b) EKF SLAM with known distortion

Figure 4.3: Comparison of results from standard EKF SLAM when a magnetic

distortion exists in the environment and is (a) unknown and (b) known to the

algorithm. Distortion is located at (-10,10) and iso-contours at 1-sigma indicate

the strength of the distortion. Beacon locations are shown (+ signs) with their

corresponding uncertainty ellipses. Estimated trajectory is shown with black lines

and ground-truth trajectory shown in dotted blue.
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process.

4.2 SensorSLAM for location-based magnetic distortion

bias

The algorithm developed here (and in the previous example) implements the

Bayesian formulation in Equation 4.35 to approximate the SensorSLAM posterior

for the previous example

p(st,Θ, Pt|zt, ut, nt) = ηp(zt|st,Θ, Pt, nt)·∫
p(st|st−1, ut)

∫
p(Θ|Pt, st−1, z

t−1, ut, nt)︸ ︷︷ ︸
Map in Global Ref. frame

·

p(Pt|st−1, Pt−1, z
t−1, ut, nt)︸ ︷︷ ︸

Est. Local Sensor Bias in Map Ref. frame

·

p(st−1,Θ, Pt−1|zt−1, ut−1, nt−1)dPt−1dst−1

(4.36)

Adopting a hybrid particle-Kalman filter formulation enables the approximation

of this pdf as before using the stochastic integration method. Here we perform this

operation more generally so it can be used in an underwater environment with a

stereo vision sensor.

It would be quite difficult to compute the interior integral over the entire con-

tinuous spectrum for the sensor parameters. As an approximation, this example

uses a stochastic integration-like method. Assume that there is a finite number of

possible locations for the magnetic distortion source. This allows for the integration

over all possible values of the sensor parameters.

Given the following integral∫
p(Pt|st−1, Pt−1)dPt−1

and given knowledge that there are only two possible values for Pt−1,

{state0, state1}, the integral can be computed (now a summation since it is dis-
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crete) as ∑
Pt−1

p(Pt|st−1, Pt−1) = p(Pt|st−1,Pt−1 = state0)

+ p(Pt|st−1,Pt−1 = state1)

The integral can be approximated by summing over all possible discrete values

of the previous sensor parameter values. In the case of a discrete set of possible

magnetic source locations, the set of possible parameter values is also discrete.

An approximation can be made to alleviate the necessity to integrate over mul-

tiple parameters. Obviously, doing so removes information that may be valuable

for modelling every interaction of the random variables, however it lowers the com-

putational burden. Assume for the map and sensor parameter model, that there

exists a fixed value for the previous vehicle location. At each iteration we collapse

the conditional probabilities in the map and sensor parameter pdf’s to a single value

for the vehicle pose st−1 = µst−1 which is the mean of the distribution calculated in

the previous iteration resulting in the following

p(st,Θ, Pt|zt, ut, nt) ≈ ηp(zt|st,Θ, Pt, nt)·∫
p(st|st−1, ut)

∫
p(Θ|Pt, st−1 = µst−1 , z

t−1, ut, nt)︸ ︷︷ ︸
Map in Global Ref. frame

·

p(Pt|st−1 = µst−1 , Pt−1, z
t−1, ut, nt)︸ ︷︷ ︸

Est. Local Sensor Bias in Map Ref. frame

·

p(st−1,Θ, Pt−1|zt−1, ut−1, nt−1)dPt−1dst−1.

(4.37)

Since the map and sensor parameter pdf’s are being approximated using a fixed
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previous robot pose, the integrals can be rearranged as

p(st,Θ, Pt|zt, ut, nt) ≈ ηp(zt|st,Θ, Pt, nt)·∫
p(Θ|Pt, st−1 = µst−1 , z

t−1, ut, nt)︸ ︷︷ ︸
Map in Global Ref. frame

·

p(Pt|st−1 = µst−1 , Pt−1, z
t−1, ut, nt)︸ ︷︷ ︸

Est. Local Sensor Bias in Map Ref. frame

·

∫
p(st|st−1, ut)p(st−1,Θ, Pt−1|zt−1, ut−1, nt−1)dst−1dPt−1

(4.38)

In essence, this approach to SensorSLAM embeds the traditional SLAM formulation

within a sensor parameter estimation framework as

p(st,Θ, Pt|zt, ut, nt) ≈ ηp(zt|st,Θ, Pt, nt)·∫
p(Θ|Pt, st−1 = µst−1 , z

t−1, ut, nt)︸ ︷︷ ︸
Map in Global Ref. frame

·

p(Pt|st−1 = µst−1 , Pt−1, z
t−1, ut, nt)︸ ︷︷ ︸

Est. Local Sensor Bias in Map Ref. frame

·

[∫
p(st|st−1, ut)p(st−1,Θ, Pt−1|zt−1, ut−1, nt−1)dst−1

]
︸ ︷︷ ︸

“traditional” SLAM sub-problem

dPt−1

(4.39)

The pdfs, p(Θ|Pt, st−1 = µst−1 , z
t−1, ut, nt) · p(Pt|st−1 = µst−1 , Pt−1, z

t−1, ut, nt),

are maintained as the two separate maps and multiplied together when required.

p(Pt|st−1 = µst−1 , Pt−1, z
t−1, ut, nt) is approximated as a set of sensorial maps, each

one representative of a different magnetic distortion location. This is a discrete set

of samples and the pdf can be estimated using a particle filtering algorithm.

To illustrate the effectiveness of the approach, simulated experiments were per-

formed in Matlab using a standard implementation of EKF SLAM8. Without prior

8Tim Bailey’s EKF slam implementation from the OpenSLAM initiative
http://www.openslam.org.
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knowledge of the sensor parameters the algorithm performs quite poorly in the pres-

ence of a magnetic distortion. The compass heading is biased differently through-

out the environment increasing the error in the resulting map and trajectory (see

Figure 4.4). When using SensorSLAM to estimate the sensor parameter pdf (see

Figure 4.5) — in this example the parameter affecting the sensor is the magnetic

distortion location — it can be seen that the resulting map and trajectory follow

the ground truth and that the appropriate magnetic distortion location is esti-

mated correctly. The particle error in these experiments was computed simply as

the covariance of the current SLAM estimate with the idea that the SLAM esti-

mate will have a higher error when the magnetic distortion affects the model and

lower variance when the model is unaffected by the distortions. During the run,

self-consistency or trusting the internal representation of the map too much can be

detrimental to the overall quality of the map. This can be seen in Frames 800-985.

