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Abstract

This report contains a review of visual tracking in monocular video sequences. For
the purpose of this review, the majority of the visual trackers in the literature are
divided into three tracking categories: discrete feature trackers, contour trackers, and
region-based trackers. This categorization was performed based on the features used
and the algorithms employed by the various visual trackers. The first class of trackers
represents targets as discrete features (e.g. points, sets of points, lines) and performs
data association using a distance metric that accommodates the particular feature.
Contour trackers provide precise outlines of the target boundaries, meaning that they
must not only uncover the position of the target, but its shape as well. Contour track-
ers often make use of gradient edge information during the tracking process. Region
trackers represent the target with area-based descriptors that define its support and
attempt to locate the image region in the current frame that best matches an object
template. Trackers that are not in agreement with the abovementioned categoriza-
tion, including those that combine methods from the three defined classes, are also
considered in this review. In addition to categorizing and describing the various vi-
sual trackers in the literature, this review also provides a commentary on the current
state of the field as well as a comparative analysis of the various approaches. The
paper concludes with an outline of open problems in visual tracking.
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Chapter 1

Introduction

This paper contains a review of the rich set of literature that analyzes the problem
of monocular visual tracking. It would not be practical to attempt to describe all
published works concerning visual tracking. The field has grown so quickly over
the past twenty years that compiling such a list, let alone describing the various
works, would be an extremely daunting task! In this review, we have elected to
take a different approach. We have identified what we feel are some of the most
noteworthy, impressive, and unique papers amongst the visual tracking literature.
The primary focus of this review is on the visual tracking of general targets of interest
in monocular videos obtained from charge-coupled device (CCD) cameras. Although
particular references will be made where appropriate, this paper does not attempt
to summarize the field of tracking across multiple cameras. Additionally, we do not
attempt to summarize trackers that are overly specialized to particular applications
(e.g., human motion analysis). Thorough reviews of human-specific trackers can be
found in (Aggarwal & Cai, 1999; Gavrila, 1999; Moselund & Granum, 2001). Finally,
it should be emphasized that motion in computer vision is a large field that spans a
number of subproblems. Here, the focus is on the motion-related problem of visual
tracking.

In addition to identifying and describing some of the most influential works in
the field of visual tracking, we have also successfully divided the vast majority of
these papers into three distinct categories of trackers. For each tracking category, we
typically define the general method used by most of the related systems. Furthermore,
we provide detailed descriptions of the unique methods and contributions of the most
critical papers. This review also provides a comparative evaluation of the various
categories of visual trackers and discusses some of the significant open problems in
the field.
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1.1 A Brief History of Visual Tracking

The field of target tracking extends back a number of years, far beyond the widespread
adoption of the personal computer. To our knowledge, some of the earliest works
on target tracking appeared in the 1950s (Wax, 1955), 1960s (Kalman, 1960; Sittler,
1964), and 1970s (Singer & Stein, 1971). The earliest works were primarily concerned
with the application of radio detection and ranging (RADAR) signal detection and
automated tracking. In this context, the problem of tracking is reduced to establish-
ing correlations between point-wise RADAR “blips”. On the surface, this problem
appears much easier than that of tracking targets of arbitrary size, shape, and ap-
pearance in pictorial video sequences. However, one should not be fooled by the
appearance of simplicity of the RADAR tracking problem. When multiple targets
are moving in close proximity in the presence of noise, the RADAR target tracking
problem is far from trivial. In fact, many of the most popular algorithms upon which
computer vision trackers are based (e.g., the Kalman filter (Kalman, 1960)), were de-
rived for the purpose of RADAR tracking. Solutions to the RADAR tracking problem
existed (Wax, 1955; Sittler, 1964) prior to the widespread adoption of the Kalman
filter; however, not unlike its effect on computer vision tracking, the Kalman filter
spurred numerous subsequent works in the field of RADAR tracking.

Given its RADAR tracking roots along with the limited computational resources at
the time, point tracking is considered one of the earliest examples of computer vision
tracking (Sethi & Jain, 1987; Salari & Sethi, 1990; Rangarajan & Shah, 1991; Veen-
man, Reinders & Backer, 2001; Shafique & Shah, 2003). It seems that the majority
of research surrounding this category of tracker appeared in the late 1980s to early
1990s. Apparently after this time, the attention shifted to the visual tracking of
higher level objects rather than just simple points. Nonetheless, more recently these
point trackers have seen somewhat of a resurgence. Nowadays, higher level objects
can be followed by using point-based techniques to track collections of interest points.
Furthermore, other application areas have made use of point trackers, including the
tracking of flocks of birds and cells under a microscope. Finally, it should be noted
that statistical methods for tracking multiple targets are continually being devel-
oped and refined (Fortmann, Bar-Shalom & Scheffe, 1983) and used in RADAR and
computer vision problems.

In addition to point tracking, other discrete features have been used for visual
tracking, including groups of edges and lines. Many trackers that rely on these discrete
features leverage additional information from other sources, such as 3D object models
(Verghese, Gale & Dyer, 1990; Koller, Daniilidis & Nagel, 1993; Lowe, 1991, 1992;
Gennery, 1992; Vacchetti, Lepetit & Fua, 2004). However, the use of object models is
not mandatory when using discrete features (Crowley, Stelmaszyk & Discours, 1988;
Deriche & Faugeras, 1991; Zhang & Faugeras, 1992; Huttenlocher, Noh & Rucklidge,
1993). This tracking paradigm also appears to have been most active in the late 1980s
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and early 1990s. The use of 3D models has seen somewhat of a comeback in recent
years, especially for the purpose of tracking humans (e.g., (Hogg, 1983; Munkelt,
Ridder, Hansel & Hafner, 1998; Delamarre & Faugeras, 1999; Moeslund & Granum,
2000)). Nonetheless, it appears that the field has shifted its primary focus toward
other tracking techniques when it comes to following arbitrary scene objects.

Another very different approach to visual tracking that saw its seminal publi-
cations appear in the late 1980s is that of tracking the outer contour of a target
(Kass, Witkin & Terzopoulos, 1988; Terzopoulos & Szeliski, 1992; Leymarie & Levine,
1993; Caselles, Kimmel & Sapiro, 1995; Paragios & Deriche, 2000; Bertalmio, Sapiro
& Randall, 2000). In a similar manner to the aforementioned discrete methods,
contour-based trackers also gained significant attention upon initial inception, but
received slightly less research in the mid-1990s. However, with the introduction of
level set methods (Osher & Fedkiw, 2003b,a) combined with additional research re-
garding the incorporation of regional information within this tracking framework,
contour-based trackers have seen considerable levels of activity in recent years (e.g.,
(Mansouri, 2002; Yilmaz, Lin & Shah, 2004; Li, Miller, Weiss, Campbell & Kanade,
2006)).

Another approach to the visual tracking problem is to represent the target as an
entire region within the image. These trackers tend not to provide as precise of an
outline as seen with contour trackers. However, with an increased target support,
the hypothesis is that tracking can be made more reliable. Systems of this class
often represent targets as blobs (Wren, Azarbayejani, Darrell & Pentland, 1997; In-
tille, Davis & Bobick, 1997; Rosales & Sclaroff, 1999; Stauffer & Grimson, 2000; Yin
& Collins, 2007a) or using pixel-wise templates (Lucas & Kanade, 1981; Bergen,
Anandan, Hanna & Hingorani, 1992; Black & Anandan, 1996; Black & Jepson,
1998; Hager & Belhumeur, 1998; Beymer & Konolige, 1999; Cham & Rehg, 1999; Ol-
son, 2000; Nguyen, Worring & Boomgaard, 2001; Avidan, 2001; Jepson, Fleet & El-
Maraghi, 2003; Enzweiler, Wildes & Herpers, 2005; Wong & Spetsakis, 2006). Kernel
histogram methods have also become extremely popular in the last eight years (Co-
maniciu, Ramesh & Meer, 2000, 2003; Collins, 2003; Collins & Liu, 2003; Hager,
Dewan & Stewart, 2004; Birchfield & Rangarajan, 2005; Leung & Gong, 2006; Can-
nons & Wildes, 2007). For example, the mean shift tracker (Comaniciu, Ramesh &
Meer, 2003), is arguably the most popular tracking paradigm, at present.

Upon viewing this rough timeline, we elected to group our discussion of visual
tracking into three main chapters concerning: (1) discrete feature trackers; (2) contour
trackers; and (3) region trackers. Similar categorization of visual tracking systems
has appeared in other review papers (e.g., (Yilmaz, Javed & Shah, 2006)).
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1.2 Motion-Based Computer Vision Problems

It is important to take note that within the vast field of computer vision, there are
other problems than visual tracking that make use of motion information. These ad-
ditional subfields include: optical flow estimation; regional motion analysis; structure
from motion; and motion/change detection. Since these other motion-related prob-
lems will not be the main topic of discussion in subsequent chapters, we will make
brief comments about them now.

The problem of computing optical flow can be described as that of estimating
the apparent motion of a scene at an infinitesimally small space-time location. This
observed motion can arise due to the motion of an object within the scene, motion
of the camera, or apparent motion caused by changes in the environment (e.g., due
to changing specularity position caused by the movement of the sun). Typically, the
so-called brightness constancy constraint (BCC) is used when computing optical flow.
This constraint implies that the intensity of a pixel will remain unchanged, even as it
moves. Broadly speaking, there are three general approaches for computing optical
flow (Derpanis, 2006): matching methods; differential methods; and frequency-based
methods.

If we relax the constraint that only infinitesimally small regions of interest can
be considered, we arrive at the next subfield: regional motion analysis. In this field,
researchers once again wish to describe the motion and structure in visual space-time,
but to do so over larger regions of support. Work in this field includes that of at-
tempting to describe the motion of a region using a low-dimensional parametric model
(e.g., (Lucas & Kanade, 1981; Bergen, Anandan, Hanna & Hingorani, 1992; Black &
Anandan, 1996)). Another area of focus is the computation of motion layers within
a scene (e.g., (Ayer & Sawhney, 1995; Wang & Adelson, 1993; Wong & Spetsakis,
2006)). One can think of computing motion layers as segmenting a video sequence
into coherently moving regions. Finally, other researchers have considered the prob-
lem of assigning qualitative descriptors to local spatiotemporal regions (e.g., (Jähne,
1990; Bigün, Granlund & Wiklund, 1991; Wildes & Bergen, 2000)). These regional
descriptors can encompass spatial patterns (e.g., spatial texture) as well as dynamic
aspects (e.g., velocity and flicker). An excellent review of the fields of optical flow
estimation and regional motion analysis is provided in (Derpanis, 2006). Further-
more, it should be noted that optical flow and regional motion descriptors are often
employed within tracking systems and will be discussed in more detail in this paper,
as appropriate.

Another motion-based problem within computer vision is that of obtaining 3D
scene structural information from motion information. It is not surprising that struc-
ture from motion is one of oldest areas of computer vision research because initially,
many researchers viewed the computer vision problem as that of reconstructing a 3D
scene from 2D images. As a result, the problems of structure from “X” where X is
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motion, shading, and stereo are well-established within computer vision. In general,
the approaches of obtaining scene structure from motion can be categorized into three
disparate approaches: finite displacement; infinitesimal; and direct methods.

A final subfield of computer vision that involves motion information is that of
change/motion detection (Anderson, Burt & van der Wal, 1985; Liou & Jain, 1989;
Lipton, Fujiyoshi & Patil, 1998; Dailey & Li, 1999; Lee, Romano & Stein, 2000; Chang,
Chia & Yang, 2005). The goal of these systems is to determine what pixels in the
scene are changing due to object motion. Most of these strategies are employed when
the camera is stationary and the scene objects are moving. However, techniques are
available for change/motion detection when both the camera and scene objects are
moving (Burt, Bergen, Hingorani, Lee & Leung, 1989). Intuitively, the idea here is
to realign the images prior to detecting the motion so as to cancel the camera-based
motion. Motion detection systems are often used as a precursor or directly within
tracking systems. Accordingly, change/motion detection will be discussed in more
detail in Chapter 2.

1.3 Outline of Paper

The remainder of this paper is organized into six main chapters. In Chapter 2,
we will begin with a discussion of the general tools that are used in a number of
trackers. In Chapter 3, trackers that solely make use of discrete feature information
will be described. Subsequently, Chapter 4 will focus on contour trackers. Systems
that make use of regional target representations will be described in Chapter 5. In
an ideal world, all tracking systems would correspond to one of the previous three
chapters. However, given the nature of the literature, some systems use combinations
of the techniques seen in Chapters 3 - 5, and others are just outright unique. These
trackers will be described in Chapter 6. In Chapter 7, a more in-depth comparative
evaluation between the different approaches will be presented. The paper will be
concluded in Chapter 8 with a discussion of the open problems that remain in the
field of visual tracking.
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Chapter 2

Tools For Tracking

2.1 Initialization and Foreground Detection

A significant consideration in the field of visual tracking is that of starting, or initial-
izing, a tracker. Visual trackers that require less user input from a human are more
practical and more likely to be deployed outside of academia. Yet, as demonstrated
by the research in the field, the initialization problem is often ignored. Instead, it is
commonly assumed that initialization can either be performed manually or by some
other system module (Kass, Witkin & Terzopoulos, 1988; Fieguth & Terzopoulos,
1997; Jepson, Fleet & El-Maraghi, 2003; Cannons & Wildes, 2007). Of course, there
are exceptions (Stauffer & Grimson, 2000; Haritaoglu, Harwood & Davis, 2000; Para-
gios & Deriche, 2000; Enzweiler, Wildes & Herpers, 2005). Automated systems often
use some form of foreground detection mechanisms to identify image region(s) to be
tracked. Hence, the matters of tracker initialization and foreground detection are in-
tertwined. However, at this point it should be emphasized that foreground detection
need not only be used for the purpose of tracker initialization. Foreground detection
can be used throughout the course of tracking and in fact, many trackers perform this
exact procedure (Intille, Davis & Bobick, 1997; Wren, Azarbayejani, Darrell & Pent-
land, 1997; Rosales & Sclaroff, 1999; Stauffer & Grimson, 2000; Haritaoglu, Harwood
& Davis, 2000; Isard & MacCormick, 2001).

2.1.1 Tracker Initialization

As mentioned previously, target identification can be performed manually or auto-
matically. Many significant tracking papers simply assume that the targets can be
identified by some other mechanism (e.g., human input). This assumption is typically
made so that the focus of the work can be placed solely on the task of tracking the
marked target through subsequent frames. When manual initialization is used, it is
often assumed that all targets are present in the first frame of the video sequence.

7
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In other words, no new targets of interest enter the field of view during the video.
Accordingly, in the first frame, a user will simply draw boxes, ellipses, curves, etc.
that encompass the targets and automatic tracking will be performed in subsequent
frames.

Other researchers do consider the task of initializing trackers in an automated
fashion. Aside from the obvious benefit of being more automated, an additional
advantage is the fact that it is easier to allow new targets to be identified and tracked
if they enter the field of view after the first frame. Most automatic systems initialize a
tracker using some form of foreground detection technique. Once distinct foreground
regions have been identified, trackers can be initialized to follow these regions.

2.1.2 Foreground Detection

In the context of this paper, “foreground detection” refers to the process of identi-
fying potential target pixels in any frame of a video sequence, regardless of frame
number. Pixels that do not belong to the target(s) or other “interesting” (i.e. co-
herently moving) objects will be termed “background pixels”. Most foreground de-
tection techniques can be divided into three main categories: background model-
ing approaches (Wren, Azarbayejani, Darrell & Pentland, 1997; Stauffer & Grimson,
2000; Haritaoglu, Harwood & Davis, 2000; Rittscher, Kato, Joga & Blake, 2000);
change/motion detection approaches (Anderson, Burt & van der Wal, 1985; Lipton,
Fujiyoshi & Patil, 1998; Dailey & Li, 1999; Lee, Romano & Stein, 2000; Chang, Chia
& Yang, 2005; Enzweiler, Wildes & Herpers, 2005); and target spotting approaches
(Viola & Jones, 2001; Zhu, Zhao & Lu, 2007; Wu, Yu & Hua, 2005). Additionally,
some foreground detection schemes operate by simply identifying pixels of a particu-
lar color that is unique to the target (e.g., skin color detection (Kjeldsen & Kender,
1996; Fleck, Forsyth & Bregler, 1996; Herpers, Derpanis, MacLean, Verghese, Jenkin,
Milios, Jepson & Tsotsos, 2001)). For the purpose of this review, color detection ap-
proaches will be considered as a basic form of target spotting. The rest of this section
will describe the three proposed foreground detection categories in more detail.

The most straightforward background modeling approaches assume that the back-
ground scenery remains stationary. Thus, to detect a foreground target, the current
frame can essentially be subtracted from the background model. Pixels that are in
agreement with the background model will yield a near-zero result while pixels that
deviate substantially from zero are concluded to belong to the foreground. The di-
viding line between “near-zero” and “deviating substantially” can be implemented
by means of a simple threshold. Performing this type of raw subtraction and thresh-
olding will yield noisy results. Correspondingly, morphological operators (Heijmans,
1994) are used to blur foreground pixels into blobs and then group these blobs into
connected components.

An example of using background modeling to identify foreground regions is illus-
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trated in (Wren, Azarbayejani, Darrell & Pentland, 1997). The authors model each
pixel as a multi-variate Gaussian in YUV color space, capturing a pixel’s mean color
and covariance. In (Stauffer & Grimson, 2000), a slightly more complex approach
is taken where each pixel is represented as a mixture of Gaussians (MOGs). The
rationale is that even though a pixel may be part of the background scenery, it may
still be generated by a multi-modal distribution. For example, a pixel that lies on a
flashing light that oscillates between the colors red and black could be considered as
part of the background scenery. Modeling this type of background pixel with a single
Gaussian would be very inaccurate. However, with a mixture of Gaussians-based ap-
proach, different colors correspond to different modes within the distribution. Thus,
a more accurate parametric model of the background can be obtained. Other back-
grounds that would be better modeled using MOGs approach include an oscillating
fan and trees swaying in the wind. Naturally, when modeling each background pixel
as a mixture of Gaussians, an additional parameter is introduced — the number of
Gaussians. Another disadvantage of methods inspired by (Stauffer & Grimson, 2000)
is that they are more computationally intense than unimodal methods.

Foreground detection can also be performed using change/motion detection-based
approaches. With background modeling approaches, it is assumed that anything dif-
ferent from the background model is “interesting” and is part of the foreground.
Such objects may be moving quickly, slowly, or could even be stationary for a cer-
tain amount of time (if the object is stationary for too long, the background model
may adapt to encompass the object). Change/motion detection techniques employ a
slightly modified assumption: Interesting targets are manifest as pixels that exhibit
a change in intensity from frame-to-frame, especially due to motion. A range of tech-
niques have been developed for identifying image regions undergoing changes due to
motion, ranging from temporal differencing (Anderson, Burt & van der Wal, 1985)
to measuring the motion coherence strength of a pixel (Enzweiler, Wildes & Herpers,
2005).

The identification of moving targets through temporal differencing is a straight-
forward process. Specifically, the current image is subtracted from either the previous
(Anderson, Burt & van der Wal, 1985; Lipton, Fujiyoshi & Patil, 1998; Lee, Romano
& Stein, 2000; Chang, Chia & Yang, 2005) or next frame of the video. Rectification
through squaring or taking the absolute value can be performed to consider only mag-
nitude differences. Mathematically, such a temporal differencing methodology can be
written as

Db (x, y, t) = (I (x, y, t)− I (x, y, t− 1))2 , (2.1)

where I is the image sequence and Db represents the squared temporal difference
image. Thresholds are applied to the difference images to eliminate pixel changes due
to camera noise, small illumination changes, etc. Thus, the end result is a binary
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map of the foreground pixels.

To improve upon the localization of the foreground moving pixels, three frames
can be used to compute the change image (Dailey & Li, 1999). The rationale is that
backward and forward differences are inherently biased to be slightly behind or ahead
of the true moving target in the current frame. By pooling additional information
over three frames, the detected target can be better centered. Three-frame temporal
differencing can be performed by computing the forward and backward differences
separately and then combining the results. Another differencing-based approach that
accumulates information over several frames was presented in (Jain, 1984). In this
case, the current frame of the image sequence is continually compared against a ref-
erence image (typically the first frame). Thresholded positive (indicates intensity
values of the reference image that are greater than the current image) and negative
(indicates intensity values of the current image that are greater than the reference
image) difference images are computed and accumulated over a series of frames. Com-
bination of the positive and negative difference images allows for the identification of
moving objects and the segmentation of dynamic scenes.

The standard temporal differencing approach appears to be straightforward enough,
but a limitation one might immediately notice is that it appears to be confined for use
with only stationary cameras. Using the techniques proposed so far, this assessment
is certainly true. However, techniques are available for the purpose of stabilizing the
background when dealing with moving cameras (e.g., (Burt, Bergen, Hingorani, Lee
& Leung, 1989; Bergen, Burt, Hingorani & Peleg, 1990; Black & Anandan, 1996)). In
(Bergen, Burt, Hingorani & Peleg, 1990), methods are shown for estimating local op-
tical flow when transparency is present. The problem is reduced to that of computing
multiple motions at the same spatial location. The authors show that a secondary
motion can be uncovered by first aligning the images via the dominant recovered mo-
tion and subsequently computing a difference image. This technique can be applied
in the context of visual tracking with a moving camera. Essentially, the global cam-
era motion can be estimated and subsequently, difference images can be created for
the target by considering the aligned imagery. Black et al.’s robust multiple motion
estimator could be deployed in a similar manner (Black & Anandan, 1996). In (Burt,
Bergen, Hingorani, Lee & Leung, 1989), a concrete example of “subtracting off” the
camera motion for the purpose of visual tracking is demonstrated.

One final aspect of temporal differencing is that it is often performed in conjunc-
tion with pyramid processing (Anderson, Burt & van der Wal, 1985). If difference
images are computed at full image resolution and the video framerate is high, the
change detection region will include only the outline of the moving object. If the
interior of the object is desired, a Gaussian or Laplacian pyramid can be used. The
general approach here is to first compute the difference image. Once computed, the
rectified difference image is downsampled and upsampled via an image pyramid to
fill in the interior. Image pyramid processing is a topic that will reoccur throughout
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this paper and will be discussed in more detail in Section 2.5.

Another approach to change detection uses motion coherence measures (Enzweiler,
Wildes & Herpers, 2005). In (Enzweiler, Wildes & Herpers, 2005) so-called “coherent
motion energy” is computed by filtering space-time slices of a video sequences and
subsequently rectifying and normalizing the result. Leftward, rightward, upward, and
downward motion create characteristic diagonal structures when observed using XT
and Y T slices. Orientation-selective filtering is performed on these slices in direc-
tions corresponding to these four motions. Coherent motion energies are obtained
by taking the difference between the energies of the opponent directions and nor-
malizing. This detection process is performed across multiple scales using pyramid
processing to ensure that the detected target of interest has support across a range
of frequencies. Although this approach to motion/change detection is more complex
than straightforward temporal differencing, there are several advantages to be had.
To begin, the coherent motion energy-based approach is more robust to illumination
changes because of the performed normalization and the broadly-tuned nature of the
filters. Furthermore, the target pixels must be moving coherently in order to be de-
tected. Thus, in a similar manner to the MOGs background models, change detection
systems using coherent motion energies should not generate false-positive pixels due
to swaying trees or oscillating fans. A simpler temporal differencing algorithm would
undoubtedly label such pixels as belonging to the foreground.

The final general class of foreground detection schemes are known as target spot-
ting systems. In this case, a module is typically trained to detect a certain class of
object, such as a face (Viola & Jones, 2001), a vehicle (Zhu, Zhao & Lu, 2007), a
pedestrian (Wu, Yu & Hua, 2005), a hockey player (Okuma, Taleghani, Freitas, Little
& Lowe, 2004), etc. Other, more simple target spotting approaches detect foreground
targets based purely on pixel color information (Kjeldsen & Kender, 1996; Fleck,
Forsyth & Bregler, 1996; Herpers, Derpanis, MacLean, Verghese, Jenkin, Milios, Jep-
son & Tsotsos, 2001). Once a specialized detector has been developed, it can be
applied to frames in a video sequence. A critical limitation of this approach is com-
putation time. If the target detector is run on every frame of the video, it must be
very efficient. This need for efficiency has contributed to the popularity of Adaboost-
based detectors (Okuma, Taleghani, Freitas, Little & Lowe, 2004; Viola & Jones,
2001). Other popular machine learning classifiers such as support vector machines
(Burges, 1998), neural networks (Bishop, 1995), etc. could also be used for detec-
tion, as long as they can be implemented in a computationally efficient manner. One
method to alleviate computational requirements is to only perform detection on a
subset of the video frames (e.g., every 30th frame). However, this technique could
lead to delayed detection results.

There are two questions to consider at this juncture: 1) Why would foreground
detection be needed during tracking for any reason other than tracker initialization?
2) Can a tracker be built that will follow objects by repetitively performing foreground
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detection on each and every frame? These questions are almost polar opposites, but
they are both worth considering.

Foreground detection can be greatly beneficial to trackers, as it helps to reduce
the search space when looking for a target. Specifically, rather than having to search
the entire image for the new position of the target, only the foreground regions need
to be analyzed (assuming the target is always moving). Such a reduction can greatly
improve the speed and accuracy of tracking. Thus, foreground detection can clearly
be useful. However, we should also point out that under certain assumptions, global
image searches for targets of interest are continually evolving and are approaching
the speeds required for real-time tracking applications. For example, the integral his-
togram method is empirically argued to provide real time exhaustive image search ca-
pabilities, although its memory requirements are large (Porikli, 2005). More recently,
Sizintsev et al. compared the relative merits of various popular histogram-based search
strategies and proposed a so-called “distributed histogram”. Distributive histograms
are shown to be faster and require less memory than integral histograms (Sizintsev,
Derpanis & Hogue, 2008). The one significant limitation of these techniques is that
they require the target to be represented as a histogram. Nonetheless, we are already
beginning to see these exhaustive histogram-based search strategies employed in nu-
merous visual tracking systems (e.g., (Adam, Rivlin & Shimshoni, 2006; Nejhum, Ho
& Yang, 2008)).

Given that foreground detection can be useful, naturally, the next question is:
why not build a system that simply tracks objects by performing foreground detec-
tion? In some limited situations, this approach may be sufficient. Specifically, if it is
known that there is only one target in the video and that the background is roughly
stationary, then tracking by continuous detection is possible. However, the detection
mechanism must operate within the framerate of the video. In realistic scenarios,
however, we do not always have the luxury of tracking an isolated, single target in a
scene. Oftentimes there are multiple moving targets. In these situations, there will
be ambiguity when attempting to match foreground regions from frame-to-frame if
continuous detection is employed. The issue of properly linking a detected target in
the previous frame with the same target in the current frame is known as “data asso-
ciation”, a topic that will be discussed in more detail in Section 2.4. Thus, although
it may be possible in some limited situations to perform visual tracking purely using
foreground detection techniques, in most cases, at a bare minimum the data associa-
tion problem must be resolved for successful tracking. Many trackers in the literature
have been implemented that follow the foreground detection plus data association
framework and they will be discussed primarily in Chapter 5.
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2.2 Feature Extraction

A critical component of intelligent systems including recognition, detection, and track-
ing systems is that of feature extraction. For the purpose of this document, a feature
is defined as a local, meaningful representation of a target or part of a target. Fur-
thermore, we will refer to a “feature set” as the one or more features used to describe
a target. A feature set should not be confused with a “target template”. A template
describes the appearance of a target, regardless of the features that are being used.
For example, a very simple feature set would be the pixel-wise intensities of a target.
Alternatively, the individual pixel values could be considered following application
of spatial and/or temporal filters (e.g., bandpass filters that select certain frequency
content). On the other hand, the target template specifies the feature values assumed
by the target that, when combined, define the appearance of the target. More specif-
ically, a template might specify that the top row of a four-pixel wide target is defined
by the intensity values (128, 120, 110, 100). In this example, the feature set being used
are pixel-wise intensities, and the specific numeric values define the template.

One of the most important aspects of a feature is that it should be unique to
the target and meaningful for the particular application under consideration. For
example, in target tracking a feature set is desired that will uniquely identify the
target of interest from other scene objects. For instance, a poor choice of feature
when tracking a specific zebra that is moving amongst many other zebra would be
color. Since all zebras have roughly the same white and black pattern, a tracker
that uses color-based features would be challenged to follow the zebra of interest.
Thus, for successful tracking, the feature set must be descriptive; however, it must
also be flexible. A target may deform, rotate, change in illumination, and change in
scale. Trackers are desired that can continue following a target through such changes.
Indeed, feature sets that are robust or invariant to these transformations are sought
after. A final critical requirement for feature sets is that they must be amenable to
efficient extraction because most trackers strive to operate in real-time.

In this section, different types of features that have been used in various tracking
systems will be described. The discussion will begin with discrete features such as
edges and lines. Recently, “interest points” have emerged as a useful type of feature,
and they will also be described. Additionally, we will discuss color-based features
that have become very popular in the last fifteen years. Finally, we will elaborate on
feature sets that are based on oriented energies.

2.2.1 Edges and Lines

Discrete features such as edges and lines have been used in many tracking systems
(Deriche & Faugeras, 1991; Lowe, 1991, 1992; Koller, Daniilidis & Nagel, 1993; Hut-
tenlocher, Noh & Rucklidge, 1993). In fact, not that long ago, the majority of com-
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puter vision systems employed a bottom-up approach. Specifically, processing would
begin by first computing the edge map of an image. All subsequent processing was
based entirely on this edge information. The rationale behind these bottom-up ap-
proaches is that edge detection is like a form of dimensionality reduction. Specifically,
it was believed that an edge map contained the most important image information
(e.g., object boundaries), while suppressing uninteresting regions (e.g., regions of con-
stant intensity). This assumption may hold true in some cases, but there are severe
disadvantages of this approach. By progressing using only edge features, significant,
potentially useful information is discarded (e.g. color, irregular texture patterns). Fur-
thermore, edge detection is a non-trivial exercise. Fragmented object contours and
false positives in cluttered scenes are common problems. Accordingly, these types of
bottom-up approaches are currently becoming less popular.

To begin, we will discuss edge based features that have been used in trackers. For
this paper, an “edge” is defined as a pixel that lies on the boundary between regions
that each have their own (roughly constant) intensity. Image edges can arise due
to boundaries between objects, large illumination differences (e.g., shadows), sur-
face markings, textures, as well as large changes in surface orientation. There are
many edge detectors available, including the Canny (Canny, 1986), Nalwa (Nalwa &
Binford, 1986), Iverson (Iverson & Zucker, 1995), and Bergholm (Bergholm, 1987)
algorithms. A difficulty in the field of edge detection is that of fair experimental
evaluation. Performance analysis is complicated by the fact that different edge de-
tectors tend to perform best on certain types of imagery. Furthermore, the quality of
the extracted edge set is somewhat application-dependent. For some systems, false
positives will be severely detrimental, while other systems may be most adversely
affected by false negatives. These difficulties complicate the comparative process. In
(Heath, Sarkar, Sanocki & Bowyer, 1997), various edge detectors are evaluated by
means of unbiased human observers. Among the detectors compared in this study
are Canny’s edge detector and various other state-of-the art methods at the time of
publication (1997). The authors conclude that Canny’s algorithm is among the best
when image-wise parameter optimization can be performed. However, when parame-
ters are optimized for a large array of images, the relative performance of the Canny
edge detector decreases.

Perhaps because of the difficulties in clearly demonstrating superior performance
by newer methods (accuracy and computation time), the most standard edge detector
in computer vision today is Canny’s edge detector (Canny, 1986). The Canny edge
detector is a gradient-based edge detector. Accordingly, one of the main components
of the algorithm is the computation of the vertical and horizontal image gradients.
Using the magnitudes and directions of the image gradients, Canny’s algorithm then
identifies the most likely edge pixels using non-maximal suppression and thresholding
stages. The interested reader is encouraged to read Canny’s original paper (Canny,
1986) or a textbook presentation of Canny’s work (Trucco & Verri, 1998) to learn
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Figure 2.1: Input image (left) and binary edge map obtained using Canny edge
detection (right).

more details about the algorithm. In Fig. 2.1 we provide a pictorial example of a
binary edge map obtained using the Canny edge detector.

Although edges by themselves are sometimes used for tracking (Huttenlocher, Noh
& Rucklidge, 1993), oftentimes edges will be further grouped into lines (e.g., (Crowley,
Stelmaszyk & Discours, 1988)). One could imagine that a very simple, intuitive way
to detect image lines would be to employ a filter bank approach. Under this setup,
a bank of filters would be defined that correspond to lines with the orientations
that are to be detected. Image convolution can be performed between the bank of
oriented filters and the image. Subsequently, the response maps could be combined
and thresholded. Such a “quick and dirty” approach might work in limited situations,
but most line detectors in the literature provide more advanced solutions.

In (Steger, 1998), a short summary of line detectors is provided. Steger argues that
most line detectors can be grouped into three classes. The first category, makes use of
purely local processing of intensity values and is arguably the most closely related to
the simplified approach proposed above. For example, in (Geman & Jedynak, 1996),
spatially oriented filters are used and differences are obtained between points that
are hypothesized to be on the line and off the line. The rationale is that two points
that lie on the line should have much more similar intensities than one point that is
on the line and another that is off. As this approach is prone to false positives, more
advanced solutions have been proposed. The second category of line tracker assumes
that lines are composed of two parallel edges (due to a thickness greater than a
single pixel). Correspondingly, two parallel line detectors are used to locate the left
and right sides of the line simultaneously (Koller, Gerig, Szekely & Dettwiler, 1995).
The third category of line trackers view an image as a three-dimensional surface and
then attempt to locate ridges or ravines within the surface (Maintz, van den Elsen &
Viergever, 1996).

Even though the abovementioned line detection techniques appear to be used
in the realms of remote sensing and medical image analysis, the Hough transform
(Hough, 1962; Duda & Hart, 1972) seems to be the more commonly-used method for
detecting lines in computer vision. Although it is not necessary, the Hough transform
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Figure 2.2: Hough transform mapping image edgels (image domain) to their corre-
sponding sinusoidal curves (Hough domain).

typically employs a polar parameterization of lines. Specifically, a line is commonly
defined in terms of its angle, α and its perpendicular distance from the origin, ρ. A
“Hough domain” map is created, which is essentially a two dimensional histogram,
as shown in Fig. 2.2. Using a binary edge map as input, the Hough domain map is
computed as follows. Each edge pixel in the image domain is mapped to a sinusoidal
curve in the Hough domain. This curve arises due to the fact that there are an
infinite number of lines that could potentially pass through a particular image edge.
Each bin that the edge’s corresponding curve passes through has its histogram count
incremented. This mapping from edge locations in the image domain to curves in
the Hough domain is performed for all edges. When analyzing the complete Hough
domain map, bins that have large sums have strong edge support. Thus, the matter
of finding lines within the image becomes a problem of identifying the most prominent
peaks in the Hough domain.

One limitation of the Hough transform is the fact that the identified lines are
infinite in length. Thus, localization of the true line segment within the image is an
additional problem. Furthermore, bin size selection is a challenging problem with
conflicting requirements. On the other hand, the Hough transform is quite robust
to noise edges. In fact, strictly speaking, the Hough transform is a robust estimator
and thorough statistical analysis (Goldenshluger & Zeevi, 2004) has shown that its
breakdown point is very close to 50%. Thus, despite its imperfections, the Hough
transform remains one of the most widely-used straight line detection techniques
today.
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2.2.2 Corners and Interest Points

Another class of image features are commonly referred to as “interest points”. For the
purpose of this paper, we define an interest point as a point where the surrounding
image region is changing in a two-dimensional manner. For example, a point at
the center of a traditional “L-shaped” corner, as one would observe at the edge of a
desk, satisfies this criteria. Other types of corners, such as “Y” or “T” shaped corners
would also apply. However, interest points are not just limited to corner. For example,
points within image regions containing distinctive texture patterns may also qualify
as interest points. Generally, there are three classes of approaches for interest point
detection (Schmid, Mohr & Bauckhage, 2000): contour-based; intensity-based; and
parametric model-based. This paper will only focus on describing the intensity-based
approaches as they appear to be the most prevalent in the tracking literature.

In general, intensity-based methods focus on the analysis of the local autocorre-
lation function around the point of interest. In (Moravec, 1980) a small window is
placed around the point under analysis. Autocorrelation is then performed between
the window centered on the point and slightly offset versions of the window. The
offset windows are shifted in four discrete directions. If all autocorrelation values
are greater than a threshold, the current point is classified as an interest point. The
rationale is that if all auto-correlation values are large, then the image is significantly
different from the analysis point as one moves in all four directions. Thus, the point
under analysis is distinctive.

The autocorrelation-based approach is also used in other works such as (Shi &
Tomasi, 1994) and the Harris corner detector (Harris & Stephens, 1988). In this case,
however, the authors avoid the limitation of only analyzing the intensity changes in
four discrete directions. Instead, a matrix is derived from the local auto-correlation
function that captures the local intensity structure. This matrix can be written as

C (x, y) =

[ ∑
W (Ix (xi, yi))

2 ∑
W (Ix (xi, yi) Iy (xi, yi))∑

W (Ix (xi, yi) Iy (xi, yi))
∑

W (Iy (xi, yi))
2

]
, (2.2)

where W is a local window surrounding the point under analysis, and Ix, Iy are the
image gradients in the x and y directions, respectively.

Once the matrix of Eq. 2.2 has been computed for a point, its eigenvalues are
considered. If both eigenvalues are small, it indicates that the local region surround-
ing the current point is of approximately constant intensity. Situations where one
eigenvalue is large, indicate that the local region is reminiscent of a valley. Specifi-
cally, moving along one axis will yield negligible changes in the intensity structure,
whereas shifts along the other axis result in larger intensity changes. For the first two
cases, the local window can move in one or more directions and still identify another
location very similar to the original. Such locations are not ideal as interest points.
The third case, where both eigenvalues are large, indicates that the autocorrelation
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function is highly peaked at the location under analysis. Corresponding, any shift
will result in a significant change in intensity structure. Thus, it is only under this
third case, that a point is labeled as an interest point. It should be noted that if using
more than just a single interest point, the requirement that both eigenvalues must
be large can be relaxed. For example, if one candidate point lies along a horizontal
ridge and a second candidate point is on a vertical ridge, together these two points
can provide similar constraints to that of a corner. A similar idea was employed in
a region-based tracker where a constraint was added that ensures the smoothness of
motion between neighboring edge interest points (Birchfield & Pundlik, 2008).

Another popular type of interest point used throughout the field of computer vi-
sion are scale invariant feature transform (SIFT) points presented by Lowe (Lowe,
1999). Feature point locations are taken as the minima or maxima of a difference
of Gaussian function in scale space. The feature vectors are composed of location,
scale, and orientation information regarding the point. Orientation information is
obtained by selecting the peak orientation in a histogram of the local gradient ori-
entations around the feature point. This canonical orientation makes the descriptors
invariant to rotation. Furthermore, as demonstrated in (Lowe, 1999), SIFT features
are robust to affine image transformations, illumination changes, and random pixel
noise. Arguably the biggest advantage of SIFT features over other types of features
(e.g., Harris corner features) is that they are scale-invariant. With the Harris corner
detector, drastically different feature points can be identified when the same image is
viewed at different scales. This phenomena occurs because a corner at one scale may
not to be a corner at another scale. For example, at high spatial resolutions, textures
on an object’s surface may be visible, which may result in a number of interesting
corners being detected. However, when the same object is observed with a lower spa-
tial resolution, its surface may appear flat and textureless. Thus, at low resolutions,
corners may not be detected on the same surface. Not being robust or invariant
to changes in scale is a severe limitation of a feature point. SIFT features avoid
this problem as they are identified through a scale-space analysis and are explicitly
assigned a scale.

2.2.3 Regional Features

Features used for image processing and computer vision need not be discrete or point-
based. Features that describe a larger image region have recently become very pop-
ular. Specifically, color histograms and histograms of gradients are two types of
regional descriptors that are commonly found in the tracking literature.

Color features first started entering the main-stream tracking literature with the
advent of the PFinder system (Wren, Azarbayejani, Darrell & Pentland, 1997). In
this early work, the mean pixel color was used to describe the color of a so-called
“blob region”. Blob regions and trackers will be discussed in more detail in Chapter
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5, but for the time being, a blob can be thought of as a connected foreground region
that roughly defines a target. Subsequent works also made use of the mean color
value of an image region. For example, in (Fieguth & Terzopoulos, 1997), a tracker
was developed that represented a region of the target by its mean color. Comparisons
with the target template were performed by taking the ratio between the candidate
and template colors.

Although it is possible to represent the color of a region by a single average value,
this metric becomes less meaningful when the color distribution is multimodal. For
instance, if one were tracking a person’s face (excluding hair) a single mean value
representation should be sufficient — the predominant color within the region is the
color of the skin (with some outliers for the eyes, lips, and teeth). On the other hand,
if one is attempting to represent the entire human body by a single mean color, the
representation begins to fail. If the individual being modeled is wearing a white shirt
and blue pants, an average color representation is not very meaningful. Note that
for the purpose of this review, “average color” is defined as the color obtained by
computing the mean values of the respective R, G, and B channels over the target
support. To address the abovementioned shortcoming, researchers have considered
keeping a richer representation — the color distribution of an object. In particular,
since discrete pixels are being considered, color histograms have become a popular
representation (Swain & Ballard, 1991; Comaniciu, Ramesh & Meer, 2003). Color
histograms are constructed by counting the number of times each discrete color occurs
within an image region. Typically, the color-space will be quantized more coarsely
than that used for the image itself. For example, the RGB color space (commonly
used when representing images) uses 24-bits per pixel. This equates to 8-bits or 256
distinct values for each of the three RGB channels. When creating a color histogram,
it is more common to use, for example, 4-bits per channel. This level of quantization
would yield a histogram with 16×16×16 = 4096 bins. Although it may seem like this
loss of precision would be detrimental, it can actually be beneficial (Swain & Ballard,
1991). Object regions that appear to have the same color to the human eye will tend
to not have constant pixel values due to illumination effects and camera noise. Under
a more coarse quantization, pixels of similar color will be grouped together, even if
they are not identical. A further advantage of using fewer bits is that the process is
less memory intensive.

Color histograms have become extremely popular due to their simplicity, effective-
ness, and efficiency. These histograms also have the desirable property that they are
invariant to translation and rotation about the axis perpendicular to the image. Fur-
thermore, color histograms change slowly when an object is rotating into the image
plane, becoming occluded, or changing in scale (Swain & Ballard, 1991). Although
color histograms have numerous advantages, they do have their limitations. To begin,
color histograms (and histograms, in general) collapse the spatial information of the
object being modeled. In other words, once the histogram has been created, there
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is no way knowing which color came from what part of the object. Some attempts
have been made to retain limited spatial information within what is essentially a his-
togram framework (e.g., (Birchfield & Rangarajan, 2005; Adam, Rivlin & Shimshoni,
2006; Nejhum, Ho & Yang, 2008)).

Another limitation of color histograms is that color features are susceptible to
illumination changes. There are partial solutions that have been presented that lessen
these effects. The RGB color space (a color space is defined as the mathematic
model that details the relationship between a color and a tuple of numbers) is the
most prevalent in the literature but is also one of the least robust to changes in
illumination. Other color spaces, such as normalized RGB as well as hue, saturation,
and brightness (HSV) are more robust to illumination changes. Accordingly, many
tracking systems that aim to follow targets in realistic surveillance settings have
opted for these alternative color spaces (Hager, Dewan & Stewart, 2004). The one
disadvantage of using an alternative color space is that there is a slight overhead
involved to convert between RGB (color space typically used when storing images)
to the alternative color space. Fortunately, these transformations are not overly
expensive.

An alternative descriptor to color histograms are histograms of oriented gradi-
ents (HOGs). Although not explicitly mentioned, we have already briefly introduced
HOGs when we discussed SIFT and the manner in which the orientation is selected
for a feature point. HOGs are exactly as the name suggests — histograms that show
the orientation distribution of the gradient vectors inside a target region. Thus, to
construct an HOG, the image gradient is computed and then a count of the number
of gradients that lie in each angular range is obtained. In addition to deciding on
the method in which to compute the image gradient, another design decision is the
coarseness of the histogram bins. Histograms of gradients have an advantage over
color histograms in that they are more robust to illumination changes. However, in
situations when the background is cluttered, gradients from background objects may
adversely affect the target gradient model. As color and gradient histograms often
excel under different experimental conditions, one can imagine, there is potential to
fuse information from these two sources. The question then becomes: “how can these
two sources of information be combined in a principled fashion?” This is a theme
that will be explored throughout this paper.

A final commonly-employed regional feature representation is the so-called “Eigen”
representation (Black & Jepson, 1998; Hager & Belhumeur, 1998). Eigen-based ap-
proaches attempt to minimize the dimensionality of a target by representing it with
a spanning basis set of images. Construction of the basis set is typically performed
using training imagery of the target region. The basis images are obtained using
eigenvalue decomposition whereby the first basis image captures the most variance
within the training data. Progressively, the basis images capture less and less of the
critical information regarding the target. Thus, Eigen representations reduce the di-
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Figure 2.3: Left: A single frame of a video sequence where a vertical red bar is moving
to the right. Right: The corresponding spatiotemporal volume representation.

mensionality of the target by including only a subset of basis images that account for
the majority of the information content within the training data. When working with
testing data, image regions can be compared against weighted combinations of the
basis vectors to determine if there is a good match. There are a few problems with
this regional feature representation. To begin, typically the Eigen basis images are
specific to one category of target and must be computed from training imagery. An
additional challenge is that variations of the true target that are not captured in the
training data can not be properly modeled by the Eigen basis images. It should be
noted that recent attempts have been made to resolve these problems by constructing
the basis set in an online fashion (e.g., (Ross, Lim & Lin, 2008)).

2.2.4 Spatiotemporal Oriented Energies

Recall that in the previous section, we introduced the HOG representation of a target.
HOGs can capture the spatial frequency properties of a target very compactly and
effectively. Although HOGs can provide quite a rich description of a region’s spatial
structure, they are still somewhat lacking. In particular, for visual tracking, we are
inherently interested in motion. Thus, it would seem logical if the feature represen-
tation of a target somehow captured the motion properties of a target as well as its
spatial properties. Spatiotemporal oriented energy features (Adelson & Bergen, 1985)
provide a mechanism for doing just that. Indeed, such an approach is an example of
considering filtered pixel values as features, alluded to earlier.

Perhaps the most intuitive method of visualizing spatiotemporal oriented energy
features is to consider the spatiotemporal volume representation of a video sequence.
Consider Fig. 2.3, which shows a pictorial representation of the spatiotemporal domain
for a simple video sequence where a vertical bar is moving to the right. To create
this spatiotemporal volume representation, the video frames are stacked one on top
of another. In the particular example shown in Figure 2.3, a diagonal structure is
generated that extends from the front left to the back right of the volume. If we
were to filter any individual image frame (i.e. slice) within a spatiotemporal volume
at a number of orientations within the XY plane (with a orientation selective filter)
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we could capture the spatial properties of the image. Furthermore, if the filter’s
dominant orientation extended into the temporal dimension it would capture dynamic
properties of the target such as velocity and flicker. This characterizing of the spatial
and temporal properties of an image region is one of the fundamental ideas of oriented
energies.

In addition to the filtering of the spatiotemporal domain, to compute so-called spa-
tiotemporal oriented energies, a few addition steps are required (Adelson & Bergen,
1985). Filtering is typically performed in a quadrature fashion and the filter responses
are point-wise rectified. Making use of a quadrature pair of filters is useful for elimi-
nating unwanted phase information. The second derivative of a Gaussian, G2 and its
corresponding Hilbert transform, H2, are commonly selected for filtering (Adelson &
Bergen, 1985; Enzweiler, Wildes & Herpers, 2005; Derpanis & Gryn, 2005; Cannons &
Wildes, 2007) since they are steerable, separable, and broadly tuned. Thus, oriented
energies can be computed according to

e (x; θ, σ) = [G2 (θ, σ) ∗ I (x)]2 + [H2 (θ, σ) ∗ I (x)]2 , (2.3)

where x = (x, y, t) corresponds to spatiotemporal image coordinates, I is the image
sequence, ∗ denotes convolution, and θ and σ are the orientation and scale at which
filtering is performed, respectively. To attain a purer measure of energy that is less
dependent on image contrast, Eq. 2.3 is normalized as

ê (x; θ, σ) =
e (x; θ, σ)

∑
σ̃

∑
θ̃ e

(
x; θ̃, σ̃

)
+ ε

, (2.4)

where ε is a bias term to avoid instabilities when the energy content is small and the
summations in the denominator cover all scale and orientation combinations.

For illustrative purposes, Fig. 2.4 displays a subset of the energies that can be
computed for a single frame of a MERL traffic sequence (Brand & Kettnaker, 2000).
In this particular video frame, a white car moving to the left near the center of an
intersection. Notice how the energy channel tuned for leftward motion is very effective
at distinguishing the car from the static background. Consideration of the channel
tuned for horizontal structure shows how it captures the overall orientation structure
of the white car. In contrast, while the channel tuned for vertical textures captures
the outline of the crosswalks, it shows little response to the car, as it is largely devoid
of vertical structure at the scales considered. Finally, note how the energies become
more diffuse and capture more gross structure at the coarser scale.

Oriented energy features are quite flexible and can be utilized in a variety of ways
within tracking or other sub-areas of computer vision. As described, they can provide
a rich and compact feature set that captures both spatial and dynamic properties of
a target and are robust to significant illumination changes.
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Figure 2.4: Frame from a MERL traffic video sequence with select corresponding
energy channels. Finer and coarser scales are shown in rows two and three, resp.
From left to right, the energy channels roughly correspond to horizontal structure,
vertical structure, and leftward motion. Adapted from (Cannons & Wildes, 2007).

2.3 Prediction Versus No Prediction

One dividing line between the vast array of trackers in the literature is whether or
not they incorporate a prediction mechanism. As mentioned previously, prediction is
not absolutely necessary. Trackers can be constructed that perform target detection
on each and every frame. Once targets have been detected, data association can be
performed to link the object tracks to the currently detected targets. With these
approaches, detection must be efficient if real-time performance is to be attained.

The approach of continuous detection is, however, somewhat wasteful. Signif-
icant information can be used from previous frames when tracking in the current
frame. At the very least, the estimated target positions from the previous frame are
known. Thus, many trackers will use this positional information as a starting point
in the current frame. Assuming a high frame rate, this single piece of information
can drastically reduce the search space and increase efficiency. The standard mean
shift (Comaniciu, Ramesh & Meer, 2000) tracker employs this type of approach.
Essentially, the previous position of the target is used as a starting point for a gradi-
ent descent-style optimization process in the current frame. Other trackers use even
more than just the previous position information. Specifically, systems will often use
information from previous frames (potentially over more than just a single frame)
to estimate the target’s velocity and predict its new position in the current frame.
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There are two mechanisms that have become standard for performing prediction in
the tracking community — Kalman filters and particle filters.

2.3.1 Kalman Filters

The Kalman filter’s roots are in the optimal estimation theory literature where it was
formally first presented by R. Kalman in 1960 (Kalman, 1960). The filter provides a
means of optimally estimating the hidden state of a system by analyzing observable
measurements. The fact that Kalman filters are “optimal” in some sense, makes
it sound as if they are the best possible estimator available (i.e. that this problem
of estimating a hidden state from a number of measurements is completely solved).
What must be realized is that the Kalman filter is only optimal when a certain set of
assumptions hold true. Once these assumptions are violated, the estimates provided
by the Kalman filter may no longer be optimal. In practice, the Kalman filter still
provides excellent performance in many tracking situations. As a result, the Kalman
filter has become a favorite prediction tool among tracking researchers because of its
performance in practical situations coupled with its theoretically optimal results.

Naturally, the next question one might have is: “what assumptions does the
Kalman filter make?” The first assumption is with regards to the equations (or mod-
els) that capture the relationships between variables used by the filter. Specifically,
these models must be linear. The second assumption is that all the uncertainty or
“noise” that is included throughout the filter must be white (i.e. equal power within a
fixed bandwidth), Gaussian noise. For many practical applications, these assumptions
are sufficiently close to the truth that the algorithm performs well.

For this section of the paper, let xt be the state of the system at time t and zt

be the measurements (to stay consistent with the Kalman filtering literature). Given
the assumptions listed above, all distributions (or variables) are Gaussians. Hence,
the distributions can all be characterized by a mean and covariance. Figure 2.5 illus-
trates the conceptual steps that one might to describe the Kalman filter: deterministic
prediction (typically using a motion model when tracking); stochastic diffusion; and
estimate refinement via a new measurement. Notice what happens to the state dis-
tribution during the filtering steps. During the deterministic prediction phase, the
mean value of the state distribution changes, but the covariance remains fixed. (Note
that to be mathematically correct, the covariance is actually updated simultaneously,
alongside the mean of the distribution. However, for conceptual purposes, one could
imagine the two steps occurring separately and sequentially. The illustrative series of
steps in Fig. 2.5 connects quite nicely with particle filtering, which will be explained
in Section 2.3.2). This result occurs because, during the prediction, the predictive
model is assumed to be perfect. During the stochastic diffusion stage, the mean state
remains fixed but the covariance is increased. Diffusion is incorporated to capture
the inaccuracies of the deterministic model and other unavoidable noise that is in-



2.3. PREDICTION VERSUS NO PREDICTION 25

p(x) p(x)

Deterministic Prediction (Motion Model)

Stochastic Noise

Measurement Update

p(x) p(x)
Measurement

Figure 2.5: The main steps performed when Kalman filtering.

troduced during state prediction. The final step of the Kalman filter is to improve
upon its predicted state estimation by using the measurements that are collected at
the current time instant. Specifically, the predictive information is combined with
the measurement data in an optimal manner to obtain a final estimate of the system
state. This final step changes both the mean and covariance of the state. Another
way to think about the process of Kalman filtering is as a prediction and correc-
tion scheme — using the deterministic model, a predicted state is computed which
is subsequently corrected by the new incoming measurement. It is in this prediction-
correction mindset that the Kalman filter algorithm will be described in more detail.

Mathematically, the predictive component of the Kalman filter can be described
using an equation for the a priori state estimate and its covariance, respectively. By
a priori state estimate, we mean the predicted state, prior to the arrival of the new
measurements at time t. The state estimate can be written as follows

x̂−t = Ax̂t−1 + Bût−1, (2.5)

where A is the system of equations (deterministic model) that relates the system
state at time t − 1 to the state at time t in the absence of control inputs, u. The
control inputs, and the system of equations, B, that relate the control inputs to the



26 CHAPTER 2. TOOLS FOR TRACKING

system state are optional. Finally, the superscript “-” indicate that these are a priori
estimates.

The system of equations, A, need not be complex. For example, if the Kalman
filter is being applied to tracking, the state of the system, xt will include the position
of the target and hence, A will include a model of the target’s inter-frame motion.
This motion model could be a very simple model, such as constant velocity. The main
restriction is that the model must be linear (due to the Kalman filter assumptions).
As an example, assume that the Kalman filter state is defined as the two-dimensional
position of a target and its corresponding velocities: xt = {px, py, vx, vy}T . Under a
constant velocity assumption, the deterministic motion model, A, would be:

A =




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


 . (2.6)

The control inputs, u, are usually omitted in visual tracking applications. How-
ever, in general the control inputs provide the Kalman predictive equation with some
input from the outside world. Oftentimes this input can be from a human operator.
For example, imagine that the state of a Kalman filter describes the position of a
car. The deterministic update equations, A, might represent a constant velocity or
constant acceleration model while u might represent the human input provided via
the steering wheel, break pedal, and gas pedal. The control input model, B, uses
physical rules to relate the control inputs to the system state.

In addition to the a priori estimation of the mean state, the covariance estimate
is also required and can be computed according to

P̂
−
t = APt−1A

T + Q, (2.7)

where Q is the covariance of the noise associated with this state prediction process.
Note that Equations 2.5 and 2.7 define the steps performed at each frame to evaluate
the Kalman filter state transition model

xt = Axt−1 + But−1 + qt−1, (2.8)

where qt−1 is the noise associated with the state transition process.

The second half of the Kalman filter is the correction stage, where the state esti-
mate is improved by optimally combining the predicted value with the measurement
information. An a posterior estimate of the system state can be obtained using

x̂t = x̂−t + Kt

(
zt −Hx̂−t

)
, (2.9)
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where

Kt = Pt
−HT

(
HPt

−HT + R
)−1

, (2.10)

and R is the noise associated with measurement process. Furthermore, H is a system
of equations that maps a state vector into its equivalent measurement vector. In other
words, H converts between state and measurements so that we can properly compare
these two quantities. In the simplest case, H will be the identity matrix, indicating
that the state and measurements are the same types of variables. However, in general,
the state and measurements will not have the same form. The term

(
zt −Hx̂−t

)
is

often called the “innovation” as it is the error between the target’s expected position
and the position of a measurement. In a similar manner to the predictive component,
the a posterior state covariance must be computed,

Pt = (I−KtH)Pt
−. (2.11)

Note that Equations 2.9, 2.10, and 2.11 are implicitly making use of the Kalman filter
measurement model that defines the relationship between the measurements and the
state. Explicitly, this measurement model can be written as

zt = Hxt + rt, (2.12)

where rt is the noise associated with the measurement process.

A more intuitive grasp of Kalman filtering can be gained by analyzing the above-
mentioned equations in more detail. In Equation 2.10, Kt is commonly referred to
as the Kalman gain. The Kalman gain determines how much the predicted state is
trusted versus the measured values. The Kalman gain combines these two disparate
sources of information based on their covariances. Let us consider a few asymp-
tomatic examples. More specifically, we will assume a simple situation where H, the
matrix used to relate measurements to states, is invertible. Given this assumption,
first consider the situation where the measurement covariance, R, tends to 0. In this
case, Kt = H−1. Hence, when we substitute the Kalman gain back into Eq. 2.9, we
get x̂t = H−1zt. The equations work as one would expect — when the measurements
are extremely accurate, the a posterior state estimation relies more (or in this case,
solely) on the measurements. The opposite situation occurs when the measurement
covariance tends to infinity. In this case, the asymptotic Kalman gain goes to zero.
Hence, Eq. 2.9 becomes x̂t = x̂−t . Again, as intuition guides us, when the mea-
surements are inaccurate, the Kalman filter relies much more on the predicted state.
Similar results are obtained when observing the asymptotic behavior of the prediction
process covariance.

It should be clear that the Kalman filter can be an extremely powerful estimation
tool. One advantage of this filter is that it combines multiple sources of information in
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a principled and optimal manner. Specifically, the Kalman filter can incorporate mea-
surements from numerous sources to improve upon the state estimation, regardless of
their accuracy or format. Another advantage of the Kalman filter is its recursiveness.
The recursive nature of this filter just means that at each time step, all prior measure-
ments and states do not have to be stored and reprocessed, like they would be with,
for example, a Weiner filter. Instead, the Kalman filter implicitly incorporates all
previous information and only explicitly requires information from the immediately
previous time step.

Despite these advantages, the Kalman filter does have its limitations. To begin
with, not all systems can be properly modeled using the Kalman filter assumptions.
Specifically, some systems are not well-described by linear equations. Solutions have
been proposed which help to alleviate this problem. In particular, the extended
Kalman filter (EKF) allows the prediction and correction models to be non-linear
(Bar-Shalom & Fortmann, 1988). In the extended Kalman filter framework, linear
approximations of these non-linear equations are obtained, essentially using a Taylor
series expansion. Subsequently, these linear approximations of the non-linear models
can be incorporated into a slightly modified version of the standard Kalman filter
framework. Another extension to the basic Kalman filter is the iterative extended
Kalman filter (IEKF). In this case, Eq. 2.5 and Eq. 2.9 are essentially iteratively lin-
earized and recomputed until convergence is reached (Bar-Shalom & Fortmann, 1988).
A final popular variation is the unscented Kalman filter (UKF) (Julier, Uhlmann
& Durrant-Whyte, 1995). With the UKF, rather than attempting to linearize the
Kalman filter equations via a Taylor series expansion, deterministic sampling meth-
ods are used to represent the measurement and state variables.

Another limitation of the Kalman filter arises because of the Gaussian models
that are employed. There are many instances where this simplified model is not
appropriate. For example, if a target is being tracked throughout a cluttered environ-
ment, the measurement distribution might not be a unimodal Gaussian. Instead, it is
quite feasible that the tracker might essentially have multiple hypotheses or multiple
choices that are almost equally probable. A concrete example of this type of situation
would be tracking a person’s face when there are several other persons nearby. In this
case, the target’s face would be one hypothesis, but the faces of the other individuals
would also be feasible alternatives for the tracker. In this scenario, the measurement
distribution is far from a unimodal Gaussian! Instead, the distribution is multimodal,
where there would roughly be a one-to-one correspondence between the peaks in the
distribution and the human faces. Fortunately, there is another state prediction tool
that overcomes the limitations of the Kalman filter — the particle filter.
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2.3.2 Particle Filters

The particle filter that is known and used in computer vision has very historic roots
in the fields of mathematics and physics. Specifically, the study of so-called Monte
Carlo methods entered the mainstream in chemical physics in the 1950s with works
such as (Metropolis, Rosenbluth, Rosenbluth & Teller, 1953; Rosenbluth & Rosen-
bluth, 1955). The general idea of Monte Carlo methods is to use random sampling
to obtain an approximate solution when closed-form, exact solutions are infeasible.
The particle filters commonly used in computer vision are sometimes referred to as
sequential Monte Carlo methods, an extension to the original Monte Carlo technique.
Sequential Monte Carlo methods are used for approximating a sequence of probability
distributions using random sampling. A complete analysis of the Monte Carlo and
sequential Monte Carlo literature is outside the scope of this review. Instead, we
will now turn to a more specific discussion of the particle filtering framework in the
manner in which it was introduced to the field of computer vision.

Particle filters (also commonly referred to as the CONDENSATION algorithm (Is-
ard & Blake, 1996)) remove the major restrictions that are present when using Kalman
filtering for visual tracking. Notably, with particle filters the prediction and update
equations need not be linear. Furthermore, the distributions can be multimodal. As
first demonstrated by Isard and Blake (Isard & Blake, 1996), the removal of these
limitations makes the particle filter well-suited for tracking in cluttered environments.
To make these gains, however, the particle filter foregos a closed-form solution and
instead resorts to sampling methods. Previously we elected to describe the Kalman
filter from more of an algorithmic perspective, with a set of recursive equations. The
Kalman filter can be alternatively derived under a Bayesian probabilistic framework.
To provide a more complete picture of these prediction mechanisms, we will now
present the particle filter from a probabilistic point of view; however, the linkages
between these two perspectives will still be made, when appropriate.

As Fig. 2.6 shows, the general steps of the particle filter are very similar to the
Kalman filter. Specifically, particle filters still perform deterministic prediction, sto-
chastic diffusion, and correction via measurement updates. The primarily and sig-
nificant difference, however, is that instead of propagating the mean and variance of
a Gaussian distribution, samples from distributions of unspecified shape are propa-
gated.

When probabilistically deriving the particle filter, the final goal is to compute
p (xt|zt). In words, we want to find the probability distribution that describes the
system state, given all the measurements that have been observed. This distribution
is analogous to what we previously termed the a posterior estimate of the system
state when describing the Kalman filter. Using Bayes’ rule, we know that

p (xt|zt) = kp (zt|xt) p (xt) , (2.13)
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Figure 2.6: The main steps performed when particle filtering.

where k is a constant that does not depend on xt. Unlike Kalman filtering where all of
the probability distributions are Gaussian, with particle filtering the distributions are
of any arbitrary type. This added freedom leads directly to the need for a sampling-
based approach. With particle filters, a factored sampling approach is used to solve

Eq. 2.13. With factored sampling, a set of samples,
{
s
(1)
t . . . , s

(N)
t

}
is first drawn from

the prior distribution, p (xt). These samples are then each weighted according to:

πn
t =

p
(
zt|xt = s

(n)
t

)

∑N
j=1 p

(
zt|xt = s

(j)
t

) , (2.14)

where p
(
zt|xt = s

(n)
t

)
is the probability of observing a measurement, given that the

system is in state xt = s
(n)
t . The samples,

{
s
(1)
t . . . , s

(N)
t

}
, can then be randomly

selected according to their probabilities, πn
t . These final samples are selected in a

manner that approximates drawing from the distribution p (xt|zt). This approxima-
tion improves as the number of samples, N , increases.

When particle filtering is applied to tracking, these factored sampling steps are
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essentially used on a frame-by-frame basis. Specifically, when computations on the
previous frame, t − 1, are completed, an estimate of p (xt−1|zt−1) is obtained. This
probability is the a posterior state estimate at time t − 1. Since particle filtering
deals with samples, the estimate of p (xt−1|zt−1) is in the form of a number of samples

and their corresponding weights
{(

s
(n)
t−1, π

(n)
t−1

)
, n = 1, . . . , N

}
. Thus when tracking

with a particle filter, the first step is to sample from this approximated posterior
distribution. These samples are randomly selected, with replacement, according to
their weights. Once the new samples have been selected, state prediction is used
to “guess” the current state of the system. As was seen with the Kalman filter,
this prediction is comprised of two stages. First, the deterministic drift (in tracking,
typically a motion model) is performed. In the particle filter framework, this step
entails the application of the deterministic model to the state samples. Following
the deterministic “drift”, the second stage of prediction is performed, whereby noise
is superimposed upon the modified samples. This noise accounts for inaccuracies
in the predictive model. Once the predictive component is complete, the resulting
sample set, in affect, is an estimate of p (xt|zt−1). With reference to our Kalman filter
description, this distribution is analogous to the a priori state estimate.

As noted by Fig. 2.6, the particle filter still needs to improve the predicted state
estimate by incorporating measurement information from the current frame. The
manner in which measurement information is used is dependent on the particular
application. For instance, in (Isard & Blake, 1996), contours were used for track-
ing, hence p (zt|xt) is defined using features along lines that are perpendicular to the
contour. In contrast, particle filters have also been used in conjunction with color
histograms (Nummiaro, Koller-Meier & Gool, 2002). In the latter case, the authors
defined the measurement distribution using the Bhattacharrya match score between
the template and candidate target locations. No matter how the observation distri-
bution is determined, it has the affect of defining the the weights, π, for each of the
current samples. Once the sample weights are defined, the particle filter is complete!
According to factored sampling theory, the new set of samples along with their re-
spective weights, provide an approximation of p (xt|zt). The samples and weights will
then be propagated to the next frame and the whole process begins again.

As alluded to previously, perhaps the most important advantage of the particle
filter over the Kalman filter is its ability to track through clutter. However, there
are additional advantages. In some ways, the particle filter can actually be argued
to be simpler than the Kalman filter. The rationale is that particle filters do not
require the computation of cumbersome covariance estimates or Kalman gain terms.
As a consequence of using sampling methods, many researchers feared that particle
filters would be computationally intense. However, it appears that the algorithm
can run in near real-time (Isard & Blake, 1996) (1996-based hardware) or real-time
(Nummiaro, Koller-Meier & Gool, 2002). One method to ensure that this sampling-
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based approach remains computationally feasible is to use a fixed number of samples,
N , for the distributions.

2.4 Data Association Techniques

Target tracking within the field of computer vision is a new research area, relative
to other fields of study. Specifically, in the field of military surveillance, the problem
of tracking multiple targets saw its pioneering work at least as early as 1964 (Sittler,
1964; Bar-Shalom & Fortmann, 1988). Typically, in the case of target tracking in
a RADAR environment, the amount of information available for processing is much
more limited than that of a movie video sequence. Computer vision trackers have
color, texture, and gradient information at their disposal. In RADAR-based systems,
the captured measurements at time t are usually just simple, discrete points. Thus,
RADAR tracking systems must rely purely on position and motion information, rather
than appearance.

The RADAR target tracking problem can be summarized as follows. In the envi-
ronment, there exist a number of targets to be tracked and the tracking system uses
a sensor to capture information about these targets. These sensor measurements,
z (t), are the inputs to the tracking algorithms. Ideally, there would be a one-to-
one correspondence between the measurements and the targets in the environment.
However, the sensors are not perfect and consequently, noise is introduced during
the measurement process. The goal of the tracking system is thus, to use the noisy
measurements supplied by the sensors to assign positional “tracks” to the targets of
interest in the environment. More specifically, at every time step, the system must
assign the measurements to the appropriate target tracks, which is commonly referred
to as the data association problem. Furthermore, this assignment should be made
subject to the constraint that the relationship between features and measurements is
one-to-one.

Data association is a straightforward problem if there is just one target in the
environment. Assuming no measurement noise and just a single target, there will be
just one measurement at every time instant and hence data association is trivial. Fur-
thermore, if there are multiple targets in the scene (creating multiple measurements),
but the distance between these targets is large relative to the targets’ velocities, the
problem is still trivial. In particular, the targets are so far apart that there is neg-
ligible ambiguity as to which measurement belongs to which track. Realistically,
the data association problem is not this simple. Invariably, targets of interest move
close to one another, occlude one another, and noise can be significant. Addition-
ally, targets will often move out of the field of view or new targets may enter the
scene. Here, we will briefly describe several of the most common techniques used
to address the data association problem. Specifically, we will describe: the nearest
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Figure 2.7: Data association gating technique using Mahalanobis distance.

neighbor algorithm (Crowley, Stelmaszyk & Discours, 1988); the track-splitting filter
(TSF) (Smith & Buechler, 1975); the joint-likelihood (JL) method (Morefield, 1977);
the multiple-hypothesis algorithm (MHA) (Reid, 1979); and the joint-probabilistic
data-association filter (JPDAF) (Fortmann, Bar-Shalom & Scheffe, 1983).

In their standard formulations (Cox, 1993), the above algorithms make use of the
Mahalanobis distance. The Mahalanobis is defined as

γ = vT
i (t)S (t)−1 vi (t) (2.15)

where vT
i (t) is the innovation (or error) and is defined as the distance between a mea-

surement zi (t) and the predicted position of a measurement ẑ (t|t− 1). Additionally,
S (t) is the covariance of the innovation estimate. The estimated measurement po-
sition is often obtained using a Kalman filter. The Mahalanobis distance has some
advantages over the Euclidean distance metric because it incorporates the uncertain-
ties in the various dimensions of the data via the covariance matrix.

Data association algorithms will almost always employ a “gating” procedure whereby
the Mahalanobis distance is computed between the predicted position of a target and
all measurements. If the Mahalanobis distance for a particular measurement is greater
than a threshold, the measurement is no longer considered as a potential match for the
target. This region around a target’s predicted position, whereby the Mahalanobis
meets the threshold condition is often termed the “validation volume”. When using
the Mahalanobis distance, this gating procedure is theoretically well-founded as the
Mahalanobis distance is analogous to the χ2 distribution. Thus, a threshold can be
selected such that, for example, all points within the validation volume have at least
a 95% chance of corresponding to a feature. Figure 2.7 illustrates a tracking example
when data association is required. The circles with cross hatching, T (t), indicate
measurements that have already been assigned to the target track at previous time
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instants. The black circles, z (t), indicate measurements provided by the sensors at
the current time. The dotted ellipse indicates the validation volume around the tar-
get’s predicted position at time t. Notice how only two measurements, z3 and z4,
lie within the validation volume. In this situation, all other measurements will be
immediately discarded and the target track will be associated with either z3 or z4.

2.4.1 Nearest Neighbor Data Association

Having defined a distance metric, an obvious approach to the data association prob-
lem would be to assign the measurement to the track that is closest to the predicted
position. This, suboptimal, approach is known as nearest neighbor data association
(Crowley, Stelmaszyk & Discours, 1988). Clearly, there is a chance of establishing
incorrect correspondences, especially when the targets are moving in close proximity.
The biggest limitation of this approach, is that it makes irreversible assignment deci-
sions immediately. Information obtained in the future can be invaluable at resolving
ambiguities at the current time step. However, the nearest neighbor algorithm does
not make use of this information. Nonetheless, the nearest neighbor data association
technique is still popular because of its simplicity, efficiency, and its ability to provide
acceptable results in certain situations.

2.4.2 Track-Splitting Filter

An alternative to the the basic nearest neighbor algorithm is the track-splitting filter
(Smith & Buechler, 1975). Rather than making an immediate decision regarding
ambiguous correspondences, the track-splitting filter keeps its options open until a
more informed decision can be made. In particular, whenever multiple measurements
are observed within a predicted feature’s validation volume, all measurements are
matched to the track. This algorithm is well represented as a tree structure where
a path in the tree from root to leaf represents a sequence of measurements that are
assumed to come from the same environmental feature. Figure 2.8 shows the track-
splitting tree that corresponds to the data association scenario displayed in Fig. 2.7.
In this example, for the previous two time steps, only one measurement was observed
in each of the respective validation volumes, thus no branching occurs. However, at
the current time step, two measurements were observed within the feature’s validation
volume. Accordingly, two child nodes (corresponding to the two measurements) are
spawned.

Using the track-splitting filter, the two branches will continue to grow until a
latter point, when a more informed decision can be made. Naturally, the size of the
tree can explode if no path pruning is employed. It can be shown (Cox, 1993) that
when the Mahalanobis distance is used, the modified log-likelihood of a “potential
target track” (i.e. a path from root to leaf node) can be computed in a recursive
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Figure 2.8: Example of a track-splitting tree.

manner. Specifically, this modified negative log-likelihood is approximated by the
sum of the Mahalanobis distances between each measurement along the track and
the corresponding predicted target position. This log-likelihood can be used to prune
paths that have a likelihood that falls below a threshold level. Typically, this pruning
strategy will be employed in a sliding window manner so that the old measurements
do not dominate the likelihood computation. In addition to deleting potential target
tracks, merging can be performed if multiple potential tracks are almost identical.
Another pruning strategy is that of maintaining only “M” tracks that have the largest
log-likelihoods after deleting and merging has been completed.

2.4.3 Joint-Likelihood Data Association

A significant limitation of the track-splitter filter is that it does not enforce the con-
straint that features and measurements must have a one-to-one relationship. In other
words, for a set of tracks to be physically plausible, they should be disjoint. The
joint-likelihood algorithm (Morefield, 1977) is an alternative that adheres to these
constraints. The joint-likelihood algorithm operates by first identifying a set of possi-
ble tracks using, for example, the track-splitter filter or other comparable techniques.
At this stage, it is assumed that these initial tracks are not disjoint. The joint-
likelihood algorithm then enforces the one-to-one constraint by combinatorially eval-
uating each set of feasible, disjoint tracks. For each disjoint set of tracks (also known
as a partition), a likelihood can be computed and the partition with the maximum
likelihood provides the optimal solution. A significant disadvantage of this approach
is that it is known to be NP-complete. Specifically, the problem is reducible to the
set-packing problem. Accordingly, computer packages exist that can provide approx-
imate solutions in a more efficient manner. These non-optimal algorithms often use
techniques such as greedy algorithms or simulated annealing. Another disadvantage
is that the algorithm is typically implemented in a batch manner and thus, cannot
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provide real-time feedback.

2.4.4 Multiple-Hypothesis Algorithm

As one might imagine, an algorithm’s ability to handle situations where the number of
targets changes is a significant advantage. One data association algorithm that can do
just that is the multiple-hypothesis algorithm (Reid, 1979). The multiple-hypothesis
algorithm can again be visualized as a tree structure. In this tree structure, each layer
represents a specific time instant. For example, if data association is being performed
only at time t = 1, 2, 3 then the tree structure will have three levels. However, unlike
the track-splitting filter where each tree node corresponds to a measurement, each
node within the tree corresponds to a set of disjoint object tracks. Each set of disjoint
tracks is a single viable hypothesis regarding the assignment of measurements up to
and including the current time instant. With these basics in mind, the main steps of
the multiple hypothesis algorithm are as follows. The leaf nodes at the previous time
instant become the parent nodes at the current time. Each new parent produces a
set of children that represent all combinations between the parent’s tracks and the
new measurements. Thus, at each time instant, the multiple hypothesis algorithm
exhaustively considers all possible associations between tracks and measurements. A
probability is computed for each child, indicating the plausibility of the the child’s
track set.

As one might imagine, the multiple hypothesis algorithm has exponential com-
plexity. As was seen with previous algorithms, pruning strategies must be employed
to limit the computation time. One method to limit memory and computation time
is to manage separate trees for spatially disparate targets. Of course, if the targets
subsequently move closer to one another, merging of trees may be required. In terms
of pruning a specific tree, the typical method used in the multiple hypothesis frame-
work is the “N-scan back algorithm”. Put simply, at time t + N , the tree node at
time t must make a final decision and keep only a single child branch. All other child
branches of the node at time t will be discarded. A pruning decision is made by sum-
ming probabilities of the leaf nodes associated with each child branch, in turn. The
branch containing the leaf nodes with the maximum sum is retained, as it indicates
the most probable child branch. Figure 2.9 shows an example of the N-scan back
pruning method when N = 2.

The major limitation of the algorithms mentioned previously (excluding simple
nearest neighbor) is that they are all of exponential complexity. To make the algo-
rithms tractable, heuristic pruning strategies are employed. Noticing this limitation,
researchers designed the joint probabilistic data association filter which provides a
sub-optimal solution, but is much more memory and computationally efficient than
the alternatives. Accordingly, the JPDAF is more amenable for real-time applications.
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Figure 2.9: Example of the N-scan back algorithm. The left hand side shows a tree
prior to pruning at time t. The right hand side shows the tree after pruning has been
performed.

2.4.5 Joint Probabilistic Data Association Filter

The general idea behind the JPDAF is as follows (Fortmann, Bar-Shalom & Scheffe,
1983). Assuming that the number of targets is known and constant, the JPDAF
essentially deploys a modified Kalman filter to track each target. The significant
difference between situations where standard Kalman filters and JPDAFs are used, is
the number of targets being tracked. Specifically, a Kalman filter is deployed to track
a single target whereas with a JPDAF, multiple targets can be tracked. When using
a Kalman filter, we have the luxury of knowing that all measurements arise from the
target of interest. However, when multiple targets are present, these associations are
not always obvious (i.e. the data association problem). Hence, the JPDAF requires a
method of determining which measurements should be used to update each Kalman
filter.

Instead of attempting to explicitly perform this correspondence, the JPDAF uses
the novel idea of associating all measurements with every target to compute a com-
bined innovation term. Mathematically, this combined innovation can be computed
using

vl =
Z∑

i=1

βl
ivi,l, (2.16)

where Z is the number of measurements at time t, vi,l is the error when associating the
predicted position for track l with the measurement zi, and βl

i is the posterior proba-
bility that measurement zi originated from target track l. Recall that in the Kalman
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filter framework, there is an innovation term that defines the difference between the
expected position of the target and the position of a measurement (i.e.

(
zt −Hx̂−t

)
).

When computing a target track with a JPDAF, the combined innovation, vl, is used
in place of the standard innovation. The biggest limitation of the JPDAF is that the
number of targets being tracked must be known and remain constant. Nonetheless,
the fact that the JPDAF is substantially less computationally and memory intensive
as compared to many of its competing data association counterparts, it can be useful
in certain applications.

It should be noted that recently, probabilistic data association techniques that
are more specific to computer vision applications are beginning to emerge. In the
RADAR tracking paradigm, one to one correspondences between measurements and
targets are typically desired. However, in the case of computer vision-based visual
tracking, this constraint may not be appropriate. For example, in (Khan, Balch &
Dellaert, 2006) a probabilistic data association algorithm is proposed that eliminates
these assumptions that a target can only generate one measurement and vice versa.

To summarize this section, Table 2.1 lists the properties of each of the data associ-
ation techniques discussed. Unquestionably, there are various modifications that can
be made to the abovementioned algorithms. For example, a nearest neighbor data
association technique could conceivably be created that enforces one-to-one matches
between measurements and objects. However, in Table 2.1, we list the properties
of the most basic versions of the algorithms. Although the JPDAF appears to have
similar characteristics to the nearest neighbor algorithm, in practice, it generally per-
forms much better as it does not make absolute assignment decisions. If the number of
targets is unknown or can change, the MHA is arguably the best approach, although
pruning strategies will be required to make the algorithm computationally feasible.

Table 2.1: Summary of Data Association Techniques

Algorithm Uses Complexity Track Enforces
Future Termination and One-to-One

Information Initialization Matches

NN No Not Exponential No No
TSF Yes Exponential No No
JL Yes Exponential No Yes

MHA Yes Exponential Yes Yes
JPDAF No Not Exponential No No
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Figure 2.10: Example of a Gaussian pyramid. From left to right, levels zero to three
are shown.

2.5 Coarse-to-Fine Processing

Coarse-to-fine processing is a topic that will occur throughout this review as it is
employed in a number of different trackers. More generally, coarse-to-fine processing
is a tool that is commonly used in several aspects of computer vision including stereo
vision and motion estimation. The essential idea behind coarse-to-fine processing is
to construct a pyramid representation of an image. This pyramid contains modified
versions of the original image, each of which highlight a different frequency band and
have a different pixel density. Two of the most widely used coarse-to-fine pyramids are
Gaussian pyramids (Burt, 1981) and Laplacian pyramids (Burt & Adelson, 1983). A
Gaussian pyramid is constructed by repetitively downsampling and low-pass filtering
the original image. Thus, the bottom of the image pyramid is the original image
containing all frequency content (low to high). As one traverses up the pyramid,
the image dimensions are downsampled by a factor of two per level, and the higher
frequency content is increasingly attenuated. A Laplacian pyramid is constructed in
a similar manner; however, rather than using low-pass filtering, a band-pass filter is
employed instead. Figure 2.10 shows a sample Gaussian pyramid.

Within the context of tracking, coarse-to-fine processing is typically used to obtain
initial target motion estimates (at the coarsest scale). These initial estimates can then
be refined to obtain a more precise estimate of the target motion, using the additional
frequency bands that are available in the lower pyramid levels (e.g., (Anandan, 1989;
Bergen, Anandan, Hanna & Hingorani, 1992; Burt, Yen & Xy, 1983)). Accordingly,
trackers will often locate the location of the target in the highest level of the pyramid.
Subsequently, this estimate is propagated to the next highest level (taking care to
consider the differing pixel densities), where the target’s position can then be refined.
This process is repeated, typically until level zero or level one of the pyramid (level
zero is often not used due to high frequency noise).

There are several reasons why a tracker designer may wish to make use of coarse-
to-fine processing. To begin, coarse-to-fine processing can be used for computational
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efficiency purposes. Perhaps, even more importantly, coarse-to-fine processing allows
for larger target motions to be estimated. On the other hand, errors made during the
processing of the coarser scales cannot be recovered from when considering the lower
levels of the pyramid. Despite this drawback, coarse-to-fine processing can provide
significant advantages when deployed appropriately.

2.6 Template Updating Procedures

When tracking a target throughout a video, it is expected that the target’s appearance
will change, especially if the sequence is long in duration. Appearance changes can
arise from changes in viewpoint, illumination changes, non-rigid target deformations,
etc. Many tracking algorithms maintain a “template”, representing the target that
is being searched for in each image frame in terms of its aggregate features. If the
target experiences large appearance changes (with whatever feature set is being used),
techniques will be required to adapt the template in order to obtain reliable tracking.

Some trackers merely assume that the video sequences are sufficiently short or
that the target’s appearance is close enough to constant that no template updates
are required. Other trackers have attempted to update the template every frame by
using the optimal target representation found in the current frame. However, this
second approach has the problem of being distracted by background clutter. In order
to update a template, registration must be performed to bring the target, as seen in
the current frame, into alignment with the template. In (Irani, Rousso & Peleg, 1994)
a method is proposed for computing the motion parameters of a target, even in the
presence of other motion. The approach first assumes a simple motion model (e.g.,
translational) and computes an approximation of the target motion under this simple
model. Subsequently, the initial motion estimates provided by the low-level model
are used to initialize parameter estimation for more complex motion models (e.g.,
affine, projective). With an estimate of the inter-frame motion, the target region in
the current frame can be brought back into alignment with the template to perform
updating procedures. In (Irani, Rousso & Peleg, 1994), updates are performed such
that the new template is a weighted combination of the current image and a modified
version of the current image that has been brought into alignment with the template.
On the other hand, in (Matthews, Ishikawa & Baker, 2004), the new template is
selected as a weighted combination of the original template (from the first frame) and
the aligned target region in the current image.

Another approach to template updates that is that of updating the template based
on a confidence match score (Comaniciu, Ramesh & Meer, 2000; Enzweiler, Wildes
& Herpers, 2005). Specifically, if the target located in the current frame is well-
matched with the template, only minor updates are performed on the template. On
the other hand, if the optimal target location identified in the current frame is not
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well-matched to the template, more aggressive template updates are performed. In
some situations, this heuristic approach appears to be acceptable. For example, if
the target’s appearance is suddenly altered via a change in illumination, the template
will be quickly updated to capture that change. However, if the tracker begins to
slip off the true target (resulting in low confidence matches), the template will be
updated quickly, allowing for non-target regions to quickly enter into the template
representation.

Perhaps the most principled approaches of dealing with target appearance changes
was presented in (Jepson, Fleet & El-Maraghi, 2003). In this work, both slowly
varying and quickly changing aspects of the target’s appearance are modeled. The
tracker is able to dynamically rely on the various aspects of the representation that
are reliable within the current image frame. Results in this work show impressive
adeptness at handling target appearance changes.

Template updating is an unsolved, but critical, problem that will be mentioned
throughout this review. Although this issue can affect many categories of trackers, it
will become most apparent when discussing region-based trackers in Chapter 5.

2.7 Active Camera Control

Active vision is another aspect of tracking, whereby the system has the ability to
move the camera to a desired position and set an appropriate level of zoom. Typically,
this specialized type of camera is called a pan-tilt-zoom (PTZ) camera. There are
numerous reasons why a moving camera may prove to be beneficial. To begin, a
target typically only remains within an immovable camera’s field of view for a very
short time. Additionally, when a target quickly passes through a single, stationary
camera’s field of view, motion blur often arises. The immovable camera is focused on
both the target and the background and thus, as the target moves, blurring artifacts
occur that degrade the image of the target. PTZ cameras can eliminate both of these
disadvantages. In particular, a PTZ camera can be adjusted such that the target
remains at the center of the field of view, causing less motion blur on the target
(but more prominent artifacts on the background) and keeping it in view for longer
(Coombs & Brown, 1993). To extend the amount of time that the target’s image is
captured by the camera even further, a PTZ camera can be mounted on a moving
robot. In this case, the target can be kept in the center of the field of view indefinitely
as the robot pursues the target. Furthermore, if the camera has zooming capabilities,
the zoom level can be modified to obtain a certain number of pixels on the target.

Clearly, PTZ cameras can be useful in target tracking. This section will detail
some of the works that develop the fundamentals of using PTZ cameras in conjunction
with computer vision tracking systems. In later chapters, specific references will also
be made to additional trackers that make use of active vision components (Marchand,
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Figure 2.11: Block diagram of the major tasks performed by most active vision track-
ing systems.

Bouthemy & Chaumette, 2001; Wixson, Eledath, Hansen, Mandelbaum & Mishra,
1998; Uhlin, Nordlund, Maki & Eklundh, 1995; Drummond & Cipolla, 2002).

Figure 2.11 shows a block diagram of a general control system that could be used
for active tracking. The input to the control system consists of the desired feature
positions. In active tracking, these features will be related to the position of the
target within the field of view. In most situations it is desired to have the target
remain at the center of the field of view. Thus, the input features will either be the
actual center of the visual field, or some other variable that can be related to this
form of positional information. To simplify matters, here it will be assumed that the
input features are the center of the field of view in a particular reference frame.

The first task the control system performs is to compute an error signal. This error
is obtained by subtracting the desired position of the target (i.e. center of the field
of view) and the actual position of the target. In the control theory literature, the
controlled variable is the quantity that is being measured and is typically the output
of the system. In active tracking, the controlled variable is the true position of the
target in the field of view. The job of the control system is to minimize the error
between the desired position and the true position, ideally in a manner that provides
smooth tracking of the target. To accomplish this task, standard visual controllers are
used. Common controllers that can be employed include proportional-integral (PI)
controllers and linear-quadratic regulators (LQR). Not unlike a Kalman filter, these
controllers analyze the error as well as the system state to modify the manipulated
variables to reduce the error. The manipulated variables are the system parameters to
which the control system has access. When changed, manipulated variables have an
effect on the controlled variables. In the case of active vision trackers, the manipulated
variables are the PTZ camera controls.

The controller operates by taking the error signals as input and subsequently pro-
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viding as output a set of signals for controlling the motors attached to the camera(s).
This step is optional, but usually the output of the visual controller is not in the
correct format for directly controlling the camera angles, making a transformation
necessary. This transformation is quite system-specific as it depends on the camera
system setup, the type of camera(s) deployed, etc. Once the signals have been mod-
ified into the correct format for controlling the camera motors, the PTZ camera is
actually adjusted.

As Figure 2.11 illustrates, active vision tracking control systems are closed-loop. In
other words, there is a feedback loop from the output of the system that eventually
leads back to the input of the system. The feedback is necessary to compare the
current system output with the desired input. An example of a closed-loop system
that people use every day is a thermostat in one’s car or home. The computer
vision aspects of active vision systems primarily arises in the feedback loop, as Figure
2.11 indicates. The first step in the feedback loop is to acquire an image from the
camera. The current frame will appear to be moving with respect to the previous
image. This overall motion is the superposition of both the object motion and the
camera motion. Image processing techniques are employed to extract information
regarding the position of the target within the field of view. The techniques and
features utilized are completely up to the designer; however, motion is a common
feature found in the literature. The primary and significant limitation imposed upon
the image processing algorithms is that they must be efficient — the control system
needs to move to keep tracking the target, thus large delays due to overly complex
image processing algorithms are not ideal. In fact, these delays are one of the largest
problems that must be overcome by active vision trackers. Once the target’s position
has been extracted, it can be compared to the desired target position and the process
repeats once again.

As mentioned, the task of controlling the camera motors is quite dependent on
the researcher’s camera setup and type. Figure 2.12 shows an overhead view of an
example binocular camera rig. In general, most binocular camera systems have a
setup that is quite similar to that of this figure. With this binocular setup, there are
four angles of interest: the tilt angle, φ; the pan angle χ; and two vergence angles, θr,
θl, for the right and left cameras, respectively. The tilt angle rotates the rig between
the floor and ceiling, in a similar manner to a person nodding his or her head. The
pan angle rotates the rig in a similar manner to a person rotating his or her head
from shoulder to shoulder. Finally, the vergence angles, rotate the cameras’ optical
axes in a similar manner to a person moving his or her eyes to focus on a particular
object in his or her field of view. By comparing the difference between the desired
to current target position, the control system must determine how to change these
angles to improve upon this error. The motor signals required to move the camera
are typically directly related to the tilt, pan, and vergence angles.

When developing an active vision system, the two main components that require
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Figure 2.12: Example of the camera angles associated with a binocular rig.

the most design are the image processing components that obtain the current position
of the target, and the visual controller. As mentioned previously, one of the most
common methods in the literature for obtaining the target position is through the use
of motion information. For example, in (Daniilidis, Krauss, Hansen & Sommer, 1998)
the observed normal flow within the image, un, is computed. The difference between
the normal flow caused by the camera motion, ucn and un provides an approximation
for the normal flow of the object. The authors use the normal flow in conjunction
with morphological processing to locate the pixels that belong to the target. Once
the connected pixels representing the target have been isolated, the centroid of the
pixels is computed, and is used as feedback in the control system.

In addition to their image processing algorithms, the second major component
of the system presented in (Daniilidis, Krauss, Hansen & Sommer, 1998) is the con-
troller. The task of the controller is to minimize the difference between the camera
position, c, and the target position o after they have been projected onto a reference
coordinate frame. The estimation and control framework performed in (Daniilidis,
Krauss, Hansen & Sommer, 1998) proceeds as follows. To begin, the state of the
system is described according to the vector

s =
(
cT ,oT ,vT , aT

)T
. (2.17)

In addition to the camera and target centroid positions, the state also encompasses
the instantaneous target velocity, v, and acceleration, a.

Although a multitude of controllers are available, in (Daniilidis, Krauss, Hansen
& Sommer, 1998), a linear quadratic regulator is used. The LQR controller is of
moderate complexity and can be used when the system is described by a set of linear
differential equations. The system in (Daniilidis, Krauss, Hansen & Sommer, 1998) is
cast into the LQR framework as follows. The authors employ a constant acceleration
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motion model to update the state

s (t + 1) = Φs (t) + ΓT ∆u (t) , (2.18)

where

Φ =




I2 02 02 02

02 I2 ∆tI2
∆t2

2
I2

02 02 I2 ∆tI2

02 02 02 I2


 , (2.19)

∆u (t) is the incremental correction of the camera position, I2 is a 2×2 identity matrix,
and 02 is a 2×2 zero matrix. Notice that the first term in Eq. 2.18 applies a constant
acceleration motion model to the target. Thus, the target’s centroid position and
velocity are modified accordingly. The second term in Eq. 2.18 involves the camera
motion. Hence, Γ = [1, 1, 0, 0, 0, 0, 0, 0]T , is used to isolate only the camera positional
information in the state vector.

The last remaining aspect of the LQR controller used in (Daniilidis, Krauss,
Hansen & Sommer, 1998) is that of computing ∆u (t). According to the LQR con-
troller theory, the error between the camera position and target position can be

minimized if ∆u (t) = −KT ŝ (t), where K =
[
1, 1,−1,−1,−∆t,−∆t,−∆t2

2
,−∆t2

2

]T

.

Essentially, this solution indicates that the camera position should be moved to the
predicted position of the target, according to the constant acceleration motion model.
With that, the system is essentially complete. The camera is moved to the predicted
object position using the controller and the new position of the target centroid is
found using the image processing algorithms. These major two processes iterate until
tracking is completed.

The block diagram of Fig. 2.11 outlines the general series of steps that almost any
active vision tracker follows. Furthermore, the description of the tracker presented in
(Daniilidis, Krauss, Hansen & Sommer, 1998) provides a specific example of a system
that has been instantiated in the framework of Fig. 2.11. The primary and significant
differences between the research in (Daniilidis, Krauss, Hansen & Sommer, 1998)
and most other active vision trackers include the camera setup, the controller used,
and the image processing algorithms employed. A sampling of additional noteworthy
works in the field will now be briefly described.

In (Coombs & Brown, 1993), a binocular camera setup is used during active
visual tracking. The use of binocular cameras offers some advantages in addition
to posing some additional difficulties. An advantage of utilizing multiple cameras
is that depth information regarding the scene can be obtained, which can be useful
when localizing the target. On the other hand, the inclusion of another camera adds
an additional degree of freedom (meaning that an additional camera angle must be
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controlled). In particular, in (Coombs & Brown, 1993) the problem of binocular
vergence is considered, which is the point at which the two camera’s optical axes
intersect in the tilt plane.

Instead of using motion information to localize the target within the image, the
authors identify the target’s position using stereo vision and vergence theory. Specif-
ically, the pixels immediately surrounding the vergence point have very small dispari-
ties between the left and right images. If the target is assumed to be located near the
center of the field of view, it corresponds to the blob of pixels that have approximately
zero disparity. The system employs three proportional-integral-derivative (PID) con-
trollers that operate on the vergence, pan, and tilt angles directly. It should be
noted that PID controllers are common in the control system literature. As the name
suggests, they consist of three components. The proportional component makes ad-
justments based on the current error. The integral component suggests modifications
to the manipulated variable based on the sum of recent errors. Finally, the derivative
component makes corrections based on the current rate of change of the error. The
weighted sum of these components is used to update the manipulated variable.

Another active vision system compares the relative performance of several com-
mon controllers (Papanikolopoulos, Khosla & Kanade, 1993). The image processing
component of their system uses sum-of-squared difference optical flow. Errors derived
from the optical flow measurements are provided as input into one of three classes
of controllers that are compared: a PI controller (similar to a PID controller, only
the derivative component is nulled out); a pole assignment controller; and a linear-
quadratic Gaussian controller (very similar to the controller proposed in (Daniilidis,
Krauss, Hansen & Sommer, 1998)). A discussion of pole assignment techniques is
beyond the scope of this paper; however, the essential idea behind this class of con-
trollers is a follows. If the system is completely state controllable (Ogata, 2002) then
the “poles” of the control system (i.e. the desired state) can be set at any arbitrary
location and a feedback gain matrix will exist that will allow the control system to
converge to said pole.

In (Papanikolopoulos, Khosla & Kanade, 1993), the authors conclude that the
type of controller to be used depends on the accuracy of the measurements. The sim-
ple PI controller is quite sensitive to noisy measurements. Thus, when measurements
are noisy, more complex control systems that compensate for stochastic disturbances
(e.g., pole assignment, LQG controller) are required. Another observation in (Pa-
panikolopoulos, Khosla & Kanade, 1993) is that, rather than attempting to create
more complex computer vision algorithms to reduce the nosiness of measurements, it
is typically more beneficial to use a more complex controller. Gains made in measure-
ment accuracy are typically offset by the error associated with the increased delay
between object motion and the creation of an error signal.

In addition to the works cited above, at this point we would like to mention
several additional contributions to the field of active visual tracking. For example, in
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(Ye, Tsotsos, Harley & Bennet, 2000), 3D space is decomposed such that a minimum
number of camera settings (pan, tilt, and zoom) are selected that cover the entire scene
at appropriate resolutions. Tracking primarily consists of identifying the appropriate
camera setting and computing the difference between the current image and a stored
background model of the corresponding scene position. In (Lin & Tsai, 2000), pan
and tilt motors are used to control a laser pointer as it tracks a path in a monocular,
stationary image sequence. The scene consists of a plane with a specified path (a
line drawn on the plane) that the laser pointer is meant to follow. The distance
between the laser’s resulting dot on the plane and the current point along the path
are computed and is provided as input to a control system that moves the laser
pointer. In (Murray, Bradshaw, McLauchlan, Reid & Sharkey, 1995), a system is
developed that uses “saccades” to detect new targets of interest as they enter the
field of view that are subsequently tracked using smooth camera movements. Note
that a saccade is loosely defined in this review as a faster and larger camera motion
that can be employed to quickly catch up to a target or to move to a new target
of interest. Finally, in (Yang, Pollefeys, Welch, Frahm & Ilie, 2007) an array of
four cameras and three virtual cameras is used to compute the camera motion in
challenging scenes that have view-dependent appearances (e.g., scenes with reflective
surfaces, specularities, etc.). The system estimates the camera’s motion by computing
a local linear approximation of a 6D manifold in n dimensional space (n is the number
of pixels in an image). Once the local shape of the manifold has been estimated, it
can be used to determine the camera motion that transpired between the acquisition
of two images.

2.8 Recapitulation

In summary, this chapter has presented a number of tools that are commonly em-
ployed in one or more categories of visual trackers. We began with a discussion of
initialization and detection. Subsequently, the features that are most commonly used
in visual tracking were detailed. Additionally, the topics of predictive filtering and
data association were discussed. The chapter concluded with the topics of coarse-
to-fine processing, template updates, and finally, active vision systems. In the next
chapters we will analyze the various categories of trackers in more detail.
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Chapter 3

Trackers Using Discrete Features

The first class of trackers to be discussed in this review are systems that use only
discrete features. By discrete features, we are referring to image structures such
as discrete points, collections of edges, and lines. We will begin with a description
of trackers that operate using just point-wise positional information. Subsequently,
trackers that use groups of edges, including those that incorporate 3D parametric
models, will be explained.

3.1 Deterministic Point Tracking

We have already discussed a certain category of point trackers in Chapter 2. Specifi-
cally, the statistical data association techniques (e.g., track-splitting filter, multiple-
hypothesis algorithm, JPDAF) are all examples of statistical methods for tracking
points. The rationale for including that class of trackers in Chapter 2 instead of cre-
ating a “Statistical Point Tracking” subsection here is that statistical techniques are
commonly used in other classes of trackers (such as region-based blob trackers). In
contrast, deterministic point trackers are rarely employed as tools in other systems.
At the risk of confusing the reader, we will now return to the commonly used repre-
sentation of image coordinates: x = (x, y). Thus, unlike the previous sections of data
association and predictive filtering, x no longer indicates the state of a predictive
filter.

Deterministic point trackers have the challenging task of following targets that all
appear the same. The only distinguishing characteristic of these points is their posi-
tion. Unlike their statistical counterparts that make use of principled techniques for
establishing the most likely tracks, deterministic point trackers utilize more heuristic
constraints. These constraints typically stipulate restrictions on the displacement or
velocity of a target between consecutive frames.

The idea of performing data association amongst a set of points in a video sequence
arises in a number of application domains including RADAR, cell motion analysis,

49
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bird tracking, and traffic analysis. Even in fields such as psychology, the represen-
tation of complex objects by mere points and subsequently tracking these points is
sometimes considered, as evidenced by Johansson’s moving light displays (Johans-
son, 1975). The first question that should be answered is: “where do these points
come from?” In some application domains, such as RADAR or cell tracking, each
target may literally represent a single image point at a given time instant. In other
situations, such as bird or vehicle tracking, a point representation of a target may
be obtained by performing background subtraction and then representing foreground
objects with their centroids. Yet another method to obtain point-wise representations
of targets is to use an interest point detector (as discussed in Chapter 2). In this last
case, an overall target is likely represented as a set of points that are moving together
with a rigid or non-rigid relationship.

Given the many application domains, it is no surprise that a number of papers have
been published with the goal of tracking a set of points using deterministic rules (Sethi
& Jain, 1987; Salari & Sethi, 1990; Rangarajan & Shah, 1991; Veenman, Reinders &
Backer, 2001; Shafique & Shah, 2003). Deterministic point trackers generally have
two main components that require design: the cost function and the optimization
procedure. In (Veenman, Reinders & Backer, 2001), an elegant framework is proposed
that encompasses the variations in the major previous works in the field. In this
review, we will tend to follow the notation proposed in (Veenman, Reinders & Backer,
2001).

One of the first significant point trackers was presented in (Sethi & Jain, 1987).
Prior to this work, deterministic point trackers typically performed inter-frame match-
ing using only two frames. Thus, the strategies primarily evolved around nearest
neighbor-inspired algorithms (i.e. position-based). In their work, Sethi and Jain at-
tempted to make use of additional frames when performing correspondence. Collect-
ing information over several frames provides at least two benefits. First, points in
future frames often help resolve ambiguities at the current frame. Additionally, con-
strains on velocity information can be imposed rather than just position information.
Of course, the downfall of such an approach is that if one is not cautious, the system
will have exponential complexity.

In (Sethi & Jain, 1987), the defined distance function is based on the idea that the
velocity of a point (both magnitude and direction), should change slowly. To describe
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this qualitative idea, the following mathematical cost function was used
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where superscripts t denote the frame number and subscripts i indicate the tar-
get/measurement label. The function αt

i provides the index of the point from the
previous frame, t − 1, to which xt

i corresponds. The first term of Eq. 3.1 promotes
directional coherence amongst the tracked points whereas the second term considers
speed coherence. Thus, the cost criteria considers both the velocity direction and
magnitude of points over a three frame time period.

Equation 3.1 provides a means of evaluating the cost of associating point i in
frame t with point j in frame t + 1. As the goal is to determine the tracks for a
number of moving points, an overall cost for the set of correspondences between two
frames is also required. Sethi and Jain take an obvious approach of computing the
the average cost of all point associations at a particular time, which can be written
as
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where z is a parameter that can be adjusted to penalize large deviations as appropriate
and M is the number of points in the scene. Additionally, At is a binary matrix that
contains all point correspondences at time t and Dt is a cost matrix that is comprised
of the elements ct

ij. A single element of matrix At (i.e. at
ij) has a value of one if point

i and j are deemed to correspond at frame t.
The second key component of most deterministic point tracking systems is a

method of minimizing the cost function. To that end, an iterative algorithm, known
as the “greedy exchange algorithm”, was proposed in (Sethi & Jain, 1987). This
algorithm made use of the following steps:

1. Create initial correspondences between points in frames t and t + 1 by simply
selecting the nearest neighbor. These correspondences are made across the
entire video sequence.

2. Loop over each frame t = 2 . . . n− 1
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3. For each point, i, consider changing its correspondence, ct
ij, to all points other

than j in frame t + 1. Compute the cost reduction, if any, associated with
making this swap.

4. Select the i− j pair that resulted in the biggest cost reduction.

5. In frame t + 1 swap i’s old and new corresponding points.

6. If a swap was made, return to Step 2, otherwise terminate and return the final
correspondences.

An interesting observation is that once the initial correspondences have been made
using the nearest neighbor algorithm, the relationships between points in frames 1
and 2 are never altered. Thus, if correspondence errors were made at the first time
instant, these errors would never be corrected. In an attempt to remedy this problem,
Sethi and Jane proposed a modified greedy exchange algorithm (Sethi & Jain, 1987).
This algorithm performs the forward optimization method (identical to the above
algorithm) and then repeats the process going in the reverse direction (i.e. from the
last frame to the first frame). Iterations are performed until no changes are made in
either direction.

The ideas of Sethi and Jain provided a reasonable basis for future deterministic
point trackers, but even their modified optimization algorithm has a number of limita-
tions. Indeed, the forward-backward iterative process is not guaranteed to converge,
especially if the points are dense. Additionally, the nearest neighbor initialization
criterion is different from the cost criterion used during regular iterations. Veenman
et al. argue that this discrepancy still causes unrepairable initial tracks to arise, even
when using the modified greedy exchange algorithm (Veenman, Reinders & Backer,
2001). Furthermore, the iterative nature of this optimization algorithm makes it
quite computationally expensive. Finally, this initial algorithm contained no means
of dealing with track initialization or termination (i.e. targets entering or leaving the
scene).

In subsequent years, the work in (Sethi & Jain, 1987) was extended by Salari and
Sethi. The primary goal of this extension was to allow for point occlusions, point
detection errors, and points entering or leaving the field of view (Salari & Sethi,
1990). The general idea of this work is to include “phantom points” whenever a
point in the current frame can not locate a match in the next frame. Establishing
a correspondence with a phantom point is not a desirable outcome and accordingly,
the defined cost of doing so is high. As their experiments illustrated, the inclusion of
phantom points allowed the tracker to handle occlusion events and detection errors
in very simple sequences.

Following the contributions by Sethi et al., another deterministic point tracker
was proposed by Rangarajan and Shah (Rangarajan & Shah, 1991). The goal of this
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work was to overcome the most significant issues that remained in (Salari & Sethi,
1990). In particular, the system by Rangarajan and Shah avoids initialization via
error-prone nearest neighbor techniques. Furthermore, unlike Sethi’s algorithms, the
optimization procedure in (Rangarajan & Shah, 1991) is non-iterative and operates
in polynomial time.

In describing the system in (Rangarajan & Shah, 1991), let us begin with a dis-
cussion of the cost function that is employed. Unlike the systems in (Sethi & Jain,
1987; Salari & Sethi, 1990) which assume velocity changes smoothly, Rangarajan and
Shah’s system assumes that a point’s motion between consecutive frames is small and
that the speed will remain constant. Mathematically, the cost function used is:
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where all variables have the same definition as in Equation 3.1. The first term in Eq.
3.3 encourages constant velocity while the second term promotes small motions.

As in most other works, in addition to defining a cost function for a single corre-
spondence, the cost associated with all point correspondences at a single frame must
also be computed. To that end, a slightly modified version of Eq. 3.2 is presented
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where w1, w2 are weights. The Ra (i) function computes the average cost of all alter-
native correspondences (i.e. if i was not matched to j). Furthermore, Rc (j), provides
the average cost associated with competitors to i (i.e. if j was not matched to i). The
rationale behind this overall cost is that the system should not always select a set
of correspondences for a frame that lead to the lowest average cost. Instead, a more
global perspective should be taken. The idea is that all point correspondences for a
frame should all have roughly similar costs, ct

ij. A set of correspondences where all
ct
ij are roughly equal is much preferable to a solution where several costs are very low

but one or two are quite high. In fact, Eq. 3.4 indicates that the authors are willing
to accept solutions with more consistent individual costs, even at the expensive of a
slightly higher overall frame cost. This idea is somewhat analogous to minimizing the
maximum error.

The optimization procedure presented in (Rangarajan & Shah, 1991) is per-
formed in priority order. Correspondences of high priority are those that yield large



54 CHAPTER 3. TRACKERS USING DISCRETE FEATURES

Ra (i)+Rc (j) values. If incorrect correspondences for these points are made, then they
will be related to points that provide a poor match. Thus, the algorithm identifies
track point i and measurement j that are of highest priority and makes the appro-
priate association. Track i and measurement j are subsequently removed from the
available pool and the process is repeated. Note that this optimization procedure is
performed for just two frames (although three frames are considered when computing
the velocity-based cost measure) and does not involve expensive iterative procedures
like in (Sethi & Jain, 1987; Salari & Sethi, 1990). It should also be mentioned that
to obtain correspondences in the first two frames, optical flow is used.

The work of (Rangarajan & Shah, 1991) definitely provides some advantages over
prior works, especially in terms of computation time. However, it still has its draw-
backs. For one, the inclusion of a completely different mechanism, optical flow, to
perform initialization is somewhat undesirable as the framework is not uniform. Fur-
thermore, the algorithm assumes a fixed number of points in the scene and does not
allow for track termination or creation. The occlusion handling scheme is also quite
crude in that when a track is not matched with a measurement, linear extrapolation is
simply used. During short occlusions or missed detections such a scheme is adequate,
but for long occlusions, it provides inaccurate estimates. In their work, Veenman et
al. attempted to resolve some of these shortcomings.

As was mentioned previously, in addition to presenting a new point tracking sys-
tem, the work of Veenman et al. (Veenman, Reinders & Backer, 2001) also proposed
a common framework for most of the prior deterministic point trackers. Further-
more, this work provided a rigorous analysis between a number of point trackers
and their own proposed tracker. The authors also compared their algorithm against
the statistical-based multiple-hypothesis algorithm. The novel algorithm presented
in (Veenman, Reinders & Backer, 2001) actually borrows many ideas from previous
works, as will now be discussed.

The proposed system in (Veenman, Reinders & Backer, 2001) is very adaptable
in that it can be used in conjunction with a variety of cost functions, including
Eq. 3.2 and Eq. 3.4. The main contribution of their system is that optimization is
performed using a standard technique known as the Hungarian algorithm [Kuhn55].
The Hungarian algorithm minimizes the following expression:

C =
m∑

i=1

m∑
j=1

aijwij, (3.5)

subject to the constraints that
∑m

i=1 aij = 1 where 1 ≤ j ≤ m, and
∑m

j=1 aij = 1
where 1 ≤ i ≤ m. Furthermore, all variables aij are binary. The first constraint
insures that a particular measurement j, at time t + 1, has only one match at time
t. The second criterion ensures that a particular target, i, is only matched with
a single measurement in frame t + 1. Thus, the Hungarian algorithm can identify



3.1. DETERMINISTIC POINT TRACKING 55

the minimum cost correspondence set, where the weights are defined as the overall
correspondence cost between two frames (e.g., either Eq. 3.2 or Eq. 3.4).

The Hungarian algorithm provides an elegant, standard optimization technique,
but it assumes that the number of tracks and thus, measurements within the cur-
rent frame remains constant. In point-based tracking situations, this assumption is
frequently violated due to false/missing measurements, occlusions, track starts, and
track terminations. Veenman et al. elect to forgo presenting a solution to the issue of
scene points entering or exiting the field of view. The rationale behind this decision is
that the challenges of dealing with occlusion and that of track initialization/deletion
have conflicting requirements, making this problem even more difficult. Accordingly,
they leave this task as future work. Nonetheless, to utilize the Hungarian algorithm, a
mechanism must be employed to ensure that the number of tracks/measurements re-
mains constant even in the face of incorrect measurements and occlusions. In response
to this requirement, the authors introduce so-called “false tracks” when measurements
are observed that do not correspond well to any track. Furthermore, “slave measure-
ments” are introduced to handle the situation where tracks in frame t can not identify
effective measurements in frame t + 1. These slave measurements are somewhat sim-
ilar to the phantom points proposed in (Salari & Sethi, 1990). Having supplemented
the true tracks and measurements with the false tracks and slave measurements, all
matrices in Eq. 3.5 are square, enabling the Hungarian algorithm to operate correctly.
This proposed algorithm is termed the “greedy optimal assignment” (GOA) tracker
by the authors.

To achieve self-initialization during the first two frames, the authors present a
modified version of the GOA tracker that performs batch-wise bidirectional opti-
mization in a similar spirit to (Sethi & Jain, 1987; Salari & Sethi, 1990). The Hun-
garian algorithm is still used for determining correspondences in the first two frames;
however, a modified cost function based on nearest neighbor distances is used. The
authors argue that unlike the algorithm proposed in (Sethi & Jain, 1987; Salari &
Sethi, 1990), one forward-backward iteration of the modified GOA tracker results in
convergence.

Throughout their impressive suite of tests on real (seeds rotating in a dish) and
synthetic data, the GOA tracker performs very well, almost universally outperform-
ing the trackers presented in (Sethi & Jain, 1987; Salari & Sethi, 1990; Rangarajan
& Shah, 1991) and a multiple-hypothesis tracker. The algorithms were tested using
varying point densities as well as on their ability to cope with occlusions, and their
parameters’ sensitivity. Furthermore, tests were performed to measure the initializa-
tion performance of the respective systems for the first two frames. Interestingly, the
authors elected to not compare against (Rangarajan & Shah, 1991)’s optical flow-
based initialization method, arguing that it uses additional information during this
stage.