Subsequently the map is self-consitent with the observations even without fully

compensating for the distortion. However, the final map quality is higher in the

SensorSLAM implementation than in the EKF-SLAM version. Fortunately, the

loop closure event that occurs in Frame 986 reduces the error enough to bring the

map and trajectory into alignment with the correct world view.

In a second experiment (see Figure 4.6), the error function was changed to take

into account the relationship between the vehicle and the landmarks. The error

model per particle was improved to be a Gaussian error model for each particle

centered around the estimated landmark positions and uses the covariance matrix

determined by the EKF. This error is used to weight the particle. Even though

this approach favors an incorrect solution at the beginning of the run, it quickly (at

Frame 405) corrects itself and continues robustly with that solution for the duration

of the experiment.
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(a) Frame 43 (b) Frame 180 (c) Frame 300

(d) Frame 600 (e) Frame 800 (f) Frame 985

(g) Frame 986 (h) Frame 1200 (Final)

Figure 4.4: Example of simulation without distortion estimation using EKF SLAM.

The magnetic distortion is illustrated but its parameters and position are not estimated

during the run. Note the significant errors in the resulting map and trajectory. See the

legend of Figure 4.3 for more details.
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(a) Frame 43 (b) Frame 180 (c) Frame 300

(d) Frame 600 (e) Frame 800 (f) Frame 985

(g) Frame 986 (Loop Closure) (h) Frame 1200 (Final)

Figure 4.5: Example of simulation shown in Figure 4.4 using SensorSLAM. The sensor

parameter (magnetic distortion location) is estimated during the run. The final map

and trajectory follows the ground truth trajectory. The position of current estimated

distortion location is shown with dotted blue circles. The final position of the magnetic

distortion is estimated correctly in Frames 986-1200. See the legend of Figure 4.3 for

more details.
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(a) Frame 87 (b) Frame 365 (c) Frame 404

(d) Frame 405 (e) Frame 600 (f) Frame 800

(g) Frame 960 (h) Frame 1200 (Final)

Figure 4.6: Example of simulation with higher amount of distortion in the environment.

Shown with distortion estimation using a Gaussian error model. Convergence happens at

frame 405 and is stable throughout the rest of the simulation. See the legend of Figure 4.5

for more details.
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4.3 Summary

This chapter developed an algorithm (SensorSLAM) for simultaneously estimating

— possibly dynamic — sensor parameters that affect the quality of the estimated

map and vehicle location. A general Bayesian formalism was developed and a

special case was developed for applying the formulation to a specific example. A

simulated example showing the necessity of such an algorithm was developed. Sen-

sorSLAM was shown to be effective at characterizing the sensor parameter dynamic

model for the example. The following chapters applies the SensorSLAM algorithm

to an underwater scenario using stereo-video as the primary sensing mechanism.
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CHAPTER 5

Experiments

This chapter details experiments performed with data from underwater field trials

to verify the approach and discuss real-world limitations of SensorSLAM. The data

used in this chapter was collected during 2007 and 2008 during the AQUA field trials

in Holetown, Barbados. The goal of the field trials was to collect stereo imagery

of a sunken barge in sufficient detail to enable the 3D reconstruction of the entire

structure. Building on the theoretical model developed in Chapter 4, this chapter

provides details of the SensorSLAM algorithm used to analyze the imagery followed

by validation against brute force methods showing the validity of the results.

5.1 Algorithm overview

In order to estimate the SensorSLAM pdf, p(st,Θ, Pt|zt, ut, nt), a hybrid particle-

filter EKF approach is developed. As discussed previously, with various assump-

tions, the SensorSLAM pdf (Equation 4.39) is described as

p(st,Θ, Pt|zt, ut, nt) ≈ ηp(zt|st,Θ, Pt, nt)·∫
p(Θ|Pt, st−1 = µst−1 , z

t−1, ut, nt)︸ ︷︷ ︸
Map in Global Ref. frame

·

p(Pt|st−1 = µst−1 , Pt−1, z
t−1, ut, nt)︸ ︷︷ ︸

Est. Local Sensor Bias in Map Ref. frame

·

[∫
p(st|st−1, ut)p(st−1,Θ, Pt−1|zt−1, ut−1, nt−1)dst−1

]
︸ ︷︷ ︸

“traditional” SLAM sub-problem

dPt−1

(5.1)

Under varying assumptions, the problem may be separated into two related sub-

problems. Namely,
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1. A traditional SLAM sub-problem using a fixed set of sensor parameters over

each time interval.

2. Map and sensor parameter estimation using the current solution to the SLAM

sub-problem.

By solving these two sub-problems, the SensorSLAM solution provides higher accu-

racy map and trajectory estimates since there is a model for varying (dynamically

changing) sensor parameters. This is accomplished by estimating the sensor pa-

rameter pdf p(Pt|st−1 = µst−1 , Pt−1, z
t−1, ut, nt) using particle filtering techniques.

Particle filtering samples this pdf with a discrete set of independent samples to

characterize the distribution of the sensor parameters. The resampling stage in the

particle filter prunes out parameters that are underperforming, keeping only good

particles for the next iteration. A parameter model specific to the application is

used to draw new samples from the parameter pdf.

Each sample drawn from p(Pt|st−1 = µst−1 , Pt−1, z
t−1, ut, nt) represents a fixed

sensor parameter trajectory. Each particle contains an instance of the SLAM sub-

problem which treats the sensor parameters as fixed for the duration of its lifetime

(one time-step). Since there are many particles (each one representing a different

sensor parameter), the system contains multiple separate instances of the SLAM

sub-problem. At each step of the algorithm, the set of particles are evaluated as to

their effectiveness at characterizing the map and trajectory. Particles that perform

well are chosen to survive for the next iteration through a statistical resampling

stage. Each time the particle sets are resampled, the parameters per particle are

re-estimated based on their current error model. Resampling involves copying the

appropriate data (including the map and trajectory) that is specific to the particle

and in essence updating the trajectory of the parameter over time. As such, the

new set of particles share a history with the ones that performed well prior to the

resampling. If the sensor parameter pdf is sampled with k samples, there are k

individual sub-solutions to SLAM that need to be estimated. The general problem

is reduced to picking the “correct” solution at each iteration of the algorithm and

utilizing the appropriate data (i.e. map and trajectory) per particle. This particular

implementation uses a view-based delayed state extended Kalman filter (DSEKF)
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as discussed below to provide the SLAM error estimate per sample in the particle

filter.