Overall, the authors conclude that their GOA tracker is superior to that of Ran-
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garajan and Shah’s both in terms of qualitative accuracy and computational perfor-
mance. The algorithms presented in (Sethi & Jain, 1987; Salari & Sethi, 1990) are
also argued to be inferior with regards to accuracy and speed. Furthermore, these
earlier algorithms do not support occlusion handling. One area, however, where the
algorithms of (Sethi & Jain, 1987; Salari & Sethi, 1990) are superior to the GOA
tracker is that they provide mechanisms for tracking variable number of points.

The work in (Veenman, Reinders & Backer, 2001) was undoubtedly very good,
in regards to its unifying framework, extensive test set, and novel GOA tracker.
Nonetheless, the GOA certainly is still not perfect. As mentioned, this tracker can
only follow a fixed number of points. Additionally, the Hungarian algorithm-based
optimization can only be performed using a pair of frames. Oftentimes, five or ten
frames into the future, measurements will be observed that reveal that the corre-
spondences decided upon for the current pair of frames are inaccurate. The GOA
tracker provides no means of incorporating this global, longer-term information. The
point tracker presented in (Shafique & Shah, 2003) does leverage information over
additional frames.

In (Shafique & Shah, 2003), the optimization is performed using a graph theory
approach. As Fig. 3.1 shows, the measurements in each frame can be thought of as
a set of vertices (measurements originating from a particular frame are aligned in a
column). At the conclusion of the previous frame, a set of edges will exist that connect
measurements in each of the frames to subsequent measurements observed in other
frames. Each edge has a weight that indicates the “gain” incurred by associating
the two points. This gain function promotes directional and speed consistency in
a similar manner to Eq. 3.1. However, in this case the function is formulated as a
gain so that maximization is performed rather than minimization. Also note that an
edge need not extend from a measurement at time t to a measurement at time t + 1.
Instead, measurements at time t may be connected to a vertex at frame t + n, or no
other vertex at all. Freedom of this nature is attained because optimization is being
performed across a wider range of frames.

When a new frame is observed, the next iteration of optimizations is performed.
This process begins by taking the set of edges decided upon at the conclusion of
the last frame and supplementing them with additional edges. This supplemental
graph is known as an “extensions digraph”, an example of which is shown in Fig.
3.1B. Of course, the most obvious edges extend from vertices at frame t to vertices
at frame t + 1. However, supplemental vertices are also added that extend from
frame t − n, where n is an integer that varies from one to some maximum value.
These edges that are added from the older frames (frames t − n) are included to
consider the possibility that incorrect correspondences were made due to the limited
information previously available. Once this “extended” graph has been constructed,
the set of edges that maximize the gain must be selected. Fortunately, using graph
theory it is known that for a directed, acyclic graph, the maximum path cover can
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Figure 3.1: Graph representation used in (Shafique & Shah, 2003). Each circle repre-
sents a measurement and connected measurements indicate a target track. A single
frame is represented by a rectangle. A) The hypothesized tracks for frame t = 3 B)
Extension digraph at t = 4 C) Maximum path cover of the extension digraph at t = 4.

be computed in polynomial time (Shafique & Shah, 2003). Due to its construction,
the extended graph in this work is directed and acyclic. Corresponding, this theorem
can be employed to determine the set of edges that maximize the gain. An example
maximum path cover of the extension digraph in Fig. 3.1B is shown in Fig. 3.1C.

The final issue to be discussed with respect to Shafique et al.’s tracker is the
initialization procedure for the first two frames. Once again, a forward-backward
procedure is used. However, unlike in (Veenman, Reinders & Backer, 2001) where
the forward-backward procedure is conducted over the entire sequence, in (Shafique
& Shah, 2003) only the first k frames are utilized. Although this will introduce
a constant delay in processing, this modification makes the system in (Shafique &
Shah, 2003) more amenable to online processing than the GOA tracker. Due to its
initialization strategy, the GOA tracker is essentially forced to operate in a batch
manner.

In terms of performance, using a sliding window of size five (i.e. the maximum
value for the variable, n, seen above), the authors show that their tracker equals
or betters the performance of the GOA tracker when the number of points tracked
remains constant and the number of noise points is minimal. However, when the
level of noise is increased, the proposed tracker is relatively unaffected whereas the
GOA’s performance suffers. Finally, the proposed tracker performs almost as well
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when points are allowed to enter and leave the scene — a situation which the GOA
tracker was not designed to accommodate.

Table 3.1 summarizes the deterministic point trackers presented in this section.
In the table, S&J, S&S, R&S, GOA, and KS&MS refer to the systems in (Sethi &
Jain, 1987), (Salari & Sethi, 1990), (Rangarajan & Shah, 1991), (Veenman, Reinders
& Backer, 2001), and (Shafique & Shah, 2003), respectively. It should be noted
that this summary table, and other similar tables presented in this review, can be
somewhat deceptive. In Table 3.1, we indicate whether or not the proposed system
attempted to solve, or presented a partial solution to a particular subproblem. In
other words, an entry of “Yes” does not indicate that the system completely solved the
sub-problem. For example, the system in (Salari & Sethi, 1990) did not completely
solve the problem of automatic initialization. The system proposed a solution for
automatic initialization, but subsequent works (Veenman, Reinders & Backer, 2001)
have shown that the automatic initialization scheme in (Salari & Sethi, 1990) is
actually quite flawed.

Table 3.1: Summary of Deterministic Point Trackers

Algorithm Track Termination Automatic Track
and Initialization Initialization Continuation

(i.e. variable (occlusion or
number of targets) measurement errors)

S&J No Yes No
S&S Yes Yes Yes
R&S No Yes Yes
GOA No Yes Yes

KS&MS Yes Yes Yes

3.2 Tracking Groups of Edges

In addition to representing a target as a single point descriptor, edge pixels can
also be grouped into higher-level structures. This grouping can be done explicitly
(e.g., grouping edge pixels into a line) or implicitly (e.g., comparing a set of edge
pixels against the predicted position of a line). As just alluded to, the most common
grouping of edge pixels is into lines. Intuitively, focusing on lines appears to be a
logical approach as many man-made objects in our world are based on a Cartesian
grid system and are composed of numerous straight lines. However, other trackers
have explored the grouping of edge pixels into arbitrary shapes. The common theme
throughout the section is that all trackers perform edge detection and then group
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these edges in some fashion to follow the object of interest. For the purposes of this
review, we subdivide this category into two classes. The difference between these two
classes is whether or not the tracker makes use of a three dimensional object model.

3.2.1 Model-Free Approaches

This section will discuss the set of trackers that use a set of edges to follow a partic-
ular target of interest while not making use of a 3D object model. The majority of
the trackers in this section use edge pixels to track lines within the image sequence
(Crowley, Stelmaszyk & Discours, 1988; Deriche & Faugeras, 1991; Zhang & Faugeras,
1992). However, one final work that is discussed shows that arbitrary shapes can be
tracked using a collection of edge pixels without utilizing a 3D model (Huttenlocher,
Noh & Rucklidge, 1993).

The model-free line trackers discussed in this section share a very similar approach.
In general, they determine a particular line representation that will be used in their
system. With the representation in place, tracking is typically performed using a
Kalman filter or a bank of Kalman filters (one for each line parameter). Each system
must design a search strategy for identifying the image line that most closely corre-
sponds to the predicted line positions. Finally, the parameters of the predicted line
are optimally combined with the parameters of the corresponding image line. This,
fairly standard, Kalman filter-based tracking procedure is repeated for all frames of
the video sequence.

An early work by Crowley et al. (Crowley, Stelmaszyk & Discours, 1988) follows
the above outline quite closely. As Figure 3.2 shows, the particular line representation
in this work consists of four parameters:

• c, the perpendicular distance from the origin to the line

• d, the distance from the line’s midpoint to the perpendicular intercept from the
origin

• θ, the orientation of the line with respect to the x-axis

• h, the half-length of the line

The authors motivate this particular representation as it is known that the end points
and length of a detected image line are often unreliable. These measurements are
unreliable because oftentimes continuous lines in one frame may become fragmented
in subsequent frames due to noise or occlusion. It should be noted, however, that
in situations where fragmentations occur, the orientation and perpendicular distance
of the resulting line segments will remain unchanged from that of the original line.
Thus, θ and c are much more robust and consistent parameters. Another motivating
factor behind this representation is that even though c and d are dependent upon
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Figure 3.2: Line parameterization used in (Crowley, Stelmaszyk & Discours, 1988).

θ, the authors argue that for most practical situations they can be assumed to be
independent. As a result of this assumption, the authors can deploy a separate
Kalman filter for each line parameter.

Hence, the tracker in (Crowley, Stelmaszyk & Discours, 1988) makes use of four
Kalman filters. In the Kalman filter framework, the state of each line parameter is rep-
resented by the parameter itself and the rate of change of the parameter. Specifically,
for the Kalman filter controlling perpendicular distance, the state is represented as
xt = {ct, c

′
t}, where c

′
t is the temporal derivative. Additionally, the filter must update

the variance and covariance of the line parameter and its derivative.

When predicting the line parameters in a subsequent frame, the authors assume
a very simple motion model with no acceleration. The state estimate equation, Eq.
2.5, for the trackers in this work can be written as

x̂−t = Ax̂t−1, (3.6)

where

A =

[
1 ∆t
0 1

]
, (3.7)

and ∆t is the time interval between frames, xt once again refers to the state at time
t, and the superscript “−” indicates that this is the predicted state prior to updating
via measurements. As there will undoubtedly be (at a minimum) small accelerations,
the parameter’s variance includes a term that models the acceleration as noise.

In this work, a fairly heuristic approach is taken for matching predicted lines to
image lines. For each predicted line, every image line is considered in turn. Three
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comparisons are made between the predicted and measured lines. First, the orienta-
tions and perpendicular distances of the two lines are compared to ensure that they
are within three standard deviations of one another. These two initial checks are
based on the most reliable line parameters and help to eliminate ineligible measured
lines quickly. For lines that pass these first two tests, a third test is performed to
check how much of the lines “overlap” with one another. If all three tests are cleared,
the Mahalanobis distance is computed between the predicted and image line. The
image line that yields the smallest distance (and has a distance less than a maximum
threshold) is matched to the predicted line.

The final stage of the Kalman filter tracking framework in (Crowley, Stelmaszyk
& Discours, 1988) involves combining the predicted position and the measurement.
As the authors optimized their system for speed (on ancient, by today’s standards,
hardware) they made use of a simplified version of the Kalman gain

K =
[

σ2
s

σ2
s+σ2

o

σ2

ss
′

σ2
s+σ2

o

]T

, (3.8)

where σ2
s is the variance of state variable, σ2

o is the variance of the measurement, and
σ2

ss′ is the covariance between the variable and its derivative.

To handle short occlusions, the authors assign, to each tracked line, a discrete
“health”. The health of the tracked line can range from 0 to 5. When a line is first
initialized in the video sequence, it has a health of 3. Every time a measured edge is
found that corresponds to the predicted position of a line, the health of that line is
incremented (to a maximum value of 5). In contrast, when no correspondence is made,
the health is decremented. As soon as the health drops below zero, the tracked line is
removed from the list of active lines. This occlusion handling technique is quite ad hoc
(no rationale is provided for deciding that the maximum number of occlusion frames
should be 5), but at least a simple mechanism is included for handling occlusion.

For its time, this paper was undoubtedly influential as it helped pave the way for
subsequent line trackers. However, its performance and design are very basic, largely
because of the hardware being used at the time. The matching method, occlusion
handling, and Kalman update procedures were clearly designed to keep computations
to a minimum at the expensive of keeping the tracker simple.

A subsequent work by Deriche and Faugeras (Deriche & Faugeras, 1991) extends
the general approach presented in (Crowley, Stelmaszyk & Discours, 1988). In this
work, the authors consider various parameterizations of lines, including one that is
almost identical to that used in (Crowley, Stelmaszyk & Discours, 1988). Represen-
tations such as the one seen in (Crowley, Stelmaszyk & Discours, 1988) have the
problem that the uncertainty of line segments varies, depending on their position in
the image. Specifically, two line segments that have the same orientation and length
can have very different uncertainties for c and d, depending on their position (Deriche
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& Faugeras, 1991). As a result of this discovery, the line representation used in this
work consists of [xm, ym, θ, l] where (xm, ym) is the mid-point of the line, θ is the line’s
orientation, and l is the length of the line. This new representation also completely
decorrelates the four line parameters.

Tracking via Kalman filters proceeds in a very similar fashion to that described
for (Crowley, Stelmaszyk & Discours, 1988). In the Deriche and Faugeras’s work,
however, the state vector is modified to include the acceleration of the parameter (in
addition to the parameter itself and its rate of change). The state prediction equa-
tion assumes constant acceleration. When matching predicted lines to lines within the
image, the authors directly compute the Mahalanobis distance rather than first em-
ploying ad hoc rules. The Mahalanobis distances between the predicted and measured
lines are computed for each of the four line parameters. This process is performed
for each of the measured lines in the image and the line that yields the lowest sum
is selected as the match. More sophisticated results are presented in this work than
what was seen in (Crowley, Stelmaszyk & Discours, 1988). In (Crowley, Stelmaszyk
& Discours, 1988) tracking of high contrast lines in a very constrained, laboratory
environment were shown. In this subsequent work, more realistic results are provided
where tracking is performed on the outlines of walls and doors in a corridor.

The two works described previously were in fact, quite similar to one another.
Undoubtedly, Deriche and Faugeras made a number of improvements to the initial
line tracking algorithm, but these improvements were mostly incremental and were
improvements to sacrifices made by Crowley et al. to ensure that their tracker could
run on the hardware at the time. Another evolution in the line tracking paradigm was
seen in (Zhang & Faugeras, 1992). Much of the line tracking procedures observed in
the prior two works once again remain unchanged in this work by Zhang and Faugeras.
However, the most novel aspect of this system is that rather than tracking the lines
in the image plane, stereo vision is used to follow lines in three dimensional space.

As the tracker in (Zhang & Faugeras, 1992) follows points in 3D space, a new line
representation is required. Here, the authors parameterize a line using five values.
Two of the parameters are used for describing a line’s orientation (using an Euler
angle representation) and the final three parameters are for the line’s mid-point in
three dimensional space. Special attention is paid when representing the mid-point
of a line. In particular, in a noise-free environment, the mid-point could be com-
puted according to M = (M1+M2)

2
, where M1 and M2 are the endpoints. However, as

was described previously, a line’s mid-point and end points are not as reliable as its
orientation. Accordingly, an additional noise term is included which randomly dis-
places the midpoint along the direction of the line. This noise models the additional
uncertainty associated with the mid point.

The 3D line tracker in (Zhang & Faugeras, 1992) makes use of an extended Kalman
filter. The EKF state is defined as follows, xt = {ωi, vi, ai}T , which correspond to
the angular velocity, translational velocity, and translational acceleration at time



3.2. TRACKING GROUPS OF EDGES 63

t, respectively. A constant angular velocity and constant translational acceleration
motion model are assumed during predictive state estimation. A measurement is
composed of two lines and can be written as follows: zt = {ψt

1,m
t
1, ψ

t
2,m

t
2}. The

first line in the measurement corresponds to the predicted position of a line obtained
during estimation, while the second corresponds to the observed image line. Note
that a system of equations is required to determine the predicted line parameters (ψt

1

and mt
1) based on the predicted state estimate because the state and measurement of

the filter are of different units. The equations that relate state to measurement are
nonlinear, necessitating the use of the EKF.

Given that a measurement consists of the predicted and measured lines, the ques-
tion remains: “How is line matching performed?” As has been seen with other line
trackers, once again the Mahalanobis is employed. Rather than matching a predicted
line with every line obtained from the images, a bucketing strategy is employed to
only consider lines that are in the vicinity of the predicted location. Bucketing is
performed purely for computational considerations.

Another novel aspect of this work is the strategy used once the Mahalanobis dis-
tances have been computed. The line trackers discussed previously only matched
a single image line with a given predicted line. This approach is certainly logical.
However, in situations when there are numerous lines in close proximity, the data
association between lines may not be quite so clear-cut. As we have discussed with
respect to point trackers, oftentimes it is beneficial to maintain multiple hypotheses
and make a final decision once more information becomes available. The line tracker
in (Zhang & Faugeras, 1992) follows this logic. If multiple measured lines yield a
Mahalanobis distances that is lower than a threshold, the two lines with the lowest
scores are retained. All lines that are tracked have a likelihood associated with them,
representing the confidence that the line is correct. Once this likelihood drops suffi-
ciently low, an incorrect hypothesis will be eliminated. Furthermore, this likelihood
allows the system to deal with occlusions. The likelihood is decreased if no image
match is found for a tracked line in a given frame. If the measurements are not
obtained for just a few frames the line can be tracked once it reappears, thanks to
the predictive component of the system. However, if the line is occluded for a great
number of frames, the likelihood will eventually drop too low and the line will be
eliminated.

The results shown in this work are quite impressive — illustrating that 3D line
tracking can be achieved when either the camera or scene objects are moving. In
some of the sequences shown, the number of lines being tracked is large and the scene
is quite cluttered. This research makes several advances over the work of (Deriche &
Faugeras, 1991), the most significant of which are: the extension of tracking into the
3D; the propagation of multiple hypothesis; a more principled approach to handling
occlusion; and a more thorough test set. The system also incorporates a completely
novel mechanism that groups lines with similar motion characteristics into higher-
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level objects. Specifically, lines are grouped into high-level objects based on their
kinematic parameters. If the kinematic parameters of two lines are within a certain
Mahalanobis distance of one another, they are assumed to belong to the same object.
An overall estimate of the high-level object’s kinematic parameters is maintained and
refined as lines are added. Of course, the system in (Zhang & Faugeras, 1992) is not
perfect, with one of the most significant downsides being that it is incorporating the
use of stereo cameras which are not as prevalent and are more costly than a monocular
camera.

All of the 3D model free trackers up until this point have focused on grouping
edges into lines and subsequently tracking those lines. However, there is nothing to
say that edge pixels cannot be used in other manners to create a model free tracker.
One example of such as system was presented in (Huttenlocher, Noh & Rucklidge,
1993). The main idea is to disregard object motion (any arbitrary motion is allowable)
and perform matching solely based on the object shape. The shape of the object is
represented as the edge pixels that define the target’s outline and internal structures.
Details of the system in (Huttenlocher, Noh & Rucklidge, 1993) will be provided next.

Assuming that a template binary edge map is available for the target, the goal is to
find the set of image edges whose shape most closely resembles that of the template.
The authors have the novel idea of matching object shape (represented as a set of
edges) using the Hausdorff metric. The Hausdorff metric is defined as

H (P, Q) = max (h (P,Q) , h (Q,P )) , (3.9)

where

h (P,Q) = max
p∈P

min
q∈Q

‖p− q‖ . (3.10)

Additionally, P and Q are the point sets to be compared. Equation 3.10 considers
each point p and computes the distance to the closest point in the other point set
Q. The point p that yields the largest distance has its distance returned by the
function. Note also that Eq. 3.10 is not symmetric. Thus, Eq. 3.9 computes the
overall Hausdorff metric by allowing each point set to take on both roles as matcher
and matched.

A shortcoming of the Hausdorff metric in its current form is its sensitivity to
outlier points (due to the max operation in Eq. 3.10). Specifically, this function
can be adversely affected by a single noise point in one data set that has no good
correspondence in the other set. To circumvent this challenge, in (Huttenlocher, Noh
& Rucklidge, 1993), Eq. 3.10 is modified as follows

hK (P, Q) = Kth
p∈P min

q∈Q
‖p− q‖ . (3.11)
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Rather than selecting the point, p, that has the largest distance, this new measure
selects the point that yields the Kth smallest distance. If K is selected to be half the
total number of points, then this new measure provides the median distance, a more
robust statistic than the max value. This new matching measure also has a number
of qualitative properties that intuitively make it a reasonable choice for tracking. In
particular, hK (P,Q) = d indicates that there are at least K points in P that match
arbitrary points in Q with distances less than d. Furthermore, this new distance
measure also allows a portion of the points in P to have very poor matches to points
in Q. For tracking, this could be very useful in occlusion situations.

With this background in place, the goals now are to identify the image region that
will minimize the Hausdorff-based cost and to update the target model throughout
the sequence. The authors utilize the asymmetry of the Hausdorff metric to their
advantage for these two purposes, as will be described next.

To identify the target’s position the authors introduce an arbitrary group of trans-
formations, G, that are applied to the template point set. This group of transfor-
mations could simply be all translational transformations or alternatively, it could
include affine, projective, or other transformations. The distance metric is then com-
puted a number of times (once for each allowable transformations) and the transfor-
mation that minimizes the cost corresponds to the target position. Making use of the
asymmetry of the Hausdorff metric, the authors define the following distance function
when locating the target’s position in the current frame

d = min
g∈G

hK (g (Mt) , It+1) , (3.12)

where Mt is the set of point describing the target template and It+1 is the point set
from the current frame. Note that this function indicates that there are at least K
points from the transformed template, g (Mt), that are of a distance less than or equal
to d to arbitrary points in the current image It+1. In this particular work, the authors
simply elected to use the set of translations for G. Thus, after computing Eq. 3.12,
their system has identified the location within the current image that best matches
the template model.

The second aspect of the proposed tracking system in (Huttenlocher, Noh & Ruck-
lidge, 1993) is the method of updating the template. Again, the authors take the novel
approach of using the asymmetry of the Hausdorff metric to achieve this goal. In this
case, the goal of the system is to identify the set of edge points in the image, It+1 that
are in agreement with the transformed template model, g∗ (Mt) identified using Eq.
3.12. This set of edge points identified in It+1 becomes the new target model. These
ideas can be expressed more formally as

Mt+1 = {q ∈ It+1 min
p∈Mt

‖g∗ (p)− q‖ ≤ δ}, (3.13)
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where δ is the matching distance threshold.

These equations for the location and model updates define the fundamental ideas
of the tracker in (Huttenlocher, Noh & Rucklidge, 1993). The authors do mention
several extensions to the standard algorithm to improve its performance. For example,
to eliminate the effects of edges caused by background clutter, a temporal differencing
approach is included to remove stationary edges. Simple mechanisms can also be
included to relocate a target once it has been lost (by searching for old template
models) and to distinguish between targets in the scene that have a similar shape
(using simple motion models).

At its time of publication, this work provided very respectable tracking results
and an extremely novel solution. In fact, to this day, this is a very novel approach
that has received limited attention or continued study after this initial work. There
are some shortcomings of this tracker, of course. Manual initialization is necessary
and the search method for identifying the target’s position has not been optimized
for speed. There is always a trade-off between increasing processing speed through
prediction and performing an exhaustive search for the best fit in the image. The
system proposed in (Huttenlocher, Noh & Rucklidge, 1993) uses the latter approach
because the rest of their algorithm is quite efficient. However, if a larger set of
transformations were used (e.g., affine), computation time may become a problem.
Modestly reducing the search area might be a beneficial approach. Additionally,
although a simple mechanism was proposed for dealing with multiple targets with
similar shapes, the approach would undoubtedly fail if a large number of similar
targets were moving within a small area.

We should also quickly mention another very novel work that considered the track-
ing of a collection of interest points. Specifically, in (Torresani, Yang, Alexander &
Bregler, 2001) the authors show that a collection of feature points can be tracked
using so-called “rank constraints”. These constraints are placed on a matrix that
describes the optical flow of a set of 2D image interest points. A basis set of point
tracks can be constructed using a subset of the most reliable feature points. Using the
rank constraints in conjunction with the basis set, the optical flow can be computed
for the entire set of feature points (even those that could not be reliably tracked in
isolation). Thus, the end result is a system that can track “corner” interest points
(discussed in Chapter 2) as well as the less reliable “ridge-like” interest points (also
discussed in Chapter 2).

To summarize, this section has concentrated on systems that track targets using
edges but no three dimensional object model. Most of these systems elected to merely
track lines (presumably an overall object would consist of multiple lines) by first
grouping the edges into lines and then making use of a predictive filter framework.
The systems in (Zhang & Faugeras, 1992) and (Huttenlocher, Noh & Rucklidge,
1993) could actually track a complete target and not just a set of individual lines. In
(Zhang & Faugeras, 1992) overall target tracking was attained by grouping lines with
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similar motion properties. On the other hand, in (Huttenlocher, Noh & Rucklidge,
1993), a completely different methodology was employed where the target’s shape was
represented by a set of edges and tracked by performing frame-to-frame matching.

In the next section, our discussion will continue with more systems that use edge
and line features. However, these upcoming trackers make use of 3D object models
during tracking.

3.2.2 3D Model-Based Approaches

In some situations, tracker designers are fortunate enough to have 3D models of
the target. These 3D models can be obtained through CAD, range-finders, or using
manual methods. In this section, we will discuss feature-based 3D model trackers
that match 2D features to 3D models and point out how these trackers are related to
the problem of detection. Typically, these tracking and detection systems use feature
sets that include edge or line-based features. We will conclude this section with a
brief discussion of a more recent approach, where 3D models are matched to 3D data.
Another extensive review paper on 3D model-based approaches can be found in (Fua
& Lepetit, 2005).

Feature-Based Approaches

A popular approach to tracking in the early 1990s was to use discrete features, such
as groups of edges, curves, or lines, and optimally align the projection of a 3D tar-
get model with these image domain features. Conceptually, the core problem is that
of obtaining the transformation between the object coordinate frame and the image
coordinate frame. To fully define this transformation, six parameters must be esti-
mated — three rotational parameters and three translational parameters. Most of
the works in this field follow three, generic steps: (1) image feature extraction; (2)
establish correspondence between model features and image features; (3) pose esti-
mation using the established correspondences in Step 2. Throughout this section we
will explain these three steps in more detail by making reference to specific works in
the literature. We will begin with a clear and illustrative paper on vehicle tracking
presented by Koller et al. (Koller, Daniilidis & Nagel, 1993).

In (Koller, Daniilidis & Nagel, 1993), the authors’ goal was to track vehicles in
realistic scenes. Many of the techniques used with the model-free line trackers will
once again be used with the 3D model-based trackers (and, in fact, throughout the
rest of this paper). Specifically, a matching strategy is still required for comparing
image data with other data. As alluded to already, with 3D model trackers, this
“other data” stems from the projection of a 3D model. In addition to the three main
stages listed above, many 3D model-based trackers also employ predictive filters (e.g.,
Kalman filters) to restrict the search range. In fact, the vehicle tracker in (Koller,
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Daniilidis & Nagel, 1993) does just that.

The first building block in any 3D model-based tracker is the 3D model itself.
The object model, of course, defines and restricts the type of object that will be
followed throughout a video. In (Koller, Daniilidis & Nagel, 1993), the authors use a
model of a car that has 12 lengths associated with it. By varying the length of these
parameters, vehicles of different sizes and shapes can be tracked. Unfortunately, once
the lengths are manually set during initialization, these size parameters cannot be
changed. Hence, during tracking, the vehicle model is rigid and the goal of tracking
is merely to determine the position, po, and orientation, φo of the 3D model.

As mentioned previously, one of the major building blocks of 3D model-based
trackers is an algorithm for establishing correspondences between the measured image
features (in the case of (Koller, Daniilidis & Nagel, 1993), image edges) and the
projected lines of the model. In (Koller, Daniilidis & Nagel, 1993), the matching
strategy is almost identical to that used in (Deriche & Faugeras, 1991). Specifically,
edge pixels in the image are first grouped to form lines. In a similar manner to
(Deriche & Faugeras, 1991), lines are parameterized using the midpoint, orientation,
and length. Finally, the Mahalanobis distance is used when comparing a particular
projected model line with an image line. Correspondence is established between the
pair of lines that provide the lowest distance score.

When a particular pose of the 3D model is assumed, the matching strategy between
image edges and projected model lines is almost identical to the approach seen in
(Deriche & Faugeras, 1991). However, this data association stage is only a part of
the overall matching algorithm of Koller et al.’s tracker. In (Deriche & Faugeras,
1991), the predicted position of a line (obtained through Kalman filtering) was being
compared against the image data. In this case, we are comparing the model projection
against the image data. Here we are completely free to adjust the parameters of the
3D model to see if it can be brought into closer alignment with the image data. This
task of optimizing the model parameters while holding correspondences constant is
the third stage mentioned above, which we term pose estimation.

In the work of Koller et al., the goal of pose estimation is to minimize the overall
Mahalanobis distance between corresponding lines. The optimization algorithm used
in (Koller, Daniilidis & Nagel, 1993) is similar to those techniques originally proposed
by Lowe (Lowe, 1991, 1992). Specifically, let pi be the set of model parameters during
iteration i. The ideal goal of this stage is to find the parameter adjustments, g, that
reduce an alignment residual error, e to zero. Assuming local linearity, the change in
the overall error caused by modifying a particular parameter, gi, can be computed.
Specifically, the error can be quantified by multiplying the change in the parameter
value by the partial derivative of the error with respect to that parameter. To capture
how all parameter adjustments affect the error in one compact equation we can use

Jg = e, (3.14)
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where J is the Jacobian matrix defined as

Jij =
∂ei

∂gj

. (3.15)

In an ideal world, parameter adjustments could be made that would make the
residual error vanish. This result is not feasible in practice and instead, an over-
constrained system of equations is constructed where the goal is simply to minimize
the residual. Mathematically, this minimization is expressed as:

min ‖Jg− e‖2 . (3.16)

The parameter adjustments, g, that minimize this squared error can be found using
standard linear least squares techniques.

The final component of the vehicle tracker that must be discussed is the predictive
filter. The filters used in 3D model-based trackers are typically just standard Kalman
filters or one of its numerous variants. Chapter 2 provided a detailed description of
Kalman filters. Thus in this section, only pertinent details regarding the predictive
filtering that are implementation-specific will be provided.

In (Koller, Daniilidis & Nagel, 1993), the state vector for the filter consists of the
position, orientation, and velocity magnitudes (translational and angular) of the car.
Explicitly, the state can be written as xt = [px,t, py,t, φt, vt, ωt]. State estimation is
achieved via a constant translational and angular velocity motion model. This circular
motion model is shown in Fig. 3.3. The figure shows the three parameters that must
be estimated to align the 3D car model with the image data — the vehicle’s center
position (px,t, py,t) and the orientation of its principle axis φt. Given that constant
translational and angular velocities are assumed, the rate of change of position and
orientation are defined as

ṗx,t = v cos φ

ẏy,t = v sin φ

φ̇t = ω, (3.17)

where v and ω are the constant translational and angular velocities, respectively.
It appears the significant benefit of adopting the circular motion model is to more
accurately represent the motion of the cars for the videos that are under analysis.
Specifically, the sequences considered in this paper primarily involve cars going around
corners (e.g., cars turning at traffic lights and cars driving in circular trajectories in
parking lots).

Continuing with the Kalman filter framework, the measurements are the final set
of image lines obtained during correspondence and pose estimation. The measure-
ment equation of the filter must transform state variables into measurement variables
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Figure 3.3: Circular motion model for cars used in (Koller, Daniilidis & Nagel, 1993).

so that the two quantities can be compared. This is not a trivial task in (Koller,
Daniilidis & Nagel, 1993) as the state represents the overall position, orientation,
and velocity of the car model while the measurements are the optimal image lines!
Thus, to compare the state and measurements, nonlinear transformations are used to
map model points into the world coordinate system and subsequently into the image
plane, necessitating the use of an extended Kalman filter or an IEKF (both of which
are explored in this work).

With the main building blocks in place, the tracker of Koller et al. is essentially
completely defined. The performance results of this system are qualitatively quite
good. Videos showing realistic traffic footage from a parking lot and traffic inter-
section are shown. Even in the presence of some shadows and clutter, the models
are aligned closely with the vehicles. There are, however, a number of downfalls to
this approach. To begin, camera calibration must be performed beforehand so that
mapping between model, world, and image points can be performed. Another impor-
tant note is that throughout their experiments, the authors modified various system
parameters. This tweaking makes it appear as if the parameters are not universal
and need to be tuned for particular types of videos.

There are several other 3D model-based trackers that follow the same general ap-
proach as seen in Koller et al.’s work (Lowe, 1991, 1992; Simon & Berger, 1998; Vergh-
ese, Gale & Dyer, 1990; Shang, Jasiobedzki & Greenspan, 2007). The approach in
(Lowe, 1991, 1992), for example, is very similar to that seen in (Koller, Daniilidis &
Nagel, 1993). As a result, we will primarily discuss the correspondence algorithm,
where the majority of the algorithmic differences arise. In particular, for this stage,
rather than using the commonly-employed Mahalanobis distance for comparing pre-
dicted and measured values, Lowe develops a probabilistic matching scheme.
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Figure 3.4: Pictorial representation of the probability distribution for a measurement,
f, given a predicted model feature, a. This distribution is compared against a uniform
background distribution for all other features, bi, that provide a false match. Adapted
from (Lowe, 1992).

Lowe’s algorithm for establishing correspondence between model features and im-
age features is discussed primarily in (Lowe, 1992). Like many of the trackers seen in
this section, Lowe also elects to use line features. Specifically, the author denotes f as
the measurement feature vector obtained when a projected model line, a, is associated
with a particular image line. All other projected model lines that are not assumed
to correspond to a are denoted as bi. Using Bayes rule, an expression for computing
the probability of the projected model line, a, under this assumed correspondence is
derived. This probability is written as

P (a|f) =
P (f|a) P (a)

P (f)

=
P (f|a) P (a)

P (f|a) P (a) +
∑

i P (f|bi) P (bi)
. (3.18)

Figure 3.4 shows a pictorial representation of the probability distribution.

Figure 3.4 assumes that the feature vector, f, is a generic, one dimensional value.
In this particular work, the feature vector is actually two dimensional. The first value
of the feature vector is the perpendicular distance from the center of the image line
to the projected model segment. The second component of the feature vector is the
angular orientation difference between the two lines. To simplify the mathematics,
these two values are assumed to be independent. It is worth noting one flaw with
this matching technique. Orientation and perpendicular distance of lines are typically
the most robust and consistent measured values of lines. However, these two values
alone do not completely constrain the line’s position. As Figure 3.5 shows, even if the
perpendicular distance and orientation difference between each line is established, no
constraints are placed on the amount of “overlap” between the lines. Accordingly,
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Figure 3.5: Line matching problem in (Lowe, 1991, 1992). A should be rejected be-
cause the lines are too far apart. B should be rejected because the lines barely overlap,
even though they are spatially close and have a similar orientation. C illustrates good
line correspondence. In Lowe’s work, both B and C are accepted

even if two lines share a similar orientation and the perpendicular distance, they still
may not be a good match.

Once the probabilities of associating each model line with every image line have
been computed according to Eq. 3.18, the system selects initial correspondences from
which the model parameters are updated. Lowe’s work uses a novel “best-first” opti-
mization procedure to attain accurate correspondences. The correspondences between
model and image lines are first ordered from the most probable to least probable as-
sociations. At first, only the four most probable associations are used. With these
four associations, the system calls the pose estimation algorithm that updates the
3D model parameters to bring the matched lines into closer correspondence. Once
the optimization has been completed, additional line correspondences are added and
pose estimation is repeated. The rationale behind this line correspondence strategy
is to let the strongest matches guide the initial stages of optimization. In some sense,
this correspondence algorithm is akin to coarse-to-fine strategies. At the outset, the
strongest feature matches (often stemming from longer lines) are used to guide initial
parameter estimation. Subsequently, the weaker correspondences (often stemming
from shorter lines) are used to refine the parameters. The conservative approach
provided by this best-first optimization procedure is argued by the author to operate
very effectively.

There are several additional properties of Lowe’s system that should be made
clear at this time. The pose estimation algorithms employed are almost identical to
those described for the work of Koller et al. However, it should be noted that Lowe
proposed this optimization technique prior to the work of Koller et al. Furthermore,
in (Lowe, 1991, 1992), the use of Kalman filters is avoided. The author argues that
Kalman filters oversmooth parameters, making them less effective during changes in
velocity. In place of a predictive filter, Lowe argues that more effective stabilization
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and prediction can be obtained by using prior variances on parameters.

The results of Lowe’s tracker are quite impressive, overall. Although the results
shown in (Lowe, 1991, 1992) all display in-lab tests, the most impressive aspect of
the system is its ability to successfully estimate the model parameters that account
for articulations. It is challenging to speculate how well this system would fare if
it was applied in surveillance situations where lighting changes and objects may be
moving more quickly. Since the features being used are discrete, the system should
be somewhat resilient to illumination changes, although shadows could present some
challenges. The lack of a predictive filter might cause this tracker to struggle if the
target is moving quickly. Nonetheless, Lowe’s work provides a principled approach
to dealing with articulated objects which could presumably be applied to situations
such as estimating the lengths of different vehicle sections for the tracker in (Koller,
Daniilidis & Nagel, 1993).

Another example of a 3D model-based tracker is provided in (Gennery, 1992). In
this work, a slightly different correspondence algorithm is used in conjunction with
a Kalman filter prediction mechanism. We will begin the discuss of this system with
the correspondence and pose estimation techniques. In more detail, the 3D vertices
(junctions between two or more lines in the model) are projected into the image.
Special care is taken to ensure that only visible edges have their vertices projected.
Following projection, the vertices are used to compute the projected model lines.
These lines are represented with their center point and length. Furthermore, metrics
are computed that provide the perpendicular distance from the line

h = cx (y − y1)− cy (x− x1) , (3.19)

and the parallel distance along the line

g = cx (x− x1) + cy (y − y1) . (3.20)

In Eq. 3.19 and Eq. 3.20, the line’s center point is represented by (cx, cy), (x1, y1) is
one of the line’s end points, and (x, y) is an arbitrary point in the image.

The correspondence strategy employed in this work is one point of significant dif-
ference from the 3D model-based trackers already described. Instead of comparing
projected to image lines, Gennery et al. establish correspondences between the pro-
jected lines and the individual image edge pixels. During correspondence, the last
five pixels at each end of the projected lines are not used because of their notoriety
for being unstable. The remaining pixels along the projected line are sampled at a
regular interval. For each of these sampled line pixels, a search is performed to find
the closest image edge pixel. The search has a range of five pixels and is performed
along the coordinate axis that is closest to being perpendicular to the projected line.
Figure 3.6 illustrates this search algorithm. A point along the projected line is con-
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Figure 3.6: Search strategy used in (Gennery, 1992). The black line indicates a
projected model line. “*”s indicate detected edges. Red edge pixels are matched to
the discrete subsampled points along the projected model line.

cluded to correspond to the closest image edge pixel within the search range, if any
edge pixels are found.

Measurements in this work are defined as being the perpendicular distance be-
tween the selected edge pixel and the projected line. These correspondences are also
assigned a weight, which is set by the authors a priori. This weight is used to place
more emphasis on projected model lines that should be easier to detect in the image,
based on the reflectance and orientation characteristics of the 3D object.

The individual measurements and associated weights are then combined so that
the model parameters can be updated. Conceptually, a straight line is fit through
the identified image pixels that correspond to a particular projected model line. All
obtained straight line fits are then used to update the 3D model parameters. The
parameter updates are found using weighted linear least squares. Once the optimal
parameter adjustments are found they are used to update a Kalman filter.

In this work, the objects being tracked included a hexagonal prism and a mock
satellite. The hexagonal prism was painted a bright white and the scene backgrounds
were typically quite dark. Accordingly, contrast edges between the foreground and
background are distinct. The mock satellite had a similar shape to the hexagonal
prism but it was larger and had more realistic face textures that might be seen on a
real satellite. All experiments were performed within the lab, although the authors
did note that various illumination conditions were considered. Overall, the results
obtained by this tracking solution were qualitatively reasonable, but for arguably
easier videos than those seen in (Koller, Daniilidis & Nagel, 1993).

Another 3D model tracker from several years ago was presented by Simon and
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Berger (Simon & Berger, 1998). One of the primary differences with this tracker
is that curve features in the image domain are tracked instead of points or lines.
These curves are actually detected and tracked with a “snake” contour tracker (to be
discussed at length in Chapter 4). For this reason, this tracker could be moved to
Chapter 5, which will discuss trackers that use a combination of approaches. However,
since the overall approach in this work is very similar to other 3D model trackers, we
elect to discuss it here. Another unique aspect of this work is that robust metrics are
used when matching the model and image features. Aside from these variations, the
remaining components of the system in (Simon & Berger, 1998) are similar to the
algorithms discussed previously.

The resulting algorithm is certainly unique due to its usage of curve features. It
also appears to perform well on a single video sequence where the camera pans across a
bridge. However, given the limited amount of data, it is hard to extrapolate its general
level of performance. In this algorithm, model to image feature correspondences are
assumed to remain constant. This design decision presumably requires the inter-frame
motion to be reasonably small.

Another interesting early 3D model-based tracker was presented in (Verghese, Gale
& Dyer, 1990). Verghese et al. argue that one could imagine two methods of attacking
the 3D model alignment problem. The first approach would be to perform a local
perturbation within the 3D model space to generate a number of hypothesized models.
These models could then be projected into the image plane and compared with the
available data. In (Verghese, Gale & Dyer, 1990), this algorithm is referred to as
the “motion-searching paradigm”. The second approach would be to perform feature
tracking within the image domain. Upon the completion of image domain tracking,
the result is back-projected into 3D space to determine the corresponding pose of the
model. The authors term this technique the “motion-calculation paradigm”. The
papers discussed so far in this section all roughly follow the second paradigm.

In (Verghese, Gale & Dyer, 1990), possible implementations for each of these two
approaches are described. High spatial and temporal sampling rates are assumed,
making inter-frame motions very small. Accordingly, the authors argue that in either
paradigm, a predictive mechanism, such as a Kalman filter, is not necessary. Fur-
thermore, with this assumption, correspondences between model features and image
features can be assumed to remain consistent from frame-to-frame. This approach
was also employed in (Simon & Berger, 1998).

With regards to the motion-searching paradigm, the authors make the assumption
that complete movements experienced by a target can be approximated in a piecewise
fashion, by varying each model parameter in turn. Hence, rather than exhaustively
exploring all possible permutations of the parameters, the authors make use of this
approximation to solve a simpler problem. Furthermore, since the temporal sampling
rate is very high, the parameters will vary little from frame-to-frame. Thus, the
system considers each parameter in turn and generates two hypotheses, corresponding
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to a small positive and negative perturbation to the parameter. The two 3D models
with their perturbed parameters are both projected into the image, one at a time.
Normalized cross correlation is performed between the image edge pixels and the
projections of the two hypotheses. If the normalized cross correlation score of one
hypothesis is significantly better than that of the other, the parameter under analysis
is updated to correspond to that of the best match. This process is repeated until all
parameters have been considered.

In addition to tracking accuracy, another focus of the paper is implementing the
proposed algorithms in a parallel system. One noteworthy point is that under the
parallel architecture, the maximum speed of a target that can be tracked was derived
and verified experimentally. In terms of tracking accuracy, limited results on fairly
simple video sequences are presented, making it hard to compare this system against
more recent works. However, given that this system was proposed in 1990, it is one
of the first works in 3D model-based tracking, making it quite noteworthy.

With respect to the motion-calculation approach presented in (Verghese, Gale &
Dyer, 1990), a very simple approach is taken. Given that a high temporal sampling
rate is used, correspondences between model and image features are assumed to re-
main unchanged from frame-to-frame. Thus, the problem collapses to tracking the
image features (linked edges are used) from frame-to-frame and then performing pose
estimation using techniques similar to those seen in Lowe’s work. The results illus-
trated for this approach in (Verghese, Gale & Dyer, 1990) are once again limited, but
impressive, considering the year of publication

Most recently, systems that employ the abovementioned general three stages of
processing to perform 3D model-based tracker are becoming more rare. Despite its
decreased level of exposure in the research community, feature-based 3D model track-
ing does still receive some limited attention. One example of a recent work in this
subfield was presented in (Vacchetti, Lepetit & Fua, 2004). The biggest contribution
of this work is its attempt to derive a correspondence algorithm that includes multiple
hypotheses.

Typically when matching between the image edges and projected model lines, a
single match is established that provides the minimum cost/distance. The authors
of (Vacchetti, Lepetit & Fua, 2004) argue that this approach is not always suitable
as high-contrast edges may generate superior match scores based on the strength
of the edge rather than its goodness of match. Clearly, this argument depends on
the particular type of match metric that is being utilized. The proposed algorithm
alleviates the problems associated with incorrect correspondences by making use of
multiple measurement hypothesis when computing matches. More specifically, the
matching strategy in (Vacchetti, Lepetit & Fua, 2004) begins in the standard manner
of projecting a model line into the image domain. Points along the line are sampled
and from these seed samples local searches are performed for corresponding edges.
The searches are performed in the direction normal to the line.
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Upon performing this search, an obvious strategy would be to associate each
sampled point along the line with the strongest edge pixel. Under such an approach,
the 3D model parameters could be updated to minimize the following overall cost

vt =
1
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∑
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2
)

(3.21)

where ei,j is a sampled point along the projected line, e
′
i,j is the strongest edge dis-

continuity uncovered during the search operation, Ne is the total number of sample
points, ρ is a robust estimator, i varies over all projected model lines, and j varies
across all sampled points on a specific line.

In this work, the authors propose the following amendment to Eq. 3.21
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where Ki,j is the number of image edge pixels hypothesized to correspond to a par-
ticular ei,j. Thus, Eq. 3.22 considers numerous correspondences rather than just the
single strongest edge. For Eq. 3.22, a modified robust metric has to be introduced,
since robust metrics do not natively handle vectors. In this work, the authors define
ρ∗ (x1, . . . xn) = mini ρ (xi). Intuitively, this function considers multiple matching hy-
pothesis, but it is only the best match that contributes to the overall cost function of
Eq. 3.22. The authors report that this modified objective function provides accurate
tracking in situations where using Eq. 3.21 fails.

There are several additional systems that we would like to briefly make note of
before concluding this section. Specifically, another fairly recent work that is worth
mentioning was proposed in (Drummond & Cipolla, 2002). In this work, a fairly stan-
dard 3D model-based tracker was proposed whereby the SSD between sample points
along the model lines and the nearest image edges (found along normal directions in
a similar manner to (Gennery, 1992)) is minimized. However, in this work, an active
camera component is also incorporated. Once the pose of the 3D model with respect
to the image is determined, it is used to compute the necessary motion of the camera
to obtain a specified view of the target object. This relocating of the camera to seek
out a particular view of a target is successfully demonstrated for a stationary target
and when a target is moving (slowly) in discrete steps. Additionally, in (Tsin, Genc,
Zhu & Ramesh, 2007) when correspondences are established between projected model
edges and image domain edges, intensity patches surrounding the edges are used to
improve robustness. The proposed 3D model tracker also incorporates an on-line
learning scheme to adapt to appearance changes of the abovementioned intensity
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patches. Finally, in (Brand & Bhotika, 2001), an extremely unique 3D model-based
tracker is demonstrated for the problem of tracking deformable, non-rigid faces. Un-
like the other 3D model-based trackers described in this review, the system by Brand
and Bhotika directly makes use of intensity gradient features when tracking the 3D
target. A second novel aspect of the work is that the system can be provided with
only a crude model of the target. In addition to tracking, the system refines the
3D model to more accurately represent the specific target observed in the particular
video sequence.

It is not a secret that since the early 1990s feature-based 3D model trackers have
received less attention from the computer vision tracking community. Perhaps this
decreased level of attention is due to the fact that the problem of aligning three di-
mensional models with image data is a very hard, especially as the models get more
complex. There may be some truth in this explanation, but perhaps an alternate,
more satisfactory argument is available. In particular, with these systems, the de-
signer is locked in to tracking a particular class of object. Certainly, there are some
applications where the types of objects to be tracked are known beforehand, but
there are a wealth of situations where the types of objects to be tracked are unknown
and continuously varying. Outside of designing a separate 3D model-based tracker
for every type of object that will be viewed in a scene, there is no obvious method
of making a “universal 3D model tracker”. Another problem with these trackers is
that obtaining 3D object models is not trivial and can often necessitate the need for
specialized equipment.

Relations to 3D Model Detection

It is interesting to note the intimate relationship shared between 3D model detection
and 3D model-based tracking. In particular, the central idea of tracking 3D models
in images appears to have emerged from the earlier literature concerned with the
detection of 3D models in 2D images (e.g., (Thompson & Mundy, 1987; Lowe, 1991)).
In fact, the work by Lowe (Lowe, 1991), which we discussed previously, was primarily
concerned with the problem of 3D model detection rather than tracking.

In addition to (Lowe, 1991) another example of an early system that performed 3D
model-based detection is (Thompson & Mundy, 1987). In this work, pairs of vertices
(a vertex is defined as the intersection between two lines) are defined as the features
used for comparing model to image data. A unique aspect of the overall system is
that correspondences are not established between image domain and model domain
features. Instead, correspondences are exhaustively considered using a “binning” or
“voting” strategy that is somewhat akin to the Hough transform in a 6D parameter
space.

Another interesting point to note regarding the relationship between 3D model de-
tection and tracking is that the field seems to have come full circle. Three dimensional
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model-based tracking stemmed from 3D model detection. Subsequently, many of the
ideas used in 3D model detection were employed in tracking, with the additional con-
straints and techniques concerned with establishing temporal consistency between
frames (e.g., predictive filters, assumed constant correspondences, etc.). Now that
detection schemes are becoming more computationally efficient, some researchers are
proposing to perform 3D model tracking using detection techniques on every frame
and putting less emphasis on temporal consistency constraints (e.g., (Leng & Wang,
2004; Lepetit, Lagger & Fua, 2005))! We will briefly discuss two of these proposed
works.

In (Leng & Wang, 2004) an offline database of the target’s appearance is manu-
ally constructed. This database is typically employed when detecting the target in
the current frame. However, in the event that the target’s appearance changes (e.g.,
due to illumination changes or occlusion), the system can switch to frame-to-frame
matching instead. Another more recent approach to tracking via 3D model detection
eliminates the costly and time-consuming requirement of constructing a database of
targets views (Lepetit, Lagger & Fua, 2005). Instead, interests point features are
detected on the target and affine warps are used to artificially construct other views.
However, one should not be fooled into believing that this approach of artificially
constructing a database from a single object view will always be sufficient. Specifi-
cally, the generated views can only capture the fundamental target information that
was present within the original image. Target features that were not visible in the
original view will not be represented in such a database.

There are several benefits to be had by performing continuous detection instead of
inter-frame tracking. In particular, when inter-frame tracking is performed, manual
initialization is typically needed for the first frame. Furthermore, with tracking-based
approaches, errors can accumulate, causing the tracker to drift off the center of the
target and eventually loose the target completely. Finally, tracking-based approaches
typically cannot recover from complete failures. Thus, if a sudden movement, accu-
mulated error, or some other phenomena causes the tracker to fall off the target com-
pletely, recovery can be challenging. However, continuous detection-based approaches
do have their own shortcomings. In particular, more pre-processing is required to
construct the database of the target under various poses. Furthermore, poses of the
target in the sequence can only be recovered if there is a close match in the database.
As a result, care must be taken to construct a very complete database consisting of
all expected target poses. Finally, given that the database is typically constructed
under ideal conditions, tracking during illumination changes and occlusions can be
problematic.
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Matching 3D Models to 3D Data

Although this review is primarily concerned with visual tracking in monocular im-
agery obtained using CCD cameras, we will take a brief moment to discuss tracking
in different types of imagery. In particular, the matching of three dimensional range
data that can be obtained using stereopsis or light detection and radar (LiDAR) to
3D models. The rationale for mentioning these systems in this review is that these
systems are an important recent offshoot to the standard 2D image features to 3D
model trackers already discussed in this chapter.

A very popular technique in this field is known as the iterative closest point (ICP)
algorithm (Besl & McKay, 1992). The idea here is that if correspondences between the
3D model points and 3D data points are known, then the rotational and translational
parameters can be obtained by minimizing the sum of squared Euclidean distances.
The main problem, therefore, lies in establishing the point correspondences. The
ICP algorithm operates by iteratively making intelligent guesses regarding the point
correspondences. Specifically, for each data point there will be a single model point
to which it is closest, in the Euclidean distance sense. These points are assumed to
correspond. In fact, this process is repeated so that correspondences are established
between each model and data point based on the smallest Euclidean distances. Once
preliminary correspondences have been established, the system estimates the trans-
formation that brings the point sets into alignment. The process of recomputing the
correspondences and realigning the point sets is iterated until convergence is reached.

On the positive side, the ICP algorithm monotonically approaches the nearest local
minimum solution. However, a significant problem with the original ICP algorithm
proposed in (Besl & McKay, 1992) is that its execution time is often several minutes
in duration. Accordingly, researchers have attempted to make the algorithm more
efficient. In (Simon, Hebert & Kanade, 1994), the algorithm’s speed is increased
via tree-based pruning algorithms and closest point caching for future frames. The
authors report that after the proposed speed enhancements, the resulting algorithm
only requires 1% of the processing time of the original ICP algorithm.

Another very recent and interesting work in the field of 3D data to 3D model
matching was presented by Shang et al. (Shang, Jasiobedzki & Greenspan, 2007).
The main idea in this work is to place assumptions on the inter-frame target transfor-
mations to restrict the number of feasible transformations. If sufficient assumptions
are used, the transformations can be exhaustively considered. To reach this goal,
three main assumptions were employed. First, it is assumed that the transforma-
tion is rigid. Secondly, it is assumed that the target can move with some maximum
speed. Finally, it is assumed that the images are taken at a known, fast sampling
rate. With these assumptions, maximum bounds can be placed on the inter-frame
transformation, B.

In addition to limiting the search range, in (Shang, Jasiobedzki & Greenspan,
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2007), the changes that can be incurred by each translational and rotational parameter
are discretized. This discretization further reduces (in fact, from an infinite number
to a small, finite number) the possible number of allowable transformations. After
discretization, the number of transformations is low enough that they can be efficiently
exhaustively considered. Another advantage of discretizing the transition space is
that the problem of determining the optimal transformation can be transformed into
a classification problem.

Several classification strategies are proposed in (Shang, Jasiobedzki & Greenspan,
2007), but they are all based upon a binning/voting strategy similar to the Hough
transform or the method seen in (Thompson & Mundy, 1987). In (Shang, Jasiobedzki
& Greenspan, 2007), the measured data is three dimensional range data. Thus, the
first step of the most straightforward classification approach is to transform the mea-
surements and models into the same “voxel” feature space. In fact, for all possible
discrete transformations, B, the voxel feature representation is created for the trans-
formed versions of the model. For the measured data, only a single voxel feature
representation is generated. The system then identifies the particular transformation
in which the transformed model and measurement voxels are in closest alignment
using a voting procedure.

In addition to being fairly unique, it appears that the approach also performs
well, in practice. Specifically, the system is shown to be capable of tracking simple
block objects, a more complex dinosaur, and even a model of a molecule. However,
in addition to the general disadvantages of 3D model based approaches, this system
also assumes the object is rigid.

3.3 Recapitulation

In summary, in this chapter we have considered trackers that make use of discrete
features. We began with a discussion of trackers that use simple point features and
progressively considered more complex features, including lines, groups of edges, and
even 3D models. Point feature trackers often rely on positional and velocity-based
assumptions to match targets from frame-to-frame. Line-based trackers typically
employ Kalman filters to predict and correct the various parameters that define a
line. Finally, 3D model trackers face the challenges of relating model-based features to
image-based features and subsequently bringing those two sets of features into closer
alignment. In the next chapter, we will shift our focus to trackers that represent
targets as curves during execution.
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Chapter 4

Tracking With Contours

To begin the discussion for this chapter, let us first define what is meant by a contour
tracker. For this review, a contour tracker is defined as any system that follows a
target from frame-to-frame and represents said target with a curve that adheres to its
outline. The curve representing the object can be closed or open, but typically closed
curves will be described in this review. One might argue that in some ways, contour
trackers (specifically, contour trackers using an open curve) are similar to the line
trackers described in the previous chapter. In particular, both approaches can track
the boundary lines of targets within the scene; however the line trackers discussed in
Chapter 3 are limited to following straight line segments. Due to the fact that contour
trackers can adhere to the boundaries of targets that are drastically different from a
straight line (e.g., a circle) and the techniques used for these two types of trackers
are quite different, we have elected to separate them into two disparate classes.

Unlike many trackers that are described in this review, contour trackers ideally
provide very precise localization of the target and its boundary. Most contour trackers
allow this boundary to be of any arbitrary shape and to be altered in a non-rigid
manner. Thus, in each frame, the goal of this class of trackers is to determine the
optimal shape and placement of the tracking contour in the given image frame. Most
of these trackers assume that the framerate is sufficiently high, leading to small inter-
frame changes of the target’s shape and position. Accordingly, the task of locating the
optimal location and shape of the target is reduced to that of modifying the optimal
contour found at the previous time instant.