5.1.1 Sensor Parameters

To illustrate the effectiveness of the algorithm, a single sensor parameter was cho-

sen that can be thought of as location and map dependent. The approach in this

chapter is by no means the only way to model important sensor parameters but

rather the results suggest that the algorithm is robust enough to deal with situations

where the sensor parameter noise-model is non-stationary (map/pose dependent).

It is possible that the distortion may be reduced significantly through the use of

specialized optics and hardware design, however dealing with this distortion using

SensorSLAM allows for a suitable avenue to discuss the effectiveness of the algo-

rithm. Throughout this discussion, the sensor parameter used is the first radial

parameter of the camera model, K1. The models reconstructed in this section are

of an approximately planar region of a barge (the Jolly Rogers) lying in 35 feet of

water off of Holetown, Barbados. This portion of the barge was chosen as it illus-

trates the impact of incorrect modelling of the radial distortion parameters on the

resulting 3D model. Gross deviation from a planar model is due to errors in the sen-

sor parameter. Under a planar projective model this parameter can be estimated in

a pre-calibration phase for land-based applications by viewing an appropriate cal-

ibration target. This pre-calibration approach is prone to error due to the nature

of refraction underwater (see Chapter 2, Chapter 3 and [Kwon and Lindley, 2000,

Kwon, 1999a, Kwon, 1999b]); the refractive index invalidates the planar projection

model (see [Kunz and Singh, 2008, Treibitz et al., 2008]). This distortion may be

reduced by using a hemispherical lens, but the placement of the camera relative to

the lens becomes increasingly important. Any misplacement of the camera center

from the center of the hemispherical lens results in an added distortion that is de-

pendent on the distance to environmental structure, i.e., that is map and location

dependent. As such, it is extremely difficult to develop a hardware solution that

would work for an off-the-shelf stereo camera over a range of target distances as

was used to collect the data in the AQUA field trials. The AQUASENSOR uses

101



a PointGrey Bumblebee29 as a turnkey solution to stereo vision. The camera is

pre-calibrated for land applications and the cameras are at a fixed distance apart

(and therefore cannot move/rotate) maintaining the validity of the calibration in-

formation acquired prior to its use. Calibration of various sensor parameters may

be performed in a pool prior to its use in the ocean however there are applications

where this is not possible, for example outer-space applications. In situations where

the camera hardware/lenses may distort due to pressure, temperature, or even due

to shock (i.e. changing the stereo baseline) in between the calibration and deploy-

ment stages, the pool or lab calibration may become invalidated. The values of these

calibrations may be a good estimate, however an online estimation/refinement of

the parameters would be an asset to any autonomous vehicle.

As the radial distortion parameters change, this affects the quality (and cor-

rectness) of the 3D reconstruction as seen in Figure 5.1 and the respective final

3D models in Figure 5.2. Figure 5.1 illustrates the qualitative error that an in-

correct sensor parameter can cause in a single stereo image frame. Even if the

radial parameters are estimated at a higher accuracy, there are small local errors

in each 3D frame due to the refraction distortion that leads to a slowly increasing

global error in the model. These type of errors are insidious since the inter-frame

registration error is small. That is, when computing the rotation and translation

to bring the current local frame into alignment with the global model, the error in

computing these values is sufficiently small until they result in a visually appealing

local registration. Even though the curvature is unnoticeable in Figure 5.1a, the

accumulation of the error is apparent as seen in Figure 5.2a.

5.1.2 Particle Filtering

A particle filter is used to represent the sensor parameter pdf p(Pt|st−1 =

µst−1 , Pt−1, z
t−1, ut, nt). The pdf is estimated by using a sequential importance

sampling/resampling algorithm (SIS) as discussed in [Arulampalam et al., 2002,

9http://www.ptgrey.com
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(a) Top (b) Front (c) Side

(d) Top (e) Front (f) Side

(g) Top (h) Front (i) Side

Figure 5.1: The effect of radial parameter change on 3D reconstruction. K1 is the

radial parameter in left image. This image shows the first frame of the reconstruc-

tion only. Top two rows are similar and error is not noticeable locally. Bottom

row contains noticeable curvature. (a-c) K1=-0.162218 (d-f) K1=-0.127218 (g-i)

K1=-0.358218.
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(a) (b) (c)

(d)

Figure 5.2: The effect of radial parameter change on the 3D reconstruction (315

frames) (Side view). These images show examples of a longer 3D reconstruction

using different sensor parameters. Models created using fixed parameters as given

in the legend of Figure 5.1. Here (a) corresponds to K1=-0.162218 (b) the second

row K1=-0.127218 (c) the third row K1=-0.358218. (d) The top view of (b).
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Doucet et al., 2001, Liu et al., 2001]. Given a set of m weighted random samples,

{(x(j), w(j))}mj=1, of the pdf, p(x), to be estimated, an approximation of the pdf,

p̂(x), is given as

p̂(x) =
1

W

m∑
j=1

w(j)h(x(j)) (5.2)

where W =
m∑
j=1

w(j) and h(·) is an arbitrary integrable function.

The pdf that needs to be estimated in this manner is the sensor parameter model

p(Pt|st−1 = µst−1 , Pt−1, z
t−1, ut, nt). Therefore, any sample of the particle filter is to

be drawn from the distribution

p
(j)
t ∼ p(Pt|st−1 = µst−1 , P

(j)
t−1, z

t−1, ut, nt) (5.3)

obtained by the probabilistic sensor parameter model. This model applies a non-

linear function to the current values of the sensor parameters to provide an estimate

of the parameter in the next time instant. Applying this to m particles gives a

sampling of the desired pdf at time t. After propagating the set of particles drawn

from this pdf, a new set must be sampled from the particles to properly characterize

the new distribution. The new set is sampled by picking at random with probability

proportional to the importance-factor w
(j)
t of the distribution.

The desired pdf (or target distribution) is actually

p(Pt|st−1 = µst−1 , P
(j)
t−1, z

t, ut, nt) (5.4)

However, at each iteration, only this pdf is known

p(Pt|st−1 = µst−1 , P
(j)
t−1, z

t−1, ut, nt) (5.5)

which is typically called the proposal distribution. In order to determine the ac-

tual value of the target (desired) pdf, an importance weight must be calculated.

This is accomplished using a sequential importance sampling algorithm (SIS) as

described in [Arulampalam et al., 2002, Doucet et al., 2001, Liu et al., 2001]. The

importance weight is calculated as the ratio of the target and proposal distribution
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pdfs

w
(j)
t =

p(Pt|st−1 = µst−1 , P
(j)
t−1, z

t, ut, nt)

p(Pt|st−1 = µst−1 , P
(j)
t−1, z

t−1, ut, nt)
(5.6)

Bayes∝
p(zt|P (j)

t , st−1, P
(j)
t−1, z

t−1, ut, nt)p(P
(j)
t |st−1, P

(j)
t−1, z

t−1, ut, nt)

p(P
(j)
t |P

(j)
t−1, st−1, zt−1, ut, nt−1)

(5.7)

∝ p(zt|P (j)
t , st, P

(j)
t−1, z

t−1, ut, nt) (5.8)

= p(zt|P (j)
t , st, z

t−1, ut, nt) (5.9)

The weight is proportional to the measurement model of the particle given the

current estimate of the sensor parameters, sensor location, measurement history

and motion history. In the underwater stereo-vision scenario, each measurement

is the series of 3D points used to update a 3D model in the world frame. The

map/model should be taken into account in order to determine the proper weight

of the particle. This is accomplished by marginalizing over the model as follows‘

wjt ∝ p(zt|P (j)
t , st, z

t−1, ut, nt) (5.10)

=

∫
p(zt|Θ, P (j)

t , st, z
t−1, ut, nt)p(Θ|P (j)

t , st, z
t−1, ut, nt)dΘ (5.11)

Markov∝
∫
p(zt|Θ, P (j)

t , st)p(Θ|P (j)
t , st−1, z

t−1, ut−1nt−1)dΘ (5.12)

where p(Θ|P (j)
t , st−1, z

t−1, ut−1nt−1) is computed as the planar error of the entire

map and p(zt|Θ, P (j)
t , st) is a measurement model given from an EKF stored within

the particle.

Given a plane denoted by Π = {~n, ~p} where ~n = [x, y, z]T is a unit vector

representing the normal direction of the plane and ~p = [x, y, z]T is a point on the

plane, and a particular 3D point in the map/model, Θi = [x, y, z]T , the planar error

of the model is computed as

p(Θ|P (j)
t , st−1, z

t−1, ut−1, nt−1) ∝
N∑
i

(~n · (Θi − ~p))2 (5.13)

Issues with particle filters include problems with particle diversity. Since re-

sampling the distribution involves the copying of particle data and redistributing
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the sensor parameter around its new mean, it is possible that the set of parti-

cles may become too similar to one another. This would eliminate the possibil-

ity of loop closing over large areas or returning to a sensor parameter that was

eliminated from the particle set previously. To alleviate this problem, the par-

ticle set is not resampled at each step of the algorithm, but rather only when

the number of “effective” particles decreases below some set threshold as specified

in [Grisetti et al., 2005, Doucet et al., 2001]. The particles are re-distributed and

sampled according to the weight distribution using a stratified random approach.

The particle filtering algorithm employed is stated in Algorithm 1.
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Algorithm 1: SensorSLAM particle filter algorithm
Input: Number of Particles, N , Threshold, Nthresh.

Output: Set of Particles, {p(j)
k , w

(j)
k }Nj=1, Best Particle, {pbest, wmax}

foreach p
(j)
k do

Sample PDF: p
(j)
k ∼ p(P

(j)
t |st−1 = µst−1 , P

(j)
t−1, z

t, ut, nt)

Update particle as in Algorithms 2 and 3

Compute particle weight:

w
(j)
k ∝

∫
p(zt|Θ, P (j)

t , st)p(Θ|P (j)
t , st−1, z

t−1, ut, n
t−1)dΘ

end

Calculate total weight of distribution: T =
∑N

j=1 w
(j)
k

for j = 1 . . . N do

Normalize Weights: w
(j)
k =

w
(j)
k

T

end

Calculate Neff =
∑N

j=1
1

(w
(j)
k )2

if Neff < Nthresh then

{p(j)
k , w

(j)
k }∗|Nj=1 = ResampleSIS{p(j)

k , w
(j)
k }Nj=1

{pbest, wmax} = MAXw{p(j)
k , w

(j)
k }

end

{p(j)
k , w

(j)
k }Nj=1 = {p(j)

k , w
(j)
k }∗|Nj=1

.
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Each particle is required to estimate its own weight which is a function of the

current map and trajectory. Since the map and trajectory are highly dependent

upon the choice of sensor parameters, each particle must maintain its own estimate

of the map and trajectory. Thus, within each particle is a complete sub-SLAM

solution, namely the most recent estimate of st,Θ. This is accomplished through

the use of a view-based delayed state extended Kalman filter described in the next

section.

5.1.3 Delayed State EKF

Each particle implements its own SLAM algorithm which maintains the map and

trajectory given a fixed/known sensor parameter value. The SLAM solution gath-

ers the information from the stereo-video and uses the egomotion as described in

Chapter 3 to estimate the delta pose (δpose) at each frame. This δpose is used as

a measurement in a view-based delayed state extended Kalman filter (DSEKF)

[Newman et al., 2006]. The delayed state EKF (DSEKF) was chosen for the imple-

mentation of the algorithm to minimize the amount of memory used by the EKF.

The number of 3D features estimated at each step of the ego-motion algorithm is

large (i.e. each stereo frame may contain upwards of 76, 800 3D points for disparity

images of resolution 320×240). Thus, for implementation of the SLAM sub-problem

for SensorSLAM was chosen not to be “feature-based.” The feature locations and

covariances are not estimated within the SLAM state. Rather than estimating the

error of each “landmark” and how it corresponds to each pose, the EKF maintains

an estimate of the entire trajectory. The measurement is an estimate of how the

vehicle/sensor pose has changed due to the dense set of 3D correspondences given

by the stereo algorithm. An error may be computed based on the map if necessary.

Using this type of EKF can be thought of as a recursive bayes filter approximation

to [Lu and Milios, 1997]. The DSEKF also enables future implementations that

may add large loop closing to the reconstruction system fairly easily.