This chapter will be divided into four sections. The first section will focus on
the earliest works in the area of contour-based tracking. Subsequently, a more recent
formulation of contour trackers, one that employs the usage of level sets, will be
detailed in conjunction with geodesic contour trackers. The chapter will continue with
a discussion of trackers that represent the target as a contour, but use more than just
gradient-derived information for promoting its evolution. Finally, the chapter will
close with a discussion of several contour trackers that do not fall into any of the
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other categories.

4.1 Basic Snakes

The first examples of contour-based trackers started appearing in the late 1980s and
early 1990s (Kass, Witkin & Terzopoulos, 1988; Terzopoulos & Szeliski, 1992; Ley-
marie & Levine, 1993). To our knowledge, the seminal work in this field was com-
pleted by Kass, Witkin, and Terzopoulos (Kass, Witkin & Terzopoulos, 1988), which
was subsequently elaborated upon in (Terzopoulos & Szeliski, 1992). The authors
termed this class of contour trackers as “snakes”, presumably because the curve slith-
ers around the image (not unlike a snake) as it attempts to find the target. It is with
these snake systems that our discussion of contour-based trackers will begin.

In the earliest works (Kass, Witkin & Terzopoulos, 1988; Terzopoulos & Szeliski,
1992), the idea of contour evolution for tracking was posed as an energy minimization
problem. Specifically, the energy represents the goodness of a contour with respect to
the current frame and the goal is to identify the contour that minimizes this energy. To
create a snake-based tracker, two components must be designed: the energy function
and the method of optimizing the energy.

The intuitive rules that the authors of (Kass, Witkin & Terzopoulos, 1988; Ter-
zopoulos & Szeliski, 1992) used to define the energy functions subsequently became
standard in the snake literature. The first fundamental idea behind the energy of a
snake is with regards to its shape. In general, it is assumed that targets of inter-
est do not contain protruding edges and sharp, deep valleys. Rather, the designers
of snake-based trackers believe that most objects are composed primarily of smooth
edges. Furthermore, it is assumed that the length of an object’s outline will not
change significantly from frame-to-frame. These intuitive ideas are expressed more
formally using

Eint =

∫ 1

0

w1 (s) |vs|2 + w2 (s) |vss|2 ds, (4.1)

where v is the contour and w1, w2 are weights. The contour, v, is actually represented
as a mapping from the parametric domain, s ∈ [0, 1], to the image plane. The
variables vs and vss represent the first and second derivatives of the contour with
respect to the parameter, s. At a higher level, the first term in the equation controls
the “tension” of the snake. In other words, this term makes the snake behave like a
string, in that it attempts to maintaining the same overall length and resist stretching.
The second term in Eq. 4.1 controls the “rigidity” of the snake. One can imagine this
term as making the snake act more like a rod that resists bending. Together, these
two terms indicate that snakes with relatively smooth shapes that remain roughly
the same length are preferred.
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At this point, the described energy is only dependent upon the shape of the curve
itself — there has been no mention of reliance on the image data. Of course, image
data must enter into the energy equation and it does so in a so-called external energy
term, Eimage (v). The external energy of the snake is an integral of the form

Eimage (v) =

∫ 1

0

P (v (s)) ds, (4.2)

where the variable of integration varies from zero to one as this represents a complete
cycle around the target contour and P is the external image potential energy. A va-
riety of functions can be used for computing the image potential energy and it is up
to the designer to select an appropriate function that meets the needs of the desired
application. The energy, P is typically based on image intensity or image gradi-
ent measurements. For instance, the use of the function P (x, y) = ±c [Gσ ∗ I (x, y)]
would result in a snake that is attracted to bright or dark lines within in the im-
age. Note that Gσ ∗ I (x, y) simply indicates that the image is filtered by a Gaussian
smoothing filter with standard deviation, σ, to ameliorate the effects of high fre-
quency noise artifacts and that c is a constant. An alternative image potential en-
ergy function that is attracted to high contrast, intensity edges can be written as
P (x, y) = −c |∇ [Gσ ∗ I (x, y)]|.

The most fundamental snake energy (Kass, Witkin & Terzopoulos, 1988) is merely
the summation of the internal and external energy terms. Explicitly, the energy of a
snake is

Esnake (v) = Eint (v) + Eimage (v) . (4.3)

Naturally, this energy definition can be modified to meet the needs of the tracking
system. However, in the original works on snakes (Kass, Witkin & Terzopoulos, 1988;
Terzopoulos & Szeliski, 1992) and many subsequent works (Leymarie & Levine, 1993;
Peterfreund, 1997, 1999), this was exactly the energy equation that was employed.

As alluded to earlier, in addition to defining a quantitative means of computing
the goodness of a snake, the second major requirement when creating a snake-based
tracker is developing an optimization scheme. If one imagines the energy minimization
task as a static problem of finding the minimum contour, v, that satisfies Eq. 4.3,
then a variety of standard optimization techniques could be used. For instance, Eq.
4.3 could be minimized using greedy methods, dynamic programming, gradient-based
methods, etc. However, very shortly after the initial inception of snake trackers, it was
realized that there were gains to be had by viewing snake energy minimization under a
different light. Specifically, Terzopoulos and Szeliski argue in favor of treating a snake
as a dynamic system, whose energy can be minimized using Lagrangian mechanics
(Terzopoulos & Szeliski, 1992).

To imagine energy minimization from the perspective of a dynamic system, a
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Figure 4.1: Synthetic image of a square target (left) with its corresponding potential
energy surface (right).

reasonable visualization tool is that of a three dimensional potential energy surface.
An example of such a image potential energy surface is shown in Figure 4.1. As
can been seen, the image potential energy P (v (s)) is shown as a three dimensional
surface (rather than as a 2D intensity image). The goal during energy minimization
is to have the snake reach a state of low gravitational potential energy. This goal is
achieved by moving the snake to the valleys within the potential energy surface. As
the snake travels from high potential energy to low potential energy regions, potential
energy is converted to kinetic energy. Of course, the conversion of potential energy to
kinetic energy is never a lossless process. If the conversion were lossless, pendulums
would swing indefinitely and a bouncing basketball would continually bounce back to
the height at which it was dropped. During the conversion, a percentage of energy
is dissipated, often in the form of heat or other “wasted” energy. Accordingly, when
modeling snake energy minimization as a dynamic process, a damping factor is needed
to ensure that the snake reaches a state of equilibrium.

The above description of Lagrangian dynamics provides an indication of the addi-
tional components that are needed to transform the static snake energy minimization
task into this new framework. Firstly, the contour itself now becomes a function of
time, v (s, t). Furthermore, the system potential energy is defined as the overall en-
ergy of the snake, Esnake. However, we now also require a measure of kinetic energy.
In (Terzopoulos & Szeliski, 1992), the kinetic energy of a snake is computed using∫ 1

0
µ |vt|2 ds, where vt is the time derivative of the contour and µ (s) is the mass of the

snake at point s. This equation is exactly analogous to the kinetic equations studied
in simple physics (1

2
mv2

t , where m is mass and vt is velocity).

Following the notation in (Terzopoulos & Szeliski, 1992), a Lagrangian for the
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snake can be constructed by combining the kinetic and potential energy terms

L (v) =
1

2

∫ 1

0

µ |vt|2 − 1

2
Esnake

=
1

2

∫ 1

0

µ |vt|2 − w1 (s) |vs|2 − w2 (s) |vss|2 − P (v) ds. (4.4)

Generally speaking, the Euler-Lagrange equation can be used to optimize a functional
of the form

J =

∫ b

a

F (t, f (t) , f ′ (t)) dt, (4.5)

where f ′ (t) is the first derivative of the function, f . The Euler-Lagrange equation
that is used to optimize Eq. 4.5 is a differential equation of the form

Ff (t, f (t) , f ′ (t))− d

dt
Ff ′ (t, f (t) , f ′ (t)) = 0, (4.6)

where Ff is the derivative of F with respect to f and Ff ′ is the derivative of F with
respect to f ′.

The snake Lagrangian defined in Eq. 4.4 satisfies the general form required for
optimization via the Euler-Lagrange equation. Accordingly, the partial differential
equation for maximizing the snake energy can be written as

d

dt

(
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∂vt

)
+

∂D

∂vt

− ∂L
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+

∂

∂s

(
∂L

∂vs

)
− ∂

∂s2

(
∂L

∂vss

)
= 0. (4.7)

Note that the second term in the partial differential equation arises due to a dissi-
pation term, D, that must be included to ensure that the snake converges to static
equilibrium, as intuitively alluded to previously. Specifically, Terzopolous and Szeliski
suggest using a Rayleigh dissipation functional, D (vt) =

∫ 1

0
γ |vt|2 ds, where γ (s) is

the damping density at point s.

If we assume that the the snake mass and damping densities are constant, with
some manipulations, the force balancing equations for the snake are

µvtt + γvt − ∂

∂s
(w1vs) +

∂2

∂s2
(w2vss) = −∇P (v (s, t)) . (4.8)

Qualitatively, the terms on the left hand side of Eq. 4.8 correspond to kinematic,
dissipation, stretching, and bending forces, respectively. These forces are balanced
by the gradient of the image potential energy on the right hand side. Using Eq. 4.8,
a contour can be identified that minimizes the overall snake energy.
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Before Eq. 4.8 can be employed in a computer vision tracker, it must first be
discretized. Thus, discrete approximations of the above equations must be derived.
The works of Terzopolous et al. (Terzopoulos & Szeliski, 1992) and Leymarie et al.
(Leymarie & Levine, 1993) both provide thorough discussions of the discretization
of the snake energy equations. Here, the most important points will be highlighted.
To begin, a continuous snake contour must replaced by a series of vertex points, ui,
along the continuous curve. The energy of this discretized curve is computed as

E (u) =
1

2
uTKu + P (u) , (4.9)

where K is the stiffness matrix that contains information concerning the weights w1

and w2. Additionally, P (u) is a discrete version of the image potential energy.

Following the ideas presented in (Terzopoulos & Szeliski, 1992), a discrete version
of the Lagrangian motion equation of Eq. 4.8 can be written as

Mutt + Cut + Ku = −∇P (u) , (4.10)

where M is a matrix containing mass information and C is the damping matrix.
Terzopolous and Szeliski suggest computing the temporal derivatives in Eq. 4.10 using
central difference approximations. The following derivation illustrates how one can
compute an expression for updating the contour at time t + ∆t by inserting central
difference approximations into Eq. 4.10

Mutt + Cut + Ku = −∇P (u)

M
u(t+∆t) − 2ut + u(t−∆t)

∆t2
+ C

u(t+∆t) − u(t−∆t)

2∆t
+ Ku(t+∆t) = f

[
M

∆t2
+

C

2∆t
+ K

]
u(t+∆t) =

2Mut −Mu(t−∆t)

∆t2
+

Cu(t−∆t)

2∆t
+ f

Au(t+∆t) = bt. (4.11)

With Eq. 4.11, we have arrived at our required update equation for the contour.
To summarize, we began with the continuous Lagrangian motion equation (Eq. 4.8)
which was subsequently discretized (Eq. 4.10). This final step shows how to derive a
contour update equation from the discrete version of the partial differential equation.

Up to this point, we have discussed the most basic snakes that were originally pre-
sented in the literature (Kass, Witkin & Terzopoulos, 1988; Terzopoulos & Szeliski,
1992; Leymarie & Levine, 1993). Following the introduction of these standard snakes,
several extensions were made. For instance, in (Terzopoulos & Szeliski, 1992), the au-
thors continue the discussion of snakes by describing how: (1) snakes can be derived in
a probabilistic framework (2) Kalman filters can be used in conjunction with snakes.
These additional contributions are actually very closely intertwined as the probabilis-
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tic derivation of snakes can be conveniently linked with the Bayesian perspective of
Kalman filters. Introducing Kalman filters into the snake tracking paradigm can pro-
vide superior initial guesses for the solution in the current frame. As a result, larger
inter-frame target displacements can be estimated and local minima pose less of a
problem.

As mentioned previously, another independent work on snakes was presented by
Leymarie and Levine (Leymarie & Levine, 1993). This work was published in the
same year as (Terzopoulos & Szeliski, 1992) and focused primarily on the implemen-
tation aspects of snakes. Most of these implementation details are very similar to
those presented in (Terzopoulos & Szeliski, 1992). Nonetheless, three interesting con-
tributions of this work are as follows. (1) The authors apply snakes to cell tracking,
an application area that had received only limited attention with snakes up until that
time. (2) The authors perform snake optimization in a coarse-to-fine framework. In
a similar manner to other coarse-to-fine schemes, snake optimization for a particular
frame is first completed at the coarsest scale of the pyramid. The end result obtained
at the coarser levels provides initial estimates for the next finest scale. In their imple-
mentation, optimization is performed up to and including level one of the pyramid.
Optimization is not performed at level zero because the authors argue the highest
frequency level is corrupted with too much noise. (3) The authors propose a novel
new stopping criterion for optimization. This stopping criterion will be elaborated
upon next.

In (Leymarie & Levine, 1993), it is argued that when optimization iterations are
performed until the standard snake energy (Eq. 4.3) is minimized, the snake vertices
will tend to collapse to small clusters of points that lie within the lowest valleys of the
potential energy surface. To circumvent this problem, one could imagine altering the
snake energy equation by incorporating additional terms or adjusting weights that
penalize the snakes from collapsing in this fashion. However, the authors of (Leymarie
& Levine, 1993) propose a different solution. Specifically, a new stopping criterion is
suggested.

In their work, Leymarie and Levine describe a stopping condition that is based on
the average energy of the contour. As soon as the contour’s average image potential
energy stabilizes, the authors argue that further optimization iterations are uncalled
for, and in fact, may actually cause the snake to skip over a preferred solution.
Specifically, a solution where all snake vertices are at approximately an equal height
on the potential energy surface, is much preferred over a snake where groups of vertices
are clustered in the various deepest valleys of the surface. Thus, the length-based
stopping condition proposed in (Leymarie & Levine, 1993) is

Elength (v) =

∫ 1

0
P (v (s))∫ 1

0
|vs|ds

, (4.12)



90 CHAPTER 4. TRACKING WITH CONTOURS

where P (v) is the image potential energy described previously in Eq. 4.2. The nu-
merator is the sum of the heights of the snake vertices on the potential energy surface
while the denominator is the length of the snake. By using the average potential
energy of all the vertices as the stopping condition, the authors argue that the bias
toward shrinking snakes is reduced. It should be emphasized that during optimization
itself, the complete energy (internal energy plus potential image energy) as described
in Eq. 4.3 is used. The average potential energy, Eq. 4.12 is used exclusively as a
stopping condition.

After these initial exploratory works (Kass, Witkin & Terzopoulos, 1988; Ter-
zopoulos & Szeliski, 1992; Leymarie & Levine, 1993) laid out the theoretical and
implementation foundations of snakes, subsequent papers proposed extensions to this
class of contour tracker. An example of snake extensions is provided by the work of
Peterfreund (Peterfreund, 1997, 1999). In this work, the author includes velocity in-
formation in the snake energy. The general rationale is that the velocity of the snake
should mimic the velocity of the contour in the image. For example, even if there is
a very strong intensity edge in the image, we probably would not want our snake to
be attracted to this edge if it was traveling in the complete opposite direction to the
snake’s previous velocity. Peterfreund incorporates this intuitive idea into the snake
formulation and terms the resulting mechanism a “velocity snake”.

In his formulation of velocity snakes, Peterfreund recommends using the internal
and image potential energies exactly as they were proposed in prior works. The
addition of velocity information arises in the damping function. Rather than using the
damping function suggested earlier (D (vt) =

∫ 1

0
γ |vt|2 ds), the author incorporates

velocity information using the following equation
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ds, (4.13)

where vt is the snake contour velocity and vb
t is the velocity of the image boundary.

The first term on the right hand side of the dissipation function measures the differ-
ence between the snake velocity and the velocity of the boundary within the scene.
The second term is a smoothness constraint added by the author for the purpose of
adding additional numerical stability.

Altering the dissipation function clearly will have an impact on the Euler-Lagrange
equation. In particular, the new motion equations are

µvtt + γC
(
vt, v

b
t

)− β
∂

∂s

(
∂

∂s
vt

)
− ∂

∂s
(w1vs) +

∂2

∂s2
(w2vss)

= −∇P (v (s, t)) , (4.14)

where C
(
vt, v

b
t

)
= LLT

(
vt − vb

t

)
, and is termed the “velocity control”. Notice that
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it is only the second and third terms of Eq. 4.14 that differ from the original Euler-
Lagrange equation for snakes (Eq. 4.8).

Previously, we have discussed how one can compute estimates of the contour
velocity, vt by using central difference approximations. The problem that remains
to be solved in (Peterfreund, 1997, 1999) is that of computing the image boundary
velocity, vb. One method that the author proposes is to merely compute image optical
flow at the snake vertex points. These velocity estimates can be derived using Horn
and Schunk’s method of computing optical flow by minimizing

∫

R

1

2
(∇Iw + It)

2 +
β2

2

(||∇p||2 + ||∇q||2) dx, (4.15)

where the integral considers all pixels within image region, R, β is a weighting term,
and w = (p, q) is the velocity vector with horizontal, p, and vertical q components.

Instead of explicitly computing the optical flow at the image snake points, Peter-
freund does propose an alternative (Peterfreund, 1997, 1999). When the variable L
in the velocity control is assigned a particular value, the necessity of explicitly com-
puting optical flow is removed. Specifically, assuming L = ∇I (v (s, t)), the velocity
control term reduces to

C
(
vt, v

b
t

)
= ∇I

(∇vt −∇Ivi
t

)

= ∇I (∇vt + It) , (4.16)

by using Horn and Schunk’s gradient constraint equation. With this velocity con-
trol term, Peterfreund’s modified Euler-Lagrangian equation can be solved without
explicitly computing optical flow. However, Peterfreund does note that this solution
is more sensitive to noise and therefore superior results are typically attained by ex-
plicitly computing flow. Finally, it should be noted that the primary contribution of
(Peterfreund, 1999) is that it extends velocity snakes to include a Kalman filtering
mechanism.

The overall results of (Peterfreund, 1997, 1999) are arguably the most advanced
of all the snake-based trackers considered in this review. The earlier works (Kass,
Witkin & Terzopoulos, 1988), considered fairly simple videos and often incorporated
user interactive mechanisms. The latter work by Terzopoulos et al. (Terzopoulos &
Szeliski, 1992) increased the difficulty level by tracking cells, non-rigid facial features,
and objects in a laboratory environment. Nonetheless, most of the sequences dealt
with fairly clear, high-contrast edges in minimal clutter. Leymarie and Levine’s work
(Leymarie & Levine, 1993) appeared to provide adequate qualitative performance, but
only in the limited domain of cell target tracking. Peterfreund’s work extends beyond
the prior performance demonstrations and illustrates results across a wide range of
environments, many of which involve difficult tracking situations. Specifically, both
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indoor and outdoor video sequences are shown where rigid and non-rigid objects
are tracked. Although the easiest sequence Peterfreund presents involves a white
car on gray asphalt, the degree of difficult in his additional experiments is quite
high. For instance, one sequence illustrates the tracking of a human hand in an
office environment where there is significant levels of clutter in the background. The
improved version of Peterfreund’s tracker that includes the Kalman filter does indeed
offer superior performance to the one that omits this component. In general, the
Kalman filter-enhanced tracker provides tighter and more precisely centered object
contours. More importantly, however, the velocity snake coupled with the Kalman
filter has the ability to track through occlusion events. Furthermore, when Kalman
filtering is used, the tracker also provides a confidence measure for each of its vertices.
Partial or full occlusion can be detected by analyzing the vertices’ confidences.

In summary, this section has discussed some of the earliest contour trackers, known
as snakes, and their subsequent extensions. Since these initial contour trackers, other
contour-based systems have been derived which rely on different mathematical con-
cepts such as level sets. These more recent contour trackers will be discussed in the
next section.

4.2 Level Set and Geodesic Methods

The snake trackers discussed in the previous section provided a starting point for
tracking objects via curves. In any research area, seldom is it the case that the first
solution to a problem is the optimal one. Initial techniques that are proposed take
time to be refined and improved upon. In fact, many research solutions are perpetu-
ally works in progress. It is no different with respect to contour-based tracking. Not
long after snake trackers started becoming more popular, did researchers begin to
take note of the limitations of the snake framework. The problem of snakes, as many
researchers suggest, is that the parameterization of a curve is too cumbersome for
most tracking problems. Fortunately, a solution to this challenge has been proposed,
namely, representing and propagating a curve with level sets. As level sets will be
the topic of great discussion in this and subsequent subsections, we shall begin with
a description of level sets themselves.

4.2.1 Level Set Theory

Level sets can provide a representation of a curve or interface and can be used to track
their movement. In essence, level sets provide an alternative to representing a curve
as a parameterized function. Avoiding contour parameterization by using level sets
offers numerous advantages, including the ability to easily track curves with corners
and cusps as well as allowing topological changes within the contour. Before we go
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Figure 4.2: Functional representation of a sinusoidal-type curve in the XY plane.

into more details regarding level sets themselves, we will first take a high level look
at the parameterized representation used for snakes so that its shortcomings can be
viewed more clearly.

The key idea behind contour tracking/evolution is to be able to determine how
the shape of the contour will change in future time instants. When considering
potential solutions, one might initially visualize this problem using a “functional
representation”. Consider Fig. 4.2, which shows a sinusoidal curve in the XY plane.
One could describe this image as a function, where every x value maps to a single
y value. The graphs in Fig. 4.2 can be considered as curves and it may be desired
to determine how that contour changes over time. Thus, on the left of Fig. 4.2, the
contour is described as the function y = f (x, t = 0) whereas on the right, we have
the functional form of the contour at a later time, y = f (x, t = 1).

The aforementioned functional representation of a contour seems like a reasonable
approach until one categorical failure is noticed. Consider Figure 4.3. In this case, the
contour could be considered to be the grass and the outline of the house. However,
what is highlighted with this image is that, in general, an image curve can not be
represented as a function. Along the highlighted column, for example, where X = x
there are three associated y values. These three values correspond to the grass,
as well as the bottom and top of the roof. Given this limitation of the functional
representation, an alternative method of describing a curve is needed.

Undoubtedly this problem was noted when researchers were developing the first
snake trackers. In an attempt to identify a solution to this coordinate system chal-
lenge, the parametric representation of a curve was proposed. With a parametric
representation, one maps each (x, y) value of the Cartesian coordinate system to
a different parametric variable, s. Different mappings between the Cartesian system
and the parametric domain can be used, but this only effects the velocity at which one
traces around the curve. In other words, regardless of the parameterization selected,
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Figure 4.3: Functional representation of a house image in the XY plane.

the shape of the contour will remain consistent. The parameterized representation
removes the explicit dependence on a coordinate system and not surprisingly, initial
contour based trackers (e.g., snakes) made use of this representation.

Figure 4.4 shows an example of a curve represented as a discrete snake. In particu-
lar, there are discrete points sampled around the curve and these points are connected
via “strings” that run between them. The arrows in Fig. 4.4 show the computed veloc-
ity of the snake vertices. For the sake of argument, these velocities have been chosen
based on the contour curvature. Points in convex regions will have velocities that
point toward the center of the contour whereas points in concave regions will move
away from the center. Furthermore, the velocity magnitude of these vertices depends
on the amount of curvature at each point. Although this example seems straightfor-
ward enough with a parameterized representation, problems are soon encountered.
Using the velocities suggested in Fig. 4.4, the vertex points will quickly overlap and it
becomes somewhat challenging to keep track of the connections. Furthermore, main-
taining equal spacing between discrete vertices is another clear challenge that will
arise. One method to alleviate these problems is to occasionally resample the curve.
However, this solution is not overly elegant.

Another even more significant challenge when using parameterized curves can be
seen in Fig. 4.5. Here, two objects are shown whose contours are expanding. Under a
parametric representation, these two curves would be independently tracked from the
first frame onward. However, at a later time, these two contours may overlap with one
another. As the right-hand side of Fig. 4.5 shows, discrete snake points from the left-
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Figure 4.4: Curve represented as discrete points. Velocity of the discrete points is
based on contour curvature.

Overlapping 
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Figure 4.5: Two discrete contours merging. Discrete contours cannot easily handle
topological changes.

hand circle are now inside the contour on the right and vice versa. In most situations,
the ideal solution would be to somehow combine the two snakes into a single snake and
only maintain the vertices that appear at the exterior of the combined region. Thus,
with snakes, the process of merging multiple contours (or splitting a single contour)
is not a natural process. Implementing these features with snakes is neither trivial
nor computationally efficient. One could imagine that, at the very least, mechanisms
would be needed for detecting when snakes overlap, determining which snake vertices
are overlapping, and resampling the combined contour. In summary, if topological
changes occur when tracking with snakes, a higher level system component would be
needed for monitoring the individual snakes and managing how they interact with
one another.

It appears that both of the immediate and obvious curve representations (func-
tional and parametric) have their significant, individual shortcomings. Thankfully,
level sets provide a third representation. Level sets once again return to a fixed co-
ordinate system in favor of an explicit parameterization. The trick is to use a space
with a dimensionality that is one higher than the true dimension of the curve. For
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example, in this paper, we are only concerned with two-dimensional curves in the
image domain. Accordingly, with a level sets representation, a three dimensional co-
ordinate frame for tracking the contour of interest is used. Furthermore, rather than
explicitly tracking the motion of a contour, a 3D surface will be explicitly moved.

Conceptually, level sets are quite straightforward. The first aspect of level sets that
must be considered is: “how should this 3D surface be constructed?” Essentially, to
construct a surface, each (x, y) point needs to be assigned a height. Mathematically,
the process of assigning heights can be written as the function z = φ (x, y, t = 0). A
standard way of computing the height at each (x, y) point when creating a level set
surface is to use the signed perpendicular distance from the 2D contour. Image points
that are inside the closed contour will receive negative distances while those outside
garner positive values. Naturally, (x, y) points along the contour itself are assigned a
height of z = 0. Once we have the level set surface at any time instant, it is trivial
to determine the 2D contour within the image. Specifically, all we have to do is slice
a plane through the level set surface, keeping the plane level at a height of zero. The
plane z = 0 is known at the zero-level set.

Having defined the level set surface and the correlation between the surface and
an image contour, the method of moving the surface must be explained. In particu-
lar, the surface must be propagated in such a manner that the zero-level set always
corresponds to the two dimensional contour. It has been shown (Osher & Fedkiw,
2003b,a) that the so-called “level-set equation” can be used for moving the surface

φt + F
(
φ2

x + φ2
y

) 1
2 = 0, (4.17)

where the subscripts represent the partial derivatives of the surface in space and time
and F is the speed of the contour that will be determined based on the application.
For example, in image segmentation and tracking, typically high contrast edges are
used to determine the contour velocity. Accordingly, the velocity, F , can be computed
such that the surface will move quickly when the image gradient is small and more
slowly (or stop) when the gradient is large.

Two final points that should be made with respect to the theory of level sets.
Oftentimes the level set equation is modified to include a viscosity term that helps to
ensure that cusps and sharp curves in the contour do not arise. Such image structures
are undesirable because they lead to undefined derivatives and numerical instability.
The modified level set equation is often written as

φt + F
(
φ2

x + φ2
y

) 1
2 = 0.1κ, (4.18)

where κ is the local curvature of the surface. It should be noted that the there is
nothing special about the “0.1” multiplicative factor. Other small, positive multi-
plicative factors could be used. For instance, a factor of “0.01” could be used, which
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would provide slightly less smoothing.

Another implementation detail regarding level sets is that of efficient computa-
tion. If the complete level set surface is re-estimated at each and every time instant,
the system will be very slow. Various techniques have been proposed for efficiently
computing the level set surface. Two of the most popular solutions are narrow band
and fast marching methods. The narrow band approach simply updates the surface
in the area immediately surrounding the zero-level set (both inside and outside of the
contour). This solution can still be computationally expensive. As a result, when one
knows that the surface will always be propagating in a particular direction (either
inward or outward), the fast marching method can be used. This second algorithm
achieves its efficiency by taking advantage of the fact that the contour is only moving
in one direction and by using an effective sorting strategy.

4.2.2 Level Set Contour Trackers

With the above level set theory in place, we can now begin to elaborate upon trackers
that have employed a level set curve representation. Although their system was
designed for single frame segmentation rather than tracking, the work of Caselles
et al. (Caselles, Kimmel & Sapiro, 1995) is one of the first and most influential
examples of applying level sets to the image processing domain. This work makes
two significant contributions. (1) The contour energy employed in most snake trackers
(Kass, Witkin & Terzopoulos, 1988; Terzopoulos & Szeliski, 1992; Leymarie & Levine,
1993) is shown to be equivalent to finding the geodesic (minimum distance) curve in
a particular space. (2) One of the first examples of applying a level set representation
to the problem of curve evolution for segmentation is shown.

The work by Caselles et al. begins by drawing an equivalence between the stan-
dard energy formulation used for snakes, Eq. 4.3 and a new energy formulation based
on the ideas of geodesic curves. In particular, it is shown that under either formula-
tion, the optimal curve uncovered will be equivalent. To draw this equivalence, the
authors first set w2 (in Eq. 4.1) to zero and assume that the image potential energy
is P (v) = g (|∇I (v (s))|)2. The function, g, is based on the image gradient and has
the property of asymptotically tending to zero as the input goes to infinity (e.g., a
Gaussian function). This function has the desirable property of assigning the lowest
energies to the strongest intensity edges. Substituting the selected values of w2 and
P (v) into the snake energy equations, we obtain

E (v) = w1

∫ 1

0

|vs|2 ds + w3

∫ 1

0

g (|∇I (v (s))|)2 ds. (4.19)

where w1 and w3 are general constants. By assuming particular constant values and
performing some algebraic manipulations, the authors show that the minimum of Eq.



98 CHAPTER 4. TRACKING WITH CONTOURS

4.19 is equivalent to the following

min

∫ 1

0

g (|∇I (v (s))|) |vs| ds. (4.20)

Intuitively, the problem of minimizing the internal and image energy of the contour
has been transformed into the problem of finding the shortest path between two points
in a non-Euclidean space. Specifically, each Euclidean element of length is weighted
by g (|∇I (v (s))|) — information pertaining to the curve’s boundary. Thus, in Eq.
4.20 we are not finding the classical minimum length between two points, but the
minimum length that takes into account image properties.

The next step is to optimize the objective function described by Eq. 4.20. In
a similar manner to snake-based systems, the Euler-Lagrange equation is employed.
The Euler-Lagrange equation for Eq. 4.20 can be shown to be

∂v (t)

∂t
= g (I) κN− (∇gN)N

= βN, (4.21)

where κ is the curvature, N is the unit inward normal, and β = g (I) κ− (∇gN). It
is important to stress that Eq. 4.21 describes the rate of change of the contour with
respect to time, i.e. the contour’s velocity. Note also that for each point along the
contour, the velocity is in the direction of the unit inward normal, weighted by the
factor β.

Under the level sets formulation, as discussed in the previous subsection, we want
to relate the evolution of the curve to the evolution of a surface. To compute the
motion of the corresponding surface, the authors use the following theorem. Assume
that the velocity of the curve is known and is of the form vt = βN. Note that this
is in the same form as was just derived in Eq. 4.21. Given this velocity of the planar
curve, it can be shown (Caselles, Kimmel & Sapiro, 1997) that the velocity of the
level set surface that corresponds to contour, v, is

ut = β |∇u| . (4.22)

Thus, by employing the aforementioned theorem and performing a few algebraic ma-
nipulations, the motion of the corresponding surface can be shown to be

∂u (t)

∂t
= g (I) κ |∇u|+∇g∇u. (4.23)

By employing standard implementation techniques as described in (Osher & Fedkiw,
2003a,b), the above equation can be used for segmenting via the zero level set curve.

Although the authors do not use their level set-based system for tracking, they
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do present some single frame segmentation experiments. The results shown are not
plentiful or overly impressive. However significant benefits of the level sets technique
become immediately apparent. In one example, the authors segment two tools in a
simple, high contrast situation. The beauty of this example is that it illustrates that
when representing curves with level sets, the topology of the curve can change. At the
beginning of optimization, the curve encompassed almost the entire image. However,
as optimization proceeds, the single large contour breaks into one contour for each of
the two tools. Even more impressive is the fact that one of the tools has a hole inside
of its outer boundary. The level set formulation not only uncovers the outer boundary
of the tool, but also the boundary of the inner hole. A secondary benefit seen in these
examples is that, unlike snakes that require the initialized position to be very close to
the optimum, when using level sets, initial contours can be placed far away from the
true target. Of course, in order to find the correct edges, it is assumed that there are
no other good image features (“good” being defined by the particular optimization
function) between the initialized contour and the desired image boundary. In other
words, level sets are not a panacea; they will still be trapped in local minima.

Arguably, the pinnacle of the basic level sets contour trackers was presented by
Paragios and Deriche (Paragios & Deriche, 2000). In this work, three significant con-
tributions were made. To begin, the authors presented a new algorithm for updating
the level set surface in an efficient manner. Additionally, geodesic active contours were
applied to the problem of detection and tracking. This is in contrast to the work of
(Caselles, Kimmel & Sapiro, 1995) that purely focused on segmentation. Finally, in
(Paragios & Deriche, 2000), simulations were performed on a number of illustrative
video sequences.

In this work, the authors decompose the problem of tracking into separate detec-
tion and tracking algorithms that are performed on every frame of the video. The
detection and tracking components each contribute their own geodesic energy terms.
Furthermore, the two modules operate on two different forms of data-derived infor-
mation. We will begin our discussion with a description of the detection component.

The main idea of the detection system is to bring the contour into close alignment
with the target using very simple motion information. Specifically, let D (x, y, t) =
I (x, y, t) − I (x, y, t− 1) be the temporal difference image between the current and
previous frame. The authors’ idea is to first attract the contour to this inter-frame
change region. Instead of directly basing contour evolution on D (x, y, t), a prob-
abilistic motion boundary detector is first deployed to identify more precise motion
boundary regions. As shown in Fig. 4.6, a pixel is deemed to exist on a motion bound-
ary if its neighbors on one side are not moving, while on its other side its neighbors
are in motion. To proceed, these neighborhood regions must be explicitly defined. To
that end, the authors elect to quantize two dimensional space into four orientations
(horizontal, vertical, and diagonals at 45 and 135 degrees). Four lines (correspond-
ing to the four orientations) are drawn through the current pixel, as shown in Fig.
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Figure 4.6: The four neighborhoods considered for the current point. The point under
consideration is in the black. In each sub-figure one neighborhood is represented by
pink circles while the other is denoted using blue squares.

4.6. With respect to a particular line, a pixel’s two neighborhoods are defined as the
surrounding pixels, on either side of the line.

For each orientation, the probability that the pixel is on a motion boundary (i.e.
one neighborhood is moving and the other is non-moving) is computed. Among the
four orientations, the one that provides the maximum probability is retained. This
probability is then stored within a map at the (x, y) coordinates corresponding to the
current pixel. This probability map is denoted as ID (x, y) and it shows the pixels
that have the highest probability of being on a motion boundary.

The detection component of the system in (Paragios & Deriche, 2000) uses a
geodesic energy that is directly based on the probability map, ID. Although the
detection component will not provide overly accurate contour delineation, the goal is
simply to bring the curve into close alignment with the target. Subsequently, later
stages of processing can then refine the initial solution. Mathematically, the detection
geodesic energy integral is

ED (v (s)) =

∫ 1

0

g (ID (v (s))) |vs| ds. (4.24)

where g is a Gaussian function.

The tracking component of the system in (Paragios & Deriche, 2000) is simply an
image gradient-based geodesic energy integral. This tracking energy is equivalent to
that seen in (Caselles, Kimmel & Sapiro, 1995). For completeness, we will express
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this energy once again

ET (v (s)) =

∫ 1

0

g (|∇I (v (s)|)) |vs| ds. (4.25)

The detection and tracking equations are then combined into a single energy
integral

ET (v (s)) =

∫ 1

0

γg (ID (v (s))) |vs|+ (1− γ) g (|∇I (v (s)|)) |vs| ds, (4.26)

where γ is a weight that adjusts the relative contribution of the detection and tracking
components. Using level set theories, the corresponding update equation for the level
set surface can be shown to be

ut =

[
γ

(
g (ID) κ +∇g (ID)

∇u

|∇u|
)

+

(1− γ)

(
g (∇I) κ +∇g (|∇I|) ∇u

|∇u|
)]

|∇u| . (4.27)

It should be noted that during optimization, a coarse-to-fine framework is employed.
During coarse stages, almost all emphasis is placed on the detection component of
the system (i.e. γ ≈ 1). When processing the finer levels of the pyramid, the target’s
location has already been coarsely identified. Thus, during this refinement stage, the
weight is updated to put more emphasis on the tracking component (i.e. γ ≈ 0).

A second contribution of the system in (Paragios & Deriche, 2000) revolves around
the actual implementation details of propagating the level set surface. Two of the
most common surface update equations, fast marching and front propagation, each
have their own shortcomings. The authors introduce a method they term “Hermes
Algorithm” that attempts to combine the two methods to overcome their individual
shortcomings. The algorithm proceeds by iteratively identifying the fastest moving
points along the contour and updating the level set surface in a small region around
that point. The algorithm continues until the surface no longer moves or a certain
number of iterations have been performed.

The authors show that their proposed front propagation algorithm is both efficient
and widely applicable. In fact, the algorithm is only slightly slower than fast marching
methods and does not restrict the contour motion in any fashion. The one downside
of this algorithm is that it only provides an approximate solution for the level set
surface, ut. The authors argue that the Hermes algorithm will still obtain a final
solution that is equivalent to that obtained through other methods. However, Hermes
algorithm violates constraints during intermediate stages of optimization for the sake
of efficiency. In practice, it appears the intermediate approximations do not cause
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any difficulties.

As was mentioned at the outset of the discussion for Paragios and Deriche’s work,
one of its significant contributions was the varied and impressive results. A wide
variety of results are shown, ranging from simple shapes to tracking vehicles, soccer
players, and pedestrians. The ability of the system to operate on a wide variety of
realistic sequences is quite impressive. Another positive aspect of the system is that
the initial contour need not be placed in the immediate vicinity of the target. In the
examples shown in (Paragios & Deriche, 2000), the initialized contour subtends almost
the entire image frame. The system can handle such coarse initializations because the
detection component operates on temporal difference motion information. Assuming
that the target is the only moving object within the scene, it is straightforward for the
system to converge to a coarse outline of the object (as the background is essentially
zero under a temporal difference representation). Should multiple moving objects be
present in the scene and the designer wishes to only follow one of them, a more precise
initialization would certainly be required.

Even though the results in this work are quite impressive qualitatively, there are
certainly a number of limitations to the system. Further inspection of the selected
videos reveals some shortcomings. In particular, in the videos used, the target of
interest is usually seen in front of a uniform background. In other words, there are
no strong intensity gradients in the background within the immediate vicinity of the
target. If there were high intensity background edges near the target, the system’s
performance may suffer. In particular, the authors’ system makes the assumption that
there are no background edges between an object’s motion outline (found through the
detection process) and its true border. Any large intensity gradients in this region
have a chance of attracting the contour away from the true edge. The system also
experiences difficulties with large motions, as it relies on the temporal differencing
detection component to provide an initial contour that is completely outside of the
true object boundary. When large motions occur, the contour recovered through the
detection process may lie partially inside and partially outside the true target bound-
ary. Another limitation with this system is that it has no ability to handle occlusion
events. Nonetheless, this is overall quite a respectable paper, that substantially ad-
vanced the field of contour-based tracking.

In (Bertalmio, Sapiro & Randall, 2000), another approach was presented that
provides very comparable results to those seen in (Paragios & Deriche, 2000). Specif-
ically, the system of Bertalmio et al. can identify very accurate boundaries when the
target is viewed in front of a nearly uniform background. However, in this work,
the resulting system is also shown to be capable of locating the outline of a target
with slightly more complex backgrounds so long as the initial contour is sufficiently
close to the optimal solution. The most novel aspect of this work is that a pair of
coupled partial differential equations are used during contour evolution. This pair of
differential equations will be discussed next.
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The first differential equation used in (Bertalmio, Sapiro & Randall, 2000) is
termed the morphing equation. This equation deals directly with image domain
features in two consecutive frames. The difference between the features in these two
frames is measured and the features in the first frame are morphed toward the features
in the second frame. Let L (I (x, y, t)) be a function of an image I. This function
is essentially a mask that eliminates the influence of all points outside of a three
pixel band around the current contour. However, the intensity values of pixels within
the band are left unchanged. This “thick contour” comprises the features used for
the first differential equation. Specifically, F (x, y, t) = L (I (x, y, t)), where F are
the features in the current frame. The features of the previous frame are iteratively
morphed toward the features in the current frame. To denote this iterative process,
subscript notation is used, whereby, F0 (x, y, t− 1) indicates the initial features from
frame t− 1 before any morphing has occurred.

To derive a differential equation of the desired form, the authors need to compute
the velocity of these image features. This velocity is computed as the pixel-wise
difference between the two sets of features, β (x, y, t) = F (x, y, t) − Fn (x, y, t− 1),
where n is the current iteration. The desired morphing differential equation can be
written as

∂F (x, y, t− 1)

∂t
= β (x, y, t, ) |∇F1 (x, y, t− 1)| . (4.28)

This differential equation leads to an estimate of the feature velocity β (x, y, t, ), which
will subsequently be used in the second differential equation for evolving the contour

To obtain an approximation for the velocity of the tracking contour, the authors
simply project the morphing velocity, β, onto an appropriate direction vector. Having
obtained the velocity of the tracking contour β̂, an expression for propagating the
contour’s corresponding level set surface is

∂u (x, y, t)

∂t
= β̂ (x, y, t, ) |∇u (x, y, t)| . (4.29)

Thus, given an initial surface, Eq. 4.29 is used to propagate the level set surface.

The differential equations in this work given by Eq. 4.28 and Eq. 4.29 are coupled
and work together in an iterative fashion to locate the optimal contour. Once the
differential equation of Eq. 4.28 has completely morphed the image features from
the previous frame into alignment with the image features in the current frame, the
velocity β will be zero. At this point, the zero level set of the second differential
equation should correspond to the desired image contour.

As mentioned, the results presented in this work are very similar in style to those
seen in (Bertalmio, Sapiro & Randall, 2000). An interesting challenge that is unique to
the level set formulation of contour trackers becomes apparent in some of the results
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presented in this paper. In particular, a downside of allowing natural topological
changes is that oftentimes, spurious, unwanted contours will split off from the main
contour. These “noise contours” may persist in the image even after the true target
has moved further away. In general, it may be argued that these spurious contours
can be considered as “shot-noise” and can be removed with an appropriate filter.
However, this solution is not ideal.

Another interesting limitation of the system in (Bertalmio, Sapiro & Randall,
2000) is that the image features used are based on intensity matching within a thick
contour region. Most other contour trackers discussed previously have relied more
heavily on intensity gradients. Although there are potentially gains to be had by
making use of intensity information in a contour tracking framework, there are also
certain advantageous to using gradient information. Specifically, gradients should be
more resilient to changes in illumination. Although it does not appear to be a problem
in the simulations presented, the reliance on intensity information would suggest that
the system in (Bertalmio, Sapiro & Randall, 2000) will not be well equipped to deal
with changes in illumination. Nonetheless, with this work we begin to foreshadow a
change in approaches with respect to contour trackers. Specifically, rather than just
relying on gradient image information, researchers studying contour trackers at this
time were beginning to look into making use of other modalities, including those that
are derived from regions of larger support. This type of contour tracker will be the
major theme of the next subsection.

4.3 Contour Trackers Using Regional Information

At the conclusion of the last section, we discussed a system that made use of informa-
tion directly around the contour of interest (Bertalmio, Sapiro & Randall, 2000). In
essence, the contour had a width that was greater than a single pixel and information
within that thick contour was utilized during its propagation. This technique could be
argued as starting to include regional information into the contour tracking process.
This subsection continues with that same line of thought, only it takes the concept
of regional information even further. For instance, some contour trackers make use
of all the information that exists on either side of the contour. Other trackers use
regional information collected along discrete normal lines to the contour. A number
of these trackers will be presented and discussed.

One of the earlier works that attempted to make use of regional information in the
contour tracking paradigm was seen in (Ronfard, 1994). In this work, it was realized
that only so much can be achieved when using only edge-based features. Information
contained within the target or background region can be invaluable when used in
combination with intensity edge information. Furthermore, in some cases, a high-
contrast edge may not exist between the foreground and target region, making the
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use of other modalities imperative for success. Noticing this limitation of purely edge-
based contour trackers, Ronfard set out with the goal of outlining initial methods for
including regional information in contour-based trackers (Ronfard, 1994).

In his work, Ronfard develops two trackers — a so-called “depth-adapting algo-
rithm” and an “adaptive fusion” algorithm. The two algorithms are very similar,
with the adaptive fusion method extending the depth-adapting algorithm to include
more global information. Unlike the contour trackers discussed previously, Ronfard’s
tracker is more heuristics-based. We will begin with a discussion of Ronfard’s depth-
adapting algorithm (Ronfard, 1994).

As was mentioned during our discussion of standard snakes, one of the main
components of a contour tracker is its energy function. Contour trackers that make
use of regional information have to determine methods of incorporating this new
source of information into an energy function. In (Ronfard, 1994), an approach
similar in spirit to that of classical snakes was proposed. Notably, the energy of a
region is defined according to

W region =

∫

Rk

∣∣∣∣I (x, y)− Īk

∣∣∣∣2 dxdy, (4.30)

where Īk denotes the average intensity of that image region. In other words, the
energy of the region is its intensity variance.

The energy of a region must somehow be related to the energy of a contour. To
that end, the following formula is introduced

W contour (v) = D [Rin, Rout]

= W region (Rin ∪Rout)−W region (Rin)−
W region (Rout) , (4.31)

where Rin is the target region (inside the contour), Rout is the background region
(outside the contour), and ∪ denotes the union operator. The contour energy can be
intuitively thought of as the energy required to merge two regions.

With region and contour energies defined, we now move on to discussing the
method of moving the contour. In Ronfard’s depth-adapting algorithm, a local view
of contour evolution is taken. Specifically, the contour is sampled at a number of
discrete points. At each of these sample points, a rod is defined that is oriented
normal to the contour. This rod has a thickness of L and a length of 2P + 1. The
sampled contour point under consideration is found at the very center of this thick
rod. Figure 4.7 illustrates the rod/contour set-up. To evolve the contour, the author
considers an image region that is much smaller than the area of the thick rod and
that immediately surrounds the current contour point. This small, local region is
defined as δv (s). Given that a particular sampled contour point lies at the center
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L

2P+1

Figure 4.7: A contour and the thick rod representation around a discrete contour
point used in (Ronfard, 1994).

of the rod and along the contour itself, we know that half of the rod lies outside the
current target region while the other half of the rod lies inside. The rod region that
lies outside of the current contour will be denoted as Rout (v (s)). Similarly, Rin (v (s))
denotes the area of the rod inside the target.

Keeping in mind the above definitions and Fig. 4.7, the change in energy experi-
enced with a local perturbation of the contour is

∂W

∂C
≈

∫ 1

0

(Din [v (s)]−Dout [v (s)])
ds

|∆t (s)| , (4.32)

where Din [v (s)] is the so-called Ward distance between Rin (v (s)) and δv (s). Natu-
rally, Dout [v (s)] is defined in an analogous manner. Furthermore, the Ward distance
is defined as (Beaulieu & Goldberg, 1989)

D [RA, RB] = W region (RA ∪RB)−W region (RA)−W region (RB) , (4.33)

where RA and RB are two image regions. So long as the local contour perturbation
results in a positive change in energy (i.e. Eq. 4.32 stays positive), the current contour
point will continue to move inward or outward in discrete steps until a maximum
displacement is reached. This process is then repeated for all contour points.

A negative aspect of the resulting algorithm is that there are a number of parame-
ters and they are not determined in a principled manner. Another downside of this
depth-adapting algorithm is that all contour points are completely independent of
one another. Ideally, more information would be shared between the contour points
so that a more global perspective could be taken. Ronfard’s extended version of the
system, the adaptive diffusion algorithm, attempts to address this second issue.
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The proposed solution for incorporating more global information is actually very
straightforward. In Eq. 4.30, when the energy of a region is computed, the mean
intensity of the region, Īk, is used. Subsequently, when computing Eq. 4.32, the
average intensity of the inner and outer regions of a rod are required. In the standard
version of the algorithm, these mean intensities are computed using just the current
rod. However, in the extended version of the algorithm, more global measures are
obtained by averaging the inner (outer, respectively) regions of numerous neighboring
rods. Contributions to the mean intensity used for a particular contour point are
weighted such that its own rod has the most influence and the influence decreases
as the distance increases. These averaged inner and outer region intensities, Ī∗in and
Ī∗out, are then used during the computation of Eq. 4.32. The authors report that this
modification improves convergence properties around the contour boundaries.

Overall, the results shown in (Ronfard, 1994) are fairly comparable to other ap-
proaches of the time. Specifically, results are shown for segmenting and tracking that
are quite similar to the work by Kass et al. (Kass, Witkin & Terzopoulos, 1988). It
appears that there are some gains to be had by using the adaptive diffusion algorithm
as it helps to maintain consistency and incorporate global information. However, the
algorithm is more complex and harder to control than the simpler method. Addition-
ally, the extended algorithm is more computationally intense.

Another interesting method that attempts to incorporate region information into
a contour tracker is presented in (Jehan-Besson, Barlaud & Aubert, 2001). This
work was published much later than Ronfard’s and attempted to define a common
framework for this class of contour trackers. Since a general framework was being
proposed, attempts were made to make the approach as broadly applicable as possible.
For instance, for the purpose of generality, the paper makes use of so-called “descriptor
functions”. Essentially, descriptor functions can be used to characterize a region or
contour. The actual functions employed are application-dependent and can be defined
by the designer.

Like many other contour-based trackers, this work defines an energy function
that measures the goodness of a contour. The proposed energy is a function of the
contour as well as the regions outside and inside (i.e. the background and foreground,
respectively). Mathematically, the energy is written as

E (Rin, Rout, v) =

∫ ∫

Rout

koutdxdy +

∫ ∫

Rin

kindxdy +

∫

v

kbds, (4.34)

where kout, kin, and kb are the descriptor functions for the background, foreground,
and contour, respectively.

It is claimed that another major contribution of this work is the fact that time-
dependent descriptors can be used. In other words, the contour energy itself is modi-
fied to include a dynamic variable that represents the optimization iteration number.
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To fill this roll, the evolving parameter, τ , is introduced to keep track of the iteration
number. Thus, the modified version of Eq. 4.34 is

E (τ) =

∫ ∫

Rout(τ)

kout (x, y, τ) dxdy +

∫ ∫

Rin(τ)

kin (x, y, τ) dxdy +

∫

v(τ)

kb (x, y) ds. (4.35)

With standard snakes, the energy integral is formed and then is subsequently trans-
formed using the Euler-Lagrange equation. At that point, an equation can be derived
for updating the snake contour for each iteration (e.g., Eq. 4.11). However, in the
proposed system of (Jehan-Besson, Barlaud & Aubert, 2001), the iteration variable
is within the energy function itself. The direct consequence of this modification is
that the change of the contour with respect iteration number, ∂v

∂τ
, can be computed

directly.

By consider the region-based and contour-based terms independently, the partial
derivative of the energy with respect to τ can be shown to be,

∂E

∂τ
=

∫ ∫

Rout(τ)

∂kout

∂τ
dxdy +

∫ ∫

Rin(τ)

∂kin

∂τ
dxdy +

∫

v(τ)

(
kout − kin − kb · κ +∇k(b) ·N)

(v ·N) ds. (4.36)

where ∂kout

∂τ
and ∂kin

∂τ
indicate the partial derivatives of the background and target

descriptors with respect to the dynamic variable, respectively. Note that if the de-
scriptor functions do not depend on τ , then the first two terms of Eq. 4.36 vanish.

The authors provide specific derivations of ∂v
∂τ

, when particular descriptors func-
tions are used. For example, in the simplest case where the regional descriptors are
time-independent the energy derivative reduces to

∂E

∂τ
=

∫

v(τ)

(
kout − kin − kb · κ +∇k(b) ·N)

(v ·N) ds. (4.37)

Under these assumptions, the curve velocity partial differential equation can be shown
to be

∂v

∂τ
=

(
kin − kout + kb · κ−∇k(b) ·N)

N

= βN. (4.38)

Note that this is the same form as seen in other level sets contour trackers.

In (Jehan-Besson, Barlaud & Aubert, 2001), contours are represented and opti-
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mized using a level set formulation. In the standard fashion, the level set surface
update equation is derived using the velocity of the contour, β, as defined above. The
authors argue that the additional terms included in β (as a result of including the
iteration variable directly in the energy equation) help to ensure that the minimum
energy solution is determined in the fewest number of iterations.

The theoretical aspirations of (Jehan-Besson, Barlaud & Aubert, 2001) are quite
noble and sound. The introduction of a general framework for introducing regional
information into contour-based trackers is certainly a worthwhile contribution to the
field. However, the experimental results presented in this work are not convincing of
the overall utility of this framework. One might have expected the results to illustrate
that the incorporation of the dynamic variable directly into the energy equation does
indeed provide gains in efficiency, as suggested by the authors. Unfortunately, no such
qualitative or quantitative evaluation is performed. In fact, the results presented in
this work are based on very simplistic video sequences, especially for the time of pub-
lication. Furthermore, the descriptors selected are very simple — essentially reducing
the resulting system to a contour-based background subtraction scheme. The selected
energy function attempts to find the contour that maximizes the similarity between
the model background and the region outside the contour while simultaneously mini-
mizing the number of foreground pixels and the length of the contour. Although this
approach appears to provide adequate results for the simple videos considered, it is
difficult to speculate as to how well it would perform on more challenging videos. Ad-
ditionally, the utility of the proposed framework is not clear, given the unconvincing
results presented.

Another contour tracker that used regional information was presented by Chen et
al. in 2001 (Chen, Rui & Huang, 2001). In a similar manner to the two works already
discussed, a very inventive approach was taken when incorporating this new source
of information. Clearly, researchers during this time had the desire to utilize regional
information to improve contour trackers’ performance; however, the best strategy for
accomplishing this task was still very much undecided. In (Chen, Rui & Huang, 2001)
a contour tracker was developed that includes region information by using a hidden
Markov model (HMM) (Poritz, 1988). In this work, the idea of setting up an energy
integral is avoided in favor of defining the behavior of the contour purely through the
HMM’s observation model and transition probabilities.

In brief, the contour tracker performs the following overall operations from frame-
to-frame

1. Predict the position of the contour in the current frame.

2. Sample the predicted contour with discrete junction points.

3. Define normal line segments that pass through each discrete contour point.

4. Compute the observation likelihoods for each pixel along every normal line.
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5. Compute the transition probabilities

6. Identify the optimal contour using the Viterbi algorithm (Forney, 1973) in con-
junction with the computed probability distributions.

7. Fit an ellipse to the contour to increase stability.

The first three steps in the HMM-based tracker are very similar to other contour
trackers that have already been discussed previously (e.g., (Ronfard, 1994)). To de-
fine the observation model, color and edge-based information are used and considered
to be independent. For edge based features, it is possible that more than one edge
will be detected along a particular normal line. Accordingly, the observation model
expresses the probability of observing a particular set of edges, given that the system
has selected a particular pixel along the normal line as its state. With respect to the
color observation model, the authors make use of foreground and background color
distributions. These two distributions represent the probability of observing a partic-
ular color pixel if it lies within the foreground and background regions, respectively.

When designing the proposed tracker, the authors of (Chen, Rui & Huang, 2001)
face a similar predicament to that of Ronfard in his work (Ronfard, 1994). In partic-
ular, the observation probability provides a way of locally determining the optimal
contour point along each normal line. However, in considering only a single nor-
mal line, no global information is considered. Since the tracker is based on a HMM
framework, the transitions probabilities provide a natural mechanism for including
global constraints. A very simple global constraint would be to encourage neighbor-
ing discrete contour points to be close to one another, in a Euclidean distance sense.
Specifically, one simple state transition density function proposed in this work is

p (sφ|sφ−1) = c exp

(
−(sφ − sφ−1)

2

σ2
s

)
, (4.39)

where c is a normalization constant, σ2
s is the variance of the distribution, sφ denotes

the state of a particular normal line, and sφ−1 represents the neighboring normal line.
A more elaborate state transition function is also proposed in an attempt to make

use of not only the global positional information (i.e. smoothness), but also global
color information. Intuitively, the idea with the modified transition probabilities is
to encourage the color patterns along neighboring normal lines to be similar or, at
minimum, to vary in a smooth manner. For example, consider Fig. 4.8 which shows
one normal line that has three blue pixels on the far left, followed by two black pixels in
the middle, and four red pixels on its right end. As Fig. 4.8 shows, the new transition
probabilities encourage neighboring normal lines to have similar color orderings. With
this state transition function, multiple measurements along the current normal line
must be matched to multiple measurements along the next normal line. Matching
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Figure 4.8: Global normal line color constraint used in (Chen, Rui & Huang, 2001).

sets of measurements is not a trivial problem and is something that was discussed
in the context of statistical point trackers in Chapter 2. Borrowing ideas from that
literature, the authors of (Chen, Rui & Huang, 2001) use a JPDAF to match the
measurements in conjunction with a dynamic programming optimization procedure.