Essentially, a DSEKF is simply an extended Kalman filter estimating the entire

history of poses in the trajectory. The following equations follow the standard

DSEKF formulation as described in [Newman et al., 2006]. Given the current pose
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~p =
[
~t, q̂
]
, where ~t is the world translation vector of the sensor and q̂ is the world

orientation of the sensor as represented with a quaternion, then the filter estimates

the state

x̂ = [~p1, ~p2, . . . , ~pt−1, ~pt] (5.14)

and covariance matrix

P̂ =


P̂p1p1 P̂p1p2 · · · P̂p1pt

...
. . . . . .

...

P̂ptp1 · · · · · · P̂ptpt

 (5.15)

encodes the relationships between the poses in space. Note that the exactly Sparse

Extended Information Filter (SEIF) developed in [Eustice et al., 2005a] is highly

related to this algorithm and could be used in future implementations to reduce

computation.

The vehicle dynamics are estimated using the control input as

x̂−t+1 = x̂t ⊕ ut (5.16)

where x̂−t+1 is the vehicle pose at time t+1 given the previous vehicle position at time

t, x̂t is the current vehicle pose (at time t), ⊕ is the composition operator defined

in [Newman et al., 2006] and ut) is the control input/odometry that is affecting the

pose of the vehicle. Similarly, the covariance matrix of the distribution is estimated

as

P̂−t+1 = J1(x̂t, ut)P̂tJ1(x̂t, ut)
T + J2(x̂t, ut)UtJ2(x̂t, ut)

T (5.17)

where UT is the control input covariance matrix, ut is the control input, x̂t is the

current estimated pose of the vehicle, P̂t is the current estimated vehicle covariance

matrix, and J1, J2 are the matrices of partial derivatives of the composition operator

with respect to the pose and control inputs respectively. These are defined as in

[Smith et al., 1990] as follows

J⊕ =
∂(xij ⊕ xjk)
∂(xij, xjk)

=
[
J1(xij, xjk) J2(xij, xjk)

]
(5.18)

J1(x1, x2) =
∂(x1 ⊕ x2)

∂x1

(5.19)

J2(x1, x2) =
∂(x1 ⊕ x2)

∂x2

(5.20)
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During the time update stage of the filter, the new pose is predicted by aug-

menting the state vector as

x̂−t+1 =

[
x̂t

x̂t ⊕ ut

]
(5.21)

and the covariance matrix is augmented as

P̂−t+1 =

[
P̂t P̂tJ1(x̂t, ut)

T

J1(x̂t, ut)P̂
T
t P̂−t+1

]
(5.22)

The measurement update is the correction phase. It updates the augmented state

to reflect the measurement. The standard EKF update equations can be used

to update the predicted state using the measurement. This uses a measurement

function h(·) which transforms the current state into the measurement space and

an error is computed. The new state is computed as a linear sum of the previous

state and the error weighted by the Kalman gain as

x̂+
t+1 = x̂−t+1 +Kt(zt − h(x̂−t+1, 0) (5.23)

and the covariance matrix is updated as

P̂+
t+1 = (I −KtHt)P̂

−
t+1 (5.24)

where the Kalman gain Kt is defined as

Kt = P̂−t+1H
T
t (HtP̂

−
t+1H

T
t + VtRtV

T
t )−1 (5.25)

Here, Rt is a matrix representing the measurement noise, Vt is the Jacobian of the

measurement model with respect to the measurement noise, and Ht is the Jacobian

of the measurement model with respect to the state. Formally, these are defined as

Ht =
∂h

∂x̂
(x̂−t+1, 0) (5.26)

Vt =
∂h

∂v
(x̂−t+1, 0) (5.27)
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5.1.3.1 DSEKF Implementation

In the implementation of the DSEKF used for the experiments, the control input

is non-existent as there is no easy way in an underwater scenario to acquire odom-

etry (neither for land-based handheld motion). This simplifies much of the above

equations. In the time update, the following simplifications are made:

x̂−t+1 = x̂t ⊕ ut = x̂t (5.28)

J⊕ =
[
J1 J2

]
=
[
I 0

]
(5.29)

In the measurement update, the measurement zk used is the δpose = [δ~t, δq̂] given

by the 3D registration as acquired from the stereo-video reconstruction algorithm

described in Chapter 3. Thus, the observation function h(x) must transform the

current state estimate into a δpose. This can be done by assuming that the delta

pose should be related to the current and previous frames and as such, the relative

transformation can be computed to bring the previous frame into the current frame.

This can be computed as follows

h(x̂−t+1, 0) = h(x̂t, x̂t−1) =

[
δ~t

δq̂

]
=

[
~tt − ~tt−1

q̂tq̂
c
t−1

]
(5.30)

The measurement Jacobian matrix determines how the observation function has

affected the state. The h(·) function uses two poses, namely the current and previ-

ous time frames, to compute the delta pose. Thus the function does not utilize the

rest of poses in the state. As such, most of the measurement Jacobian are zeroes

except for the final 14× 14 sub-matrix. Finally, the derivatives may be computed

as

Ht =
∂h

∂x̂
(x̂−t+1, 0) (5.31)

=

[
∂h1

∂x0

∂h1

∂x1
· · · ∂h1

∂xi−1

∂h1

∂xi

∂h2

∂x0

∂h2

∂x1
· · · ∂h2

∂xi−1

∂h2

∂xi

]
(5.32)

=
[
07×7 07×7 · · · ∂h

∂xi−1

∂h
∂xi

]
(5.33)

∂h

∂x7×7
=

[
∂h1

∂x 3×7
∂h2

∂x 4×7

]
(5.34)
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∂h1

∂xi−1

=
[
−I3×3 03×4

] ∂h1

∂xi
=
[
I3×3 03×4

]
(5.35)

∂h2

∂xi−1

=

[
I3×3 03×4

04×3
∂h

∂q̂i−1

]
=


q

(i)
w q

(i)
x q

(i)
y q

(i)
z

q
(i)
x −q(i)

w q
(i)
z −q(i)

y

q
(i)
y −q(i)

z −q(i)
w q

(i)
x

q
(i)
z q

(i)
y q

(i)
x −q(i)

w

 (5.36)

∂h2

∂xi
=

[
I3×3 03×4

04×3
∂h
∂q̂i

]
=


q

(i−1)
w q

(i−1)
x q

(i−1)
y q

(i−1)
z

q
(i−1)
x −q(i−1)

w q
(i−1)
z −q(i−1)

y

q
(i−1)
y −q(i−1)

z −q(i−1)
w q

(i−1)
x

q
(i−1)
z q

(i−1)
y q

(i−1)
x −q(i−1)

w

 (5.37)

The DSEKF algorithm proceeds by first predicting the state,

then correcting the predicted state with an observed measurement

by alternating the time update equations shown in Algorithm 2

with the measurement update equations shown in Algorithm 3.
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Algorithm 2: SensorSLAM DSEKF algorithm (time update/Prediction)

Input: Delta Pose, δpose = [~t, q̂]

Output: Predicted State, x̂−t+1, and Covariance, P̂−t+1.