The proposed system is demonstrated in the application area of head tracking.
The results indicate some success with moderate appearance changes, quick motions,
and out of plane rotations. Furthermore, the authors claim that the system is mod-
erately robust to changes in illumination, which it should be, given that discrete edge
features are employed. Overall, the sequences show fairly typically head tracking
performance in an office environment. The more interesting aspect of this work is the
novel usage of hidden Markov models for contour based tracking.

The three trackers just described provide three very unique perspectives on how
to incorporate regional information into the contour tracking paradigm. Several ad-
ditional contour trackers will now be discussed (Mansouri, 2002; Yilmaz, Lin & Shah,
2004; Li, Miller, Weiss, Campbell & Kanade, 2006; Zhou, Hu, Chen & Hu, 2007).
These works still provide quite disparate perspectives on the optimal method in which
regional information should be incorporated. Nonetheless, there are two common
themes that unite these papers: they all use levels set curve representations and they
all wish to incorporate regional information when propagating the tracking contour.
These are some of the more modern works in the field of contour tracking and two
current trends are quite clear. The first trend is that representing contours with level
sets is currently considered the best method, in general. Secondly, modalities other
than gradient edge information must be incorporated into contour trackers in order to
improve their reliability and robustness in realistic situations. With this motivation
in mind, we will begin with a discussion of the tracker by Li et al. (Li, Miller, Weiss,
Campbell & Kanade, 2006).

In (Li, Miller, Weiss, Campbell & Kanade, 2006), the goal is to simultaneously
track numerous microscopic human cells. There is little about this tracker that is
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completely unique; however, the authors do combine a variety of standard tracking
tools in a novel fashion, a process that yields an effective cell tracker. The four stages
of the proposed tracker are as follows:

1. Cell detection.

2. Model tracking via level sets.

3. Prediction with motion filtering.

4. Track arbitration.

We will now discuss each of these stages in turn.
The process of cell detection in Li et al.’s tracker is accomplished with a pixel-

wise classification process. Histograms representing the intensity distributions of
the foreground and background regions are learned using training videos. Subse-
quently, pixel-wise maximum a posterior classification decisions can be made using
these learned distributions. The result of this classification process is a binary map of
the image. Each connected region within the binary map is considered to be a “cell
candidate”.

As mentioned, contour evolution is performed using a level set representation. For
cell tracking, the usage of level sets appears to be almost necessary as there can be
literally hundreds of cells within the field of view at any one time. Attempting to
keep track of each contour individually with another method, such as standard snakes,
would surely prove far too complicated and computationally intense. However, with
the level sets formulation, topological changes are natural. As always, to use the level
sets formulation, the contour energy must first be defined. Li et al. elect to define the
energy of the contour based on three terms: region energy, Eregion, which is based on
pixel intensities; edge energy, Eedge, which is based on image gradients; and motion
energy, Emotion, which is based on the contour’s predicted motions.

In the cell tracking application considered in (Li, Miller, Weiss, Campbell &
Kanade, 2006), level sets are beneficial for allowing topological changes in all but one
situation. In particular, according to current knowledge, it is physically impossible
for two cells to merge into one. As a result, the authors require a method of detecting
and preventing cell fusion. An elegant solution to this problem is not provided in (Li,
Miller, Weiss, Campbell & Kanade, 2006). Instead, a heuristic mechanism is used
that relies on neighborhood functions and connected components. It appears that
allowing and disallowing certain types of topological changes in a principled manner
is an area of level set methods that can be further explored.

The third component of the system in (Li, Miller, Weiss, Campbell & Kanade,
2006) is motion filtering. A standard, off-the-shelf Kalman filter is used where the
state of a cell is defined by the its centroid position, speed, and average intensity.
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Measurements for this motion filter involve only the centroid position and mean in-
tensity. The single unique aspect of the Kalman filter used in this work is that the
motion model is learned offline using training data. Assuming and defining a con-
stant, standard motion model (e.g., constant velocity, constant acceleration) is a much
more popular approach than learning the dynamic model. However, the learning of
dynamic models has certainly been explored before, particular by Blake, Isard, et al.
in works such as (Blake, Isard & Reynard, 1994) and applied in the popular CON-
DENSATION tracker (Isard & Blake, 1996). These works will be discussed in more
detail in the following section.

The track arbitrator is the final component of the proposed tracker from (Li,
Miller, Weiss, Campbell & Kanade, 2006). This system module deals with high
level system problems such as the initialization of new tracks and the removal of stale
tracks. Additionally, this module will attempt to associate unmatched candidate cells
(found through detection) with unmatched predicted cell regions (found using motion
filtering). Most of the techniques employed in this system module are rule-based and
incorporate cell tracking domain knowledge.

The experimental results reported in this paper are quite impressive given the
number of cells being tracked simultaneously. Truthfully, the field of contour based
tracking has come a long way since the work of Kass and Terzopoulos! This ad-
vancement is largely thanks for the level set formulation. In this work, quantitative
performance analysis is also provided. However, these quantitative results are not
overly useful as, to our knowledge, no other researchers use the same data. One
shortcoming of the proposed approach is that it is quite computationally expensive,
taking up to twenty seconds per frame for processing.

The remaining level set contour trackers in this category (Mansouri, 2002; Yil-
maz, Lin & Shah, 2004; Zhou, Hu, Chen & Hu, 2007) take a similar, probabilistic
approach to the problem. We will begin with the work of (Yilmaz, Lin & Shah,
2004), which provides extremely impressive overall tracking results. In this work, the
authors elect to combine color features with the filter responses of spatial orientation
selective filters. This work is actually somewhat analogous to the tracker from the
previous section (Bertalmio, Sapiro & Randall, 2000) that made use of a thick contour
representation. Despite this similarity between (Bertalmio, Sapiro & Randall, 2000)
and (Yilmaz, Lin & Shah, 2004), it was felt that the work by Yilmaz et al. was better
suited for this section as it incorporates features that are definitely region-based and
their approach is quite similar to (Mansouri, 2002).

Under the probabilistic formulation presented in (Yilmaz, Lin & Shah, 2004), the
goal is to discover the contour, v that will optimally divide the image into two regions
corresponding to the foreground and the background. Mathematically, we want to
find the contour that maximizes the probability Pv = P

(
φ (Rt) |I t, vt̄

)
where φ is

a function that divides the image pixels into two disparate sets of foreground and
background pixels. Furthermore, Rt is a particular image region and vt̄ are all prior
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contours that have been found. By making use of Bayes’ rule, the contour probability
is approximated as

Pv ≈ P
(
I t|Rt

target, v
t̄
)

P
(
I t|Rt

background, v
t̄
)

P
(
φ

(
Rt

) |vt̄
)

(4.40)

where Rtarget and Rbackground are the target and background regions, respectively. The
first two terms on the right hand side can be computed via the target and background
priors as well as the measured features. The third term considers the shape of the
target, which is learned over time. To simplify notation, we will denote the three
terms on the right hand side as PRtar (I t), PRback

(I t), and P t
s , respectively.

Following (Yilmaz, Lin & Shah, 2004), a maximum a posterior estimate of the
curve is computed. This contour estimate is attained using the following

v̂t = arg max
v

∏
x1

[∏
x2

PRtar

(
I t (x2)

) ∏
x3

PRback

(
I t (x3)

)
P t

s

]
(4.41)

where x1 are points along the contour. Note that in this work, the set of points,
x2, are points within a thick contour band inside of the current contour. Similarly,
the set of background points, x3, are defined within a thick band on the outside of
the true contour. By taking the negative log-likelihood of Eq. 4.41, the maximum a
posterior contour estimate can be changed into the problem of energy minimization.
The end result of the aforementioned transformation is written as

E =

∫

x1

[∫ ∫

x2

− log PRtar

(
I t (x2)

)
dx2+

∫ ∫

x3

− log PRback

(
I t (x3)

)
dx3 − log P t

s

]
dx1. (4.42)

With this equation, the standard level set machinery can essentially be employed to
arrive at the surface update equation. In particular, minor modifications are made
to Eq. 4.42 to parameterize the energy in terms of the distance along the contour, s.
Subsequently, the Euler-Lagrange equation is used to compute the contour velocity
from the energy integral. The contour velocity is then utilized in the standard manner
in propagating the level set surface.

Thus, not surprisingly, one of the the biggest contributions of this work by Yil-
maz et al. is the proposed energy functional that is derived using probability theory.
The remaining mechanics have been derived previously. Another unique aspect of
this work is that an explicit occlusion handling mechanism is introduced. Occlusion
detection is handled in an ad hoc manner, using rules based on the targets’ sizes to
determine if an occlusion event has occurred.

Overall, the results displayed in this work are excellent. The tracker provides
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extremely tight boundary contours and can be used in a variety of situations including
with moving cameras. Perhaps the most impressive results are those that illustrate
the system’s occlusion handling abilities. Although occlusion detection and handling
is largely heuristics-based, in practice, it appears to perform extremely well. For
humans who are partially or almost fully occluded, the system extrapolates very
reasonable contours for the occluded region. It is challenging to ascertain the exact
correctness of the contours in these occluded regions (as the true boundary is not
visible) but visually, the results are very pleasing. The tightness of the target contours
and the occlusion handling ability of this tracker are striking and are probably the
most impressive results of all contour trackers considered in our review.

Although the results obtained in (Yilmaz, Lin & Shah, 2004) are qualitatively
very good, it is worth noting that one significant assumption made in the proposed
approach is not overly accurate (Zhou, Hu, Chen & Hu, 2007). In Eq. 4.40, it is
assumed that the pixels in foreground and background regions are independent of
one another. This assumption is typically sound as, generally speaking, the fore-
ground and background have different distinguishing features (e.g., different color,
texture, etc.). However, in Eq. 4.41 it is further assumed that pixels within the two
regions are independent from one another. Typically, this assumption is not true.
Noticing this shortcoming, an alternative probabilistic level sets approach was pro-
posed in (Zhou, Hu, Chen & Hu, 2007). In this work, pixels within the foreground
(background, respectively) are not assumed to be independent. Instead, a Markov
Random field-based approach is used that considers the foreground/background states
of a neighborhood of pixels during likelihood computations. During empirical evalu-
ation, the proposed method is shown to outperform a contour tracker that makes the
independence assumption between pixels.

In (Mansouri, 2002), another probabilistic contour tracker that uses regional in-
formation is proposed. Here, the general idea of the tracker is to estimate the target
region in the current frame, R1, given the previous and current images, In and In+1,
as well as the previous target region R0. Consider the equation

In+1 · φ (x, y) = In (x, y, ) + µ (x, y) , (4.43)

where µ is zero-mean Gaussian noise and φ is a function that aligns the target region
in the previous frame to the target region in the current frame. In other words,
φ (R0) = R1. Region warping trackers, which will be discussed more in the next
chapter, attempt to estimate the transformation, φ. In this tracker by Mansouri,
a different approach is explored. In this case, the author attempts to estimate the
target region in the current frame, R1, directly.

In a probabilistic maximum a posterior framework, the goal of estimating R1 can
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be written as

R̂1 = arg max
R

P
(
R1 = R|In, In+1, R0

)

= arg max
R

P
(
In+1|In, R0, R1 = R

)
P (R1 = R|In, R0) (4.44)

where the second line of the above equation is obtained using Bayes’ rule. Note that
the first probability on the right hand side (second line) is the likelihood probabil-
ity while the second term is the prior. In order to evaluate Eq. 4.44, a number of
assumptions are required.

In this work, two major assumptions are made for the purpose of defining and sim-
plifying the aforementioned likelihood and prior. Firstly, a conditional independence
assumption is made which has the effect of limiting the allowable transformations that
can take place on the target region. The second, partial dependence, assumption has
the affect of asserting that the foreground and background have differing luminance
and chrominance properties.

Given these assumptions, the likelihood probability is defined as
P (In+1|In, R0, R1 = R). This distribution is defined in a piecewise fashion,
depending on whether the pixel under consideration lies within the foreground
or background. The distributions are based on the pixel-wise squared intensity
difference between the pixels in the current frame and the corresponding pixels in the
previous frame (which are brought into alignment using the current transformation
function, φ). By assuming that a maximum range of motion for the contour is
known a priori, the set of allowable transformations can be reduced to the problem
of performing a local neighborhood search around the current pixel.

In addition to determining the posterior, in order to estimate the optimal region in
the current frame, the prior distribution must be determined. The prior distribution
is defined as the length of the contour enclosing R1, multiplied by a constant scaling
term. Combing the log probabilities of the prior and posterior, an energy integral can
be created. This energy integral can then be used in the level set formulation using
the standard procedures.

The results presented in this work are good, but perhaps not as impressive as
some of the other contour trackers considered in this review (e.g., (Yilmaz, Lin &
Shah, 2004)). One of the experiments used the same car sequences as in (Koller,
Daniilidis & Nagel, 1993). It could be argued that the performance of the system in
(Mansouri, 2002) is drastically superior to Koller’s work because, in this case, much
less prior information is employed. Specifically, Mansouri’s system does not make
use of a 3D model during tracking. However, with reference to other contour-based
trackers, the results on this sequence are somewhat disappointing. Throughout the
experiments, it is clear that the extracted contour is quite ragged relative to other
works. Additionally, in the car sequence the tracking contour tends to only capture
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the upper 1
2

to 1
3

of the car. The portion of the car that is successfully tracked is
that which is not effected by shadows. The car sequence presented by Mansouri
also clearly illustrates the problem that the level sets formulation has of generating
small, spurious closed contours. Other results shown in (Mansouri, 2002) are more
impressive than the car sequence used by Koller. In particular, the system is shown
to be able to track successfully in cluttered environments. Furthermore, in another
vehicle sequence, the tracker is not confused by an elongated cast shadow which would
tend to trick other contour trackers, such as the one proposed in (Paragios & Deriche,
2000).

In summary, this section has focused on contour trackers that have elected to use
more than just curve-derived information while tracking a target. This progression of
contour trackers is certain a logical one as previously, there was significant regional
information that was being discarded by this class of trackers. Arguably the biggest
obstacle when using regional information with contour trackers is that of integrating
the regional information into the paradigm. As evidenced by several papers in this
section, a popular approach is to define an energy integral that includes regional
information and employ level sets for curve propagation.

4.4 Other Contour Trackers

No matter how hard we try and what classes are use to divide the various contour
trackers, there will be unique systems that simply do not fit properly into our defined
categories. There is something to said for such systems, as it is does indicate that the
researchers’ work is very unique. However, at the same time, if a paper presents a
truly ground-breaking tracker, it would be expected that a number of works would be
subsequently published that are minor variations on the original idea. In this section,
we will consider works from two different research groups. The first system arguably
does not make significant contributions outside of its unique approach. The latter is
a truly groundbreaking series of work that helped to redefine contour tracking and
visual tracking, in general.

The first, unique work considered in this section is by Xu et al. (Xu & Ahuja,
2002) and considers the design of a contour tracker using graph cuts. Given an initial
contour, the significant steps performed by this system are as follows:

1. Dilate the contour into a thick contour.

2. Represent the pixels within the thick contour as an adjacency graph.

3. Group the nodes along the inner boundary of the thick contour into a single
graph source.
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4. Group the nodes along the outer boundary of the thick contour into a single
graph sink.

5. Find the minimum graph cut that separates source from sink for the graph
created in Steps 2-4. The resulting graph cut optimally separates the inner
boundary of the thick contour from the outer boundary.

6. Iterate Steps 1-5 until convergence.

The system deploys the above algorithm on two types of input data — frame
differenced images and intensity images. The graph cut contour finding algorithm is
first used on frame difference imagery to obtain a coarse contour estimate. Frame
differencing eliminates the background clutter and allows the contour to converge to
the interesting (i.e. moving) target within the scene. The authors argue that the
resulting contours at this stage are neither precise nor well-centered, partially due to
the problem with two frame differencing, discussed in Chapter 2 of this review. As a
result, the initial contour is refined using the original intensity image. It is assumed
that the initial contour will be close enough to the true target boundary that it will
not become trapped by local minima caused by the background clutter. The authors
argue that the contour would be distracted by background clutter if the first stage of
processing with the frame difference image was not used. This two-stage approach is
reminiscent of the work by Paragios et al. (Paragios & Deriche, 2000) where detection
and tracking stages were used.

The end results of this system are not overly impressive, especially given other
papers that were published in that same time frame. Consequently, few papers have
extended this proposed approach. Nevertheless, this work is somewhat interesting in
the context of this literature survey. Specifically, this work is yet another example of
a contour tracker that takes the middle-ground approach of a “thick contour” (similar
to (Bertalmio, Sapiro & Randall, 2000; Yilmaz, Lin & Shah, 2004)).

A series of works on the opposite end of the spectrum from that of (Xu & Ahuja,
2002) revolves around the CONDENSATION tracker by Isard and Blake (Isard &
Blake, 1996). This system is the culmination of numerous proceeding works (e.g.,
(Blake, Isard & Reynard, 1994)). Furthermore, several extensions have been made,
most notably by researchers affiliated with the same research group (e.g., (Maccormick
& Blake, 2000)). The CONDENSATION tracker’s most prominent contribution was
the mainstream introduction of particle filtering to visual tracking. Prior to this
work, Kalman filtering was almost the exclusive predictive filter of choice in vision
research. The advantages of particle filters were highlighted in (Isard & Blake, 1996)
with respect to tracking in clutter and when multiple targets with similar appearance
are present. Thanks to this work by Isard and Blake, particle filters have become
almost as popular as Kalman filters for visual tracking.
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We have already described most of Isard and Blake’s CONDENSATION algorithm
indirectly in Chapter 2 during our discussion of particle filters. The authors follow the
particle filtering method exactly as described in our previous chapter. Accordingly,
the main system components that must be defined are the target representation as
well as the specific dynamic model and observation model that are employed.

In their work (Isard & Blake, 1996), the target is represented using parameter-
ized, B-spline curves, r (s, t). Furthermore, the space of contours is restricted by only
allowing the contour to undergo certain types of transformations. This set of trans-
formations can be determined a priori using key frames of a training sequence, or
through other methods.

In this work, the dynamic model is represented using a second order linear differ-
ence equation that can be written as

xt − x̄ = A (xt−1 − x̄) + Bwt (4.45)

where xt is the state at time t, x̄ is the mean value of the state, A is matrix describing
the deterministic motion properties, wt is a vector of Gaussian random variables, and
B represents the stochastic aspects of motion. At this stage, many trackers in the
literature would simply assume a particular motion model (e.g., constant velocity) and
that the stochastic component of the model is represented by zero-mean, Gaussian
noise. In this case, a different approach is taken. Using training data of similar
targets with similar dynamical properties, accurate motion parameters for A and
B are learned. This learning of a target’s dynamical properties was discussed in
prior work by Blake et al. in (Blake, Isard & Reynard, 1994), where it was shown
that learned dynamical models do indeed achieve superior performance than simple
assumed dynamic models.

With respect to the observation model used in (Isard & Blake, 1996), an approach
reminiscent of other works discussed in this chapter is used. In particular, a one di-
mensional observation model is first defined using normal lines at discrete contour
points. Along each line, the probability distribution p (z|x) is defined. This distri-
bution expresses the probability of observing a particular set of edges, z, along the
normal line, given that the system is in a particular state, x. In particular, z is a
collection of one dimensional edge position measurements z = (z1, z2, . . . , zM), where
M is the number of measurements. In this work, the one dimensional observation
model is decomposed into two parts — one which represents the probability that the
target is not visible, while the other considers the probability that one of the edge
measurements corresponds to the true contour. Mathematically,

p1 (z|x) = qp (z|clutter) +
M∑

m=1

p (z|x, φm) P (φm) , (4.46)
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where q is the probability that the target is occluded, and φm indicates that the
correct measurement (i.e. that which is generated by the true contour) is zm.

To precisely define Eq. 4.46, a number of assumptions are made. To begin, all
measurements are assumed to be equally probable, making P (φm) constant for all
m. Furthermore, clutter along the line is assumed to arise from a Poisson process
with spatial density, λ. Finally, a true target measurement, if one is present, is
assumed to be normally distributed with a standard deviation of σ. Combining these
assumptions, the one dimensional observation distribution is

p1 (z|x) ∝ 1 +
1√

2πσα

∑
m

exp

(
−(zm − x)2

2σ2

)
, (4.47)

where α = qλ. To further simply matters, it is assumed that only the closest mea-
surement to the predicted position defined by the state will be included. This final
assumption leads to

p∗1 (z|x) ∝ exp

(
− 1

2σ2
f (v1; µ)

)
, (4.48)

where f (v; µ) = min (v2, µ2) and µ is a spatial scale constant. Additionally, v is the
difference between the state position and the closest measurement.

As was seen in other works, (Ronfard, 1994; Chen, Rui & Huang, 2001) the one
dimensional observation probability must be extended to encompass all normal lines.
To do so, the authors compute the product of the one dimensional densities that are
evaluated independently for each of the normal lines. This product yields the required
two dimensional observation probability used by the tracking system. Thus, having
defined the dynamic model and observation model, the CONDENSATION particle
filter proposed in (Isard & Blake, 1996) is essentially completely defined.

It should be noted that there have been a number of extensions to the original
CONDENSATION tracker, one of which is presented in (Maccormick & Blake, 2000).
In this particular extension, the authors make two contributions. First, they update
the observation model so that it can more accurately deal with multiple targets.
Additionally, a “partitioned sampling” scheme is proposed to reduce the number
of particle samples required (and thus, processing time). Most of the extensions
that have been reported on the CONDENSATION algorithm have been evolutionary
refinements rather than revolutionary new achievements.

Returning to the original CONDENSATION tracker (Isard & Blake, 1996), the
results shown in this work were striking for their time. Tracking results were shown on
targets that move quickly and erratically in front of cluttered backgrounds. From the
examples shown, the benefits of maintaining multiple hypotheses when performing
visual tracking with distractors is clear. The authors report that standard Kalman
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filters obtained nowhere near the level of performance that can be attained via their
particle filter tracker.

There are definitely significant downsides of the approach presented in (Isard &
Blake, 1996) as well. The authors elected to incorporate a lot of prior information
into their final CONDENSATION tracker. Hand-drawn templates are used at the
outset. The dynamic models for the object are learned using training data. This
process often involves iteratively running a standard Kalman filter to learn and refine
the target dynamics. In short, a great deal of sequence-specific work was performed
to obtain the high quality final results that are shown in the publication. Although
the framework of the tracker allows for the tracking of any arbitrary object, it ap-
pears that the CONDENSATION tracker requires a significant amount of domain
knowledge to achieve the best performance. This requirement limits the usefulness
of the tracker somewhat as its ease of deployability is reduced. In line with that
thought is the fact that it appears the CONDENSATION tracker is more often cited
in the literature for its introduction of particle filtering to tracking, rather than pa-
pers by other researchers attempting to improve upon that particular contour-based
implementation.

4.5 Recapitulation

To summarize, this chapter has presented trackers that propagate contours that de-
lineate precise target boundaries. Early works include snake-based systems that used
discrete curve parameterizations. Subsequently, a more elegant contour tracking
framework involving level sets was introduced. Among other advantages, level set
contour trackers allow for natural topological changes. As researchers began to see
the limitations of using only information along the contour itself, techniques were pro-
posed for introducing regional descriptors into the contour tracking framework. In
the next chapter, we will explore trackers that forgo the use of a contours altogether
and simply represent targets as contiguous regions.
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Chapter 5

Region-Based Trackers

In this chapter, the various flavors of region-based trackers will be discussed. For
the purpose of this review, a region-based tracker is defined as a tracker that main-
tains feature information across an area that represents the target support. The
types of features that are used in conjunction with region trackers includes: color,
texture, gradient, spatiotemporal energies, filter responses, and even combinations
of the above modalities. The more significant difference between these trackers is
the manner in which they represent and capture the target motion and move the
tracking window from frame-to-frame. These methodological differences led to the
categorization of region-based trackers presented here. Namely, we separate this class
of trackers into the following subclasses: blob-trackers; pixel-wise template trackers;
kernel and histogram trackers; and miscellaneous trackers.

5.1 Blob Trackers

In the space of all region-based trackers, one could argue that blob trackers are at one
extreme whereas pixel-wise template trackers are at the other end of the spectrum. In
particular, blob trackers will often collapse all information regarding a target into very
basic summary statistics. For example, a blob tracker might only use the centroid
position and average color of the target that is being followed. Pixel-wise trackers, on
the other hand, retain some type of feature that describes the target at every pixel
across the target support.

The most basic blob trackers follow a fairly intuitive series of steps. These steps
can be summarized as follows:

1. Assume a stationary background (or that techniques can be performed before-
hand that remove the background motion)

2. Detect changes in the foreground (e.g., moving objects) between the current
and previous frame

123
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t = 1 t = 2 t = 3 t = 4

Background Scene Blob Target Intensities

A

B

Figure 5.1: Illustrative example of using blob tracking to follow a car. In A, the
background model and the intensities of the detected foreground blob are shown. In
B, the foreground blobs are shown in white, the blob centroids are represented as red
circles that are linked via red lines.

3. Associate the currently detected foreground objects with the tracked object(s)
from previous frames

In other words, using the terminology and theory developed in Chapter 2, the tracking
problem is essentially simplified to that of foreground detection and data association.
Thus, the significant differentiating factor between blob-trackers in the literature are
the tools used to solve each of these sub-problems and the manner in which these two
tools are combined. Reference to specific blob-trackers, their contributions, and how
they extend beyond this overly-simplified model will now be described.

Blob trackers rely very heavily on having an effective background subtraction
scheme in place. As a result, it is hardly surprising that this sub-field of tracking has
resulted in a number of very effective foreground detection schemes being developed
(Wren, Azarbayejani, Darrell & Pentland, 1997; Stauffer & Grimson, 2000; Yin &
Collins, 2007a). The background subtraction schemes used in (Wren, Azarbayejani,
Darrell & Pentland, 1997; Stauffer & Grimson, 2000) have become standard solutions
(both of which were described in Chapter 2) that are commonly used with minor
modifications, even today. In fact, most of the other blob-trackers discussed in this
section make use of one of the background schemes from (Wren, Azarbayejani, Darrell
& Pentland, 1997; Stauffer & Grimson, 2000).

Given that fairly standard techniques for foreground detection were developed
in conjunction with blob trackers, the other major differentiating factor between
trackers of this class is the means by which data association is performed. Perhaps
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the simplest data association method was in (Yin & Collins, 2007a), where nearest
neighbor association was utilized. To be fair, this work was more concerned with
presenting a novel foreground detection scheme using belief propagation and Markov
random fields. Obviously, this approach will be limited in its success when multiple
moving targets are moving in close proximity.

Another more complex blob tracker made use of heuristic rules to track multiple
targets in a closed environment (a children’s playroom) (Intille, Davis & Bobick,
1997). Not unexpectedly, this system used a background subtraction scheme inspired
by (Wren, Azarbayejani, Darrell & Pentland, 1997) and morphological operators to
obtain blob regions. In addition to using positional information, the system in (Intille,
Davis & Bobick, 1997) also utilizes blob color and size. Matrices for each type of
feature modality are developed that indicate the matching scores between each object
being tracked and the blobs located within the scene with respect to that particular
feature. Subsequently, an overall matching matrix is obtained by taking the weighted
contribution of matrices for each modality.

The matching process in (Intille, Davis & Bobick, 1997) is performed using nine
heuristic stages, during which the weighting factors for each type of feature matrix
are modified. During each stage, an overall matching matrix is computed and specific
correspondences are established using a matching algorithm similar to that described
in (Rangarajan & Shah, 1991). The overriding nine stage scheme is based on so-called
“closed-world” assumptions. For example, the first stage attempts to connect known
targets with detected blobs. The second stage links known targets with blobs that
have already been assigned a target. In other words, multiple targets can be assigned
to the same blob; the rationale being that oftentimes the targets will move close to one
another causing the merging of blobs. However, when performing matching during
this second stage, color feature information is ignored because the blob is assumed to
consist of two or more targets and therefore, the average color is no longer meaningful.
Similar heuristic strategies are used through the remaining matching stages.

Another interesting component of the system in (Intille, Davis & Bobick, 1997) is
its initialization scheme and ability to analyze videos where targets enter and leave
the scene. Since the system is being deployed in a specific children’s playroom, the
authors define a “door” area where entries and exits to the environment can be
monitored. This mechanism allows the system to keep track of the number of targets
within the environment, information which is then used during the matching process.

Although the system presented in (Intille, Davis & Bobick, 1997) is unique, it cer-
tainly has its limitations. The system’s theoretical basis is not overly sound, relying
on more heuristic strategies for performing matching. More importantly, their work
points out a significant limitation of the blob-tracking strategy, especially in tight,
indoor environments. Blob extraction, generally speaking, is not overly accurate in
delineating targets and does not lead to consistent blobs across frames. Shadows,
motion of individual parts, and noise can cause blobs to split and merge erratically,
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making it challenging to accurately track and maintain the state of the targets within
the scene. The authors themselves admit that their system is very sensitive to thresh-
old selection. For further improved results, a methodology change is suggested.

More recently, two systems (Yang, Li, Pan & Li, 2005; Takala & Pietikainen, 2007)
were proposed that follow a very similar approach to that seen in (Intille, Davis &
Bobick, 1997). Specifically, background subtraction and a similar heuristic matrix-
style data association scheme are employed. In (Takala & Pietikainen, 2007), multiple
modalities (color, texture, and motion) are used in an attempt make matching more
robust. However, it appears that neither (Yang, Li, Pan & Li, 2005) nor (Takala &
Pietikainen, 2007) advance this type of blob tracker significantly beyond the perfor-
mance of the system by Intille et al.

Using (Intille, Davis & Bobick, 1997; Yang, Li, Pan & Li, 2005; Takala & Pietikainen,
2007) as an indication, there is a performance limit that can be reached when using
heuristic techniques to perform data association. As one might expect, some blob-
trackers have utilized more statistical approaches when performing data association
(Wren, Azarbayejani, Darrell & Pentland, 1997; Rosales & Sclaroff, 1999; Stauffer &
Grimson, 2000). In particular, (Wren, Azarbayejani, Darrell & Pentland, 1997; Ros-
ales & Sclaroff, 1999) used the KF and the EKF, respectively, while (Stauffer & Grim-
son, 2000) incorporated an MHT-based approach. We will proceed with a discussion
of these statistical-based methods, beginning with (Wren, Azarbayejani, Darrell &
Pentland, 1997).

The work of (Wren, Azarbayejani, Darrell & Pentland, 1997) is quite famous
for deriving a novel background subtraction scheme that made use of pixel color.
However, it is equally as famous for developing an impressive (for the time), color-
based tracker. A blob-model is developed for the target whereby a Gaussian blob
is initialized for each portion of the human body that has a different color. Models
typically included a separate blob for the head, hands, legs, feet, and torso. Predic-
tion of the blobs’ locations in the current frame are obtained using Kalman filters.
Subsequently, a support map defining which pixel belonged to what blob (or the
background) is generated by computing likelihood measures. The blob models are
updated by this measurement information and the process repeats in the next frame.
Although initially impressive, this tracker has its limitations. The tracker assumes
a stationary background and that only a single target can be present in the scene.
Although initialization is semi-automatic, it does require that the user strikes some
pre-determined poses so that contour and color-based methods can be used to locate
the position of the head and hands.

Another tracker that made use of the Kalman filter framework was presented in
(Rosales & Sclaroff, 1999). Again, background subtraction is performed in a similar
fashion to (Wren, Azarbayejani, Darrell & Pentland, 1997) and morphological opera-
tors and connected components analysis are used to group the foreground pixels into
blobs. The authors employed a temporal coherency scheme to further improve the ac-
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curacy and consistency of foreground blobs across frames. To link the tracks between
consecutive frames, an extended Kalman filter is used. A standard Kalman filter
is not sufficient as the measurements consist of two bounding box corners and the
system state is the target crop box’s position in three dimensional space. Thus, this
relationship between measurements and state is non-linear, necessitating the use of
the extended Kalman filter. The remainder of their tracker development is consistent
with the standard extended Kalman filtering approach.

One limitation of the system in (Rosales & Sclaroff, 1999) is that it assumes
a stationary camera. Furthermore, the authors claim that their system can track
multiple objects simultaneously, but no mention is made as to how data association
is performed. Of course, the extended Kalman filter provides a means of predicting
the target’s location in subsequent frames which can be used to disambiguate in
some situations. However, in more complex circumstances (e.g., targets in close
proximity for a number of frames), the EKF’s ability to deal with data association in
the proposed framework is limited. The inclusion of shape or appearance information
could potentially assist in offsetting this problem.

An attempt to provide even more robust data association was presented in (Stauf-
fer & Grimson, 2000). This work is most commonly known for the background sub-
traction technique that it proposed, but its multiple hypothesis-based tracker is im-
pressive as well. Specifically, the authors use shape and size information when linking
targets with foreground blobs via a pool of Kalman filters. Their multiple-hypothesis
tracker first links each Kalman filter with every blob that lies within its validation
sphere. Information contained within the previous two frames is used to determine if
new Kalman filters should be deployed for any of the unmatched blobs in the current
frame. Finally, to ensure that the number of tracking hypothesis does not grow out
of hand, tracks with low probability are deleted.

Before closing this section, we should briefly mention once again the system de-
veloped in (Ye, Tsotsos, Harley & Bennet, 2000). As mentioned in Section 2.7, this
work essentially presented a blob tracker that also included active camera controls.
A database of background images is maintained for a number of discrete camera
settings that are used to completely monitor the environment. While tracking, back-
ground subtraction is performed between the current image frame and the database
background image that corresponds to the camera’s current settings. Morphological
operators are subsequently used to group disparate foreground blobs into contiguous
human targets. Although the tracking techniques in this work are crude, the main
focus of monitoring an entire 3D space using a minimal number of discrete camera
settings is a unique and substantial contribution.

Thus, to summarize, blob tracking can be very effective at tracking targets in a
scene where the camera is stationary (or can be properly aligned) and the targets
are far removed from one another. The technique begins to break down when targets
move in close proximity. The use of statistical data association techniques can help
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alleviate this problem. However, the foreground regions obtained by blob trackers are
typically not very consistent from frame-to-frame. This lack of consistency is another
significant disadvantage of these trackers that must be overcome.

5.2 Pixel-Wise Template Tracking

For the purpose of this paper, a pixel-wise template tracker is defined as a tracker that
maintains some type of feature descriptor at each pixel across the target’s support.
The most basic feature descriptor would simply be the intensity value. We will
further divide this class of trackers into two subsections. The first sub-class has a
rigid template of the target that can be moved around to locate the region in the
current image that most closely resembles the target. The second sub-class also
involves the movement of the target region around the image, but these trackers
incorporate an explicit parametric motion model for moving the tracking window.
Furthermore, these parametric models can be made more sophisticated than a simple
translational model such that more complex target deformations can be performed,
including rotation, shear, and scaling.

5.2.1 Rigid Template Tracking

This sub-class of trackers is a logical place where one might begin if he or she had
no prior knowledge of computer vision. In this approach, the pixel-wise intensities
(for simplicity, at this stage of the discussion) of an area within a reference image
form a template that represents the target and the goal is to find the image region
in the next frame that provides the best match. Again, it is important to emphasize
the difference we are drawing between features and templates. In this example, the
features used are pixel intensities. This is in contrast to the template, which is the
collection of specific, numeric intensity values that define the appearance of the target.
The relationship between features and templates can be connected to ideas seen in
computer programming. In particular, one could imagine that features are analogous
to the data types of variables (e.g., int, double), while templates are similar to the
numeric values variables are assigned.

The above simplified, proposed template tracker is somewhat analogous to matched
filtering. In particular, matched filtering theory addresses the problem of detecting a
target within a signal of unknown origin. The optimal linear filter that maximizes the
signal to noise ratio when detecting the target is a matched filter. A matched filter
is defined as the signal representing the target that one is trying to detect. Thus,
matched filtering is the process of detecting a target within a signal of unknown origin
by convolving the signal by the target signal.



5.2. PIXEL-WISE TEMPLATE TRACKING 129

Keeping the ideas of matched filtering in mind, the steps that a very basic template
matching tracker might perform are as follows:

1. Initialize the template on the target region within the first frame

2. Predict where the target will appear in the subsequent frame

3. Load the next frame

4. Match the template to image regions centered on the predicted target position
and within a surrounding neighborhood search region

5. Select the location that provides the highest matching score as the current target
center

6. Optionally update the target template

7. Repeat Steps 2 - 7

Initialization (Step 1) can be performed either manually or in an automated fashion,
as was described in Chapter 2. The prediction mechanism utilized in Step 2 can
range from using no prediction (i.e. using the position of the target in the previous
frame) to using a scheme such as Kalman/particle filters. Prediction techniques were
also discussed at length in Chapter 2. The matching method employed in Step 4 is
a design choice, but standard sum of squared differences (SSD) or cross-correlation
are commonly employed (Brown, Burschka & Hager, 2003; Derpanis, 2006). To make
the matching algorithm more robust to changes in illumination, both of the above
matching methods have normalized forms that can be used. In (Burt, Yen & Xu, 1982)
a comparative analysis of some of the most common matching metrics is performed.
Furthermore, Table 5.1 was graciously provided by Derpanis and provides a summary
of the mathematical equations used for computing numerous matching metrics.

Although a template matching tracker could be developed that exactly follows the
steps outlined at the beginning of this section, most modern algorithms incorporate
additional and more sophisticated processing. The reason for this advancement is
that, quite simply, the above algorithm will not work very well in general application
settings. To begin with, the proposed algorithm will experience problems with illu-
mination changes. Although using a normalized matching method (e.g., normalized
SSD or normalized cross-correlation) will help to reduce the effects of illumination
changes, the problem is not eliminated completely. For example, illumination changes
that alter the pixel intensities globally will be accounted for by using a normalized
matching method. However, point lights, shadows, or other lighting changes that
affect only part of the scene (specifically, part of the target) will still lead to errors.
Furthermore, this approach is not robust to partial or full occlusions. The proposed
template matching tracker will also struggle in situations when there are multiple
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targets that share a similar appearance (e.g., tracking a person’s head or body on
a subway platform). Finally, the approach is not robust to rotations (in-plane or
out-of-plane) or changes in scale. Incorporating a template-update mechanism will
help to ameliorate some of these problems if the frame-rate is fast enough, but it is
not a complete solution. The question then becomes: “how can template matching
trackers be improved?” We will now discuss additional intensity template trackers
whose complexity extends beyond that of the simplistic tracker mentioned above.

In (Nguyen, Worring & Boomgaard, 2001) a method was proposed to make
template-based tracking more robust to changes in illumination and occlusions. When
tracking the template between frames, the authors make use of a very simple warping
scheme (warping will be discussed at length later in this chapter) that allows for scale
changes. However, at the core, the system in (Nguyen, Worring & Boomgaard, 2001)
is essentially performing a robust SSD template matching method. The contribution
of this work is that of a unique method for updating the template such that illumi-
nation changes and occlusions can be accommodated. Specifically, rather than using
Kalman filters as they are typically applied to tracking (for predicting the target po-
sition and smoothing the track), they are used for updating the template intensities
in a principled manner.

A Kalman filter is deployed for each pixel in the template and the template is
updated such that it is a combination of the previous template and the region in
the current frame that provides the best match. A robust metric is also employed
during the SSD computation which allows for the detection of outlier pixel matches.
For outlier pixels, the template is not updated. Such a scenario arises during partial
occlusion. Full occlusions are dealt with in a similar manner when a certain percentage
of pixel matches are flagged as outliers. Although Kalman filters are used for updating
the templates, the inter-frame tracking mechanism is very simplistic — the entire
image is exhaustively searched for the best matching region.

Another template tracker, presented in (Beymer & Konolige, 1999), incorporates
stereo information to overcome some of the abovementioned limitations with the stan-
dard template matching approach. The authors make use of disparity information
to help guide and refine the correlation matching process. Once disparity images are
obtained, background subtraction is performed within the disparity domain. Perform-
ing background subtraction using disparities has its advantages because disparities
are less influenced by changes in illumination. Accordingly, there is less of a need
for background model adaptation (unless it is expected that foreign objects will be
placed in the scene and subsequently will become part of the background). Once
foreground regions have been obtained, they are segmented into areas of roughly con-
stant disparity. Binary correlation is then performed to identify humans within each
disparity layer. The above steps all describe a detection module that is utilized on
every frame.
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Ī 1
)2
·(

I 2
(x

+
i
+

u
,y

+
v

+
j)
−
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The tracking module in (Beymer & Konolige, 1999) links the tracks together by
using intensity correlation guided by disparity information computed during detec-
tion. In particular, a Kalman filter is used to predict the location of a human target in
world coordinates. A weighted intensity template is convolved around the predicted
position of the target. As the intensity template does not exactly adhere to the out-
line of the target (like a contour-based tracker would) the disparity-based weights
used during convolution help to decrease the influence of background clutter. Fi-
nally, the position of the target is further refined by ensuring that the target remains
within a single layer within the disparity map. Improving standard intensity-based
template matching by incorporating disparity information is a novel idea that can
help add some robustness to illumination and help deal with occlusion problems. On
the other hand, the system setup requires a stereo rig, which is not quite as accessible
as standard monocular cameras. Furthermore, disparity estimation is a challenging,
unsolved problem itself (Brown, Burschka & Hager, 2003), meaning that the depth
information obtained may not always be reliable.

In (Cham & Rehg, 1999), a template matching tracker was used as a simple tool
in a much larger multiple hypothesis tracking framework. As discussed in Chapter
2, multiple hypothesis tracking can be useful when tracking multiple targets or when
tracking an object through a cluttered environment where there are numerous false
positive targets. The traditional MHT operated on targets that are described by
discrete points. However, the authors of (Cham & Rehg, 1999) correctly point out
that there is no simple and efficient “human figure detector” that can take an image as
input and provide the accurate position of the human body. As a result, the authors
incorporate multiple tracking hypotheses in a different manner. Their approach lies
between that of a Kalman filter, where the state distribution, p (xt|zt), is Gaussian and
particle filtering, where samples are drawn over the entire distribution. Specifically,
the authors represent the state distribution as a piecewise Gaussian distribution.
With that major modification in mind, the algorithmic steps are only slightly varied
from either Kalman or particle filtering. In particular, their system

1. Performs Kalman filter prediction to obtain p (xt|zt−1) from the posterior distri-
bution at the previous time step p (xt−1|zt−1). Prediction is performed for the
peak of each mode in the posterior distribution and a constant velocity model
is used.

2. The measurement likelihood, p (zt|xt) is computed by sampling from the pre-
dicted distribution and by computing the product of squared differences between
the image regions and the template. To improve upon the predicted location
within the image, a locally optimal match between the intensity template and
the image is found using an iterative Gauss-Newton method. This optimal
location is used to compute p (zt|xt).
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3. Using the already computed distributions, p (xt|zt) is found, with special at-
tention paid to ensure that the number of modes stays within an acceptable
level.

Hence, as can be seen, in the more complex tracking machinery presented in
(Cham & Rehg, 1999), template matching is used to provide an estimate of the mea-
surement likelihood. The obvious benefit of allowing for non-Gaussian distributions
during tracking was discussed in Chapter 2 when comparing the particle and Kalman
filters. However, what is not immediately obvious is why the proposed approach is
superior to particle filters. The authors argue that particle filtering would become
too computationally intense in their particular application domain of tracking humans
with high degree of freedom models. Particle filtering would require a great number of
samples to properly represent the distributions in their entirety whereas the proposed
approach only represents the distinct modes. In the results that are shown, it is not
immediately clear that the centroid of the tracked object is improved by the more
sophisticated tracking prediction machinery. However, the placements of the parts
of the target (i.e. the limbs) indicate fewer errors, thus making pose estimation more
accurate.

Another work that should be mentioned is (Olson, 2000). This research focuses
less on designing a template matching tracker and more on deriving a fast template
matching scheme with a superior, subpixel matching method. The proposed method
can work with either binary edge or intensity templates. When considering edge pixel
features, the proposed approach proceeds as follows. Let the target template of edge
features be denoted as M . Furthermore, the edge features detected in the image are
termed N . We will also define the current placement of the template within the image
as the random variable p. The goal of this template matching scheme is to determine
the optimal value of p.

To that end, a distance measure, D, is defined. This distance function measures
the distance between each template edge pixel to the closest edge pixel in the image,
given the current position of the template, p. The notation for representing this set of
distances between template and image features is: {D1 (p) , . . . , Dm (p)}, where m is
the number of edge features in the template. The likelihood that the target template
corresponds to location p within the image is thus, computed according to

L (p) =
m∏

i=1

f (Di (p)) , (5.1)

where f is a probability density function. The PDF is composed of the summation
of two terms — a term for inliers (a pixel/edge in the template is present within the
new image) and one for outliers (a pixel/edge in the template is not present within
the new image). The goal of (Olson, 2000) is to search throughout each image for the
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region that yields the maximum likelihood. To accomplish this task, a unique search
strategy is employed.

The search strategy operates in a coarse-to-fine manner whereby the image is
divided into a number of cells. Each cell is considered in turn and an upper bound on
the maximum likelihood that can be obtained for that cell is computed. To begin this
search process, a maximum allowable movement measure is computed. In particular,
the template is first positioned at the center position, c, of a cell. The system then
determines the maximum distance any template pixel can move when the template
is offset from c to any other position within the same cell. This maximum distance is
denoted as ∆c. In essence, this distance is the maximum distance any template edge
pixel can move while the template remains within the cell region.

Once ∆c has been determined, a modified distance function is defined as follows

DC
i = max (Di (c)−∆c, 0) , (5.2)

where C is the current cell. Equation 5.2 basically computes the best case scenario
for an template edge pixel — that it moves the maximum distance (or less) to come
into alignment with the nearest image edge pixel. Applying this best-cases scenario
to all template edges, an upper-bound can be placed on Eq. 5.1

max
p∈C

L (p) ≤
n∏

i=1

f
(
DC

i

)
. (5.3)

Thus, at a particular scale, all cells are pruned except for those that surpass a thresh-
old based on

∏n
i=1 f

(
DC

i

)
(alternatively, only the cell with the maximum upper bound

is kept). The remaining cells are divided into smaller cells and the process repeats
at this finer scale. The process is iterated until the size of the cells is the same as
the template for which the search region is being performed. At the conclusion of the
search, the authors obtain a single point within the image that corresponds to the
maximum likelihood location of the target. Furthermore, it is suggested that a normal
distribution is subsequently fit to this location based on the maximum likelihoods of
the selected pixel as well as its neighbors. Fitting a normal distribution allows for
sub-pixel accuracy and provides a measure of variance for the selected target location.

Advantages of the matching metric and search strategy presented in (Olson, 2000)
are as follows. To begin, the matching method is cast in a probabilistic, maximum
likelihood framework and is fairly well-founded in theory. Perhaps more importantly,
the method provides a means of measuring the certainty of the measurements. The
variance that is computed for the selected target position provides an indication of
how confident we are in the exact pixel location of the target. Furthermore, the search
strategy employed allows for the computation of an estimate of the likelihoods outside
of the neighborhood surrounding the selected pixel. If the sum of the likelihood scores
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in other regions of the image is high, it is an indication that there are other regions
that also match the template quite well.

Thus, this section has presented a number of trackers that represent the target
with pixel-wise features. Matching between frames is performed by translating the
template and finding the image region in the current frame that matches best. How-
ever, what if the target’s motion is not only translational in nature? What if the
target experiences scaling, shearing, or rotations? The trackers in the next section
consider such transformations.

5.2.2 Template Tracking with Parametric Warping

Warping-based trackers, in a similar fashion to the rigid template matching trackers,
make use of a target template or a reference image during the tracking process. For
the purposes of this paper, an image warp (or image registration) is defined as a
mapping from the pixels in some reference image to the corresponding/matching
pixels in a second image. If no restrictions are placed upon this warping process,
each pixel within the reference image is free to make a match association with any
pixel in the second image. Typically, restrictions are placed on the movement of the
pixels to constrain the problem. For example, a common constraint is to limit all
pixels within a small spatial region to undergo the same motion. This constraint is
one of the most common used in motion estimation. Another constraint enforces the
motion of the pixels to follow a parametric model. Common parametric warps include
pure translational warps and affine warps. As affine warping appears to be the most
popular among the tracking community; this chapter will place its primary emphasis
on this method. Affine warps are popular as they provide a first order approximation
to observed image motion for 3D moving objects that have shallow relief (Derpanis,
2003).

Warping Basics

When performing image warps, the most common method of determining if two pixels
correspond is via the intensity values. Although intensity-matching is by far the most
popular, warping using other forms of pixel-wise descriptors is certainly possible (e.g.,
phase response of orientation selective filters (Jepson, Fleet & El-Maraghi, 2003)).
For simplicity, we will generally assume that matching is based on intensity unless
otherwise stated.

The modern formalization of image warping as it is commonly described today
was first presented in (Bergen, Anandan, Hanna & Hingorani, 1992). In this seminal
work, the authors realized that model-based motion estimation techniques could be
cast as an image registration problem. Specifically, the authors realized that the
model-based motion estimation techniques could be formulated in terms of the same
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t = 1 t = 2
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v

Figure 5.2: Computation of a translational warp that brings the tree into alignment.

SSD optimization problem (where different parameters are being optimized). We will
return to a discussion of the work of Bergen et al., but first let us consider some of
the prior image registration work.

One of the works that surely inspired Bergen et al. was presented in (Lucas &
Kanade, 1981). This work focused on recovering translational warps that matched a
target region in a reference frame to the optimal location in a second frame. The image
warps primarily considered in this work were translational; thus, the parameters being
estimated were the horizontal u and vertical v displacement of a target region in two
images. Furthermore, the fact that this work primarily considers rigid translations
of the target template makes it eerily similar to the rigid template trackers discussed
above. However, the difference is that this work formalizes the problem in an image
registration framework and thus, computes explicit translational warping parameters.
A pictorial example of warping a target crop box that is tracking a tree is shown in
Fig. 5.2.

Prior to the work of Lucas and Kanade, image registration was generally per-
formed in an inefficient or ineffective manner. In particular, inefficient approaches
included that of performing a brute-force search over the entire image to find the
translational parameters. Ineffective approaches included those that performed gra-
dient ascent style optimizations at full resolution. Although gradient ascent-based
approaches appear fruitful, they frequently experience problems with local minima,
especially when the desired displacement is large. In (Lucas & Kanade, 1981) an iter-
ative Newton-Raphson method was proposed for performing translational registration
efficiently and effectively. Results are improved by performing the optimization in a
coarse-to-fine pyramid structure. In particular, with this coarse-to-fine approach, the
registration is first performed at the coarse scales and the results at these scales are
propagated as an initial estimation for the next finer scale. Coarse-to-fine strategies
help to ameliorate the problems of large displacements and false positives due to
high-frequency aliasing.

This work by Lucas and Kanade was definitely an excellent starting point for
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efficiently computing warping parameters. The ideas of image alignment presented
in (Lucas & Kanade, 1981) certainly sparked researchers’ collective interest and pro-
moted significant research in the field. An excellent summary of the Lucas and Kanade
algorithm (Lucas & Kanade, 1981) and its most noteworthy extensions can be found
in (Baker, Gross & Matthews, 2004). However, instead of jumping ahead to the
summary of 2004, we will take a more historic perspective, by making reference and
elaborating upon some of the most significant works that expand upon the original
ideas of Lucas and Kanade (Bergen, Anandan, Hanna & Hingorani, 1992; Black &
Anandan, 1996).

The purely translation model presented in (Lucas & Kanade, 1981) severely lim-
its the types of motions that can be properly recovered. It was a full 10 years later
when Bergen et al. developed the common framework for model-based motion es-
timation techniques that has become a standard formulation for computing image
warps (Bergen, Anandan, Hanna & Hingorani, 1992). The two primary contributions
of this work are: 1) To show that model-based motion estimation techniques can be
formulated in a standard SSD framework. 2) To propose a hierarchical, four step
method where motion could be accurately computed using this framework.

The foundation upon which all motion estimation techniques presented in (Bergen,
Anandan, Hanna & Hingorani, 1992) are based is the brightness constancy constraint:

I (x, t) = I (x− u (x) , t− 1) , (5.4)

where u (x) = {u (x) , v (x)} is the horizontal and vertical displacement of the pixel,
x. In words, this assumption states that between frames, a target pixel may change
position, but its brightness will remain constant. Of course, due to noise, vary-
ing perspectives, changing illumination, etc. the pixel values, in general, will not be
identically equal. Accordingly, Eq. 5.4 can be restated as a problem of SSD error
minimization

E (u) =
∑
x

[I (x, t)− I (x− u (x) , t− 1)]2. (5.5)

Ideally, this SSD term would yield a result of zero when the pixels from the reference
target become perfectly aligned with the corresponding region in the new image. In
realistic situations, zero-errors will not be attained, but the assumption is that if
correct correspondence is made, then the SSD error will be minimized.

Also, note that as currently defined, the pixels within the target region are com-
pletely independent in the manner in which they move. The difference between the
various model-based methods to motion estimation, arise from the different restric-
tions placed on the motion vector, u (x). Many of the motion models define the
motion vector parametrically whereas other methods will constrain the problem by
assuming that all points within a small region must have a constant flow. Here, we
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will consider the addition of constraints involving a parametric motion model. To
make the relationship between the motion vector and constraint parameters more
explicit, we can write u (x; a), where a is the parameter vector.

A popular method for determining the optimal motion parameters is using so-
called gradient methods. Under such an approach, a first order approximation of
I (x− u (x) , t− 1) is obtained by assuming the time differential between subsequent
frames is very small (thus, the motion is also very small) and using a Taylor series
approximation where only first order terms are retained. After some additional al-
gebraic manipulations, the gradient-based formulation for motion estimation can be
written as:

E (a) =
∑
x

(Ix (x, y, t) u (x, y; a) + Iy (x, y, t) v (x, y; a) + It (x, y, t))2

=
∑
x

(
(∇I)T u (a) + It

)2

, (5.6)

where Ix, Iy, and It denote the spatial and temporal image derivatives.
As mentioned previously, for this chapter we are primarily concerned with mo-

tion estimation using an affine motion model (due to its prevalence in the tracking
literature). The affine motion model is defined as:

u (x, y; a) =

[
u (x, y)
v (x, y)

]
=

[
a0 + a1x + a2y
a3 + a4x + a5y

]
. (5.7)

An affine transformation allows for the following transformations: translation, ro-
tation, scale, and shear. Examples of these transformations are shown in Fig. 5.3.
In (Bergen, Anandan, Hanna & Hingorani, 1992) various other motion models are
detailed, but for the sake of brevity, they will be omitted from this discussion.

Hence, the above formulations have illustrated how the motion estimation prob-
lem can be cast in a common SSD minimization framework, independent of what
motion model is used. The second significant contribution (Bergen, Anandan, Hanna
& Hingorani, 1992) was that of presenting a hierarchical method for accurately com-
puting the motion within this framework. The authors propose the following four
steps:

1. Compute a pyramid representation for the frames under analysis

2. Compute a motion estimate using the abovementioned SSD framework

3. Warp the second image toward the first image using the computed motion
parameters

4. Propagate the current motion estimates to the next finer level of the pyramid
and refine the estimate based on this higher frequency information
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Figure 5.3: Allowable affine transformation. The first row shows the original image.
From left to right, the second row shows examples of rotating, translating, scaling,
and shearing, respectively

As can be seen, many of the same ideas that were proposed and shown to be effective
in (Lucas & Kanade, 1981) (e.g., pyramid formulation) are once again used in (Bergen,
Anandan, Hanna & Hingorani, 1992). These four major steps continue to be employed
with little modification in many of the modern tracking works.

Although the founding framework for model-based motion estimation was laid
out in (Bergen, Anandan, Hanna & Hingorani, 1992), there were limitations to the
approach. One of the most glaring issues with the proposed formulation was the
use of the SSD error metric. It is well-known that the SSD error measure is greatly
affected by data outliers. Figure 5.4 shows an example of fitting a straight line to a
series of points. When a non-robust metric (e.g., SSD) is used, the single outlier has a
significant influence on the computed line. When a robust measure is utilized during
line estimation, a much more appropriate solution is obtained. Thus, when using
an approach such as that proposed in (Bergen, Anandan, Hanna & Hingorani, 1992)
for estimating motion, the number of outliers must be minimal. Furthermore, if two
dominant motions are present within the scene under analysis, an approach based on
(Bergen, Anandan, Hanna & Hingorani, 1992) could yield unexpected results. Under
this approach, one might expect that the system would compute an average motion
that lies between the two dominant motions of the image region. This is essentially the
worst result that could be attained as neither motions is properly modeled. However,
in (Burt, 1991), it has been shown that using a coarse-to-fine strategy, such a motion
estimation scheme can be designed that essentially “locks onto” a single image motion
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Non-Robust Line Estimate

Robust Line Estimate

Outlier 

Figure 5.4: Line fitting example with a robust and non-robust error metric.

when two motions are present. Nevertheless, the SSD-based error function appears
to have some significant shortcomings and accordingly, must be used with care.