Augment State with Prediction:

x̂−t+1 = x̂t ⊕ ut = x̂t

x̂−t+1 =

[
x̂t

x̂−t+1

]
Compute Jacobians:

J1(x̂t, ut) =
∂(x̂t ⊕ ut)

∂x̂t
J2(x̂t, ut) =

∂(x̂t ⊕ ut)
∂ut

Augment Covariance Matrix with Prediction:

P̂−t+1 = J1(x̂t, ut)P̂tJ1(x̂t, ut)
T + J2(x̂t, ut)UtJ2(x̂t, ut)

T

P̂−t+1 =

[
P̂t P̂tJ1(x̂t, ut)

T

J1(x̂t, ut)P̂
T
t P−t+1

]
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Algorithm 3: SensorSLAM DSEKF algorithm (measurement update)

Input: x̂−t+1, P̂−t+1, zk = δpose

Output: x̂+
t+1 , P̂+

t+1.

Compute Measurement Function:

h(x̂−t+1, 0) = h(x̂t, x̂t−1) (5.38)

Compute Measurement Jacobians:

Ht =
∂h

∂x̂
(x̂−t+1, 0) (5.39)

Vt =
∂h

∂v
(x̂−t+1, 0) (5.40)

Compute Kalman Gain:

Kt = P̂−t+1H
T
t (HtP̂

−
t+1H

T
t + VtRtV

T
t )−1 (5.41)

Update:

x̂+
t+1 = x̂−t+1 +Kt(zt − h(x̂−t+1, 0) (5.42)

P̂+
t+1 = (I −KtHt)P̂

−
t+1 (5.43)

foreach x̂i = [~ti, q̂i] in x̂+
t+1 do

Normalize(q̂i)

end

5.1.4 SensorSLAM Implementation Details

Due to the nature of the particle filter, the algorithm is extremely parallizable.

The algorithm was developed to take advantage of this from an implementation

perspective. The system was implemented using a client-server model over a local

network of nine linux computers. The server manages the particle filtering algorithm

and sends commands to each client for synchronization. Each client represents a

sample in the particle filtering algorithm. Upon initialization, the server samples
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the parameter pdf model and distributes the parameters to connected clients. Each

client is instructed to perform a single frame of the reconstruction algorithm using

this model and report back with its error using the desired error model. In these

examples, the deviation from a planar world model is used since it is known that

errors in the radial parameters will affect the 3D model by introducing a non-

planarity curvature. The server collects the individual errors from each sample and

resamples the pdf. Each client is responsible for its local solution and all of the

details of the SLAM sub-problem. Thus, it initializes its sensor model with the

parameters given by the server, loads the stereo images from disk, performs the

stereo reconstruction algorithm as discussed in Chapter 3 and uses the delta pose

as the measurement to the DSEKF which estimates the trajectory history. When

instructed, the client is informed as to which particle information it is required

to copy (during the resampling) and a new set of sensor parameters is given to it

by the server. When the sample copies another sample, the new map/3D model

and trajectory are loaded and the previous models/trajectory are backed up for

visualization. This is mitigated by using a shared disk space between all computers

on the local network to reduce the need to send huge amounts of model data over

a LAN. This also impedes the performance of the system. The development of

this system is not optimized for real-time performance and much information is

saved at each step of the algorithm for visualization purposes that would not be

required in an online scenario. One issue that plagues this algorithm is the need

to have multiple 3D models (one per particle). When run on a single CPU rather

than distributing over a LAN, the memory consumption would be overly large due

to the choice of model data structure. This could be alleviated if the point cloud

models were only used as an intermediate representation and a mesh-based data

structure used as the final stored model.
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Algorithm 4: SensorSLAM Server algorithm
Initialize all values

{cj}Nj=1 = Wait for incoming client connections

while All Clients, cj, in {cj}Nj=1 are connected do
Synchronize

foreach cj in {cj}Nj=1 do

Draw cj = {P (j)
t , wj} from p(P

(j)
t |st−1 = µst−1 , P

(j)
t−1, z

t, ut, nt)

SEND(InitializePacket) = {Pt} to cj

SEND(StartIterationPacket) to cj

end

Synchronize

{wj,Errorj} =CollectResults({cj}Ni=1)

{P (j)
t , wj} = DoParticleFilterAlgorithm({P (j)

t , wj})
Re-distribute particles to clients

end

Algorithm 5: SensorSLAM Client algorithm
Connect to Server

while !finished sequence do
Packet = GetPacket(Server);

if Packet is InitPacket then
{Pt} = GetParametersFromPacket(InitPacket);

InitializeReconstructionWithParameters(Pt);

else if Packet is StartIterationPacket then
currentFrame = GetNextStereoFrame();

{δpose} = ComputeEgoMotion(currentFrame, previousFrame);

{x̂−t+1, P̂
−
t+1} = DSEKF→TimeUpdate();

{x̂+
t+1, P̂

+
t+1} = DSEKF→MeasurementUpdate(x̂−t+1, P̂

−
t+1, δpose);

else if Packet is CollectResultsPacket then

{w,Error} = ComputeError(Θ, x̂+
t+1, P̂

+
t+1);

SEND({w,Error}) to Server

end

end
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5.2 Results

Data of a relatively planar section of the barge was chosen to mitigate the choice of

error estimate per particle for these experiments. A user-specified plane is used to

evaluate the data and the planar residual of each point in the model is computed

as the sum of squared errors. In general, any error metric model may be used

to estimate the error of the model with respect to the parameter. In this case,

a planar error model was chosen to illustrate the algorithm. More complex error

models that integrate smoothness of the trajectory and map or how it maps to a

user supplied model (possibly recovered through a previous run that extracted a

mosaic) could also be used. The covariance matrix of the SLAM solution is used

to compute the normalized gaussian error of the pose with respect to the current

trajectory and is weighted by the planar error as the final weight of the particle.

This allows the system to favour trajectories that have maps that are more planar

than others. To show how sensitive the resulting map is on the sensor parameter, 50

uniformly distributed radial parameters were chosen and used as fixed parameters

throughout the entire modelling process. For this run, SensorSLAM was not used,

but rather the standard reconstruction process with a fixed fixed value of the radial

parameter K1 as described previously in Chapter 3 was used to extract a model

after 451 image frames. At the end of each run, the planar error was estimated

and recorded shown in Figure 5.3. This figure shows the distribution of the errors

of the resulting model versus the sensor parameter value. The error is not a linear

function of sensor parameter value and it can be seen that there are local minima

in the distribution.

The SensorSLAM algorithm was deployed on the same data, over the same range

of sensor parameter values. At the end of the SensorSLAM experiment, the planar

error of the “best” particle was computed and recorded. This value is plotted in

Figure 5.3a. As can be seen, the SensorSLAM error comes very close to the global

minimum error encoded by the parameter values indicating that the algorithm

performs very well with respect to the fixed parameter runs. Note that in this

experiment, the SensorSLAM algorithm is allowed to modify the sensor parameter

over time while the brute force methods use a fixed sensor parameter over the
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entire sequence. Tables of camera information, tracking estimation parameters,

experimental parameters, and stereo parameters can be found at the end of the

chapter in Tables 5.1,5.2,5.3, and 5.4. The final error plotted for SensorSLAM is

the planar error of the final resulting model hence only a single value is plotted.

The resulting models from the experiment from the best particle can be seen in

Figure 6.1 which shows a top and side view of the reconstructed barge. To contrast

this final result, a sequence of images is shown in Figure 5.6 which shows the pro-

gression of the algorithm of a particular particle in the distribution. Figures 5.6a,c,e

show the model just before the particle distribution is resampled showing the ef-

fects of choosing incorrect sensor parameters on the visual quality of the model.

Figures 5.6b,d,f show the model just after the resampling stage correcting the dis-

tortion in the map and trajectory and choosing a new set of sensor parameters from

the distribution.

As can be seen from these results, the estimate produced by the SensorSLAM

algorithm is favorable when compared with the brute force algorithm. This is

due to the ability of SensorSLAM to modify the current estimate of the sensor

parameter at each iteration to minimize the planar error. Results from a second

experiment on different data can be seen in Figure 5.7 and selected frames of the

reconstruction can be seen in Figure 5.8. A planar error model is used here as well

for the top of the barge, however due to the highly non-planarity of the environment,

the algorithm retains a few artifacts. The resulting model however is usable and

visually appealing.
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(a) Result from SensorSLAM overlaid on results from 50 runs
with fixed sensor parameters.

(b) Closeup of (a)

Figure 5.3: Sensitivity of 3D Model error vs choice of sensor parameter. Error is the sum

of squared distances from a plane representing the barge surface of all 3D points in the

final model. (a) shows the brute force approach with final SensorSLAM result overlaid.

Note the local minima in the final errors. (b) Closeup of (a). Note: The SensorSLAM

result was obtained over the same data and the error is computed for the final resulting

model.
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(a) Particle weights vs time for all particles.
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(b) Particle weight vs time of the “best“ particle at each iteration.

Figure 5.4: The particle weights are an indicator of how well the sensor parame-

ter, map and trajectory fit the planar barge model. A particle weight is between

zero and one and represents a probability in the distribution, thus higher is bet-

ter. Resampling stages can be clearly seen as spikes since the particle weights are

normalized.
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(a) Top View

(b) Side View

Figure 5.5: (a-b) Results of the 3D map and trajectory of the “best” particle from

the SensorSLAM algorithm. Experiment was run over 451 image frames and the

distance travelled was reported as 7.7 meters.

Camera Model: Bumblebee2 Stereo Camera
Manufacturer: Point Grey Research Inc.
Lens: 4mm
Raw Image Resolution: 640× 480 pixels
Frames/second (Capture): 30fps
Field of View in Water: H(78.78◦),V(49.58◦)
Focal Length: 194.85 pixels
Image Center: (183.88, 128.31)pixels
Stereo Baseline: 0.119649 meters

Table 5.1: Stereo Camera Information

Disparity Image Resolution: 320× 240
Frame Stride: 3 (10fps effective)
Frames/second (Ego-motion): 4fps
Frames/second (SensorSLAM): ∼ 0.06 fps
Number of Features (Search): 500
Number of Features (Tracked): 263 per frame (average)
Minimum Distance between Features: 5
Feature Tracking Search Window: 5× 5 pixels
Maximum Num Iterations (Tracking Refinement): 100

Table 5.2: SensorSLAM & Ego-motion Algorithm Processing Parameters
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(a) Image 1 - Just before resampling (b) Image 2 - Just after resampling

(c) Image 3 - Just before resampling (d) Image 4 - Just after resampling

(e) Image 5 - Just before resampling (f) Image 6 - Final model

Figure 5.6: Side view evolution of the 3D map of a single particle during the Sen-

sorSLAM algorithm. This shows the effects that resampling the sensor parameters

has on a single particle. At each resampling, a new sensor parameter is chosen

from the distribution and the history of the “best-so-far“ particle is used as its own

history. The final model shows the removal of the curvature from the map.

Average Distance to target: 2meters
Average Size of pixels: ∼ 1.03cm/pixel
Number of Frames (Expt. 1): 451
Number of Frames (Expt. 2. nonplanar): 210

Table 5.3: Experimental Parameters
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(a) Top View (b) Perspective View

Figure 5.7: Results from another experiment to show that the algorithm works for

highly-non-planar environments. Due to the nature of the planar error function a

few artifacts are present in the resulting model.
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(a) (b) (c) (d)

Figure 5.8: Top view of selected frames in experiment from Figure 5.7.