To address many of these issues, a slightly modified approach was proposed (Black
& Anandan, 1996) whereby the SSD measure is replaced with a robust estimator such
as the truncated quadratic or Geman-McClure metric. The idea is quite intuitive,
but the improvement can be used to great advantage. More formally, the parametric
motion estimation equation, Eq. 5.6, is made more robust as follows:

E (a) =
∑
x

ρ
(
(∇I)T u (a) + It, σ

)
, (5.8)

where σ is a scale parameter of the robust estimator, ρ. The Geman-McClure is a
very popular robust estimator and will be the primary estimator considered in this
paper. This estimator is mathematically defined as

ρ (x, σ) =
x2

σ2 + x2
. (5.9)

As mentioned previously, one advantage of using a robust framework for estimating
motion is that the effects of outliers are greatly reduced. With a quadratic or squaring
error function, errors rapidly increase in an unbounded fashion. Robust estimators
do not exhibit this unbounded behavior. A truncated quadratic error measure simply
reaches a plateau whereby all errors beyond some point all result in the same output.
The Geman-McClure function is quite similar in shape, but the plateau is approached
in an asymptotic fashion, rather than having a discrete cut-off point. Because of its
smoother shape (leading to its differentiability), the Geman-McClure metric is often
a desirable choice. The rationale of bounding the error output in this manner is that
beyond a certain point, the actual error value is not relevant. In other words, once a
point has been established as an outlier, it should have an equal effect on estimation
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as any other outlier.

A second advantage of the robust formulation is that outliers can be detected in
a more principled fashion. Once outliers have been detected, they can potentially be
removed from the estimation process so that a more accurate motion estimate for the
inliers can be found. Moreover, if multiple strong motions within an image region
exist, iterative estimation can be performed whereby the outliers at one estimation
stage become the inliers of the subsequent estimation. In this manner, multiple
motions within an image region can be estimated.

Trackers Using Image Warps

With the general warping machinery in place, we can now move on to discussing some
specific tracking systems that use image registration techniques to follow a target of
interest. The problems of image alignment, motion estimation, and tracking are very
closely related and are certainly not always mutually exclusive. Although purely
translation warping, as presented in (Lucas & Kanade, 1981), could feasibly be used
to construct a simple tracker, in that particular work, it was used for the purpose
of stereo vision, which is outside the scope of this review. Furthermore, (Bergen,
Anandan, Hanna & Hingorani, 1992) is more concerned with the problem of global
“motion estimation” (or camera motion), which is also not the core idea of this paper.
It could be argued that global motion estimation is, in essence, tracking. Certainly
this is true in the strictest sense, as motion estimation provides a mapping of pixels in
one image to the corresponding pixels in a different image. However, “tracking” as it is
defined for this review is more concerned with following a target which subtends only
a portion of the entire image. Thus, we want to trace the movement of a particular
subregion of interest within the image. Of course, these global motion estimation
techniques could conceivably be applied to a target region within a larger image and
perform motion estimation for only said target region. This idea is quite true and
is in fact, the methodology used by most of the region warping trackers that will be
described next.

Many trackers have been developed that directly make use of the robust motion
estimation techniques proposed in (Black & Anandan, 1996). Three example trackers
that fall into this category and also incorporate some aspect of training/learning
are (Black & Jepson, 1998; Hager & Belhumeur, 1998; Avidan, 2001). In (Black &
Jepson, 1998), a so called “EigenTracker” was developed. Eigen representations are
popular in various areas of computer vision with the most famous example being the
Eigenfaces system (Turk & Pentland, 1991). The general idea with an Eigen-based
approach is to develop a basis set that captures the majority of the variability in
the object class that is being modeled. For example, with Eigenfaces, a multitude
of face examples are observed and these examples are used to construct a basis set
that captures the general properties and variations amongst faces. Any given face
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in the training set can be approximately reconstructed by using a subset of these
basis images. Eigen-based approaches have their advantages as the majority of the
important information that is contained within a vast database of examples can be
captured by keeping a small number of basis images. Thus, the space savings can be
tremendous.

The EigenTracker in (Black & Jepson, 1998) follows the same general approach
used in other Eigen-based works. Specifically, the tracker is trained to follow pop
cans (specifically a CokeTM and 7-UpTM can). The authors train the system using
a number of images of these cans from various viewpoints. The different viewpoints
allow all the various paint patterns on the two types of cans to be observed and
learned. Subsequently, a basis set is computed that captures the majority of informa-
tion contained within the training examples. When an unknown pop can is observed,
the authors use a robust method to perform reconstruction. Specifically, the follow
optimization function is used, which has a from that is strikingly similar to Eq. 5.8,

E (c) =
∑
x

ρ(I (x)− [Uc] (x) , σ), (5.10)

where

Uc =
∑

i

ciUi. (5.11)

In words, Uc is the reconstructed image that is computed by summing each of the
basis images Ui, weighted by the coefficients, ci. Thus, the goal of Eq. 5.10 is to
determine the optimal set of coefficients, c, that minimize the error between the
image and the pop can reconstructed from from basis vectors.

Another interesting component of Eq. 5.10 that should be noted is the fact that
rather than using a SSD error measure, a robust metric is employed. The robust
metric allows the authors to isolate outlier pixels. As alluded to previously, once
a set of reconstruction coefficients, c, have been computed, the error between the
original image and the reconstructed version can be evaluated using the robust metric.
Outliers are identified as the pixels that do not fit well with the current reconstructed
version of the image. An outlier/inlier binary mask is generated with respect to the
current reconstruction. With this mask in hand, the authors refine the reconstruction
by using only inliers (previously, the outliers would have been detrimental to the
estimation process). Furthermore, this mask enables a second round of reconstruction
to be performed for the outlier pixels.

In (Black & Jepson, 1998) many convincing examples show how this iterative
approach to estimation can be beneficial. For example, an artificial example is shown
where the bottom portion of the pop can has paint from a Coke can whereas a small
amount of the upper portion has paint from a 7-Up can. As the paint from the Coke
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can is dominant, during the first round of reconstruction, an image of a Coke can is
produced from the basis vectors. Of course, the pixels in the image corresponding
to 7-Up paint are outliers with respect to the Coke can reconstruction. As a result,
these pixels can be used as the inliers for a second round of reconstruction. When
this procedure is performed, the basis vectors correspondingly reconstruct a 7-Up can.
Although this example is somewhat artificial, one can imagine other situations where
it would be very powerful. For example, if a shadow covers only a part of the Coke
can, this iterative approach could prove useful.

The portion of the system in (Black & Jepson, 1998) described thus far is not a
tracker — it only focuses on the reconstruction problem. To achieve tracking using
a Eigen-based approach, the authors include both the affine warping parameters as
well as the Eigen coefficients into the same optimization framework as follows

E (c, a) =
∑
x

ρ(I (x + u (x, a))− [Uc] (x) , σ). (5.12)

In essence, this equation represents the error between the variable image region,
subject to a warp, and the reconstructed Eigen image. The problem now becomes
that of optimizing both the warping parameters, a, and the Eigen coefficients, c. To
perform this optimization, the authors iterate back and forth between holding one set
of parameters constant and optimizing the other until the updates become negligible.

Another similar approach was presented in (Hager & Belhumeur, 1998). In this
particular work, the robust estimator was once again included in the interest of adding
robustness to partial occlusion. Instead of determining the image warp based on Eigen
images, this work primarily used pixel intensities. However, a learning component
was included in an attempt to reduce the affects of illumination changes in a manner
reminiscent of the work in (Black & Jepson, 1998). Notably, in (Hager & Belhumeur,
1998), a basis set is constructed from a set of examples that view an object un-
der an array of illumination conditions. Hence, this basis set can approximately
reconstruct the object under any linear combination of illumination changes observed
during training. These basis vectors are used to compensate for illumination using
the following equation

E (b, λ) =
∑
x

ρ(I (x + u (x, a))− T (x)− bλ, σ), (5.13)

where b are the basis vectors, λ are the corresponding weights, and T is the intensity-
based template of the object. This solution is very similar to that proposed in (Black
& Jepson, 1998), but rather than modeling the entire target as an Eigen image, only
the illumination changes are modeled using a basis set.

The trackers proposed in (Black & Jepson, 1998) and (Hager & Belhumeur, 1998)
were quite revolutionary at the time, but they do have limitations. Both are learning-
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based approaches and with regard to illumination changes, only linear combinations of
the changes observed during training can be explicitly handled during tracking. Thus,
although the systems in these works propose methods to deal with some changes in
illumination, it is only a partial solution. Arguably, it would be ideal if illumination
changes could be dealt with at the feature-level rather than incorporating an off-line
training process.

Another work that is conceptually somewhat similar to the above two approaches
was presented in (Avidan, 2001). Again, a learning-based system is deployed in a
motion estimation framework. Here, motion is estimated not using the brightness
constancy constraint, but by maximizing the classification score of a support vector
machine (SVM) classifier. Mathematically, the equation used is

E (u) =
∑

j

yjαjk
(
I

(
x + u,qj

))
, (5.14)

where qj are the support vectors, αj are the support vector Lagrange multipliers, and
yj are the support vector signs. Thus, maximization is performed to find the flow,
u, v that results in the highest SVM classification score. It would be possible to use
a parametric motion model similar to those seen previously in this section; however,
this difference does not alter the conceptual contribution of this paper.

The warping trackers discussed so far have all shared one common theme — using
learning techniques to accommodate tracking. Such a strategy certainly has its place
in the field of tracking, but the severe limitation of this strategy is that one must
have knowledge of what will be tracked beforehand and develop a specific classifier
that recognizes this class of object. There are an interesting array of problems in
the field of tracking where one does not have the luxury of such information. For
instance, in typical surveillance settings, the variety of moving objects that could be
observed is staggering (e.g., vehicles, animals, humans, man-made objects). How can
one effectively develop classifiers for all possible objects that might enter a general
surveillance scene? To develop a tracking system that relied on classifying an object
in order to perform tracking would not be feasible. The classification algorithms avail-
able presently are simply not sufficiently reliable. Moreover, it would be extremely
difficult and time-intensive to construct classifiers for each different type of object.
Although learning-based, object-specific trackers have their place, there is clearly a
need for trackers that can follow general targets.

There do exist warping trackers in the literature that do not require offline train-
ing components (Jepson, Fleet & El-Maraghi, 2003; Enzweiler, Wildes & Herpers,
2005; Ross, Lim & Lin, 2008). In (Ross, Lim & Lin, 2008), for example, an Eigen
representation, similar to that seen in the work of Black et al. is employed. However,
in this more recent system, learning of the Eigen representation is performed in an
online fashion, allowing for the tracking of arbitrary objects. A further difference be-
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tween the two Eigen-based approaches is that in (Ross, Lim & Lin, 2008), a particle
framework is used to estimate the affine motion parameters. Impressive results are
provided for the problem of face tracking where the target undergoes significant pose,
appearance, and illumination changes.

In (Enzweiler, Wildes & Herpers, 2005), a tracker was developed that estimated
affine motion parameters with a slightly modified version of Eq. 5.8. Specifically, a
pixel-wise factor, w is included that weights the result of the robust estimator. This
weighting factor is computed using spatiotemporal oriented energies. Specifically,
each weight measures the maximum coherent motion energy of a pixel in the horizontal
or vertical direction. The rationale for including this weight is that pixels that are
moving coherently are typically part of the target being tracked (i.e. they are not part
of the background clutter) and should have more influence on the motion estimate.
Although the matching between the template and the current image is performed
using pixel intensities, this work showed that new types of features are gradually
making their way into tracking.

The work of Jepson et al. in (Jepson, Fleet & El-Maraghi, 2003) is another ex-
ample of a region warping tracker that makes use of image features other than image
intensities. In particular, this work performs image warping using phase domain filter
responses. These features are computed using a multi-scale, steerable filter formula-
tion where two scales and four orientations are used. It should be noted that these
filter orientations are purely in the spatial domain and capture purely spatial struc-
ture. One of the advantages the authors argue for using their phase domain filter
responses is that they are more illumination invariant than other features such as
intensity.

In addition to using a novel feature set in the warping-based framework, the
authors also developed a very sophisticated target model. The target model consists of
stable, short-term, and noise-components. One of the long-standing issues in tracking
has been how to properly update the target template (as was mentioned in Chapter
2). If a template is updated quickly, it can adapt to fast changing targets. However, if
the target is temporarily occluded or a tracker slips slightly off the target, the occluder
or the background will quickly be inherited as part of the target. On the other hand,
if template adaption is performed slowly, the tracker may have difficulties properly
representing a target whose appearance is changing relatively quickly. The tracking
framework proposed in (Jepson, Fleet & El-Maraghi, 2003) deals with this challenge
by explicitly modeling both fast and slow changes that a target may experience.
Typically, the stable component of the target model will carry the majority of the
influence when tracking is being performed. However, during partial occlusion or
quick changes in target appearance, the short-term component provides the most
influence. This flexible and complete method for updating the target model is a
problem that does not appear to be well-studied in the tracking literature. Because
of the advanced target model, a unique warping mechanism is employed whereby both
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the motion parameters and the target model parameters are estimated simultaneously
in an EM-style framework (Dempster, Laird & Rubin, 1977).

Another system that uses image warping for the purpose of tracking is presented
in (Wong & Spetsakis, 2006). The overall goal of this work is to perform motion
segmentation and tracking in a video sequence. To accomplish this goal, seed regions
are selected either manually or automatically. If seeding is performed automatically,
an interest point operator (as discussed in Chapter 2) is used to select effective feature
points for tracking. Having selected a seed point, a three stage motion estimation
procedure is performed between the current and previous frame using only the region
immediately surrounding the seed. The motion parameters obtained for this subregion
are then used to warp the entire previous image (not just the seed region) toward the
current image. In an ideal world, the parts of the image that move in a consistent
manner to the seed region could be computed by taking the squared difference between
the warped previous image and the current image. Hence, the target associated with
the seed region could be segmented by merely applying a threshold to the squared
difference image. Unfortunately, the problem is not quite this easy due to noise,
illumination changes, and the fact that a seed region may be incorrectly matched to
an entirely different arbitrary region that shares similar texture. As a result, more
sophisticated techniques for performing segmentation in this manner are required and
(Wong & Spetsakis, 2006) presents two such statistical-based techniques. The ability
to segment an image sequence can be extremely beneficial for an application such
as computing optical flow. With optical flow, two significant challenges are that of
dealing with large motions and motion at boundaries. Since the technique in (Wong &
Spetsakis, 2006) can segment the image sequence, motion boundaries are no longer an
issue as optical flow can be computed for each image region in turn. Furthermore, the
warping parameters computed during the seeding process provide an approximation
of the true motion. Thus, optical flow will only be computing small refinements to
the original motion estimates which, in general, will not involve large motions. Both
of these properties are significant benefits provided by the segmentation system in
(Wong & Spetsakis, 2006).

There are numerous additional warping-based trackers that are also worth men-
tioning in brief (Meyer & Bouthemy, 1994; Uhlin, Nordlund, Maki & Eklundh,
1995; Wixson, Eledath, Hansen, Mandelbaum & Mishra, 1998; Matthews, Ishikawa
& Baker, 2004; Birchfield & Pundlik, 2008). We would certainly be remiss if we did
not make note of the tracker by Meyer and Bouthemy as it is one of earliest examples
of where the image warping paradigm was explicitly applied to the problem of visual
tracking. In a similar manner to most of the subsequent works, the proposed system
uses a coarse-to-fine framework. The authors also elect to maintain a regional shape
descriptor that consists of a number of vertices on the boundary of the target. This
regional descriptor is useful in detecting occlusion events if the area of the enclosed
region changes much more than expected. Detection is performed with motion-based
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segmentation and is used for the purpose of tracker initialization and identifying the
regions of interest in the current frame. The results in (Meyer & Bouthemy, 1994) are
extremely impressive, especially given the date of publication. The proposed system
is shown to be relatively successful for the challenging problems of partial occlusion
and multi-target tracking in realistic environments. Another system that is worth
mentioning in brief was proposed in (Matthews, Ishikawa & Baker, 2004). In this
case, the authors address the problem of template updates. Matthews et al. show
that superior template updates can be attained by selecting the optimal target region
in the current frame and subsequently warping this region back toward the original
template of the first frame. This warped version of the optimal target region is used
as the template for the next frame. Finally, in (Birchfield & Pundlik, 2008), a tracker
was developed that combined ideas from the work of Lucas and Kanade (i.e. that local
regions experience the same motion) with Horn and Schunk’s optical flow estimation
(i.e. that scene motion varies smoothly). These constraints are combined, allowing
for the joint tracking of interest points. An added benefit is that this approach allows
for the tracking of edge interest points instead of just corner or well-textured interest
points.

Other warping trackers have considered the incorporation of active vision compo-
nents (Uhlin, Nordlund, Maki & Eklundh, 1995; Wixson, Eledath, Hansen, Mandel-
baum & Mishra, 1998). In (Uhlin, Nordlund, Maki & Eklundh, 1995) a two-stage
warping procedure is performed whereby the background motion is computed first.
Subsequently, a parametric warp is estimated for those pixels that do not move consis-
tently with the background. A novel aspect of this work is that disparity information
is used to detect target occlusions when computing the foreground region and its cor-
responding motion. The motions of the foreground and background regions are then
used to update the settings of an active camera. The system in (Wixson, Eledath,
Hansen, Mandelbaum & Mishra, 1998) also incorporates a warping-based tracker with
active camera controls. In this particular work, the fixation of ground targets from
an airborne platform is achieved using a unique combination of image warping and
active camera control. Because stabilization through image warping is included, a
simple PI controller is sufficient for retaining fixation. Furthermore, with the camera
considered in this work, only translational shifts can be rectified by altering the pan
and tilt parameters. By incorporating an affine warp, transformations beyond simple
translations can be resolved.

Before continuing on with kernel histogram methods, we would like to stress to the
reader that there is nothing special about warping using image intensities and hope-
fully the literature that has been described in this section have emphasized this point.
During this discussion, pixel-wise warping trackers have been described that match:
intensity values to intensity values (e.g., (Black & Anandan, 1996; Enzweiler, Wildes
& Herpers, 2005)); phase domain filters responses to phase domain filter responses
(e.g., (Jepson, Fleet & El-Maraghi, 2003)); intensity values to learned Eigen-basis
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sets (e.g., (Black & Jepson, 1998; Ross, Lim & Lin, 2008)); and intensity values to
an SVM classification system (e.g., (Avidan, 2001)). In theory, many other types of
features could also be used within the warping framework. Features as simple as edge
pixels could be used. In fact, we discussed such a work in Chapter 3 (Huttenlocher,
Noh & Rucklidge, 1993), but the transformations considered in that case were only
translational.

Although we did not discuss such systems in this review, it is conceivable that
vector-based features could be incorporated into the warping paradigm. For instance,
RGB components of a color pixel or perhaps even vectors of spatiotemporal oriented
energies (Adelson & Bergen, 1985) could be used in warping trackers. An initial,
näıve approach to incorporating vector-valued features into the framework would be
to treat each of the components as independent images and accumulate the results
across all components. Mathematically, this näıve approach could be implemented
according to

E (a) =
∑

c

∑
x

ρ
(
(∇Ic)T u (a) + Ic

t , σ
)
, (5.15)

where the first summation is over all components, c, of the vector features and the
superscripts on I indicate which feature set is being used. With such advancements
on the immediate horizon, clearly there is much left to explore within this tracking
paradigm.

5.3 Kernel Histogram Methods

The third class of region-based tracker to be discussed here is kernel histogram meth-
ods. By kernel histogram methods, we are essentially referring to trackers that use
some combination of a weighting kernel and a histogram to represent the target and
attain frame-to-frame object tracks. The most prominent kernel histogram tracker
is the original mean shift tracker (Comaniciu, Ramesh & Meer, 2000) along with
its numerous variants and extensions (Comaniciu, Ramesh & Meer, 2003; Collins,
2003; Collins & Liu, 2003; Hager, Dewan & Stewart, 2004; Birchfield & Rangarajan,
2005; Leung & Gong, 2006; Parameswaran, Ramesh & Zoghlami, 2006; Cannons &
Wildes, 2007; Fan, Yang & Wu, 2007). Accordingly, the primary focus of this sec-
tion will be on these works. It has been stated in this review and in the literature
(Hager, Dewan & Stewart, 2004) that region-based trackers have two extremes — the
blob-based trackers and the pixel-wise template trackers (rigid or warping). Kernel
histogram methods can be viewed as a middle ground between these two extremes. In
particular, point-wise features are accumulated across the support in a manner that
typically retains more information about the target than is used in a blob tracker.
However, such practices discards spatial information that is utilized in template track-
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ers. In the mean shift formulation, kernel histogram methods arguably share more
similarities to blob trackers (due to the lack of explicit shape information), but it has
been shown (Hager, Dewan & Stewart, 2004) that with some modifications, kernel
histogram methods can operate more akin to template trackers.

5.3.1 Standard Mean Shift Tracking

To begin, we will discuss the standard mean shift tracker that was original presented in
(Comaniciu, Ramesh & Meer, 2000). At a high level, the basic components of a mean
shift tracker that need to be defined are as follows: the histogram representations
for the template and candidate regions; the matching metric between histograms;
and the method of locating the best candidate match in the current frame. These
components will now be explained, in turn.

Histogram Definition

The vast majority of mean shift trackers in the literature, including its original formu-
lation (Comaniciu, Ramesh & Meer, 2000), use color histograms. Color histograms
were previously qualitatively discussed in Chapter 2 of this review, but now the
specifics of applying these histograms to a kernel-based tracker will be detailed. The
idea of a basic color histogram is to consider each color in turn and count the number
of pixels across the target support that are of this color. Mathematically, each bin
within a color histogram can be constructed using:

qu = C

n∑
i=1

δ [b (x∗i )− u] , (5.16)

where x∗i = (x∗, y∗) is a single target pixel at some temporal instant, i ranges so that
x∗i covers the template support, C is a constant that can be included to ensure that
the histogram bins sum to one, u is a particular histogram bin, and δ is the Dirac
delta function. The function b can be thought of as a very simple function that maps
a pixel color value (the input) to its corresponding histogram bin (the output). Since
each bin corresponds to a particular color, Eq. 5.16 will only increment the count for
a bin when a pixel of the correct color is encountered.

In the mean shift tracking framework, the basic histogram of Eq. 5.16 is slightly
modified to include a kernel weighting function. The rationale behind the kernel
function is to weight pixels depending on their spatial location within the tracking
window. Heuristically, pixels at the center of the window are very likely to truly
belong to the target and are correspondingly weighted highly. On the other hand,
since the tracking window does not perfectly adhere to the outline of the target, it
is believed that pixels near the border of the tracking window have a higher chance



150 CHAPTER 5. REGION-BASED TRACKERS

of being part of the background. Due to this decreased certainty, pixels near the
border of the tracking window receive lower weights. Equation 5.16 can be adjusted
to include the kernel weighting function as follows

q̂u = C

n∑
i=1

k
(||x∗i ||2

)
δ [b (x∗i )− u] , (5.17)

where k is the profile of the tracking kernel. Note that under our notational conven-
tion, when referring to kernels, uppercase indicates the kernel itself while lowercase
refers to the kernel profile. Following the notation of (Comaniciu, Ramesh & Meer,
2000), Eq. 5.17 is the template histogram, originally defined in the first frame of the
video (although it may be updated as tracking progresses). This process of weighting
by a kernel to compute an approximate probability distribution is commonly referred
to as the “kernel density estimation”.

When tracking a target between frames, it may be necessary to evaluate several
target candidates before a final, optimal target position is found for the current frame.
The histograms for the target candidates are evaluated using

p̂u = C

n∑
i=1

k

(∣∣∣∣
∣∣∣∣
y− x∗i

h

∣∣∣∣
∣∣∣∣
2
)

δ [b (x∗i )− u] , (5.18)

where y is the center of the target candidate’s tracking window, h is the bandwidth of
the tracking kernel and i ranges so that x∗i covers the candidate support. The kernel
bandwidth allows for scale changes of the target throughout the video sequence.

The final component of the histograms that must be explained is the kernel.
The Epanechnikov kernel, has been shown to be effective (Birchfield & Rangarajan,
2005; Comaniciu, Ramesh & Meer, 2000; Hager, Dewan & Stewart, 2004) and appears
to be the most commonly used kernel in the application of the mean shift algorithm
to computer vision. However, it should be noted that other types of kernels, such as
Gaussian-based kernels, (Collins, 2003) have been considered as well. One restriction
imposed upon the kernel is that it must be convex and monotonically decreasing
(Comaniciu, Ramesh & Meer, 2000). Since the Epanechnikov kernel is the most
popular in the literature, it will be the focus of this paper. This kernel, which is
graphically shown in Figure 5.5, is mathematically defined as

KE (x) =

{
1
2
cd
−1 (d + 2)

(
1− ||x||2) , if ||x|| < 1

0, otherwise

where cd is the volume of a unit d-dimensional sphere.
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Figure 5.5: The Epanechnikov kernel commonly used in mean shift tracking.

Matching Method

Now that we have defined histogram models for the template and candidates, a
method is needed for comparing these models. Although a variety of methods could
be used for comparing histograms (e.g., Earth mover’s distance (Rubner, Tomasi &
Guibas, 2000), Euclidean distance), following (Comaniciu, Ramesh & Meer, 2000),
the Bhattacharyya coefficient is used. The discrete, sample estimate of the Bhat-
tacharyya coefficient is computed using

ρ̂ (y) ≡ ρ̂ (p̂ (y) , q̂) =
m∑

u=1

√
p̂u (y) q̂u (5.19)

where u varies over all histogram bins. Due to the definition of the Bhattacharyya
coefficient, in order to minimize the distance between two histograms, Eq. 5.19 must
be maximized with respect to target position, y. With a similarity measure in place,
the final component of the mean shift tracker is that of determining an efficient
mechanism for searching for the optimal position in the current frame.

Target Position Estimation

Similar to simple gradient-ascent methods, the mean shift algorithm seeks the modes
of a distribution by using an estimate of the function’s gradient. As shown in (Fuku-
naga & Hostetler, 1975), an estimate of the density gradient can be defined in terms
of a so-called “mean shift vector”. The modes of a distribution can be located by
iteratively computing this mean shift vector and translating the center of the kernel
to the specified location. This iterative procedure can be employed to maximize an
objective function, as is done in the mean shift tracker of (Comaniciu, Ramesh &
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Meer, 2000).

The Bhattacharyya coefficient can be maximized via mean shift iterations (Fuku-
naga & Hostetler, 1975; Comaniciu, Ramesh & Meer, 2000) by first taking the linear
approximation of Eq. 5.19 and substituting the definition of the target candidate
histogram, Eq. 5.18, into the resulting linear equation. Note that the candidate his-
togram equation must be substituted, as it is the only equation that is a function
of the target candidate position y, over which optimization is being performed. The
resulting mathematical expression is

ρ (p̂ (y) , q̂) ≈ 1

2

m∑
u=1

√
p̂u (ŷ0) q̂u +

Ch

2

nh∑
i=1

wik

(∣∣∣∣
∣∣∣∣
y − x∗i

h

∣∣∣∣
∣∣∣∣
2
)

, (5.20)

where

wi =
m∑

u=1

δ [b (xi)− u]

√
q̂u

p̂u (ŷ0)
. (5.21)

The second term in Eq. 5.20 is in a form similar to that of a standard kernel
density estimate, the only significant difference being the inclusion of the weighting
terms, wi. As shown in (Fukunaga & Hostetler, 1975; Comaniciu, Ramesh & Meer,
2000), the local optimum of a kernel density estimate can found using the mean shift
vector. This implies that the linearized Bhattacharyya coefficient equation can be
maximized by using mean shift iterations. The specific mean shift vector that can be
used to perform the desired maximization is

ŷ1 =




∑nh

i=1 x∗i wig

(∣∣∣
∣∣∣ ŷ0−x∗i

h

∣∣∣
∣∣∣
2
)

∑nh

i=1 wig

(∣∣∣
∣∣∣ ŷ0−x∗i

h

∣∣∣
∣∣∣
2
)


 (5.22)

where g (x) = k′ (x) is the derivative with respect to x of tracking kernel profile, k,
and ŷ0 is the current position of the target.

Thus, the position of the target in the current frame is estimated as follows. Start-
ing from the target’s position in the previous frame, iterations are performed whereby
the mean shift vector is computed and the target candidate is moved to the position
indicated by the mean shift vector. These steps are repeated until convergence has
been reached or a fixed number of iterations have been executed.
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Scale and Template Updates

In the original mean shift formulation, scale and template updates were handled in
a very simplistic fashion. The target template was updated to be a weighted combi-
nation between the best candidate in the current frame and the previous template.
The weights were selected based on the Bhattacharyya coefficient (confident matches
received less aggressive updates). Scale updates were performed by completing mean
shift optimization using a range of different target scales. The scale that provided
the best match was used as the final solution and for updating the template. Clearly,
the scale and template updates proposed in (Comaniciu, Ramesh & Meer, 2000) were
not the focus of the work.

Performance Results

The qualitative performance of the original mean shift tracker, demonstrated in (Co-
maniciu, Ramesh & Meer, 2000), is quite good. Three challenging sequences are
shown that focus on the problems of tracking American football players and persons
on a subway platform. The football sequence presents a number of tracking challenges
including partial occlusions, multiple distractors with similar color distributions, and
camera motion causing significant levels of motion blur. The subway sequences are
also challenging, involving partial occlusions, significant clutter, scale changes, and
numerous foreground objects with similar appearances. For all demoed sequences,
the system performs very well. However, it should be noted that in one of the subway
sequences, a person with a white jacket is tracked. This woman is essentially the only
person in the entire scene with white clothing. Furthermore, although tracking never
fails on the football sequence, the tracking window is not always well-centered on the
target. Finally, since color features are used, it is likely that the system will not be
overly robust to changes in illumination.

5.3.2 Extensions to the Mean Shift Tracker

In the years following its initial inception (Comaniciu, Ramesh & Meer, 2000), a
number of trackers were proposed that extended the basic mean shift tracker. The
majority of these extensions were more incremental than radically changing the mean
shift framework. Some works, such as Comaniciu et al.’s extended paper (Comaniciu,
Ramesh & Meer, 2003), introduced predictive Kalman filters to smooth the target
tracks. Depending on the application domain, the inclusion of a Kalman filter could
be beneficial or detrimental. For example, if the motion is expected to be smooth
and not experience any sudden large changes (e.g., large passenger airplane traveling
across the sky) than a Kalman filter should be beneficial in smoothing the target
track. On the other hand, if the target is expected to make sudden changes in
direction or otherwise move erratically (e.g., ping pong ball during a table tennis
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match), Kalman filtering could be detrimental, causing overshoot and possible loss of
the target’s position (Nummiaro, Koller-Meier & Gool, 2002).

In addition to the inclusion of predictive components, throughout the extensions,
a number of themes can be observed. Some works (Birchfield & Rangarajan, 2005;
Hager, Dewan & Stewart, 2004; Leung & Gong, 2006; Parameswaran, Ramesh &
Zoghlami, 2006; Fan, Yang & Wu, 2007) have attempted to include additional spatial
information. Meanwhile, other researchers have considered increasing the speed of
the algorithm (Hager, Dewan & Stewart, 2004; Leung & Gong, 2006). As the scale
update solution proposed in (Comaniciu, Ramesh & Meer, 2000) was far from elegant,
techniques have been proposed for more effectively handling changes in target scale
(Collins, 2003; Hager, Dewan & Stewart, 2004). Finally, the matter of feature spaces
and automatically selecting the most discriminative features for tracking has been
investigated (Collins & Liu, 2003; Leung & Gong, 2006; Cannons & Wildes, 2007;
Avidan, 2007; Yin, Porikli & Collins, 2008; Parag, Porikli & Elgammal, 2008). These
various classes of extensions will now be described in brief.

Including Spatial Information

The fact that spatial information is essentially discarded when constructing the his-
tograms that are used in mean shift tracking could be considered an obvious point
of weakness. On the other hand, this lack of spatial information can be advanta-
geous, as it allows targets to undergo planar rotation and non-rigid transformations
without changing the resulting histogram. Template trackers are seemingly at the
other extreme as they represent the target in a pixel-wise fashion, and thus retain all
spatial information. Researchers have noted this lack of spatial information in the his-
togram model and have considered methods to incorporate various amounts of spatial
information into the mean shift framework (Birchfield & Rangarajan, 2005; Hager,
Dewan & Stewart, 2004; Leung & Gong, 2006; Parameswaran, Ramesh & Zoghlami,
2006; Fan, Yang & Wu, 2007).

One of the first works that considered this problem was that of (Birchfield &
Rangarajan, 2005). In this case, the authors create a so-called “spatiogram” instead
of a standard histogram. Essentially, a spatiogram is a histogram where each bin
is weighted by the spatial mean and covariance of its contributing pixels. Hence, a
spatiogram bin is now described by a set of values {qu, µu, Σu} which correspond to
the count, mean, and covariance of the pixels contributing to that bin, respectively.
Due to the inclusion of this additional information, a modified matching metric must
be derived. In (Birchfield & Rangarajan, 2005), the metric used is

ρmod (qu, pu) =
m∑

u=1

φuρ (qu, pu) (5.23)
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where

φu = η exp

(
−1

2
(µp

u − µq
u) Σ̂−1

u (µp
u − µq

u)

)
. (5.24)

Note that ρ (qu, pu) is just a standard method for comparing histogram bins, such
as the Bhattacharyya coefficient as was used in (Comaniciu, Ramesh & Meer, 2000).
Furthermore, µp

u and µq
u are the mean of the candidate and target pixels that con-

tribute to bin u, η is a Gaussian normalization constant, and Σ̂−1
u is the combined

covariance for the two histograms.

The authors substitute the spatiograms along with this new matching criterion
into the mean shift framework. The derivation proceeds in a similar manner to that
presented in (Comaniciu, Ramesh & Meer, 2000). The end result is a mean shift
vector where each pixel votes for the magnitude and direction of the shift. This is
in contrast to the standard mean shift method where each pixel is implicitly voting
for a shift in the direction of the pixel itself. The authors demonstrate that in head
tracking situations, the use of spatiograms provides improved performance over the
standard mean shift algorithm.

In (Leung & Gong, 2006) the authors attempted to include spatial information by
performing normalized cuts (Shi & Malik, 2000) on the initial frame. The authors’
argument is that the kernel weighting assumption (pixels near the center are more
reliable) is not always true nor accurate. Normalized cuts provides a more precise
outline of the target in the first frame. Throughout the rest of the sequence, the
authors only use pixels within this target region (represented as a 2D histogram)
to construct candidate models. Although a sequence is shown where this approach
outperforms that of standard mean shift, their method and implementation appear
to have severe limitations as the object mask does not seem to be updated.

Finally, in (Hager, Dewan & Stewart, 2004) an interesting approach is presented
where multiple kernels are used for tracking a target. The authors of (Hager, Dewan
& Stewart, 2004) argue that kernel histogram trackers can be customized to be closer
to either extreme of the region-based trackers (blob trackers or pixel-wise template
trackers) by using multiple kernels. Specifically, a connection is initially drawn be-
tween template trackers and mean shift trackers. To that end, an SSD error function,
known as the Matusita metric (Matusita, 1955), is presented. The Matusita metric
can be shown to share a close relationship with the Bhattacharyya coefficient through
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the following derivation
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∣∣∣
∣∣∣√q−

√
p (y)

∣∣∣
∣∣∣
2

=

[(√
q1 −

√
p1 (y)

)2

+
(√

q2 −
√

p2 (y)
)2

+ . . .

(√
qm −

√
pm (y)

)2
]

=
(
q1 − 2

√
q1p1 (y) + p1 (y)

)
+

(
q2 − 2

√
q2p2 (y) + p2 (y)

)
+

. . .
(
qm −m

√
qmpm (y) + pm (y)

)

=
m∑
i

qi +
m∑
i

pi (y)− 2
m∑
i

√
qmpm (y)

= 2− 2ρ (q,p (y)) , (5.25)

where p is the target and, q is the template, and m are the number of histogram
bins. The last step in the derivation is performed with the knowledge that the kernel
histogram bins sum to unity (since they represent discrete probability distributions)
and using Eq. 5.19. Thus, the minima of Eq. 5.25 coincides with the maxima of
the Bhattacharyya coefficient. Hence, if a method were available for finding the
local optima of the SSD-based Matusita metric, then given the same starting point,
the mean shift algorithm and this unknown optimization algorithm should converge
to the same solution. With that goal in mind, the authors derive a Newton-style
iterative procedure for optimizing Eq. 5.25. Thus, the best local match between a
template kernel modulated histogram and a number of candidates can be found using
a template-matching inspired SSD metric.

The authors argue this is a viable alternative to performing optimization with
mean shift iterations for numerous reasons. One advantage of this alternative opti-
mization is that it is easier to incorporate parametric motion models that deform the
tracking window. Typically, in region trackers, these parametric models are reserved
for use in warping-based trackers. However, under this new optimization framework,
deformations to the tracking window such as shearing and scaling can be incorpo-
rated. Another advantage of the proposed SSD-based optimization procedure is that
it allows for the tracking with multiple kernels. Multiple kernels can help to resolve
ambiguities and further constrain the target’s spatial structure. Figure 5.6 provides
an example of when single kernel-based trackers result in ambiguous solutions. It
should be noted, however, that the inclusion of multiple kernels requires more at-
tention from the designer to ensure that appropriate kernels are used and that the
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a

b

c

Figure 5.6: The spatial ambiguity problem when using a single tracking kernel. Ker-
nels a and b are ambiguous and can move anywhere around their corresponding circles.
Kernel c has a unique, optimal position.

tracker is sensitive to the desired directions of motion.
Recently, the work of Hager et al. was extended in (Fan, Yang & Wu, 2007). In this

work, a theoretical analysis is performed that shows the conditions for motion observ-
ability with a single kernel. Furthermore, a tracking architecture is proposed where
multiple kernels operate together in a collaborative fashion. Under their proposed
framework, it would be possible to simply use pair-wise collaborations. Instead, the
authors elect to incorporate information regarding the global relationships amongst
the kernels using a principal component analysis-based method. In another recent
system, (Parameswaran, Ramesh & Zoghlami, 2006), human tracking was achieved
by combining the responses of multiple radially symmetric kernels to create an overall
kernel function. A novel aspect of this system is that each individual kernel’s band-
width can be learned and varied individually. Such flexibility is useful when tracking
articulated targets (e.g., humans) where larger bandwidths are needed for areas such
as the arms and legs and smaller bandwidths can be used for more stable regions such
as the torso.

As evidenced from some of the most recent works, it appears that a popular
method of incorporating additional spatial information into the kernel histogram
tracking paradigm is by making use of multiple kernels. As research in the area
of multiple kernel tracking is relatively new, further studies should be conducted to
more concretely ascertain its true utility.

Improving Tracker Efficiency

In addition to considering the inclusion of spatial information, the papers (Hager,
Dewan & Stewart, 2004) and (Leung & Gong, 2006) also contributed to the goal
of making the mean shift algorithm more efficient. In (Leung & Gong, 2006) uni-
form random sampling was used to select a subset of tracking window pixels when
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constructing the target and candidate histograms. Surprisingly, for simple color dis-
tributions, just 5 samples are required to achieve accurate tracking. Typical targets,
however, require approximately 15 samples. Nonetheless, targets can easily have a
support region that extends into thousands of pixels, making the solution proposed
in (Leung & Gong, 2006) attractive.

An additional advantage of the alternative optimization procedure proposed in
(Hager, Dewan & Stewart, 2004) is that it converges more quickly than mean shift
iterations. The Newton-style optimization approach attempts to move to the local
optima in one step. The authors qualitatively and quantitatively observe the re-
duced number of iterations when using the Newton-style optimization. Although it
is expected that the overall speed improvement is substantial, no comparison is men-
tioned regarding the number of computations that are required per iteration for the
two approaches.

Updating Target Scale

It might not be immediately obvious why scale update is of significant concern when
developing a tracker. The designer might falsely think that a tracking window that
is much larger than the target is acceptable because it encompass the entire target
support, and corresponding, all information about the target. On the other hand, one
might think that a tracking window that is smaller than the target is also acceptable
because it can still lock onto some portion of the target. In fact, neither of these
solutions is ideal for different reasons.

Tracking windows that are larger than the target itself are not desirable as the
model then encompasses many background pixels in addition to the true target pixels.
If the number of background pixels is substantial, the developed model might capture
as much (or more) information about the background than the target itself! At the
other end of the spectrum are tracking windows that are smaller than the target. This
situation is also not ideal as there may be a number of candidate solutions that are
essentially equally good. As a result, due to noise, small illumination changes, etc.
the tracking window may move between these essentially identical optima within the
solution space, providing a very erratic target track. The target window will typically
be neither consistently placed on the target nor well-centered.

The original mean shift algorithm implemented an extremely crude mechanism
for updating the size of the target window. Specifically, mean shift optimization was
performed using three different sizes of target windows and the scale that provided the
best optimum was kept. Other researchers have taken note of the brute-force nature
of this scheme and have proposed more elegant methods for adaptively changing the
target scale. We have already mentioned the first more eloquent technique that can
be used for changing scales. In particular, in (Hager, Dewan & Stewart, 2004) target
deformations can be easily incorporated into the optimization process. Scale changes
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are included in the set of allowable parametric transformations.

Another work attempted to solve the scale selection problem by using a scale
space-based approach for adapting target size (Collins, 2003). Previous work by Lin-
deberg (Lindeberg, 1998) on feature point detection inspired this mean shift tracking
work by Collins. Conceptually, the tracking procedure operates on a scale space
that is generated by convolving a modified version of the image with a multi-scale
difference of Gaussian filter bank in the spatial domain and subsequently filtering
with an Epanechnikov kernel in the scale dimension. The modes of this scale space
correspond to blobs at multiple scales within the image. The goal of the tracker in
(Collins, 2003) is to track these blobs throughout scale space (i.e. both in the spatial
domain and in the scale domain). A two-phase mean shift procedure is performed
where the scale is initially held constant and mean shift iterations are performed to
converge to the nearest local spatial mode. Subsequently, the spatial position is held
constant and mean shift iterations are performed across the scale axis. These two
stages are iterated until both scale and spatial position parameters have stabilized.
This scale selection technique is experimentally shown to be vastly superior to that
seen in (Comaniciu, Ramesh & Meer, 2000).

Feature Selection and Feature Advancement

One common theme that arises across all tracking systems (but is arguably most
prevalent for region trackers) is that of selecting features for tracking. Within the
kernel histogram tracker domain, the types of features investigated have been ex-
tremely limited. Most works have focused on the use of color histograms. Oftentimes
different color spaces and different bin quantizations are used, but these are minor
changes. In this section, we will discuss methods of automatically adapting and se-
lecting features in each frame to attain the best tracking results (Spengler & Schiele,
2003; Collins & Liu, 2003; Leung & Gong, 2006; Avidan, 2007; Yin, Porikli & Collins,
2008). Furthermore, we will describe a mean shift tracker that incorporates an ex-
tremely novel, rich feature set (Cannons & Wildes, 2007).

Most trackers are designed to locate the position of the target in video frames us-
ing a rigid set of features. It is näıve to assume that the particular features chosen by
the designer will be effective for all tracking scenarios. In some situations (e.g., clut-
tered background) it may be more appropriate to use color-based features. In other
occasions (e.g., similar colored foreground and background, illumination changes),
performance may be increased by using gradient information. An ideal tracker would
have a method of automatically detecting when the use of each type of feature is
appropriate and dynamically switching between the various available features. The
first steps toward this goal were presented in (Collins & Liu, 2003).

In this work by Collins and Liu, the “optimal” feature is defined as that which
maximally discriminates between the foreground and background portions of image.
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Using color as an example, if the color black is common both on the target and in the
background, it is not an effective feature (if we are presented with a random black
pixel, we could not say with certainty if it belonged to the foreground or background).
On the other hand, if the target contains numerous red pixels and the background
never contains red pixels, red would be considered to be a good feature. In a similar
manner, if the background contained a large amount of green and the foreground does
not contain any green pixels, green would also be considered to be a good feature.

Although their work could be applied to any pool of features (e.g., color, texture,
shape, motion), in (Collins & Liu, 2003), the authors elect to use various weighted
combinations of the R, G, and B components of a pixel to represent different features.
Specifically, a feature is defined as:

F = {w1R + w2G + w3B|w∗ ∈ [−2,−1, 0, 1, 2]} (5.26)

where w∗ are the integer weights. After removing all repeated features (when the
weight vector is a multiple of a previous weight vector) and the weight vector con-
sisting of all zeros, 49 possible features remain.

The system in (Collins & Liu, 2003) as well as many following works (e.g., (Leung
& Gong, 2006; Avidan, 2007; Yin, Porikli & Collins, 2008)) take a different approach
to tracking to the standard mean shift trackers. These systems essentially generate
pixel-wise classification decisions capturing the likelihood that a given pixel corre-
sponds to the target. Combining the pixel-wise classifications into a likelihood image
(or confidence image), one can essentially perform mean shift optimization on: (1) a
single likelihood image; (2) a set of likelihood images (e.g., (Collins & Liu, 2003)); or
(3) a combined likelihood map (e.g., (Avidan, 2007; Yin, Porikli & Collins, 2008)).
With this conceptual framework in mind, we will now describe the specific method
employed in (Collins & Liu, 2003), whereby mean shift optimization is performed
over a set of likelihood maps.

Having defined a method of computing the optimal feature in the current frame
(Eq. 5.26), the on-line feature selection tracker of (Collins & Liu, 2003) performs the
following steps:

1. Select a feature

2. Using this feature, construct histograms for the foreground and background

3. Compute a log likelihood for each histogram bin

4. Compute the separability between the foreground and background with respect
to the current feature

5. Repeat steps 1-4 for all features

6. Select the top N features
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Figure 5.7: Block diagram of the on-line feature selection tracker proposed in (Collins
& Liu, 2003).

7. Load the next video frame

8. Create N likelihood images. A likelihood image for a particular feature is con-
structed by replacing each image pixel value with the corresponding log likeli-
hood histogram value.

9. Perform N instances of mean shift tracking on the N likelihood images.

10. Combine the mean shift tracking results

11. Repeat the above steps for all video frames

Figure 5.7 shows a pictorial block diagram of the system processing steps. It
should be noted that in Step 3, the log likelihood values are computed according to
the equation:

L (i) = log
max{p (i) , ε}
max{q (i) , ε} (5.27)

where p is the normalized object histogram, q is the normalized background his-
togram, and ε is a small offset included to avoid numerical errors. Furthermore,
the separability between the foreground and background with respect to the current
feature is measured via the variance ratio of L (i).

More recently, the authors of (Leung & Gong, 2006) attempted to extend the
feature selection scheme proposed by Collins and Liu. In (Leung & Gong, 2006) the
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use of real-valued weights is proposed so that a steepest decent technique can be used
to find the optimal weight vector. Although superior performance is reported when
compared to the standard mean shift algorithm, no comparison is made between the
systems in (Leung & Gong, 2006) and (Collins & Liu, 2003). It would be interesting
to know the gains of incorporating real valued weight and thus, a much larger pool
of features. The authors of (Leung & Gong, 2006) do note that the steepest decent
algorithm requires 0.4 seconds in Matlab, which is presumably more computationally
intense than the approach in (Collins & Liu, 2003). Certainly, a down-fall of including
an online feature selection component (especially a complex one) is that it will increase
computation time.

Other systems have been proposed that follow a very similar approach to that
of Collins et al. (Spengler & Schiele, 2003; Avidan, 2007; Yin, Porikli & Collins,
2008; Parag, Porikli & Elgammal, 2008). The system in (Yin, Porikli & Collins, 2008)
is essentially an extension of the work (Collins & Liu, 2003). Once again, likelihood
maps are generated for a variety of different modalities. Example modalities include
histograms of intensities, histograms of oriented gradients, and template correlations.
The primary difference between this work and that of the system in (Collins & Liu,
2003) is that the individual likelihood maps are fused into a combined likelihood
map prior to performing the mean shift algorithm. This combined likelihood map
is created by taking the weighted sum of the individual likelihood maps, where the
weights are set based on a modality’s ability to distinguish between foreground and
background regions in the previous frame. Experimental results indicate that the
proposed algorithm outperforms the algorithm in (Collins & Liu, 2003).

In a similar spirit to the abovementioned works, Avidan derived a system that
generates a combined confidence map using a number of feature modalities. However,
rather than explicitly generating a map for each modality, the combined map is
computed using feature vectors and an ensemble classification scheme. The idea in
(Avidan, 2007) is to perform pixel-wise classification using a strong classifier that is
composed of a number of weak classifiers. The feature vector used to describe each
pixel can be selected by the designer; however, Avidan suggests the use of an eight-bin
HOG (computed in a 5×5 neighborhood) supplemented with the pixel’s RGB values.
Upon computing foreground confidence scores using the ensemble classifier, the mean
shift algorithm is used to locate the local optimum. To ensure that the ensemble
classifier adapts to the changing target properties, the weak classifiers are evaluated
at the conclusion of processing for each frame. The k best weak classifiers are retained
for future frames. Furthermore, q − k new weak classifiers are incorporated (q is the
total number of weak classifiers) that are trained using information in the current
frame. A number of excellent results are illustrating in the work for face, body, and
vehicle tracking scenarios. Results for simple occlusion situations (with the inclusion
of a predictive filter) are also demonstrated. Interestingly enough, the later work in
(Yin, Porikli & Collins, 2008) reports universally superior performance to Avidan’s
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system. However, no definitive conclusions can be drawn based on this result as the
implementation of Avidan’s ensemble tracker in (Yin, Porikli & Collins, 2008) is not
identical to that in Avidan’s original work.

Another recent extension to Avidan’s ensemble tracker was proposed in (Parag,
Porikli & Elgammal, 2008). In this case, rather than simply eliminating the worst
performing weak classifiers, the weak classifiers are continuously updated using the
most recent data from the current frame and an online boosting algorithm. The
proposed system avoids the problem of selecting the number of weak classifiers that
should be replaced in each frame, which is essentially just an arbitrary parameter
in Avidan’s ensemble tracker. A qualitative analysis shows the proposed system
outperforms the ensemble tracker.

The idea of selecting and combining a multitude of different features when per-
forming mean shift tracking is certainly one research avenue that should be explored
in more detail. The works of (Collins & Liu, 2003; Leung & Gong, 2006; Avidan,
2007; Yin, Porikli & Collins, 2008; Parag, Porikli & Elgammal, 2008) are certainly an
excellent starting point and illustrate that there are gains to be had by using multiple
modalities. Presently, there are some shortcomings of the abovementioned systems.
These systems all essentially follow the mentality of performing binary classification
decisions. With this approach, a pixel is evaluated as to whether it belongs to the
foreground or the background. An immediate question arises: “how can multi-target
tracking be performed in this framework?” It appears this question has yet to be
fully studied, but it certainly warrants additional research. An additional problem
with these mean shift trackers is that there appears to be little rationale for including
each modality. The authors basically select a number of modalities that are very
simple and can be computed efficiently. Given the redundant and complementary
nature of the feature set, the hope is that at least one modality will be sufficiently
discriminative for successful tracking at each frame. As the authors have shown, this
approach can be successful, but there is something less than satisfactory with such a
“try everything and hope something works” mentality.

As opposed to actually modifying the feature set that is used during tracking, a
different approach considered in (Chen & Yang, 2007) is to weight target areas, based
on the confidence that they are being tracked properly. Conceptually, this idea is
somewhat similar to the normalized cuts-based approach by Leung et al. discussed in
the previous subsection; however, in (Chen & Yang, 2007) weightings are determined
based on feature discriminability. Specifically, in (Chen & Yang, 2007), the proposed
approach downweights target pixels that share a similar color to pixels found in the
surrounding background. Furthermore, computations are performed to determine the
probability that each target pixel is being occluded. Target pixels that are believed
to be occluded are also downweighted. Mean shift tracking is subsequently performed
on a confidence weighted image.

Another alternative to combining a number of disparate features (Spengler &
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Schiele, 2003; Collins & Liu, 2003; Leung & Gong, 2006; Avidan, 2007; Yin, Porikli
& Collins, 2008) or performing additional confidence weighting (Chen & Yang, 2007)
would be to derive a single feature set, derived under a common framework, that
is more descriptive than individual features previously considered in tracking. This
latter approach is explored in (Cannons & Wildes, 2007). It is somewhat surprisingly
that, to our knowledge, HOG did not appear in the mean shift tracking literature prior
to the works of (Avidan, 2007; Yin, Porikli & Collins, 2008). Such a representation
captures the local spatial orientation structure of the target. In (Cannons & Wildes,
2007), the idea is to define a HOG-style feature set that not only captures the spatial
orientations of a target (like HOGs), but also captures the dynamic aspects of the
targets as well. Specifically, in this work, a very unique feature set, one derived from
spatiotemporal oriented energies (described in detail in Chapter 2), is used within
the mean shift framework. The argument for these features is that they are much
more powerful and rich than color histograms as evidenced by a number of realistic
situations.

The authors argue that spatiotemporal oriented energies can provide an extremely
rich description of a target. In particular, energies are computed across 10 orienta-
tions (the minimum number of orientations required to provide a spanning basis set
for the highest order filters they employ) in three dimensional (x, y, t) image space and
three scales. These energies capture both static and dynamic properties of a target
depending on their orientation. In particular, energies that are derived from filters
that remain within the image plane capture purely spatial structure; whereas, those
that are computed from filters that extend into the temporal dimension capture dy-
namic information. Multiscale processing is also important, as coarse scales capture
gross spatial patterns and overall target motion while finer scales capture detailed
spatial patterns and motions of individual parts (e.g., limbs). By encompassing both
spatial and temporal target characteristics in an integrated fashion, tracking is sup-
ported in the presence of significant clutter. Furthermore, spatiotemporal oriented
energies are robust to illumination variations due to the broadness of the filters and
the normalization stage used during their computation (Eq. 2.4).

To integrate oriented energies into the mean shift framework, the authors derive a
so-called “oriented energy histogram”. An oriented energy histogram contains a bin
for the energy of the target at each scale/orientation combination. Thus, the entire
histogram shows the energy of the target across all orientations and scales. Since the
authors compute oriented energies at three scales and 10 orientations, their histograms
are 30-dimensional. To create such a histogram, the energy of each “channel” (i.e.
each scale/orientation) is summed across the target support. The summed energy for
each channel becomes a particular histogram bin. For illustrative purposes, a portion
of the same figure as seen in Chapter 2, containing sample spatiotemporal oriented
energies is reproduced in Fig. 5.8. Furthermore, this figure pictorially illustrates the
process of constructing an oriented energy histogram from the energy images.
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Energy

Scale/Orientation

Figure 5.8: Frame from a MERL traffic video sequence with select corresponding
energy channels (top two rows). The bottom row shows the construction of an oriented
energy histogram by summing across the target support for each energy channel.

The introduction of the new type of histogram in (Cannons & Wildes, 2007)
necessitated a slight change in derivation for the mean shift vector. Specifically, the
weights used when computing the mean shift vector are updated to include the energy
of each pixel

wi =
m∑

u=1

Ê (x∗i ; φu)

√
q̂u

p̂u (ŷ0)
, (5.28)

where Ê (x∗i ; φu) is the energy of a particular target pixel x∗i for energy computed at
a particular scale/orientation combination, φu.

In this work (Cannons & Wildes, 2007), the authors demonstrated the benefits of
their proposed feature set over color histograms in several experimental situations:
multiple similar colored targets; drastic illumination changes; small targets; and back-
ground clutter. The problem of finding more descriptive feature sets is common to all
areas of tracking and the work of Cannons and Wildes is a reasonable first step as it
provides quite a rich description including both dynamic and static target properties.
Perhaps the promising results obtained in this work indicate that additional research
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efforts should be devoted to experimenting with more novel feature sets for tracking.

In summary, kernel histogram methods such as the mean shift tracker are currently
very popular due to their speed, simplicity, as well as their robustness to clutter
and occlusions. It appears that contributions have been made toward the scale and
template update problem as well as that of feature selection. Nonetheless, it appears
these areas could certainly still use further research.

5.4 Other Region Trackers

In an ideal world, for reviews such as this one, we would be able to perfectly place
all region trackers into a small set of sub-categories. This, in general, cannot be
done. However, perhaps it is beneficial for the field overall if perfect categorization
cannot be achieved because it shows that innovation and a willingness to explore
radically different approaches exists. This section will briefly mention a number of
works that do not quite fit in any of the categories we defined previously. Many
of these works make use of Kalman filters (Mittal & Davis, 2003; Kang, Cohen &
Medioni, 2003; Zhao & Nevatia, 2004) or particle filters (Wu & Huang, 2001; Isard
& MacCormick, 2001; Nummiaro, Koller-Meier & Gool, 2002; Okuma, Taleghani,
Freitas, Little & Lowe, 2004) to assist in tracking. Others make use of 3D information
or multiple cameras.

To begin, the system by Fieguth and Terzopoulos (Fieguth & Terzopoulos, 1997)
was one of the earlier papers to make use of color information and was published in
the same year as Wren’s PFinder system (Wren, Azarbayejani, Darrell & Pentland,
1997). The proposed system employed very basic tracking techniques, but was clearly
designed for speed. This tracker represented the target with N rigidly connected re-
gions. For instance, if a person’s head and shoulders were being tracked, six regions
might be defined that cover the person’s forehead, cheeks/eyes, nose, mouth, and
shirt. Each region is described simply by its mean color value and matching is per-
formed by taking the ratios of the mean RGB values for the template and candidates.
Searching for the best match is performed through a nonlinear velocity prediction
mechanism and a local search around the predicted position. Another interesting
aspect of this work is that occlusion events are explicitly modeled and dealt with. In
particular, multiple hypothesis are created that correspond to the different combina-
tions of the defined regions being contiguously occluded. The hypotheses that are
sufficiently probable are propagated to the next frame where there should be more
information that can be used to resolve the ambiguity. Although this work is sim-
plistic by today’s standards (the relationships between regions is rigid and must be
defined by the designer, no scale updating, no template updating) at the time it was
impressive, especially considering that it ran at frame-rate.

Part of the reason why some trackers do not properly fit into any of the above
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predefined categories is that they use three dimensional information or information
from multiple cameras. These experimental conditions do not immediately disqualify
a tracker from falling into one of the previous categories. However, as will be de-
scribed, typically this extra information requires different techniques and additional
processing. One such example is the human tracker presented in (Zhao & Nevatia,
2004) that combines blob analysis, warping, and Kalman filtering. The blob analysis
component of the system is used during human detection. Specifically, blobs are an-
alyzed to determine the location of a person’s head and subsequently a 3D ellipsoid
model is initialized using the head position as well as knowledge of the camera model
and the ground plane.

The authors argue that pure blob-trackers are limited in tracking accuracy and as a
result, make use of other tools for the actual tracking. In particular, Kalman filtering
predicts the position of the target in subsequent frames and a local search obtains
the optimal measurement in the vicinity. In addition to optimizing translational
parameters during the local search, warps on the image ellipse involving rotation
and scaling are also permitted. Thus, this tracker combines blob-based methods for
detection and target warping with Kalman filter prediction during tracking. One
significant drawback of this approach is that knowledge of the camera model and the
ground plane are required, which limits quick deployment in an arbitrary environment
and limits its usefulness with moving cameras.

The M2 tracker is another example of a unique system that makes use of 3D
models and multiple cameras for the purpose of human tracking (Mittal & Davis,
2003). The hardware required for this tracking system is quite complex — anywhere
from 4 to 16 synchronized cameras. Using knowledge of the target position in previous
frames, the algorithm begins by segmenting objects in each camera image. Image-wise
segmentation is based on color information (a cylinder model is used that represents
a person’s average color at a particular height) and the proximity of the projected
pixel in 3D space to the estimated current location of the person. After successful
segmentation, the cameras are used in a pairwise fashion whereby corresponding
epipolar lines that intersect a particular person in each image are projected into 3D
space. The projected epipolar lines are used to identify the points that comprise the
person’s body in 3D. After completing this process for all cameras and all individuals,
a map can be created that shows the 3D positions of all the individuals projected
onto the ground plane. The actual tracking mechanism is deployed on the computed
ground plane map. Specifically, Kalman filters with constant velocity motion models
are used to track ground plane blobs.

The system is quite impressive in its ability to effectively aggregate information
across all the cameras to achieve accurate tracking even in a confined space with
substantial occlusion. Moreover, the system initializes and learns its models at run-
time, making manual initialization unnecessary. Of course, the system is not perfect.
An elaborate 4 - 16 camera system is not overly practical outside of the laboratory
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Figure 5.9: Regional target representation used in (Kang, Cohen & Medioni, 2003).

or specially designed indoor environments. Furthermore, the system relies on illu-
mination variant color features and is quite computationally intense, running at 5
seconds/frame.

In (Kang, Cohen & Medioni, 2003), a multi-camera system is proposed that is
much more general-purpose than that seen in (Mittal & Davis, 2003). Kang et al.
assume a camera setup where a PTZ and stationary camera are present and have
slightly overlapping fields of view. Affine warping is used to register consecutive
frames from the moving camera so that background subtraction can be performed.
A homography warp is used to bring the moving camera and stationary camera into
correspondence. Tracking is achieved by maximizing a joint probability model that
consists of a motion model and an appearance model. The motion model is repre-
sented using a unique Kalman filtering process that incorporates information from
both PTZ and stationary cameras in the state vector. Specifically, the state vector
used during Kalman filtering is comprised of the 2D position and velocity of the target
as observed in each cameras’ image domain. The appearance model is also somewhat
novel in that it represents the color of the target using a polar coordinate-inspired
“bulls-eye” representation. The bulls-eye representation, shown in Fig. 5.9, divides
the target into bins that are at a particular quantized angle and distance from the
target center. The average color of each of the quantized bins is computed and is rep-
resented with a Gaussian. This is another alternative color target representation that
can be used in place of the color histogram or a single mean value. The advantage of
this representation is that is retains some level of spatial information regarding the
location of individual colors. Tracking is performed by maximizing a joint probability
that is comprised of the individual motion and appearance probabilities.

Other trackers in the literature have used or extended the particle filter in their
development. The BraMBLe tracker (Isard & MacCormick, 2001) shares some sim-
ilarities with the M2 tracker (Mittal & Davis, 2003), but rather than using an ar-
ray of cameras, a single calibrated camera is deployed. In Isard and MacCormick’s
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tracker, a grid with width and height spacing of 5 pixels is laid over the image.
At each grid crossing, a bank of filters (radially symmetric Gaussians and second
derivative of Gaussian-based Mexican hat functions) are applied to the three im-
age channels. These filter responses are then used to compute observation proba-
bilities — the probability of the filter responses, zg, at a particular grid location,
given that the pixel corresponds to a particular layer, lg (i.e. p (zg|lg)). A separate
layer exists for the targets within the scene and for the background. The foreground
model, p (zg|lg = foreground) and the background model p (zg|lg = background) are
both modeled as mixture of Gaussians and are learned from training data. This
observation model is then used as the measurement distribution in a particle filter.

The novelty of the BraMBle system is that the observation distribution can obtain
an unknown and varying number of targets (as opposed to more typical situations
where the measurement distribution represents multiple hypotheses regarding a single
target’s location). To limit the effects of occlusion, individuals are represented as
“cyliners” (more precisely, a set of four disks with a common vertical axis, but different
diameters) in 3D space. The state during particle filtering encompasses both the 3D
floor position and shape of the “cylinder”. Fairly standard particle filtering machinery
is employed using this unique observation distribution and the 3D human target
representation. The system is fairly impressive, overall, as it tracks a varying number
of individuals in a principled fashion, even with some occlusion. However, as tracking
is performed using 3D state information, camera calibration information is required.
Additionally, the tracker often fails when two persons cross paths causing almost
complete occlusion. This limitation is most likely due to the fact that the authors
elected to base the observation probability distribution on the two classes, foreground
and background layers, rather than separating each foreground target layer.

Two other systems that made use of particle filters to develop trackers were pre-
sented by (Nummiaro, Koller-Meier & Gool, 2002) and (Okuma, Taleghani, Freitas,
Little & Lowe, 2004). In (Nummiaro, Koller-Meier & Gool, 2002) a basic particle
filter was designed that used color histograms for obtaining the measurement distri-
bution. The majority of the system in (Nummiaro, Koller-Meier & Gool, 2002) is
very similar to the mean shift algorithm (Comaniciu, Ramesh & Meer, 2000) — color
histograms are computed using a kernel-weighting function and the Bhattacharyya
coefficient is used for comparing histograms. However, instead of performing inter-
frame tracking via mean shift optimization, the matching via color histograms enables
the creation of a measurement distribution. This measurement distribution is then
incorporated into a constant velocity particle filter. An interesting aspect of this work
is the initialization scheme. Assuming that a rough template histogram is available,
then particles can be placed at strategic locations within the field of view (e.g., at
doors and at the sides of the image) where it is believed the target will enter. When
a certain percentage of these particles produce a matching score that is substantially
higher than general background matches, it is assumed that a target has entered. In
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Chapter 2, we termed such initialization systems as “color-based target spotting” al-
gorithms. Overall, the particle filter-based tracker compares favorably to a standard
mean shift tracker and a mean shift tracker coupled with a Kalman filter.

The work of (Okuma, Taleghani, Freitas, Little & Lowe, 2004) also introduces an
interesting AdaBoost-based detection mechanism into the particle filtering framework
for the purpose of tracking hockey players. In a similar manner to (Nummiaro, Koller-
Meier & Gool, 2002), Okuma et al. compute the observation probability distribution
using color histograms. However, in an attempt to retain more spatial information,
the target region is subdivided into an upper and lower section that are assigned
separate histograms. Additionally, as the system focuses on the tracking of multiple
hockey players simultaneously, an extension of the standard particle filter, is used.
This filtering mechanism is known as the mixture particle filter (Vermaak, Doucet &
Perez, 2003). Mixture particle filters allow for the simultaneous tracking of multiple
targets and are actually somewhat similar in spirit to the observation probability
proposed in (Isard & MacCormick, 2001). However, in (Okuma, Taleghani, Freitas,
Little & Lowe, 2004), the observation probability is explicitly modeled as a mixture
of components where each component corresponds to a different target.

In addition to the use of mixture particle filter, another novelty of the system in
(Okuma, Taleghani, Freitas, Little & Lowe, 2004) is the incorporation of an Adaboost
detection mechanism into the tracking process. A cascaded Adaboost algorithm (Vi-
ola & Jones, 2001), is used to detect the hockey players in each frame. This detection
information is incorporated into the predictive stage of particle filtering. In standard
particle filter trackers, a motion model is employed to realize the deterministic drift
imparted on the target between two consecutive frames. However, in Okuma et al.’s
work, the prediction distribution is defined as a weighted combination of a motion
model and the Adaboost detection results. The authors argue that this combination
yields superior results to using either component in isolation, which is not surprising,
given the erratic movements of the hockey players that the system is tested on and
the potential for partial or full occlusion.

In (Wu & Huang, 2001) the particle filter framework was expanded to accommo-
date a tracker that employed features of multiple modalities. The general problem
of using a larger group of features when using a sampling based tracking method is
that a larger number of samples are required to properly represent the distributions.
In fact, as the dimensionality of the state increases, the number of required samples
increases exponentially (Wu & Huang, 2001). The authors use factorization methods
to divide the larger problem into a number of smaller problems that have state spaces
with lower dimensionality, a process that they term “co-inference”. The end result
is a two-stage particle filtering system. The two modalities used here are shape and
color. Thus, the system generates shape samples and subsequently updates these
samples using shape measurement information. The sampling generation and obser-
vation procedure is repeated for color information. The interesting aspect is that
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color weights (weights, as defined in Eq. 2.14) are used for the shape samples and
shape weights are used for color samples. The rationale is that the most effective
samples are those that exhibit strength across both modalities. On the other hand,
the inclusion of both modalities also provides additional robustness when one modal-
ity should fail. Indeed, the results that are presented in (Wu & Huang, 2001) clearly
illustrate examples where if one modality was used in isolation, the tracker would
undoubtedly fail.

Another, very unique, region tracker was presented by Tao et al. (Tao, Sawhney
& Kumar, 2002). This tracker was developed primarily for following vehicles from
a camera mounted on a moving, aerial platform. The authors elect to essentially
segment the video into image regions, or layers, that appear to be moving coherently
together, thereby tracking the target and everything else in the scene. The shape,
motion, and appearance of each layer are all parametrically modeled and are opti-
mized using the EM algorithm (Dempster, Laird & Rubin, 1977). The EM algorithm
begins by assigning ownership probabilities for each of the pixels. Having divided the
image into regions whose points presumably move in a similar manner, parametric
motion estimates for each motion layer are obtained during the M-step of the algo-
rithm. The iterative process of the EM algorithm is conducted until convergence is
attained. The results reported are impressive, especially considering the low-contrast
nature of the aerial video sequences. Unsurprisingly, the proposed tracker is shown
to provide results that are superior to a simple template matching tracker and a tem-
poral differencing-based blob tracker. However, it is not clear that a slightly more
advanced tracker (e.g., a tracker that “subtracts off” camera motion via an affine
warp and then performs frame-to-frame tracking on the registered images) could not
achieve levels of success similar to the proposed system.

Along the lines of motion segmentation, the systems of (Murray, Bradshaw, McLauch-
lan, Reid & Sharkey, 1995; Daniilidis, Krauss, Hansen & Sommer, 1998) employ
similar approaches whereby the motion field for an image is first computed. Subse-
quently, motion segmentation is performed and the dominant motion is assumed to
arise from the motion of the moving camera. The remaining regions with significant
levels of motion are concluded to correspond to the target. These target pixels are
then grouped using morphological operators. In both works, the center positions of
the blob targets are used to control the movement of an active camera.

Before concluding this chapter, we should briefly make note of a number of addi-
tional unique region trackers. In all of the tracking literature, there are numerous very
original trackers. Rather than trying to list all of them, we will attempt to briefly
highlight some of the most recent and impressive works. In (Spengler & Schiele,
2003), a system extremely similar to (Yin, Porikli & Collins, 2008) was proposed. A
combined likelihood map is generated by taking the weighted summation of individual
likelihood maps. The main difference between the work of Yin et al. and the system
in (Spengler & Schiele, 2003) is that Spengler et al. set the target position as the



172 CHAPTER 5. REGION-BASED TRACKERS

maximally probable location in the combined likelihood map (rather than performing
mean shift optimizations). Another recent and unique work is presented in (Leichter,
Lindenbaum & Rivlin, 2007). This work extends kernel-based tracking by incorpo-
rating both color and edge features as well as allowing the kernel to undergo affine
transformations. Another very interesting tracker documented in (Badrinarayanan,
Perez, Cler & Oisel, 2007) continues the study of how to combine multiple modalities
while tracking. In this work, a color-based particle filter tracker and a template-based
tracker are run in tandem. Even though both trackers are continuously running, the
combined system merely relies on the results of one of the two trackers. In the event
that the results of the tracker that is currently being relied upon are deemed unre-
liable, control switches to the other tracker. This switching back and forth between
trackers continues indefinitely.

Moving away from trackers that attempt to combine multiple modalities, in (Nguyen,
2006), a texture-based tracker is proposed that obtains very impressive qualitative
tracking results. The texture features are derived using a bank of Gabor filters at mul-
tiple scales and orientations. While determining the optimal target translation, the
system attempts to maximize the image textures that agree with previously observed
target regions while simultaneously not matching background textures. Another in-
teresting region tracker (Kim, 2008), combines blob tracking with rigid template
tracking. Background subtraction is performed and corners in the foreground image
regions are identified. Inter-frame tracking of corners is performed in a search region
using normalized cross-correlation. Clustering is subsequently performed to group
corners into higher level objects. Another corner-based tracker was presented in (Yin
& Collins, 2007b). Once again, inter-frame matching of corner regions is performed
using normalized cross-correlation; however, in this work, higher level objects are
found using graph-based techniques. The work in (Han, Comaniciu, Zhu & Davis,
2008) makes contributions toward region-based probabilistic trackers. Specifically, a
method is proposed for estimating multi-modal tracking densities in an online and
efficient manner using techniques based on kernel density approximation.

Historically, researchers have been limited to either assuming unimodal distrib-
utions or have been restricted to using relatively expensive sampling methods with
multi-modal distributions. Of course, exceptions to this rule have been previously
demonstrated and discussed in this review (e.g., (Cham & Rehg, 1999)). Finally, as
mentioned previously, some trackers employ continuous detection schemes that make
use of the efficient integral histogram (Adam, Rivlin & Shimshoni, 2006; Nejhum,
Ho & Yang, 2008). As the histogram representation is well-known to collapse spatial
information, both of the abovementioned works attempt to retain additional spatial
information by subdividing the tracking window into a number of smaller regions.
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5.5 Recapitulation

In summary, most region-based trackers can be cast as belonging to blob trackers,
point-wise template trackers, or kernel histogram trackers, but there are definitely
some unique exceptions. Some of these remaining trackers extend the original particle
filter framework while others use multiple cameras and 3D target representations. The
combining of several sources of target information, a common theme throughout this
paper, was also once again considered by trackers in this section. The next chapter
will continue the theme of analyzing trackers that are especially unique. In Chapter
6, however, trackers that cannot be classified strictly as belonging to Chapters 3 - 5
will be highlighted.
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Chapter 6

Combined Trackers

Although the majority of the trackers in the literature can be classified as belonging
to one of the categories in Chapters 3 - 5, there will always be exceptions. In this
chapter, trackers that do not fit well into any of the previous categories will be
described. Particular attention will be paid to trackers that combine techniques seen
in the previous chapters. We will divide the discussion of this special category of
trackers into three sections. First, trackers that combine components from the three
main categories of trackers (as discussed in Chapters 3 - 5) will be explored (Smith &
Brady, 1995; Chung, MacLean & Dickinson, 2006; Shao, Porikli & Chellappa, 2007;
Yilmaz, 2007; Rathi, Vaswani, Tannenbaum & Yezzi, 2007; Yang, Wu & Hua, 2008).
Subsequently, trackers that probabilistically combine multiple modalities and multiple
target representations (e.g., regions and contours) will be described (Rasmussen &
Hager, 2001; Serby, Meier & Gool, 2000; Leichter, Lindenbaum & Rivlin, 2004; Han,
Joo & Davis, 2007). Finally, the chapter will close with a description of silhouette-
based trackers (Haritaoglu, Harwood & Davis, 2000, 1999; Wang, Bebis & Miller,
2006).

6.1 Category Combining Trackers

The previous three chapters have described three general categories in which the
majority of trackers can be grouped. Although trackers typically employ methods
from one of the three classes in isolation, it is possible to combine the techniques
from various classes to create a combined tracker. It appears that combining pixel-
wise warping with other types of trackers is a popular approach (Smith & Brady,
1995; Chung, MacLean & Dickinson, 2006; Shao, Porikli & Chellappa, 2007). Other
works have attempted to combined contour tracking with kernel histogram methods
(Yilmaz, 2007; Yang, Wu & Hua, 2008). These category-crossing systems will be
described in this section.

Most of the region warping systems in the literature follow the general procedure
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of finding the optimal set of warping parameters that bring the template from the
previous frame into closest alignment with a region in the current frame. The best
matching location is considered to be the new target position. Other trackers make
variations on this approach and use the warping mechanism in other manners. For
example, in (Smith & Brady, 1995) warping is used to estimate the overall motion of
a cluster of discrete points that have been tracked. Other systems use region warping
as an initial motion estimate that is then refined using other techniques (Chung,
MacLean & Dickinson, 2006; Shao, Porikli & Chellappa, 2007). These works will now
discussed in more detail.

The ASSET-2 tracking system (Smith & Brady, 1995) is not particularly impres-
sive in the sense that it is not based on an overly principled approach and the results
are not groundbreaking. Nonetheless, in the context of this report, this tracker does
have some unique properties. Specifically, the tracker includes ideas from all three
of the previous chapters. Due to this unique combination of techniques, this work is
worth at least a cursory discussion.

During execution, the ASSET-2 tracker performs five main processes:

1. Feature detection

2. Feature tracking

3. Flow clustering

4. Cluster Tracking and Filtering

5. Boundary Enhancement

Feature detection and tracking are performed in a fairly simplistic fashion. The Har-
ris corner detector is used to locate feature points due to its low computational cost
and its ability to consistently produce the same features. These interest point fea-
tures are then individually tracked from frame-to-frame. In the first frame, initial
matches are established using a nearest neighbor matching scheme that also incorpo-
rates appearance-based heuristics. Once initial velocity estimates have been estab-
lished in the first two frames, a simplified Kalman filter is introduced. This filtering
framework reduces the search space when performing data association in subsequent
frames.

Once the correspondences between the interest points has been determined and the
instantaneous velocity has been computed, the field of these point tracks are clustered
into higher level objects. A unique clustering scheme is employed that attempts to
grow clusters from initial seed regions. The current cluster considers all points to
which it is spatially connected. When a cluster considers a single interest point, the
difference between its instantaneous velocity and the current overall velocity of the
cluster is computed. If the difference is sufficiently small, the interest point is added
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to the cluster. Once a cluster reaches steady state (i.e. no more connected interest
points join the cluster), a new cluster is initialized and the process repeats. Note that
as each cluster develops, it maintains an overall running velocity estimate for the high
level object it represents. When just a few interest points belong to a cluster, this
velocity is represented with a constant flow model. However, once a sufficient number
of interest point measurements are obtained, an affine warp between the two frames
is estimated for the cluster.

After cluster ownership and velocity estimates have been established, data asso-
ciation and predictive filtering are performed for the high level objects. Data associ-
ation is performed based on the clusters’ motion models and shape. Other heuristics
are employed to make matching more reliable. Once data association has been es-
tablished, the simplified Kalman filtering mechanism can be updated with the new
measurement.

Clusters provide position and shape information that is used during the Kalman
filter updating process. Positional information can be easily combined by taking a
weighted difference between the predicted and actual position of the cluster. Com-
paring the shapes of the measured and predicted clusters is a little more complex.
To that end, a radial target representation is used, which the authors argue to be
somewhat analogous to snakes. As Fig. 6.1 shows, this radial target representation
divides the space of 2D orientations into discrete bins. For each orientation bin,
the distance between the centroid and the furthest cluster point is computed. Thus,
this representation obtains a rough sketch of the target contour outline. Under this
representation, the predicted and current shapes can be combined more easily by com-
paring the distances for each orientation bin. The final component of the system is an
optional boundary enhancement stage that once again works with the radial target
representation. The idea behind this stage is to ensure that the cluster boundary is
aligned with true intensity edges within the image. Thus, along each 2D orientation,
the defining boundary of the cluster is pulled inward or outward toward the closest
image edge.

The system is demonstrated for the application of vehicle tracking. Instances
where the camera is moving are considered and the overall results appear sufficient
but not exceptional. Regardless, the unique approach and the culmination of ideas
across a variety of tracking styles make this system noteworthy.

A more recent work that incorporates affine warping with contour-based tech-
niques was presented by Chung, MacLean, and Dickinson (Chung, MacLean & Dick-
inson, 2006). As shown in Fig. 6.2, the general approach behind this work is to first
estimate the target motion by computing an affine warp for the target. This affine
warp provides an initial starting point upon which a snake-based contour can more
precisely delineate the target boundary. Subsequently, the affine motion of the tar-
get can be re-estimated for the current frame by only considering the pixels that lie
within the final contour. We will now discuss the main components of this system in
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Cluster Boundary

Distance From Centroid

Figure 6.1: Radial target representation used in (Smith & Brady, 1995) that mea-
sures the maximum distance from the cluster centroid to the furthest cluster edge for
discrete orientation bins.

more detail.
The central idea of the first stage of the system is to estimate a layered motion

model of the scene. When computing this layered motion model, each pixel provides a
constraint, c (x). The probability that this constraint agrees with the current layered
motion model can be computed according to

p (c (x)) =
n∑

j=1

πjpj (c (x) |θj,x) (6.1)

where πj are mixing parameters, x = (x, y) are image domain coordinates, and θ are
the parameters of the model. Essentially, Eq. 6.1 indicates that the probability of the
constraint is the weighted sum of the probabilities that this constraint was generated
by each motion layer.

Using Eq. 6.1, the most likely ownership of each pixel can be computed. In other
words, the probability that a constraint comes from a particular motion layer, j, is

p (c (x)| j) =
πjpj (c (x) |θj,x)∑n

k=1 πkpk (c (x) |θk,x)
(6.2)

Finally, the overall probability of a layered motion model is the product of the prob-
abilities obtained through each constraint (i.e. the product of Eq. 6.1 for all pixels).

With these formulations in place, the EM algorithm (Dempster, Laird & Rubin,
1977) is used is order to compute an optimal estimate of the motion layers. The EM
formulation used is similar to that seen in (Tao, Sawhney & Kumar, 2002). After
warping the regions according to the parametric models obtained with the EM algo-
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Figure 6.2: Block diagram of the system proposed by Chung et al. Adapted from
(Chung, MacLean & Dickinson, 2006).

rithm, intensity comparisons are performed between each pixel in the current frame
and its corresponding pixel in the previous frame. The difference in intensity between
the corresponding pixels is represented via a Gaussian distribution. Furthermore, a
normalized ownership, Qj (x), is computed that indicates the probability that pixel
x truly agrees with motion layer j, given the brightness constancy assumption be-
tween corresponding pixels. These ownerships will be used when minimizing the snake
energy.

The final component of the tracker in (Chung, MacLean & Dickinson, 2006) is
to use a snake-based algorithm to fine-tune the tracking results obtained with the
region-based methods. In this work, standard snakes are employed with an energy
that consists of internal and external energy terms. The internal snake energy is
defined in the same manner as in most snake works (Kass, Witkin & Terzopoulos,
1988; Terzopoulos & Szeliski, 1992; Leymarie & Levine, 1993) (i.e. Eq. 4.1). However,
in this work, a unique external energy is proposed. Specifically, the external energy
consists of terms related to distance, motion and intensity

Eext = γEdist (xi) + δEmot (xi) + κEintensity (xi) . (6.3)

As the name suggests, the distance energy is based on the distance from xi to the
nearest image edge. The motion energy considers the pixel motion ownership, Qj.
If this ownership is above a threshold for the current region, the energy is further
reduced to pull the contour toward that point. Thus, pixels that are aligned with
image edges but do not have strong motion ownership will be attractive to the snake.
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However, if a pixel has strong motion ownership and is aligned with an image edge, it
is an extremely good candidate contour point. Finally, the intensity energy is based
on balloon forces. Intuitively, if a contour point’s motion ownership, Qj, is largest
for the current region, j, then the contour will be encouraged to expand outward
along the normal. If the pixel’s intensity constraint, Qj agrees more strongly with a
different motion layer, the current snake will be encouraged to shrink inwardly along
the normal direction.

In summary, Chung et al. provide a tracker that effectively combines region-based
methods with contour-based methods. The results of their system are fairly impres-
sive. Some of the test sequences illustrate the tracking of toy construction vehi-
cles. These vehicles have very complex shapes with deep indents and sharp corners.
Nonetheless, the combined tracker is able to delineate the boundaries quite accurately.
Certainly, the boundaries are delineated more accurately with the proposed algorithm
than they would be with most region-based trackers. One or two worrisome aspects
of the results include the fact that no occlusion experiments are shown. One sequence
considered will clearly have a significant occlusion event but the authors elected to
not illustrate results on these frames. Furthermore, almost all sequences considered
targets that only experienced essentially horizontal translational movement.

Another paper that shares many similarities to that of (Chung, MacLean & Dick-
inson, 2006) was presented by Shao et al. (Shao, Porikli & Chellappa, 2007). Once
again in this work, image warping is first performed to obtain an initial contour es-
timate in the current frame that is then refined using fairly standard contour-based
techniques. More explicitly, the tracker performs three main processes: motion es-
timation, contour deformation, and shape regulation. We will now discuss in more
detail the three steps of this tracking system.

The authors perform a standard affine transformation to the B-spline control
points that define the contour. A unique aspect of this work is that the affine para-
meters, θt are estimated using a particle filtering framework. Thus, the state of the
particle filter is simply the six affine parameters and the filtering framework follows
very closely to the general particle filter explained in Chapter 2. Specifically, predic-
tion is performed in a straightforward manner using the previous affine parameters.
Furthermore, the update/measurement process is almost identical to that seen in the
CONDENSATION algorithm (Isard & Blake, 1996).

Given that a single warp has to be found that optimally meets the constraints
of all contour control points, it is possible that some or many of the control points
are not exactly aligned with true intensity edges within the image. As a result, a
subsequent refinement stage massages the curve such that the control points can
locally move to be aligned with intensity edges. The contour refinement stage in
(Shao, Porikli & Chellappa, 2007) is similar in spirit to many of the contour trackers
discussed in Chapter 4. Specifically, lines normal to the contour are constructed at
each discrete point and a search is conducted along this 1D line to find the optimal
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position. There is one unique aspect of the refinement algorithm proposed in (Shao,
Porikli & Chellappa, 2007) — the normal lines’ length and centering are adaptive.
The normal line lengths are determined from training sequences. In particular, during
training, portions of the target contour that vary frequently (e.g., swinging arms/legs
on a human) are identified and are determined to require a larger search radius. In
contrast, sections of the contour that move relatively steadily (e.g., torso and head
of a human) can use shorter normal lines. As mentioned, the center position of the
normals can be adapted as well. The intuitive idea is to adjust the lines based on a
distance transform to minimize the overlap and tangling that occurs between various
normal lines.

By searching along the set of normal lines to the contour, the most probable
positions of the control points are established using a number of cues including: edge
magnitude, edge orientation, shape templates, and foreground estimation. These
different modalities are fused in a probabilistic sense to maximize the probability of
observing the combined features, giving the estimated contour control points. As is
common throughout the contour tracking literature, the modalities are assumed to
be independent.

After the contour-based optimization step, the tracker in (Shao, Porikli & Chel-
lappa, 2007) performs one final stage of processing. This, shape regulation stage,
ensures that the contour matches allowable target shapes that were observed during
training. Specifically, in a similar fashion to Eigen representations, a basis set is
constructed using training imagery. This basis set defines a model of the allowable
shapes that the target can take throughout the sequence. During this final stage, the
estimated contour is projected onto the shape subspace provided by the basis vectors.
The projected version of the contour is the final estimate for the current frame.

The experimental results reported in this work are quite respectable. The tracker
is applied mostly to the problem of tracking humans. In many cases, the human
targets are very small but the tracker nonetheless provides accurate contours. One
noticeable area of weakness is that the tracker can not reliably segment deep contour
concavities (e.g., the area between a human’s outstretched legs). In fairness, most
contour trackers struggle with this problem, with one notable exception appearing to
be the system in (Yilmaz, Lin & Shah, 2004). Even still, Shao et al. demonstrate
effective tracking results with moving cameras, substantial shadow effects, partial
occlusion, and a quickly zooming camera.

A recently proposed work that combines warping machinery with contour tracking
was proposed in (Rathi, Vaswani, Tannenbaum & Yezzi, 2007). In this work, a particle
filter was incorporated into a level set tracker to smooth the target track and allow
for the recovery of larger target motions. The particle filter is used to estimated the
affine motion parameters that describe the inter-frame global motion of the target.
Subsequently, contour evolution is used to recover the local deformations of the target.
This idea of recovering the global target motion with an affine warp and the local
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deformations via curve evolution is reminiscent of the other approaches just discussed.

Finally, another work that shares similarities to the works by Chung et al. and Shao
et al. is presented in (Marchand, Bouthemy & Chaumette, 2001). In this work, an
affine warping mechanism is used to obtain a coarse estimate of a target’s motion that
is subsequently refined using 3D model-based methods. The two stages of tracking
(warping and 3D model-based) use very similar techniques to those already mentioned
in this review and thus, will not be elaborated upon. The system does offer an
additional novelty — that of incorporating active camera controls. In particular, an
image is obtained beforehand that shows the target in a reference pose. The goal of the
active camera system is to attain the reference viewpoint of the target, when starting
from any arbitrary view. To that end, the distances between corresponding features
in the reference frame and the current frame are computed. The distances are then
provided to a visual servoing system that brings the current viewpoint into alignment
with the reference view in a manner that decreases the error in an exponential fashion.
Sample results showing the tracking of fairly simple polyhedral objects are shown in
(Marchand, Bouthemy & Chaumette, 2001). Despite the fact that the targets are
simple, rigid shapes, they are often tracked with accuracy in front of very cluttered
backgrounds and throughout minor shadow effects.

In addition to combining a warping mechanism with other tracking machinery,
systems have attempted to combine contour-based ideas with kernel histogram meth-
ods (Yilmaz, 2007; Yang, Wu & Hua, 2008). In (Yilmaz, 2007), a more precise kernel
is obtained by precisely delineating the target boundary in the first frame. The ker-
nel is then defined as the signed distance from the contour, where regions inside the
target receive positive values and those outside receive weights of zero. Note that
this is a similar function to what is used when typically defining a level-set surface.
This “level set kernel” is then used during tracking. One significant limitation of the
approach is that the kernel does not have the ability to adapt its shape over time.
Note that this work is conceptually very similar to (Leung & Gong, 2006) (discussed
in Chapter 5), where normalized cuts were used to determine the shape of a target
in the first frame before performing kernel histogram tracking.

Continuing with combined systems that make use of kernel histogram methods,
in (Yang, Wu & Hua, 2008) a very different approach is undertaken that improves
tracking results by dynamically making use of other scene objects. To leverage a
scene object during tracking, the object must consistently appear with the target,
have motion that is correlated with the target’s own motion, and be easy to track.
The surrounding objects are identified based on their color and motion characteristics
and are identified using online data mining techniques. These surrounding objects
are tracked using the standard mean shift algorithm while a contour-based tracker
follows the true target of interest. Very impressive results are shown when the tracked
region is part of a larger object (e.g., tracking the face of a person as the main target
and other body parts as the surround objects).
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Finally, in (Babu, Perez & Bouthemy, 2007), a rigid template tracker was com-
bined with a mean shift tracker. Once again, the modules are run in a serial manner
such that the output of the rigid template tracker provides an initial motion estimate
for the mean shift tracker. Furthermore, likelihood maps are used to define pixel-wise
weights that indicate the probability that a pixel belongs to the foreground target.
Pixels that are likely to have originated from background regions are downweighted
during SSD and mean shift tracking. Finally, mean shift tracking is performed us-
ing several tracking windows placed randomly over the target region. The likelihood
maps as well as the pixel-wise weights allow the system to determine which of the
mean shift tracking windows should be trusted when updating the target position.
This design allows the system to be much more robust to partial occlusions because
the system only requires a subset of the mean shift tracking windows to be visible
to obtain accurate tracking results. In the original mean shift tracker (Comaniciu,
Ramesh & Meer, 2000), partial occlusions would be much more problematic and
might cause the single tracking window to drift off of the center of the true target.
This behavior often occurs because the tracking window tries to “avoid” surfaces that
partially occlude the target when they provide a very bad match to the template.

In summary, one method to make use of multiple tracking paradigms is by using
the various components from the three main chapters in a sequential or combined
fashion. It appears the most popular approach is to combine a warping-based ap-
proach with a secondary mechanism, although other combinations were also briefly
discussed.

6.2 Probabilistic Combination Trackers

In the previous section, we saw how different tracking paradigms can essentially be
combined by performing them in a sequential fashion to continuously refine the track-
ing results. Another method of combining various modalities and tracking paradigms
is by relying on probability theory. Systems that take this probabilistic combination
approach will be elaborated upon in this section.

In (Serby, Meier & Gool, 2000) a tracker was developed that combines a variety
of features in a probabilistic framework using a particle filter. The features vary from
curves to textured regions. The tracker uses a very straightforward particle filter
implementation where the state is composed of the 2D target position and its six
affine motion parameters. Since we have already discussed the standard particle filter
formulation in Chapter 2, here we will focus on the system’s observation models,
p (zt|xt) for the various modalities.

As is typically the case, in (Serby, Meier & Gool, 2000) it is assumed that the
various feature modalities are independent. The authors also make the assumption
that the low-level template features,
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, are rigidly linked. Thus, the target
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state can be completely described by applying the warp transformation parameters
to the low-level features that describe the target. This transformation allows the
comparison between the target state and the image measurements. Combining the
aforementioned assumptions, the observation probability is

p (zt|xt) =
I∏

i=1

pI

(
zt|xi

t

) J∏
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, (6.4)

where pI , pE, pT , pH correspond to the interest point, straight/curved edge, textured
region, and homogeneous region observation probabilities, respectively.

The observation densities for each of the modalities are all defined similarly us-
ing negative exponentials. The interest point probability, pI (zt|xi

t), is based on the
negative exponential of the distance between the template interest point, xi

t and the
nearest interest point found using the Harris corner detector. Similarly, for com-
puting, pE

(
zt|xj

t

)
, normal lines along the target boundary are drawn and the mini-

mum distance is computed between the target’s boundary and the nearest edge point
found using a 1D edge detector. The texture probability is evaluated using the Bhat-
tacharyya coefficient between the color histograms generated by the template and
the measurements. Finally, pH

(
zt|xl

t

)
is determined using the average color differ-

ence between the template and measurement regions.
The results in this paper show examples where a tracker that just uses a single

modality fails but the proposed tracker succeeds. Specifically, an example is shown
where a book is tracked in a cluttered environment. If a standard contour tracker that
only employed intensity edge information were used, the system would fail due to the
background clutter. A second example is shown where a car is successfully tracked
even though other cars with similar color distributions are driving nearby. In this
second case, the proposed tracker once again succeeds, but a color histogram-based
tracker fails. Although the limited results seem reasonable, it is hard to speculate on
the overall utility and power of the tracker given that only two video sequences were
demonstrated.

Another paper that considers the probabilistic combination of multiple feature
modalities when tracking is (Rasmussen & Hager, 2001). However, in this paper, the
tracking via multiple modalities is performed using statistical data association tools
that we discussed in Chapter 2. In this work, the authors present trackers that use
three different feature modalities: homogeneous regions, textured regions, and snakes.
As we can see, these modalities correspond to most of the feature-types that were
employed in (Serby, Meier & Gool, 2000). We will now discuss the various features
and statistical data association techniques used in this system in more detail.

As is the case with many systems that formulate the tracking problem in a prob-
abilistic fashion, the goal is to compute the maximum a posterior estimate of the
tracker state. Using Bayes’ rule, we can compute this estimate using the likelihood
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Figure 6.3: Homogeneous target representation of a target and its surrounding back-
ground used in (Rasmussen & Hager, 2001).

function. Thus, the first aspect of the tracker in (Rasmussen & Hager, 2001) that must
be considered is the definition of the likelihood functions for each tracker modality.
With respect to the homogeneous regions, the goal is to determine the optimal loca-
tion, size, and orientation of a rectangle C that corresponds to the target. As shown
in Fig. 6.3, an outer rectangle, F , that shares the same center point and orientation
as C but is much larger, is also used when computing the maximum likelihood. The
goal is to find the best placement of the rectangles such that C maximally matches
the predicted color and F is maximally different from the predicted color.

The second modality that can be used during tracking is texture. With textured
regions, the authors make use of SSD-based matching scores to define the likelihood
function. The final tracking modality considered in (Rasmussen & Hager, 2001)
uses intensity-based snakes. The snake-based likelihood function in this work is very
reminiscent of that derived in the CONDENSATION algorithm. In particular, the
likelihood is based on the sum of the differences between the predicted contour points
and the closest measured edges along normal lines.

Having defined the likelihoods for the various modalities, the main outstanding
question that must be defined is: “in what tracking machinery are these likelihood
functions used?” For example, in this review, we have shown that such likelihood
functions are used extensively in Kalman filtering. Furthermore, this maximum a
posterior approach is a main component of particle filtering. In (Rasmussen & Hager,
2001), several statistical tracking tools are explored, including the probabilistic data
association filter, the joint probabilistic data association filter, and the so-called joint-
likelihood filter. We will briefly elaborate upon the differences between these three
techniques and how they are deployed in the proposed trackers.

When only attempting to track a single object with a single modality, Rasmussen
et al. suggest that a PDAF-based approach can be employed. The PDAF-based



186 CHAPTER 6. COMBINED TRACKERS

scheme can be effective in tracking single objects in simple environments. However,
if two targets with similar appearances are in a scene moving close to one another,
there is a good chance that the PDAF filter will get confused. In particular, the
proposed PDAF-based scheme does not contain any mechanism for attempting to
determine which measurements stem from the true target and which are a result of
the distractor. The problem is even more significant because oftentimes structures in
the background will appear similar to targets as well. Thus, predominant structures
in a cluttered background can distract the PDAF-based filter if a suitable feature
set is not used. Fortunately, there are tracking tools that perform statistical data
association when multiple targets are present, such as the JPDAF that was already
discussed in Chapter 2. The JPDAF provides a statistical mechanism for determining
measurement to target correspondences. Specifically, this filter ensures that a target
only correspond to a single measurement and vice versa.

Although the JPDAF allows for the tracking of multiple targets, one shortcoming
of the approach is that all trackers must be of the same modality. Furthermore, a
JPDAF-based approach experiences difficulty when the targets of interest overlap,
precisely the time when the best performance is needed. The measurement process
breaks down because the targets are assumed to be independent. However, when
the targets move closely to one another, this assumption is violated (e.g., due to
occlusions). To ameliorate these shortcomings, the authors propose a joint likelihood
filter (JLF). The main difference between the JLF and the JPDAF is that the JLF
considers the depth ordering during the measurement process. With the JLF, the
relative depth orderings between the various targets are enumerated, and the most
probable depth orderings are maintained. The targets are no longer assumed to be
independent and as a result, the depth ordering effects the computation of the joint
likelihood function. Despite its added complexity, the JLF more accurately models
real-world interactions between targets. The system performance is shown to benefit
from this modification.

In (Rasmussen & Hager, 2001) results are shown for trackers that are designed
using each of the different modalities. Furthermore, examples are shown with each
of the different tracking filters. Qualitatively, the JLF appears to be fairly effective
at tracking similar colored objects even during partial occlusion. Specifically, an ex-
ample is shown whereby two chess pieces of the same color are tracked through a
partial occlusion. One of the trackers uses the snake modality while the other uses
the textured region modality. Other examples illustrate effective tracking of specific
human body parts. For instance, one example shows two individuals walking in op-
posite directions as two homogeneous region trackers attempt to follow their heads.
During the occlusion event, the PDAF tracker is lured away from the occluded in-
dividual onto the person in the foreground. In contrast, the JPDAF framework can
handle this form of occlusion and successfully continues tracking the two heads after
occlusion. Overall, the most striking aspect of this work is the ability to maintain
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multiple trackers that continue following the appropriate targets even during occlu-
sion. Furthermore, the fact that the system can track very specific body parts (e.g.,
a person’s arm) is quite impressive, as well.

Another work by Han et al. (Han, Joo & Davis, 2007) argues that blindly fusing the
results from multiple sensors, as is often done, is suboptimal. In general, sensor fusion
in a particle filter framework will treat each modality evenly and will generate an
overall likelihood function by simply taking the product of the individual likelihoods.
As an alternative, the authors propose generating separate target tracks using each
of the different modalities and subsequently combining the modalities based on the
confidence of the obtained tracks. In a similar vein, in (Leichter, Lindenbaum &
Rivlin, 2004) a theoretical analysis is provided for combining the results of multiple
probabilistic-based trackers that are running in parallel. Derivations are shown for
parallel trackers that use different state spaces. Furthermore, the authors consider
both trackers that propagate analytic distributions as well as those that consider
particle-based distributions.

To summarize, in this section (and throughout this review), we have shown that a
second method of combining features and tracking modalities in a principled manner
is through the use of a probabilistic framework.

6.3 Silhouette Trackers

Oftentimes, silhouette trackers are simply considered to be in the same category as
contour trackers. The reason these types of trackers are often grouped together is
that silhouettes and contours essentially represent the same information — both rep-
resentations define the border between the foreground object and the background.
However, for the works considered in this paper, the methodological differences be-
tween contour trackers and silhouette trackers is substantial. As discussed in Chapter
4, contour trackers will typically make use of an energy function that is subsequently
optimized using differential equations and oftentimes, level sets. Silhouette trackers,
on the other hand, typically analyze the shape of the silhouette and will use tracking
mechanisms that are more often seen in blob tracking frameworks. Thus, the silhou-
ette trackers considered here share similarities both with contour trackers and with
region-based trackers. Accordingly, these silhouettes trackers find themselves in this
final category of other/combined trackers.

Perhaps the most famous silhouette-based system is W 4 (Haritaoglu, Harwood &
Davis, 2000) and its subsequent extensions, such as Hydra (Haritaoglu, Harwood &
Davis, 1999). W 4 is an extensive surveillance system that includes modules for back-
ground modeling, foreground person detection, single person tracking, and group
tracking. Furthermore, additional modules examine whether or not a person is car-
rying an object and the tracking of particular body parts. Examination of the entire
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surveillance suite is outside the scope of this review. Instead, we will focus on the
various tracking techniques that are employed in W 4 and Hydra.

The tracking modules (as well as most of the other system models) in (Haritaoglu,
Harwood & Davis, 2000, 1999) are primarily based on heuristics rather than rigorous
mathematics. As a result, the tracking mechanism are rather simplistic. Notably,
an individual is represented by a bounding box (encompassing his or her foreground
silhouette), as well as the median position of the foreground region. When tracking
a single person, second order motion models are used to estimate his or her position
in the current frame. The bounding box corresponding to the predicted position is
compared against the detected foreground bounding boxes in the current frame. One-
to-one matching is established between predicted boxes and measured boxes based
on nearest neighbor matching.

One might imagine that the median centroid of the foreground region could be
used to update the dynamic model of the corresponding individual. However, the
authors of (Haritaoglu, Harwood & Davis, 2000, 1999) argue that such an approach
will not provide reliable results because the consistency of the detected silhouettes is
poor. Since the exact shape of the silhouette will change significantly from frame-to-
frame, simply following the centroid position will provide very noisy and inaccurate
velocity estimates. Instead, it is proposed that a more precise algorithm is used to
bring the predicted and measured targets into closer alignment. Specifically, a binary
edge correlation search is performed, whereby the predicted silhouette is moved within
a small search region to find the best match. This secondary alignment procedure
enables more accurate target velocities to be computed.

The tracking of groups of people is performed in a very similar manner to that of
tracking individuals and was original proposed in the Hydra extension to W 4 (Hari-
taoglu, Harwood & Davis, 1999). The main difference is that the tracking is performed
using only the heads of the individuals within the group. Thus, it is necessary to first
determine the positions of the individuals’ heads in the foreground silhouette. To
perform this estimation, a simple, two-step heuristic approach is employed. The head
detection module begins by analyzing the group foreground silhouette using a convex
hull algorithm. This algorithm returns candidate head positions on the outline of the
silhouette. Based on the distance to the predicted head locations, the pixels within
the silhouette are determined to belong to a particular head (i.e. person’s body) using
a minimum Euclidean distance criterion. Subsequently, for a particular person within
the group, his or her corresponding pixels are projected onto an axis perpendicular
to the major axis defined by his or her torso. In the resulting “projected histogram”
one would expect the true head location to correspond to the highest histogram peak.
Candidate head positions obtained through the convex hull algorithm are only kept
if they have sufficient support from the projected histogram.

Once an individual’s head has been detected within the group silhouette, the
tracking process is very similar to that of tracking a single person. In particular, data
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association is established between the predicted position of the head and the closet
measured head in the silhouette. However, instead of using binary correlation (as
was done in the single person case), precise positional matching is established using
intensity-based correlation in a local search region.

The overall performance of the W 4 surveillance system is quite impressive, espe-
cially at the time of its initial inception. To this day, it still remains a heavily cited
tracking and surveillance work. The system is reported to perform quite reliably over
long ranges of time and through different environmental conditions. As mentioned,
this system is mainly ad hoc, which in itself is not a problem, so long as the system
performs up to the desired standard. For the particular range of applications the
authors consider, the W 4 tracker performs quite well. However, everything is not
perfect with the W 4 tracker. If it were, many aspects of the computer vision surveil-
lance problem would be “solved.” One of the problems with the W 4 system is that
it appears very brittle and overly reliant on ad hoc assumptions. The system is only
illustrated to work on a variety of video sequences with a camera angle that is fairly
close to the ground. Furthermore, typically the humans have a number of pixels on
target, resulting in projection histograms of a particular shape. If the camera view-
point is changed such that it is much further overhead or that the targets of interest
are further away (resulting in fewer pixels on target), it appears the W 4 system would
struggle.

Another downside of the assumptions made by W 4 is that it is almost completely
reliant on illumination variant information. Foreground detection and tracking both
rely heavily on intensity information. If foreground detection is performed poorly,
the whole surveillance system will break down. Thus, changes in illumination are
known and reported to cause significant problems with the W 4 system. When global
illumination changes arise, the system resets itself and reconstructs a new background
model. This solution is obviously not ideal, but at least it provides an automated
method of recovering from global illumination changes. An aspect of illumination not
considered in this work is that of local illumination changes caused by, for example,
point lights or shadows. During intensity-based correlation, we expect local intensity
changes would significantly degrade the results of the W 4 system.

A more recent example of a silhouette-based tracker was presented in (Wang, Be-
bis & Miller, 2006). In this system, background subtraction is first performed and
inter-frame matching between the blobs is performed using the shape of the silhou-
ette. In particular, vertical and horizontal projection histograms are created from
each silhouette. These projection histograms are compared against the histograms of
tracked objects using the Manhattan distance. A unique aspect of this work is that
once inter-frame tracking has been performed, feedback is provided to the background
subtraction algorithm for the purpose of dynamically modifying system thresholds.
The thresholds are modified in an attempt to keep the foreground silhouettes of the
targets as consistent as possible across the video sequence.
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6.4 Recapitulation

In this chapter, we have described tracking systems that do not correspond to the
categories proposed in Chapters 3 - 5. In fact, many of the trackers proposed in this
chapter combine various other methods either in a probabilistic framework or in a
sequential manner. A popular approach when considering the sequential combination
of tracking paradigms is to obtain a rough estimate of the target motion using para-
metric warping methods, and subsequently, to refine the estimate using a contour
tracker. Unique silhouette trackers were also discussed in this chapter. Although a
silhouette is inherently the same as a contour in that it defines the boundary between
target and non-target regions, the methods used by silhouette trackers are very dif-
ferent from standard contour-based trackers. In the next chapter, we will discuss the
current state of visual tracking.



Chapter 7

Current Status

This chapter will focus on the current status of the field of visual tracking. We will
begin the chapter by commenting on the qualitative and quantitative methods that
are most commonly used to evaluate tracking systems. With respect to qualitative
evaluation, a set of often-considered sub-problems will be defined. Subsequently, the
various classes and subclasses of trackers that have been summarized in this report
will have their strengths and weaknesses compared, based on the abovementioned
evaluation criterion.

7.1 Evaluation Criterion

As is the case in almost any research field, methods are required for evaluating the
performance of the proposed idea or product. Preferably, these evaluation criterion
will consist of a standard set of quantitative metrics that allow for fast and accu-
rate comparisons. Unfortunately, visual tracking does not currently have a standard
method of evaluating proposed trackers (Heckenberg, 2006). As a result, when sub-
mitting a new tracking work to a conference or journal, it is the authors’ responsibility
to prove, with whatever metric they feel is necessary, that their system makes a sig-
nificant contribution. Despite the lack of a standard quantitative methods, there are
a number of subproblems in visual tracking upon which trackers can be qualitatively
judged. Furthermore, there are several publicly available data sets that can be used
for evaluation purposes. These subproblems and data sets will be discussed in this
section.

7.1.1 Subproblems in Visual Tracking

To completely “solve” the problem of visual tracking, there are a number of challenges
that the ideal tracker must be able to accommodate. These subproblems include:
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1. Automatic Initialization

2. Robustness to Partial and Full Occlusion

3. Robustness to Illumination Changes

4. Simultaneous Tracking of Multiple Targets

5. Robustness to Foreground and Background Clutter

6. Tracking of Non-Rigid Targets

7. Robustness to Scale Changes.

These subproblems are fairly self-explanatory and most have been mentioned at one
or more points throughout this paper.

Due to the lack of of standard, quantitative methods of comparing algorithms,
researchers often resort to using the abovementioned categories to evaluate their pro-
posed systems. In fact, typically a new work will be published that solely focuses on
contributing to one or more of the above sub-problems. For example, in (Yilmaz, Lin
& Shah, 2004) a contour-based tracker is proposed that is claimed to be able to cope
with partial occlusions. Accordingly, the authors select and demonstrate results for
video sequences where occlusions occur. Since no claims are made regarding the other
subproblems, results concerning these other subproblem are not shown in (Yilmaz,
Lin & Shah, 2004). As a result, we have little knowledge regarding how robust the
tracker in (Yilmaz, Lin & Shah, 2004) is to foreground and background clutter, for
example.

7.1.2 Data Sets

Ideally, the field of visual tracking would contain a database of standard videos that
would be universally used by researchers. Furthermore, for each database, it would
be ideal if there were particular quantitative metrics that could be utilized to define
the relative success or failure of the proposed algorithm. Unfortunately, the field of
visual tracking is not currently at that point. Nonetheless, there are several publicly
available databases that can be used for system evaluation. These databases will be
the discussion of this subsection.

Some of the most prominent sources of data for surveillance and tracking problems
are: (1) the Performance Evaluation of Tracking and Surveillance (PETS) databases
(PETS, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007); (2) the Gait-Based HumanID
Challenge by the Defense Advanced Research Agency (DARPA) (Sarkar, Phillips, Liu,
Vega, Grother & Bowyer, 2005); and (3) the Video Verification of Identity dataset
(VIVID) (Collins, Zhou & Teh, 2005). It appears that the PETS databases are by far
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the most commonly used. Nonetheless, we will take a brief moment now to discuss
each of these sources of data.

Of any of the data that is publicly available, it appears that the PETS databases
are by far the closest to becoming the standard. Annually, a new PETS database
is released to the general public. Alongside the data itself, a particular surveillance
challenge is posed. For example, for PETS2007 data, one of the goals is to detect the
loitering of individuals in the video sequences. Ground truth results are also provided
for the data. In more recent PETS databases (PETS2006, PETS2007) this ground
truth is primarily used to identify the position of a piece of luggage in forgotten
or stolen luggage scenarios. However, previous databases (e.g., PETS2004) have
provided ground truth data identifying the spatiotemporal coordinates of interacting
humans. Researchers in the field of tracking and surveillance are then encouraged
to test their algorithms (or design new algorithms) on the new sources of data as
they become available every year. A PETS workshop is held annually in conjunction
with a major academic conference and the best algorithms with respect to that year’s
PETS database will be published in the conference proceedings.

The PETS workshops have now been running for seven years. Some of these
datasets focus on surveillance in outdoor environments (e.g., PETS2001) while others
consider surveillance problems in airport or train stations (e.g., PETS2006, PETS2007).
The dataset for PETS2004 consists of indoor surveillance footage in the foyer of IN-
RIA Labs in France and is commonly referred to as the Context Aware Vision using
Image-Based Active Recognition (CAVIAR) dataset (Fisher, 2002).

Although the PETS databases are definitely a significant step in the right di-
rection, they are far from perfect. Outside of the PETS workshops themselves, re-
searchers do make use of the data when evaluating their proposed approaches. How-
ever, when these tests are performed, more often than not, the authors will use the
data in a manner that was not originally intended. In other words, the ground truth
data that is provided with the data is not typically used. Perhaps the reason for this
abuse of the data is that the PETS challenges proposed every year are often very nar-
row in focus. For example, PETS2006 and PETS2007 are primarily concerned with
detecting and recognizing security issues at transportation hubs. The main challenges
with these datasets is to detect activities such as the abandoning/theft of luggage and
loitering. Visual tracking, unto itself, is not typically the primary goal of the PETS
challenges. Instead, the PETS organizers tend to focus on higher level activities.
This fact is not overly surprising, as PETS is a first and foremost, a surveillance
project, not a tracking project. Since tracking is not the focus of the problem (but
more of a step along the way to successful higher-level event understanding), the se-
quences in these datasets are not designed to rigorously and systematically test the
aforementioned subproblems in visual tracking. More specifically, PETS data is not
designed to measure algorithms’ ability to cope with changes in illumination, target
scale changes, etc.
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Another source of data that is publicly available for the tracking community is the
HumanID gait recognition database (Sarkar, Phillips, Liu, Vega, Grother & Bowyer,
2005). The data was collected at the University of South Florida where 33 subjects
individually walked an elliptical-shaped path. Different experimental conditions were
considered whereby the types of shoes, walking surfaces, and starting points were
varied. Additionally, sequences were made for individuals when they were carrying
an object and when they were unencumbered as well as from two different viewpoints.
As one might guess, the primary focus of the HumanID challenge is not single per-
son tracking. Instead, the goal of this work is to perform gait identification — to
consistently determine the identity of a walker across all experimental conditions.
In a similar manner to the PETS data, this dataset provides video sequences where
the tracking of humans can be performed. However, the human tracking is rather
straightforward, as there is only a single person moving within the scene as observed
by a stationary camera. Thus, once again we find that although tracking is possi-
ble using this data, doing so does not rigorously test the subproblems that require
resolution in the field of visual tracking.