Edge Correlation: ON
Back-Forth Validation: ON
Lowpass Disparity Filter: ON
Surface Validation: ON
Texture Validation: OFF
Uniqueness Validation: OFF
Subpixel Estimation: ON
Strict Subpixel: ON
Rectification Quality: TriRectQlty FAST
Stereo Quality: TriStereoQlty STANDARD
Stereo Mask Size: 15
Edge Mask Size: 15
Texture Validation Threshold: 0.40
Uniqueness Validation Threshold: 0.80
Surface Validation Size: 100
Surface Validation Difference: 0.50
Disparity Range: Min:10 Max:240 Offset:0

Table 5.4: Triclops Stereo SDK Parameters
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CHAPTER 6

Discussion

A critical limiting assumption with existing SLAM formulations is their inability to

address the problem of non-stationary sensor noise. If sensor performance degrades

due to the orientation or position of the vehicle in the environment then stan-

dard noise models (which assume stationary noise) are invalidated and this leads

to instability and loss of accuracy in the resulting map. The standard approach

to modeling sensors within the SLAM framework is to develop a static sensor pa-

rameter model that includes many different factors that affect the measurements.

Each probabilistic density function is tuned to correspond to a particular type of

error such as local measurement noise, unexpected objects appearing in the scene,

sensor failure, and random measurements.

This dissertation developed the thesis incorporates sensor parameter estima-

tion into the SLAM formulation providing increased robustness in the presence of

dynamic location-based sensor errors. This is useful when utilizing sensors which

provide erroneous data whose distribution changes when measuring the process

from different locations, orientations, or are prone to errors due to unforeseeable

environmental factors. The algorithm has been shown to be effective using simu-

lated data as well as when applied to real data obtained in an underwater robotics

setting for performing dense reconstruction of underwater environments.

6.1 Directions for future work

The algorithm and underwater implementation are not without their assumptions

that could be relaxed in future research. Assumptions of this implementation of

SensorSLAM are

• Static world assumption. The environment is assumed to be stationary. To
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(a) Expt 1. (b) Expt 2.

Figure 6.1: Final resulting 3D models from two separate experiments.
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overcome these limitations, a more general model, such as the ones discussed

in [Wang, 2004, Kodagoda et al., 2006, Wang et al., 2007a], that incorporates

the estimation of moving objects should be developed and integrated into the

framework. This would help in situations where a large number of fish enter

the scene and impact the the ego-motion estimate.

• No control input. Vehicle dynamics are not incorporated into the current

implementation. This is due to the fact that the robot platform was not

used for data collection but rather a handheld sensor was used. Thus there

is no information as to what was the intended motion of the vehicle or as to

kinematic or dynamic constraints on the motion of the sensor. To aid this

process, a more sophisticated hydrodynamic model could be developed that

utilizes more sensors to better estimate the motion of the vehicle.

• Map error based on planar model. For the purposes of this dissertation, the

error model used for estimating the effectiveness of each particle is based on

a planar residual. This is quite limiting in the type of environments that

can be represented. A more generalized error model should be developed

that enables a more generalized set of geometry. Given prior knowledge of

the environment, obtained through the use of lower accuracy complimentary

sensors, or through a manual 3D model generated my hand, this information

could be incorporated into the geometric error function. At each step of the

particle filter, the algorithm may compute the likelihood of being in a loca-

tion in this a priori map given the sensor parameters, observations and robot

location estimates. This likelihood would be used to weight the particles mit-

igating the effectiveness of the resampling algorithm. Without prior knowl-

edge, saliency information (such as the operators described in [Lowe, 2004]

or [Nicosevici et al., 2007]) may be incorporated to estimate the error of each

particle identifying possible loop-closing events. This would allow the algo-

rithm to weight particles that close loops so they are sampled more often

during the resampling stage.

Issues that could be approached in future developments could include
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• Real-time performance. There are several bottlenecks in the current imple-

mentation. Due to the sheer volume of data that is needed during a single

iteration of the algorithm, the algorithm was distributed over a LAN of nine

computers. Network communication and synchronization of the slaves was

over-engineered to ensure that all particles contained the most recent infor-

mation. This made the algorithm run much slower than it could with the

more efficient synchronization. Also, a large disk array was used as the main

method for sharing data between particles rather than sending gigabytes over

the network each frame. As such, the algorithm slows down as the models

grow in size since each particle saves, moves, and copies upwards of 2GB of

data per iteration as it nears completion. Competing for disk access causes

the particles to stall lowering the performance.

• Data structure and data management. Since there is a very large amount

of data used in the process of this algorithm, a more efficient data struc-

ture should be used. Tests were performed with triangular meshs, and oc-

trees throughout the development of this implementation, however for dis-

play purposes, the most qualitative data structure was an unorganized point

cloud. More flexible data structures should be incorporated directly into the

SLAM framework to aid in the error reduction per particle. Such an imple-

mentation might utilize triangular meshes, [Gibson, 1998], implicit surfaces,

[Bloomenthal, 1988], distance fields, [Jones et al., 2006], or hierarchical level

sets, [Houston et al., 2006], or a piecewise planar representation as described

in [Nicosevici et al., 2005, Nicosevici et al., 2007] as the base data structure.

This would allow for dimensionality reduction and the possibility of estimat-

ing the parameters of these surfaces directly in the SLAM framework.

• Loop Closing. Loop closing is beyond the scope of this thesis, however the

implementation currently supports this in theory. It wouldn’t be difficult

to incorporate loop closing if an algorithm was used to determine whether

the robot has been in this location previously. This could be accomplished

by using SIFT features [Lowe, 2004] to represent salient areas (although un-

derwater SIFT features are not as salient as one might think) as used in
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[Se et al., 2002]. Once it is known that the robot has been in a particular

location previously, the DSEKF can be updated simply by computing the

appropriate J⊕ matrix for each of the poses in the trajectory. This would be

very similar to a single iteration of the well-known scan-matching algorithm

of Lu and Milios [Lu and Milios, 1994].

• Informed stereo sensing algorithm. To fully incorporate the SensorSLAM

ideas into the entire process, the stereo algorithm could be informed and the

parameters that influence the disparity extraction could also be refined. This

could lead to a more accurate set of disparities that more appropriately reflects

the environment. In areas that have overlap or have already been explored,

the existing map could be used as an initial guess for disparities. Thus, as the

map becomes populated, the time it takes to extract 3D information could

be improved. This may also be useful for re-evaluation of the environment

in applications such as ship-hull inspection or the determination of coral-reef

health, as the differences in 3D information can be an indication of temporal

changes in the environment.

• Integration into the AQUA robot platform. The algorithm was employed off-

line on data collected with the AQUASENSOR rather than running on the

actual robot. Future work that increased performance of the SensorSLAM

algorithm could integrate it directly into the robot control architecture. This

would mitigate the autonomous control as an accurate map/trajectory of the

environment is essential.
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