In contrast to the sources of data just discussed, VIVID is one database that
was designed for the purpose of target tracking (Collins, Zhou & Teh, 2005). In
particular, this data set focuses on the tracking of ground vehicles from airborne
sensor platforms, and is maintained by the Robotics Institute at Carnegie Mellon
University. Since this data was designed for tracking, a number of the subproblems in
the field are considered. For example, some of the sequences involve: multiple moving
objects that are similar in appearance, moving cameras, and occlusions. Ground
truth data is available for determining the percentage of frames that the target is
successfully tracked as well as the accuracy of the target shape. Although PETS
data is certainly the most renowned of all the datasets considered in this review,
VIVID is arguably the best suited for the problem of visual tracking. However,
the VIVID database does have its drawbacks. To begin, only a handful (ten) of
sequences are available. Furthermore, all sequences consider the problem of tracking
vehicles in airborne imagery, a field that is much less popular than tracking humans for
surveillance purposes. Additionally, although the database provides sequences that
consider some of the subproblems of visual tracking, the videos do not systematically
and rigorously test a tracker with respect to these challenges. Finally, it appears that
the data is not commonly used by researchers.

7.1.3 Quantitative Analysis

Quantitative analysis looses some of its impact when the data that is being used is
non-standard. However, it is always preferable if some form of quantitative results are
included in the event that future researchers would like to compare their algorithms on
the same videos using the same metrics. Furthermore, even if the numerical values
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can not be compared against other systems directly, some form of numeric score
provides a reasonable summary of a system’s performance. Not unlike the situation
with data sets, in visual tracking there is really no standard quantitative measure of
system performance. In this section, we will elaborate upon some of the metrics that
have been used in the past.

In the point tracking literature, Shafique et al. propose a metric that is quite
rigorous when dealing with synthetic data (Shafique & Shah, 2003). In particular, a

“modified track-based error” is computed as: EC
T = 1− T C

C

T C
t

where TC
C is the number of

completely correct point tracks computed by the tracker and TC
t are the total number

of tracks that extend from the first to the last frame of the sequence. In order for
a point track to be considered correct, the labeling of the point must be consistent
and correct for every frame of the video. This error sets a fairly high standard for
point trackers because even one mistake will invalidate a track. Presumably, it would
also be possible to lower the standard so that small errors in a track would still
be considered to be “correct”. For example, another error metric derived from the
track-based error might count the number of tracks in which X%, or more, of the
points along a track are correct (where 0 ≤ X ≤ 100). To our knowledge, no such
percentage-wise analysis has been performed in the tracking literature.

Other discrete feature trackers also tend to rely on visual inspection when it comes
to evaluating their algorithms. Of course, there are some notable exceptions. As is
common with other types of trackers as well, in (Zhang & Faugeras, 1992), the utility
of the proposed line tracker is evaluated by comparing the recorded motion parameters
against the true motion parameters. This evaluation method can only be used when
the ground truth motion of the target(s) is known. With respect to 3D model-based
trackers, it appears that most works (Crowley, Stelmaszyk & Discours, 1988; Lowe,
1992; Koller, Daniilidis & Nagel, 1993) determine quantitative system performance
based on the number of model lines that are associated correctly with the appropriate
image measurements. One weakness of this method is that it provides no indication
of the distance between the correctly associated model and measured lines.

By far the class of trackers that rely the most heavily on visual inspection for
evaluation purposes are contour trackers. Out of all of the contour trackers surveyed
in this review, only a single one undergoes a rigorous, quantitative evaluation. The
particular work of note is the cell tracker by Li et al. (Li, Miller, Weiss, Campbell &
Kanade, 2006). In many ways, this tracker is very similar to point trackers because
numerous very small targets are tracked throughout video sequences. Unsurpris-
ingly, the performance metric employed in this work is similar to those seen in the
point tracking literature. Specifically, manually labeled data is used to compute the
percentage of cell tracks that are correct for the entire video sequence. In a similar
fashion to point trackers, if a mistake is made in just one frame, a cell track is deemed
incorrect. For the valid cell tracks, the authors also compute the distance between
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the manually and automatically computed cell centroids.

Region tracking papers can also be guilty of forgoing a quantitative analysis, but
it appears this occurs less often than with contour trackers. A variety of quantitative
measures have been proposed in the region tracking literature. For example, some
researchers quantitatively test the goodness of their dynamic and system models by
adding various levels of noise (Rosales & Sclaroff, 1999) while others will compute the
error between the parametric motion estimates and the known ground-truth (Shi &
Tomasi, 1994; Wren, Azarbayejani, Darrell & Pentland, 1997). Systems that perform
higher level vision tasks, such as action recognition, often compute the number of
correctly detected events (Intille, Davis & Bobick, 1997). However, even though this is
a quantitative measure of accuracy, it is diluted in terms of providing precise feedback
on tracking accuracy. Point-wise template trackers often compute the residual SSD
error between the target template and the optimal region found in the current frame
(Shi & Tomasi, 1994; Hager & Belhumeur, 1998). Other trackers (Enzweiler, Wildes
& Herpers, 2005; Birchfield & Rangarajan, 2005) compute the error between the
estimated and manually labeled target positions. Finally, some trackers compute a
confidence value that measures the goodness of fit between the template and the
current target region (Enzweiler, Wildes & Herpers, 2005; Comaniciu, Ramesh &
Meer, 2000; Cannons & Wildes, 2007).

Another region-based metric recently proposed by Collins et al. (Collins, Zhou
& Teh, 2005) is that of track percentage. This metric is essentially the number of
frames that the target is tracked successfully before it falls off the target, divided
by the total number of frames. In order to compute this metric, the meaning of
“tracked successfully” must also be defined. In (Collins, Zhou & Teh, 2005), a target
is considered to be successfully tracked in a given frame if the measured bounding
box overlaps the ground truth bounding box by one or more pixels. This metric
for success appears to be very low, given the minimal requirement for bounding box
overlap. Another shortcoming of this metric is that two algorithms may obtain an
identical score even if one algorithm remains much more centered on the true target
than the other. To combat these limitations, in (Collins, Zhou & Teh, 2005), a
secondary criterion is proposed that also measures the percentage overlap between
the bounding boxes for the frames in which tracking was “successfully” performed.

Since ground truth data is rather sparse in the field of visual tracking, Wu et al.
(Wu, Sankaranarayanan & Chellappa, 2007) proposed a method of computing the
performance of particle filter-based trackers that does not require any outside infor-
mation (aside from initialization information, if necessary). Conceptually, the idea is
to perform tracking in the forward direction (as per usual) as well as in the backward
direction (from the current frame back to the first frame). Upon completion of the
backward tracking stage, the posterior distribution at t = 0 found using backward
tracking is compared against the forward tracker’s prior distribution at t = 0. It is
postulated that if the appearance of the target remains relatively constant and track-
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ing is performed successfully, these distributions should be similar. Since the two
distributions are represented as a collection of particle samples, they are compared
using the Mahalanobis distance.

7.2 Tracker Comparisons

In this section, we will provide a comparison of the relative merits of each class
of tracker. During our discussion, we will highlight which of the visual tracking
subproblems have been considered with reference to specific papers in the literature.
We will begin with a discussion of discrete feature trackers.

7.2.1 Discrete Feature Trackers

The current status of statistical and deterministic point trackers is actually quite good.
Results in (Shafique & Shah, 2003) have shown that state of the art point trackers
can maintain an 80% track-based error, even when there are numerous points in the
field of view (up to 100). Furthermore, this level of accuracy can be obtained when
there are significant levels of noise and points are permitted to enter and leave the
scene. With respect to the other tracking subproblems, point-based trackers have
been shown to be capable of recovering from occlusions (e.g., (Veenman, Reinders &
Backer, 2001; Shafique & Shah, 2003)). To our knowledge, no point trackers have
considered the problem of illumination changes. This is partially because most results
demonstrated for these trackers involve synthetic or somewhat artificial sequences
where target positions can be precisely obtained. Naturally, non-rigid targets and
scale changes are not applicable with point trackers. On the other hand, these trackers
can definitely track multiple targets (that is essentially the entire problem of point
tracking), even when the number of targets in the visual field changes (Salari &
Sethi, 1990; Shafique & Shah, 2003). Finally, point trackers can clearly cope with
foreground clutter, as the point tracking problem directly involves multiple targets
that look identical.

Although the current status of point trackers looks very good, the single and
significant problem is that they can only be used to track point targets! Of course,
collections of point features can be tracked using point tracking-based techniques.
Subsequently, points that are moving with similar velocities can be grouped together
to track high level objects. A system similar to this description is proposed in (Smith
& Brady, 1995). The problem with such a system is that there are two significant
sources of error: (1) Errors associated with effectively and consistently extracting the
point features; and (2) Errors associated with grouping the points into higher level
objects. These errors are apparently significant, because not many works consider
this approach, other than (Smith & Brady, 1995).
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Other discrete feature trackers, such as those that follow groups of edges and lines,
in many ways, have not advanced as far as point trackers. Almost all line tracker
works cited in this review have only evaluated their systems in laboratory settings. In
(Crowley, Stelmaszyk & Discours, 1988), for example, only the lines of simple three
dimensional objects are tracked in front of a constant intensity background. The
results displayed in (Deriche & Faugeras, 1991) and (Zhang & Faugeras, 1992) are
slightly more complex, taken from indoor laboratory/hallway-type environments.

The work by Zhang and Faugeras (Zhang & Faugeras, 1992) is, to our knowledge,
the most complete and impressive example of a line tracking system. Their line
tracker is shown to be able to track rigid objects in a cluttered office environment. To
track higher level objects, the individual lines are grouped according to their common
motion properties. Initialization is automatic in this work as the authors elect to track
all lines within the scene. Furthermore, individual lines can be occluded for a short
period of time due to EKF framework that is used. Of course, if the dynamics of a line
change significantly during occlusion, it will not be properly tracked throughout the
occlusion event. The tracker of (Zhang & Faugeras, 1992), as well as other discrete
feature trackers, should be fairly robust to illumination changes. These trackers
possess this quality because the extraction of discrete features is more robust to
illumination then most other features. The system of (Zhang & Faugeras, 1992) can
track multiple lines and multiple objects simultaneously, but these objects must be
rigid, due to the assumption that lines corresponding to the same object move with
similar velocities. Due to the fact that no high level target model is maintained, the
proposed line tracker can naturally accommodate target scale changes without any
additional mechanisms. In fact, in (Zhang & Faugeras, 1992), one of the sequences
considers a forward moving camera toward stationary collection of targets.

Thus, line trackers appear to have numerous positives in terms of being able to
deal with many of the subproblems of tracking. The problem with these trackers is
that high levels of performance have only been demonstrated in fairly simple labo-
ratory environments. Presumably, experimental evaluation has been limited to these
environments because these systems do not respond well when used with realistic
scenery. More specifically, even though the line tracker of (Zhang & Faugeras, 1992)
was shown that it can operate when the laboratory background is cluttered, outdoor
videos will most likely have even more complex and time varying backgrounds. Line
trackers rely heavily on accurate edge detection and line grouping techniques. These
processes become increasingly difficult and error prone when the amount of clutter
increases. The process of grouping lines into higher level objects based on their ve-
locities (Zhang & Faugeras, 1992) will also undoubtedly experience greater errors in
more challenging sequences and will fail altogether if multiple targets are moving with
similar velocities in confined spaces. Finally, a significant limitation of this approach
is that the targets to be tracked must be well-represented by a collection of lines.
Although many inanimate objects meet this criterion (e.g., boxes, televisions), many
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other animate and inanimate objects do not (e.g., humans, animals, balls). Since
the work of Zhang and Faugeras, very little research appears to have been completed
in the area of line tracking; a fact that probably indicates that Zhang and Faugeras
advanced the field as far as obviously possible.

Trackers that make use of 3D models have also seen less research in recent years.
Nonetheless, these trackers have demonstrated some success when it comes to tackling
some of the subproblems in visual tracking. In particular, in (Lowe, 1991) the tracker
was shown to be capable of dealing with partial occlusions when tracking a non-rigid
object. Also, the target box was tracked despite the fact that the author’s hands
often occluded significant portions of it. Furthermore, in both (Lowe, 1991) and
(Koller, Daniilidis & Nagel, 1993), the respective trackers achieved success despite
somewhat challenging illumination conditions. In (Lowe, 1991) target tracking is
demonstrated in only a laboratory-type environment, but the author claims that the
system attained good results over a wide-range of lighting conditions. On the other
hand, in (Koller, Daniilidis & Nagel, 1993), cars are followed in surveillance-style
outdoor footage where lighting conditions are variable and shadows are present.

Not unlike line trackers, 3D model-based trackers can naturally accommodate tar-
get changes of scale. Specifically, when a target changes scale in the image domain,
it is typically due to relative motion away from or toward the camera. Thus, changes
in scale with 3D model-based trackers simply correspond to different transformations
from the model to image coordinate frame. Qualitative evidence of tracking through-
out scale changes has been presented in (Koller, Daniilidis & Nagel, 1993; Vacchetti,
Lepetit & Fua, 2004). In (Koller, Daniilidis & Nagel, 1993), qualitatively successful
tracks are shown for tracking cars throughout larger changes in depth. Furthermore,
in (Vacchetti, Lepetit & Fua, 2004), stationary targets in a hallway are tracked as
the camera moves forward.

To our knowledge, it appears that of all the trackers that incorporate 3D models,
only the one in (Koller, Daniilidis & Nagel, 1993) proposed a method of dealing
with the subproblem of automatic initialization. This system made use of a motion
segmentation stage to get a coarse estimate of the initial position and orientation of
a car. The proposed automated initialization scheme is reported to work, but only in
limited situations. There are undoubtedly a significant number of local minima when
attempting to optimize the model parameters that bring the projection into alignment
with image data. Accordingly, 3D model-based systems have historically been quite
sensitive in relying on initial estimates that are quite close to the true optimum. In a
similar vein, it would be expected that 3D model-based trackers would not fare well in
the case of total occlusions (since good initial estimates are required for every frame).
However, with the recent 3D model-based systems that track by continuous detection
(Leng & Wang, 2004; Lepetit, Lagger & Fua, 2005), the problems of occlusion and
initialization should be less of an issue. An area of 3D model-based tracking that
appears to not have been studied is that of tracking multiple targets simultaneously.
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The ability of 3D model-based trackers to handle significant levels of background
clutter is also suspect and has not been adequately studied in the literature. Most
works in this field only consider laboratory environments (Lowe, 1991; Gennery,
1992; Verghese, Gale & Dyer, 1990). In Lowe’s defense, there is some clutter in
the background provided by his clothing and background scenery. However, in most
outdoor scenery, we would expect to see higher levels of clutter. Although the car
tracker of (Koller, Daniilidis & Nagel, 1993) operates outdoors, there is little clutter
present on the asphalt that can disturb the tracker. More recent work by Vachettit et
al. (Vacchetti, Lepetit & Fua, 2004) attempts to illustrate robustness to background
clutter by tracking an object in front of a checkerboard background. This result is
interesting as a demonstration, but it is somewhat contrived. It appears that, in
significant levels of clutter, feature-based 3D model trackers may not fair well. These
systems depend on the successful and error-free extraction of target edges and lines,
processes that develop greater errors as the amount of clutter increases. In very com-
plex environments where the clutter has similar statistics and is spatially close to the
target, 3D model-based approaches will most likely fail. In such examples, it is chal-
lenging for these trackers to be able to separate signal from noise and the optimization
space contains numerous local minima. More complex techniques such as the use of
robust estimators (as was done in (Vacchetti, Lepetit & Fua, 2004)) or random sample
consensus (RANSAC) (Fischler & Bolles, 1981) may allow 3D model-based systems
to perform reasonably well in somewhat cluttered environments. Presently, however,
it appears that no convincing demonstration of feature-based 3D model tracking has
been documented in the literature.

7.2.2 Contour Trackers

It is no secret that contour trackers have come a long way since their original inception
in 1988 (Kass, Witkin & Terzopoulos, 1988). In the beginning, it appears that the
authors did not really view snakes as much more than an interactive tool that could be
used effectively in tandem with a human operator for determining precise boundaries
of targets. Currently, these trackers are far from interactive and provide results that
can be qualitatively quite impressive.

The initial snake contours had a number of limitations that hindered their utility.
For example, to our knowledge, they all required automatic initialization and could
not easily or naturally track multiple targets. Although the original snake formu-
lations (Kass, Witkin & Terzopoulos, 1988; Terzopoulos & Szeliski, 1992; Leymarie
& Levine, 1993) could not handle occlusions, Peterfreund’s velocity snake tracker
(Peterfreund, 1999) did make some strides for detecting occlusion events. In fact,
one example is illustrated whereby a target is almost entirely occluded. The system
recognizes the occlusion and is capable of tracking the target after the event has
occurred. The example is somewhat artificial in that the target essentially remains
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stationary throughout the entire video. However, the detection of the portions of the
contour that no longer represent the true target during occlusion events appears to
be fairly reliable, qualitatively. Thus, some simplified occlusion handling is present
within the snake literature. Even still, we would expect that more complex occlusion
events would prove to be problematic for Peterfreund’s velocity snake tracker.

The introduction of level set methods certainly revitalized the field of contour
tracking. Unlike their snake counterparts, it has been demonstrated that level-set
methods are much more amenable to automated initialization (Paragios & Deriche,
2000) given that the right assumptions hold. Specifically, in (Paragios & Deriche,
2000), the authors assume that the target(s) of interest are the only moving objects in
the scene and that there is no significant clutter immediately surrounding the object.
In such situations, contour evolution for the initial and subsequent frames can first
be performed on a foreground map, which will essentially attract the contour of any
arbitrary size toward a rough outline of the target. Of course, the introduction of a
moving camera or distractor moving objects would cause this automatic initialization
scheme to struggle. Yet, essentially all currently available automatic initialization
methods only operate correctly when certain assumptions are met.

Level set contours have also allowed for more straightforward tracking of multiple
targets simultaneously. As discussed in Chapter 4, this ability arises due to the fact
that level set contour trackers naturally allow topological changes. However, one
should not be led to believe that this ability is a panacea for multiple target tracking.
The contour tracking literature seldom discusses the fact that the contour itself has
no notion of the identity of individual targets or the number of targets that are
being tracked. Typical contour-based trackers just output the final contour region,
which is the local optimum of a particular objective function. In simple, single target
tracking situations, this “providing of a bounding contour” is essentially visual target
tracking. However, to perform visual tracking of multiple targets simultaneously,
one must keep track of the identity of each target and record its position within the
scene for every frame. Level set contour trackers, even with their ability to handle
topological changes, usually do not meet this standard. Specifically, providing a
bounding contour between foreground regions and the background is not the same
as recording the identity and position of each target throughout all video frames.
Essentially, the end result is that to perform multiple target tracking, level set contour
methods still require some mechanism to provide data association between frames.

Of all the level set contour trackers considered in this review, only one made use
of data association techniques — the work in (Li, Miller, Weiss, Campbell & Kanade,
2006). In this paper, a bank of Kalman filters is used to track a number of individual
cells. Although simple Kalman filters are used in this work, more advanced statistical
data association tools could also be used (e.g., JPDAF). The problem is that statistical
data association methods were originally developed to deal with point targets, not
contours. Thus, the problem is to determine a method of using these statistical
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tools within the contour-tracking framework. The method employed in (Li, Miller,
Weiss, Campbell & Kanade, 2006) is to extract the centroid position of targets to
represent them as points. Although this approach was successful in the application
domain of tracking small, roughly circular cells, in general, the problem of obtaining
accurate centroid positions for large targets is an error-prone problem. As a result,
the predictive filtering and data association mechanisms would be challenged by this
extremely noisy centroid data. Furthermore, centroid positional measurements will
typically become worse when an object becomes partially occluded; exactly the time
when data association tools need to be operating at their best.

In several of the previous contour works, the trackers were not particularly robust
to clutter. This limitation was partially due to the fact that early contour trackers only
made use of intensity edge measurements. With the advancement of new techniques
and the gradual inclusion of regional-based descriptors, it appears these systems have
become somewhat more resilient to clutter (Mansouri, 2002; Yilmaz, Lin & Shah,
2004). In particular, (Mansouri, 2002) shows one impressive sequence (the manege
sequence) showing a rotating carousal. Although the target selected appears to have a
distinctive color and intensity properties, it is successfully tracked, despite significant
levels of clutter in the scene. Perhaps the most famous example of tracking in clutter
is the CONDENSATION algorithm (Isard & Blake, 1996). In this case, it is the
inclusion of multiple hypotheses through the use of particle filtering that allows for
success. However, to achieve the demonstrated level of tracking, Isard and Blake
required copious amounts of system training.

It appears that the problem of illumination invariance has not been overly well-
studied in the context of contour trackers. Intensity gradients presumably should
be fairly invariant to illumination changes, whereas some of the more regional-based
descriptors being introduced recently will be less so. One aspect of illumination that
has been studied, is that of shadows. The systems in (Bertalmio, Sapiro & Randall,
2000) and (Paragios & Deriche, 2000) were both distracted into including shadow
regions as part of the tracked object, due to the systems’ reliance on intensity edges.

In addition to the occlusion handling methods proposed for snake-based trackers
in (Peterfreund, 1999), in (Yilmaz, Lin & Shah, 2004) an occlusion handling scheme
has been mentioned for level set contour trackers. Qualitatively, the system’s ability
to deal with target partial and near-full occlusions appear to be acceptable. How-
ever, the approach employed is rather heuristic and we believe that more rigorous
data association and occlusion handling techniques are necessary in general situa-
tions. Thus, it appears the area of occlusion handling for contour trackers could use
additional study.

Contour trackers, in general, have a distinct advantage over other types of trackers
as they can typically track non-rigid targets that change in scale in a very natural
fashion. So long as the non-rigid deformations and scale changes of the target are
sufficiently slow (i.e. on the order of the target motion), most contour trackers can
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still retain accurate target delineation. Of course, contour trackers are not perfect
when it comes to scale changes and non-rigid targets. For instance, snake contours
will not be able to properly track non-rigid target deformations that cause deep and
sharp peaks and valleys to form on the target boundary.

Although the qualitative results of contour-based trackers have progressed signifi-
cantly since the work of (Kass, Witkin & Terzopoulos, 1988), quantitative evaluation
in the field is extremely sparse. As a result, very little appears to be known in regards
to the quantitative performance analysis of contour trackers. Limited quantitative
analyses are provided in (Isard & Blake, 1996) and (Paragios & Deriche, 2000). In
(Isard & Blake, 1996) the spatiotemporal coordinates of a target are plotted on XY T
axis for the proposed CONDENSATION tracker and a simple Kalman filter tracker.
From the provided figure, it is clear that the track provided by the CONSENDATION
algorithm is superior. The authors also note that the proposed algorithm successfully
tracks the target position throughout the sequence. However, no other quantitative
details are provided to substantiate this claim or precisely define the accuracy. In
(Paragios & Deriche, 2000), quantitative tracking results are not shown, but the run-
time of the proposed Hermes surface updating algorithm is numerically compared
against the standard narrow band and fast marching methods. As mentioned previ-
ously, the one notable exception to the lack of rigorous quantitative analysis in the
contour tracking literature is the work by Li et al. (Li, Miller, Weiss, Campbell &
Kanade, 2006).

To conclude this section, we must make note of one of the primary benefits of
contour trackers over other classes of trackers. Specifically, contour trackers provide
an exact outline of the target(s) being tracked without making use of any type of 3D
model. Discrete feature, in general, do not yield object outlines that are as accurate
as those obtained with contour trackers. Additionally, most regional trackers do not
output accurate target delineations either. Thus, if obtaining very accurate outlines
of non-rigid, scale-varying, targets is the top priority, a contour tracker is probably
the best choice.

7.2.3 Region Trackers

It appears that among all the papers surveyed in this review, at least one region-based
tracker has experienced some level of success in all of the abovementioned subproblems
of visual tracking. Yet, at the same time, it appears that no tracker has been created
that simultaneously and robustly provides a solution to each of the subproblems. We
will now discuss specific region trackers that contribute to the subproblems within
visual tracking, starting with automatic initialization.

Although manual initialization is popular within the realm of region trackers, au-
tomatic methods have been successfully presented. For example, (Enzweiler, Wildes
& Herpers, 2005) demonstrates automatic initialization by detecting regions that ex-
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hibit coherent motion energies, (Okuma, Taleghani, Freitas, Little & Lowe, 2004)
uses an Adaboost-based target spotting approach, and (Wren, Azarbayejani, Dar-
rell & Pentland, 1997; Stauffer & Grimson, 2000) make use of background modeling
approaches. As is the case with almost all automatic initialization schemes, certain
assumptions are made regarding the targets of interest in order for these schemes to
operate effectively. For example, in (Enzweiler, Wildes & Herpers, 2005) it is assumed
that the targets are moving in a coherent fashion — a fairly reasonable assumption
when considering the application of target tracking.

With respect to partial and full occlusion, several region-based works have exam-
ined this problem. Some of the most robust region-based trackers to partial and full
occlusion are those that make use of the mean shift tracking paradigm (Comaniciu,
Ramesh & Meer, 2000; Cannons & Wildes, 2007). Mean shift trackers collapse all
spatial information across the target support and represent the target of interest as a
histogram. Thus, if a portion of the target is occluded, the overall effect on the target
histogram is marginal, often resulting in continual successful tracking. Note that this
result only holds true so long as the unoccluded portion of the target generates a
histogram that is similar to the template. On the other hand, if multiple objects are
present within the scene that have a similar feature-based appearance (e.g., color),
then a mean shift tracker could easily be fooled into tracking the the wrong target
when an occlusion event occurs. Adding a predictive filtering mechanism, as was done
in (Nummiaro, Koller-Meier & Gool, 2002), would help to reduce the chance of errors
during partial or full or occlusions. Another approach, taken in (Cannons & Wildes,
2007) is to further enrich the target representation to reduce the chance of confusing
multiple foreground targets. Results are demonstrated in this work where a target
is tracked successfully, even when it is fully occluded by a target that has almost an
identical color distribution.

Point-wise template trackers are typically less robust to partial and full occlusion
than kernel histogram methods. However, even within the warping framework, oc-
clusion handling solutions have been proposed. In (Hager & Belhumeur, 1998) an
explicit occlusion-handling mechanism is introduced that identifies pixels that have
large residuals during the warping process. These pixels are assumed to be occluding
the true target and are removed from the motion estimation process. In (Jepson, Fleet
& El-Maraghi, 2003), robustness to significant levels of occlusion is demonstrated by
using a unique target representation and updating scheme that considers long-term
aspects of the target as well as those aspects that are changing rapidly.

Illumination is a significant problem that has been considered in the realm of
region-based trackers as well. Unlike 3D model trackers, point trackers, line trackers,
and contour trackers that often rely on discrete features and image edges, most region
tracker use intensity or color features that are notorious for being sensitive to changes
in illumination. Some kernel histogram trackers have proposed making use of color
spaces that are more robust to illumination, such as normalized RGB or HSV (Hager,
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Dewan & Stewart, 2004; Birchfield & Rangarajan, 2005). Such a target representation
is argued to improve robustness to illumination changes. However, to our knowledge,
no rigorous quantitative study has been completed to show the exact benefits of using
various color spaces with respect to tracking accuracy. The spatiotemporal oriented
energy feature set proposed in (Cannons & Wildes, 2007) not only provides a rich
description of a target, but it also provides an representation that is quite robust to
illumination changes. Results are illustrated where an individual walks in and out of
very dark and very bright image regions.

With respect to warping trackers, the problem of illumination has been touched
upon as well (Hager & Belhumeur, 1998; Avidan, 2001; Jepson, Fleet & El-Maraghi,
2003). In (Hager & Belhumeur, 1998), the basis set representation of the target is
captured under a number of illumination conditions. There are, however, some limi-
tations to this approach. To begin, one has to capture training samples of the target
under a number of varying illumination conditions — a time consuming process. Ad-
ditionally, in the test sequences, illumination conditions that cannot be represented
as a linear combination of the basis vectors cannot be properly modeled. The SVM
warping tracker proposed by Avidan (Avidan, 2001) also claims to be more robust
to illumination changes than a standard SSD template tracker. The robustness to
illumination is gained due to the machine learning classification nature of the match-
ing metric. Nonetheless, the authors admit that the approach is not overly robust
to illumination changes, just more so than SSD trackers. In (Jepson, Fleet & El-
Maraghi, 2003), sequences were also demonstrated where the target walked through
shadow regions. The spatially orientation selective filters are shown to be somewhat
robust to illumination changes as tracking is successfully performed throughout these
sequences.

Region trackers have also been demonstrated to be capable of tracking multi-
ple targets simultaneously. In the case of monocular camera tracking, solutions are
provided in (Okuma, Taleghani, Freitas, Little & Lowe, 2004; Stauffer & Grimson,
2000; Enzweiler, Wildes & Herpers, 2005). In (Enzweiler, Wildes & Herpers, 2005),
a simple PETS video sequence is shown where two individuals are tracked. However,
multi-target tracking is not the focus of this work and it appears that two warping-
based trackers were simply instantiated within the scene to track the two persons.
Since no predictive filtering or data association techniques are employed, the method
will most likely fail during occlusions or other more complex multi-target situations.
In (Stauffer & Grimson, 2000), a multiple hypothesis tracker is used to follow multi-
ple agents within the scene. From the results presented, it is hard to determine how
accurately the multiple targets are tracked, but the authors note that data associa-
tion is not extremely robust during occlusion or crossing events. Finally, in (Okuma,
Taleghani, Freitas, Little & Lowe, 2004), a tracker that was designed for the purpose
of following multiple targets using a particle filter framework is presented and the
results are quite impressive. Qualitatively, it appears the tracker has the ability to
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follow multiple targets robustly, even though the targets share similar appearance,
occlude one another, and move in close proximity. Unfortunately, no quantitative
results are reported for this work.

Other types of region trackers that make use of specialized hardware and/or prior
knowledge about the camera have also illustrated the capability of tracking multiple
targets simultaneously. For example, the M2 tracker (Mittal & Davis, 2003) has
been shown to be capable of tracking up to 6 people simultaneously in a confined
environment. To achieve this level of performance, an array of as many as 16 cameras
is required, because any single camera experiences dramatic occlusions. The tracker in
(Zhao & Nevatia, 2004) appears to be very impressive — tracking multiple humans
when they walk in groups and occlude one another in surveillance-type sequences.
Quantitative results for this tracker show very low error rates as well. The only
drawback of the system in (Zhao & Nevatia, 2004) is that prior knowledge of the
camera model and the ground plane are needed. Beymer et al. also illustrate the
tracking of two or three people in a narrow hallway using Kalman filters and stereo
cameras (Beymer & Konolige, 1999). The stereo camera provides the significant
benefit of being able to resolve many partial occlusions through the use of depth
information.

The problem of clutter has also been considered in the region tracking framework.
Blob trackers can handle clutter very easily so long as the clutter is in the back-
ground and stationary (e.g., (Wren, Azarbayejani, Darrell & Pentland, 1997; Stauffer
& Grimson, 2000)). Successful results for blob trackers have also been shown for
moving cameras (e.g. (Yin & Collins, 2007a)). Point-wise template trackers have
been shown to be capable of following targets of interest throughout complex envi-
ronments, as long as occlusion is not significant (e.g., (Enzweiler, Wildes & Herpers,
2005; Jepson, Fleet & El-Maraghi, 2003; Black & Jepson, 1998)). Finally, the his-
togram representation used in mean shift trackers is resilient to clutter due to the
histogram representation and kernel weighting. Several mean shift systems have il-
lustrated that tracking in cluttered environments is possible (Comaniciu, Ramesh &
Meer, 2000, 2003; Collins & Liu, 2003; Birchfield & Rangarajan, 2005; Leung & Gong,
2006; Cannons & Wildes, 2007)).

With respect to the tracking of non-rigid targets, many region trackers have il-
lustrated this capability, with the emphasis being on the tracking of humans (e.g.,
(Black & Jepson, 1998; Cham & Rehg, 1999; Okuma, Taleghani, Freitas, Little &
Lowe, 2004; Beymer & Konolige, 1999; Nguyen, Worring & Boomgaard, 2001; Isard
& MacCormick, 2001; Comaniciu, Ramesh & Meer, 2003; Collins, 2003; Collins &
Liu, 2003; Mittal & Davis, 2003; Zhao & Nevatia, 2004; Enzweiler, Wildes & Her-
pers, 2005; Cannons & Wildes, 2007)). Specifically, histogram-based trackers usually
have success when tracking non-rigid objects as many of these deformations only cause
minor changes in the overall histograms. Finally, scale changes is a problem that is
naturally handled by most parametric warping-based trackers (e.g., affine warping
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trackers). Results have been shown for many warping trackers where scaling effects
have been substantial (e.g., (Jepson, Fleet & El-Maraghi, 2003; Enzweiler, Wildes
& Herpers, 2005)). In the original mean shift tracker, scale changes were handled
unintelligently by using a brute-force method of repeating optimization with multi-
ple tracking windows of different sizes. As reported in (Collins, 2003), this method
prevents the tracking crop box from growing too large, but does limit the tracker
from representing the target with a window that is too small. Accordingly, a superior
approach is proposed in (Collins, 2003) where mean shift optimization is performed
in scale space, with results demonstrating the utility of the approach.

7.3 Summary Discussion

Table 7.1 provides a summary of the above comparisons and references particular
works for each category of tracker that have made significant progress on the various
subproblems in tracking. In our opinion, such a table is essentially one of the only
ways that the huge variety of trackers can be quickly compared, at present. It should
be noted that if a tracker is listed in a cell, it does not mean that the tracker has
completely “solved” the corresponding subproblem. Rather, the entries indicate that
a particular tracker has demonstrated significant progress or a partial solution to a
problem.

Using Table 7.1, we will now consider the current status of each of the classes
of trackers, in a qualitative sense. Specifically, we would like to determine how ro-
bust of a tracker could be created if one were permitted to literally pick and choose
ideas from the various trackers within a single category. To begin, let us consider
3D model-based trackers. If we were to create a tracker that borrowed ideas from
previous works, we could theoretically create a tracker that is robust to most of
the subproblems. In particular: (Koller, Daniilidis & Nagel, 1993) provides an ade-
quate method for performing automatic initialization; continuous detection schemes
provide an effective means of dealing with occlusion (Leng & Wang, 2004; Lepetit,
Lagger & Fua, 2005); the vehicle tracker in (Koller, Daniilidis & Nagel, 1993) was
shown to be somewhat robust to outdoor illumination changes; in (Lepetit, Lagger
& Fua, 2005), a tracker was demonstrated to be capable of following a target in a
semi-cluttered scene; the system in (Lowe, 1991) dealt with simple, non-rigid motion;
and scale changes are handled naturally. Notably absent is the ability of tracking
multiple targets simultaneously. To our knowledge, 3D model-based trackers have
not been demonstrated to be capable of fulfilling such a task. Using data association
techniques, it should be possible to follow multiple target with a 3D model-based
tracker, but computation time might be problematic. Additionally, 3D model-based
trackers are typically demonstrated on a restricted class of objects. These objects are
amenable to modeling via highly structured geometric relationships between discrete
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features (e.g., many man-made objects). These trackers have not been thoroughly
tested on more “natural” objects (e.g., biotic entities).

Another weak point of our proposed “super” tracker might be the ability to cope
with significant non-rigid deformations. Lowe’s system (Lowe, 1991) was demon-
strated to be effective for simple non-rigid target deformations. However, as the
number of allowable deformations increases, so to does the number of parameters that
must be estimated. The inclusion of additional parameters will undoubtedly make the
estimates noisier and require additional processing time, most likely making complex
non-rigid transformations impractical. To summarize, presently a “super” 3D model
tracker could be created from previous works that:

• Has automatic initialization capabilities

• Can deal with occlusions, limited clutter, simple non-rigid deformations, and
scale changes

In a similar manner, a “super” contour-based tracker could be created as well.
In this case, to construct our tracker, we might select: the automatic initialization
procedure shown in (Paragios & Deriche, 2000); the partial occlusion handling mech-
anisms of (Yilmaz, Lin & Shah, 2004); the multiple target tracking abilities presented
in (Li, Miller, Weiss, Campbell & Kanade, 2006); and tools used to cope with clutter
as seen in (Isard & Blake, 1996) or (Yilmaz, Lin & Shah, 2004). In our opinion, the
weak points of such a “super” tracker would be the initialization scheme, the occlusion
handling ability, and the inherent limitation of relying on a contour that delineates
the target boundary. Specifically, the initialization method proposed in (Paragios &
Deriche, 2000) required fairly uniform backgrounds and although qualitatively very
good, the occlusion handling mechanism of (Yilmaz, Lin & Shah, 2004) requires ad-
ditional rigorous testing. In (Li, Miller, Weiss, Campbell & Kanade, 2006) a bank
of Kalman filters was used for data association; however, it appears that more com-
plex techniques could be used, as appropriate. Additionally, although illumination
variance has not been well-studied with respect to contour tracking, given that many
contour trackers rely on gradient information (fairly robust to illumination changes),
it is likely that illumination changes could be overcome. Finally, by construction,
contour trackers rely on the assumption that the target is well-defined by a bounding
contour. This assumption is certainly not always true. For example, in camouflage
situations a delineating contour may not be visible (even to humans), making other
target properties (e.g., motion) a more salient cue for tracking.

Thus, currently, a “super” contour tracker could feasibly be created from prior
systems that:

• Provides automatic initialization in simple scenes

• Probably accommodates partial occlusions
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• Probably is robust to limited illumination changes

• Allows for multiple targets to be tracked in simple situations

• Can track throughout clutter, non-rigid deformations, and scale changes

Finally, we consider the thought experiment of constructing a “super” region
tracker from previously proposed systems. In this case, we might elect to choose:
the automatic initialization systems provided by (Okuma, Taleghani, Freitas, Little
& Lowe, 2004) or (Enzweiler, Wildes & Herpers, 2005); the occlusion handling abil-
ities of (Jepson, Fleet & El-Maraghi, 2003) or (Comaniciu, Ramesh & Meer, 2000);
the robustness to illumination changes provided in (Cannons & Wildes, 2007); the
ability to track multiple targets provided by (Okuma, Taleghani, Freitas, Little &
Lowe, 2004); the robustness to clutter as seen in (Comaniciu, Ramesh & Meer, 2000)
or (Cannons & Wildes, 2007); the ability to track non-rigid target provided by (Co-
maniciu, Ramesh & Meer, 2000); and the capability of tracking targets as they change
in scale as seen in (Jepson, Fleet & El-Maraghi, 2003) or (Collins, 2003). The above
algorithms were selected as they currently provide the most convincing qualitative
evidence of being able to solve the defined subproblems of visual tracking.

Of the three categories of trackers, the region-based “super” system appears to
have the fewest shortcomings. Moreover, it appears that there are a greater number
of reasonable possibilities that could be employed for solving each of the subproblems.
One weakness of the combined region tracker would arguably be its occlusion handling
capabilities. Systems (e.g., (Comaniciu, Ramesh & Meer, 2000; Jepson, Fleet &
El-Maraghi, 2003)) have demonstrated good results when tracking through partial
occlusions, but successful tracking through full occlusions has not been convincingly
demonstrated. Furthermore, region trackers are not effective at delineating the exact
target boundary. Nonetheless, a “super” region tracker could be constructed that
theoretically has the ability to overcome most of the defined subproblems of tracking.

Unlike the other categories of trackers, there is less of a unifying framework for
the systems described in Chapter 6. Nonetheless, a similar analysis of constructing a
“super” tracker can still be repeated for these unique trackers. In theory, a combined
“super” tracker should provide performance at least as good as any of the previously
considered “super” trackers. Specifically, individual trackers found in Chapters 3 -
5 can be considered to be a subset of the combined trackers (where a single tracker
is combined with a non-existent second tracker). Presently, however, we will strictly
consider combined trackers that have already been presented in the literature and
are described in Chapter 6 of this review. In many ways, this restriction places the
combined trackers at a disadvantage as relatively few were discussed when compared
to the other chapters.

When constructing a “super” combined tracker, we might select: the occlusion
handling abilities of (Yang, Wu & Hua, 2008); the tracking of multiple targets pro-
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vided by (Rasmussen & Hager, 2001); the robustness to clutter, as demonstrated in
(Rasmussen & Hager, 2001); the ability to track non-rigid target provided by (Shao,
Porikli & Chellappa, 2007); and the capability of tracking targets as they change in
scale as seen in (Yang, Wu & Hua, 2008). These algorithms demonstrate excellent
performance with respect to these subproblems of visual tracking. It should be noted
that no combined systems considered in this review have demonstrated high-quality
results with respect to the problems of automatic initialization and robustness to il-
lumination changes. However, as noted previously, solutions to these problems could
be borrowed from other tracking paradigms (e.g., region trackers). Not unlike region
trackers, perhaps a weak point of the “super” combined tracker would be tracking
through occlusions. However, the system in (Yang, Wu & Hua, 2008) has demon-
strated excellent results with respect to this problem by using surrounding scene
information during tracking. However, further rigorous testing is required before the
full utility of the approach in (Yang, Wu & Hua, 2008) can be stated with certainty.
Combined trackers have another advantage over region-based trackers in that they
can accurately delineate target outlines by combining region-based and contour-based
methods (e.g., (Shao, Porikli & Chellappa, 2007)). These apparent advantages do,
however, come at a cost — complexity and computation time. The combination
of multiple trackers makes the overall system more complicated and requires more
computational resources. There is also the matter of determining how to optimally
combine multiple tracking paradigms in a simple, principled manner. This problem
has yet to be fully explored by researchers.

Given the currently accepted practices with regards to evaluating tracking al-
gorithms, it is quite challenging to provide any meaningful quantitative summary
discussion regarding the various tracking classes. Perhaps one of the only quantita-
tive values that we could use (i.e. that is fairly consistently reported) is the run-time
of the various algorithms. However, even this metric would be challenging to com-
pare fairly, given that the algorithms were deployed on different hardware and in a
variety of programming languages. With respect to this review, runtime has not been
a particular point of emphasis. Accordingly, we will not perform such a quantitative
analysis on runtime.

To summarize, arguably the region-based trackers have progressed the furthest in
terms of solving the qualitative subproblems that we have defined for the field of visual
tracking. However, even after performing this summary analysis, it is still unclear as
to how meaningful it is without a means of performing more rigorous quantitative
comparisons. As mentioned, some datasets are available for testing trackers (e.g.,
PETS), but the primary focus is often on applications other than visual tracking.
If and when a more complete visual tracking dataset is created, the field will be
able to ascertain the current status much more accurately. At that time, it might
also become apparent that the field has not progressed quite as far is it appears.
Until such a dataset is made available, our best efforts of comparison are limited to
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qualitative summary tables, such as that seen in 7.1.
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Chapter 8

Open Problems

To conclude this review on visual tracking, we will discuss some of the most significant
open problems in the field of monocular visual tracking. As evidenced by the table
shown at the conclusion of the previous chapter, improvements upon subproblems
such as occlusion, multi-target tracking, initialization, etc. are still needed. Trackers
that enhance performance, and especially, consistency and robustness are welcomed
and needed. Rather than dwell on these issues that have already been identified and
discussed previously, in this chapter we will focus on more significant overridding
problems within the field of visual tracking. These are problems that we feel must
be resolved to truly advance visual tracking to the next level and allow the more
widespread adoption of such systems outside of academia. Furthermore, strides in
these areas also will positively impact the various subproblems delineated in Table
7.1.

8.1 Quantitative Evaluation

As alluded to previously in this review, one aspect of visual tracking that is embar-
rassingly lacking is a means of quantitatively computing the performance of proposed
tracking systems. An effective means of evaluating tracking algorithms would be the
creation of a large, standard database of video sequences and ground truth labeling
information. An ideal database would have a number of desirable properties. To
begin, it would consists of numerous video sequences. These sequences would be di-
vided into training and testing sets in the event that learning based trackers are to
be tested. Another important aspect of the database is that it must be updated with
new sequences on a regular basis. Should the database remain unchanged for a great
number of years, there is a good chance that researchers will begin to “overfit” their
algorithms to provide optimal performance on the database test set, rather than cre-
ating well-rounded trackers. Perhaps the most important quality of a good database
is that it should systematically vary the tracking conditions (i.e. individually test on
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214 CHAPTER 8. OPEN PROBLEMS

changes in illumination, changes in scale, occlusions, etc.). By creating a dataset
where each each parameter is varied in turn, researchers can determine the relative
strengths and weaknesses of proposed algorithms with respect to each subproblem of
visual tracking.

Other fields, such as face recognition and stereo vision have large, standard data-
bases that are almost always employed when researchers are presenting their work.
For example, the face recognition technology (FERET) database (Phillips, Moon,
Rizvi & Rauss, 2000) was developed by the United State’s Department of Defense.
This database consists of faces from approximately 1,200 different individuals with
a total of over 14,000 images. Just as importantly, the database explicitly separates
images for testing performance under varying lighting conditions, when the subjects
wear glasses, and when significant time has passed between the acquisition dates
of the images. Explicit techniques have also been detailed for evaluating the perfor-
mance of new systems on this data. Prior to the introduction of the FERET database,
the field of face recognition was not unlike that of visual tracking. In particular, sev-
eral different researchers, including Alex Pentland (Pentland, Moghaddam & Starner,
1994) and Joseph Wilder (Wilder, Mammone, Meer, Flanagan, Xu, Tsai, Weiner &
Zhang, 1994) had created their own databases for evaluation. These databases did
not contain nearly as many images as the FERET database. Furthermore, when
several different sources of data are available, researchers become divided on which
one to use, hampering fair evaluation. The FERET database brought a unifying and
standard method of algorithm evaluation. Interestingly, face recognition systems are
becoming more popular in the commercial domain.

The success and importance of standard databases is not just limited to the field
of face recognition. Stereo vision researchers make use of the standard Middlebury
dataset (Scharstein & Szeliski, 2002) when evaluating their algorithms. Although the
databases are not typically overly large, they do provide ground-truth disparity in-
formation. Furthermore, new data is made available every few years in an attempt to
prevent researchers for fine-tuning their algorithms for specific imagery. In addition
to making the data available, algorithm rankings can also be found on-line. Further-
more, results of new algorithms (in the form of disparity maps) can be submitted
on-line to the researchers that maintain the Middlebury database. The submitted
disparity maps are evaluated in an objective manner and subsequently, the authors
are informed of the performance of their algorithms.

Another database in the field of computer vision is Berkeley’s segmentation data
(Martin, Fowlkes, Tal & Malik, 2001). Segmentation is known to be a very subjective
problem, making the evaluation of automated algorithms challenging. To provide a
means of evaluating segmentation systems in an objective, quantitative manner, the
Berkeley database was constructed. This database consists of approximately 1,000
unique images that have been segmented by hand by 30 individuals. Benchmark
results for Berkeley’s database are also provided online.
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Clearly large, standard databases with well-defined evaluation methodologies and
strategies for comparing against other systems in the field have had significant impact
on other research areas. We firmly believe that the introduction of such an evaluation
paradigm to the field of visual tracking would have equally as large of an effect. A
researcher or group of researchers could literally make a career of constructing and
maintaining a dataset, defining performance metrics, and objectively ranking results
that are provided by other researchers in the field. In fact, some standard evaluation
systems require authors to submit their algorithms to a third party who will execute
and evaluate the algorithms on their behalf. Such a system would most likely be
the ideal end goal to be attained for visual tracking. Realistically, the field will
not arrive at a complete evaluation system immediately. However, the creation of a
large, standard database with well-defined evaluation metrics, and that systematically
presents the various subproblems of visual tracking would be an excellent first step.
Subsequently, the database could be updated to ensure system’s are not being fine-
tuned. Finally, in the long term, it would be excellent if on-line system comparisons
and algorithm evaluation submissions were available.

8.2 Richer and Adapting Feature Sets

The particular features used by a visual tracking system is a topic that has been
mentioned numerous times throughout this review. The features used have a huge
impact on the tracking accuracy that can be obtained by a system. One can think
of the “garbage in, garbage out” philosophy. In other words, if poor features are
selected for tracking that do not sufficiently distinguish the target, it does not matter
what tracking machinery is used. In particular, with a poor choice of features, all
tracking machinery will perform roughly equally poorly. On the other hand, an ex-
tremely descriptive feature set would go a long way toward solving the visual tracking
subproblems listed in 7.1. Imagine if the “perfect” feature set had been found for the
problem of visual tracking that could distinguish a specified target from any other
object in a scene under any lighting condition. If such a feature set existed, at a
minimum, the problems of occlusion, illumination changes, clutter, and multi-target
tracking would be solved.

Great strides have recently been made in terms of developing more rich feature
sets (Cannons & Wildes, 2007). Oriented energy features certainly have provided a
mechanism for capturing both spatial and dynamic properties of a target, but their
wide-spread applicability to trackers outside of the mean shift paradigm has yet to
be demonstrated. Furthermore, although oriented energies provide a very rich target
description, it is questionable as to whether they are the “optimal” features. Further
research may uncover a new type of feature that is even richer and more descriptive.
Researchers are encouraged to consider this problem.
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On the other hand, perhaps there is no single “optimal” feature. Maybe no single
feature exists that will allow computer vision tracking systems to operate effectively
across all situations. For instance, despite the extreme richness of spatiotemporal
oriented energies, there still remain instances when color features will provide superior
performance. Considering this point of view, perhaps a second problem that should
be considered in tandem is: “how should multiple feature modalities be combined
in a principled fashion?” As mentioned previously, the initial exploratory work on
this topic has begun (Spengler & Schiele, 2003; Collins & Liu, 2003; Leung & Gong,
2006; Avidan, 2007; Yin, Porikli & Collins, 2008). Alternative methods of combining
color and other types of features will undoubtedly be an extremely active area within
the field of visual tracking in coming years.

8.3 Template Updates

The issue of updating the target template is another problem that has received only
limited attention within the field of visual tracking. The problems of online feature
selection and template updating are very closely related, but for the purpose of this
review, we are differentiating between the two problems. Specifically, online feature
selection deals with the task of determining what target features should be used
when comparing the current image data to the template. Template updating, on the
other hand, considers the problem of keeping the target template up-to-date with the
current target appearance, regardless of what feature representation is used.

One of the factors that makes this problem challenging is the seemingly conflicting
requirements. If the template is adjusted quickly so that it can keep up with fast-
changing targets, there is also a high likelihood that it will be distracted by clutter
or occlusion events. On the other hand, templates that are updated too slowly are
not well-adept for tracking targets that experience rapid changes. Initial research
by Jepson et al. has been conducted on this issue (Jepson, Fleet & El-Maraghi,
2003). However, a problem as fundamental and important as template updates surely
requires additional research. Perhaps the reason that template updates have not been
the focus of greater research is that most video sequences considered in the literature
are quite short (less than 100 frames). Accordingly, the targets of interest will often
not experience significant changes during the duration of the sequence, making robust
template updating mechanisms unnecessary. However, for visual trackers to become
truly useful for automated systems in commercial environments, superior methods of
updating templates will certainly be required.

Not unlike the identification of an extremely rich feature set, solving the template
update problem would yield significant contributions toward solving the various sub-
problems listed in Table 7.1. In particular, non-rigid deformations and changes in
illumination would no longer pose a significant problem, as whenever these changes
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occurred, the template would be correctly updated to capture the new appearance
of the target. It should be highlighted that the problems of occlusion, multi-target
tracking, and clutter might still exist. More specifically, if the feature set used is
not sufficiently descriptive to discriminate between the target and other scene regions
(foreground and background), even “perfect” template updating would not be able
to provide robust results for these subproblems.

8.4 Combined Tracking Methods

As evidenced by the trackers described in Chapter 6, the idea of combining multiple
trackers from different paradigms is of great interest to researchers and appears to
be a promising approach. In a similar manner to the features used, it is unlikely
that any particular tracking mechanism can perform well across all tracking situa-
tions. Acknowledging this assumption, the problem then becomes that of optimally
combining information from multiple sources in a principled and rigorous framework.
Initial studies in this area have considered the sequential refinement of tracking re-
sults (e.g., (Chung, MacLean & Dickinson, 2006; Shao, Porikli & Chellappa, 2007)
and the probabilistic combination of tracking information (e.g., (Rasmussen & Hager,
2001; Leichter, Lindenbaum & Rivlin, 2004; Han, Joo & Davis, 2007); however, fur-
ther research is required to determine the benefits and shortcomings of these disparate
approaches. In addition to studying the method of combining the information pro-
vided by multiple tracking paradigms, more research is required in understanding
the paradigms themselves. Specifically, a deeper understanding of the complimentary
nature of various approaches to visual tracking is required. With this understanding,
researchers can determine what paradigms should be incorporated into their systems
in order to design trackers that are robust to the foreseeable challenges that will be
encountered.

8.5 Final Remarks

Visual tracking, in the grand scheme of academic research, is an extremely new re-
search area. However, in the past 20-30 years since visual tracking has become a
significant focus of attention, it is undeniable that great strides have been made.
These advances have been observed in every category of tracker — from discrete fea-
ture trackers, to contour trackers, and region trackers. Given how fundamental visual
tracking is to numerous other computer vision applications, the amount of attention
and advancement visual tracking has seen in the past few decades is not surprising.

Many researchers have moved on to studying higher level applications (e.g., se-
curity and surveillance) that merely make use of visual tracking as a tool. To these
researchers, current visual trackers presumably provide satisfactory results for, at
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least, a limited range of applications and scenarios that are being studied. Despite
the advancements in the field and the deployment in higher level applications, we
truly believe there is significant work that must be completed before visual tracking
is completely “solved”.

In our opinion, the field of visual tracking is currently somewhat stagnant. By
stagnant, we do not mean that no new ideas are being explored and introduced,
because this is certainly not true. Rather, the field is stagnant in that many new
systems and ideas are being introduced, but there is no rigorous means of evaluating
them. In other words, tracking systems are being produced but there is no way of
definitively knowing which tracking system is “best”. To advance the field, a thorough
database with standard testing procedures is desperately needed.

If we had to select the most significant works in visual tracking that had the largest
impact on the field, we would choose: (Kalman, 1960), (Sethi & Jain, 1987), (Lowe,
1992), (Kass, Witkin & Terzopoulos, 1988), (Caselles, Kimmel & Sapiro, 1995), (Isard
& Blake, 1996), (Wren, Azarbayejani, Darrell & Pentland, 1997), (Lucas & Kanade,
1981), (Bergen, Anandan, Hanna & Hingorani, 1992), and (Comaniciu, Ramesh &
Meer, 2000). The abovementioned seminal works were highlighted for the follow-
ing reasons. The research in (Kalman, 1960) and (Isard & Blake, 1996) provided
the predictive machinery that is used almost exclusively within the field of visual
tracking. Although it is certainly true that the particle filter was seen in other fields
prior to the work in (Isard & Blake, 1996), this research introduced, and clearly
illustrated, the benefits of particle filtering for visual tracking. With respect to dis-
crete feature trackers, in (Sethi & Jain, 1987), deterministic point tracking that used
more than just nearest neighbor matching methods was introduced. For many years,
the subsequent deterministic point trackers were primarily refinements on this orig-
inal approach, rather than radically new techniques. The 3D model-based tracker
in (Lowe, 1992) was arguably the first to apply 3D model detection techniques to
tracking, develop algorithms for both the feature correspondence and alignment sub-
problems, and clearly demonstrate the power of model-based tracking techniques. In
terms of contour-based trackers, the work of (Kass, Witkin & Terzopoulos, 1988)
was essentially the seminal work in the entire field and (Caselles, Kimmel & Sapiro,
1995) introduced level sets to the contour evolution paradigm — a representation
that was arguably needed to move the field forward. Finally, in the realm of region-
trackers, (Wren, Azarbayejani, Darrell & Pentland, 1997) demonstrated how simple
color-based blob tracking approaches can work surprisingly well in limited situations
with stationary cameras. Furthermore, (Lucas & Kanade, 1981) provided the semi-
nal work in terms of translational image alignment while (Bergen, Anandan, Hanna
& Hingorani, 1992) revitalized the area of image warping by introducing a unifying
framework and allowing for a wider range of parametric motion models to be em-
ployed. Warping-based trackers published today often use a framework that has only
been slightly modified from that proposed in (Bergen, Anandan, Hanna & Hingo-
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rani, 1992). Finally, the work in (Comaniciu, Ramesh & Meer, 2000) appeared to
renew interest in the field of visual tracking and created significant interest in color
histogram target representations, which have been used extensively in the last eight
years.

It feels like the next significant technological advancement in the field will probably
be centered around the features used during tracking, because of the pervasive impact
advances here can have, as well as recent interest in improved features, discussed
above. However, it is certainly possible that we are completely incorrect and that the
next major advancement might arise from the development of new tracking machinery
or something else entirely. That is the exciting thing about research — one never
knows for certain what and when the next major advancement will be.
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