
Propositional Satisfiability: Algorithms and Applications

Anton Belov

Technical Report CSE-2008-06

September 5, 2008

Department of Computer Science and Engineering

4700 Keele Street Toronto, Ontario M3J 1P3 Canada

Propositional Satisfiability: Algorithms and

Applications

Anton Belov

Department of Computer Science and Engineering

York University, Toronto, Canada

antonb@cs.yorku.ca

Abstract

In the first part of this paper we survey a number of algorithms for solving
the propositional satisfiability problem (SAT). We dedicate a large amount
of attention to the non-clausal SAT algorithms, that is, the algorithms that
work on arbitrary propositional formulas, and to the circuit SAT algorithms
that work on Boolean circuit representation of formulas. We also discuss
some of the non-mainstream clausal SAT algorithms.

The second part of this paper discusses some of the practical applica-
tions of SAT, particularly to Bounded Model Checking and to Satisfiability
Modulo Theories.

Contents

1 Introduction 2

2 SAT Algorithms 5
2.1 Introduction . 5
2.2 Complete Clausal Algorithms 7

2.2.1 Conflict-Driven SAT Algorithms 11
2.2.2 Look-ahead SAT Algorithms 15

2.3 Incomplete Clausal Algorithms 17
2.3.1 Stochastic Local Search Algorithms 18
2.3.2 Unit Propagation Local Search 23

2.4 Complete Non-clausal Algorithms 24
2.4.1 General Matings . 26

2.5 Incomplete Non-clausal Algorithms 29
2.5.1 Polarity Guided Local Search 30

2.6 Complete Algorithms for Circuits 32
2.7 Incomplete Algorithms for Circuits 38
2.8 Conclusion . 39

3 Applications of SAT 41
3.1 Introduction . 41
3.2 Bounded Model Checking . 42
3.3 Satisfiability Modulo Theories (SMT) 50
3.4 Other Applications of SAT 56

4 Conclusion 58

Bibliography 60

1

Chapter 1

Introduction

In this paper we discuss the algorithms for solving the Propositional Sat-
isfiability Problem (SAT) and the applications of SAT in practice. SAT is
the problem of determining whether there exists a truth-value assignment
to a variables of a given propositional formula under which the formula
evaluates to 1. Despite the fact that SAT is NP-complete [Cook, 1971],
algorithms that work well on a large variety of practical SAT instances have
been developed. The first part of this paper is devoted to a detailed presen-
tation of some of these algorithms. The majority of the publications that
survey SAT solving algorithms [Lynce and Marques-Silva, 2003, Mitchell,
2005, Gomes et al., 2007] focus on algorithms that represent propositional
formulas in Conjunctive Normal Form (CNF)1 – we call such algorithms
clausal SAT algorithms. In this paper we take a broader view, and dedicate
a large amount of attention to the non-clausal SAT algorithms, that is, the
algorithms that work on arbitrary propositional formulas, and to the circuit
SAT algorithms that work on Boolean circuit representation of formulas.
We also discuss some of the non-mainstream clausal SAT algorithms, such
as those in Section 2.2.2 and 2.3.2.

By the virtue of being an NP-complete problem, SAT attracts a lot of
attention from the Theoretical Computer Science community. Many pub-
lications have been devoted to the development of the non-trivial upper
bounds on the time complexity of solving SAT, and to the investigation of
the structure of the space of satisfying truth-value assignments of proposi-
tional formulas. To survey a current state-of-the-art of the theory of SAT
would require a review on its own, and so we do not attempt it here. A good
starting point for such review would be [Dantsin et al., 2001], [Kullmann,

1Conjunctive Normal Form is defined on page 4 of this paper.

2

2000], and [Istrate, 2007].
Instead, in the second part of this paper we focus on the practical appli-

cations of SAT. The popularity of SAT in applications (as opposed to other
NP-complete problems) can perhaps be explained by the fact that propo-
sitional logic is a very convenient formalism for representation of a wide
variety of problems. Additionally, algorithms for solving SAT were available
already in the 1960’s [Davis and Putnam, 1960, Davis et al., 1962], and so
a translation into SAT was a natural choice for many applications. The
applications, in turn, drove the development of the ever more efficient SAT
solving algorithms, resulting in the current implementations that in some
cases can handle instances with million variables and ten million clauses.

Before we proceed, we would like to overview the notation and some of
the definitions used in this paper. We assume that the reader is familiar
with the basic concepts of propositional and first order logics.

Propositional Logic

Propositional formulas will be denoted by the small Greek letters α, β,
etc. while small Latin letters p, q, etc. will be used to denote propositional
variables. We use the symbols ¬, ∧, ∨, ↔, → for Boolean operators. The
constant symbols true and false will be written as T and F .

Given a propositional formula α, by V ars(α) we denote the set of all
propositional variables that occur in α. We will write α(p) to emphasize
that p ∈ V ars(α). The countable set of all propositional variables is denoted
by V ars. A truth-value assignment is a partial function h : V ars 7→ {0, 1},
with 0 and 1 being the designated truth-values. If, for a given formula α,
a truth-value assignment h is defined for all variables in V ars(α), then h is
called a complete truth-value assignment for α, otherwise it is partial. The
variable/truth-value pairs in h will be written as v 7→ ν.

If β is a subformula of α, and γ is an arbitrary propositional formula,
then by α(β/γ) we will denote the propositional formula obtained from α by
the simultaneous replacement of all occurrences of β with γ. This operation
is called substitution. Typically, we only substitute variables by the logical
constants T and F , as in α(p/T). Sometimes we will abuse this notation and
write α(p/h(p)) to indicate that p is replaced with the logical constant which
corresponds to the truth-value h(p) (i.e. T if h(p) = 1, and F otherwise).

In the descriptions of the algorithms in this paper we will often refer
to the procedure Simplify(), which takes two parameters: a propositional
formula α, and a truth-value assignment h. The intended functionality of

3

this procedure is as follows: for each p ∈ V ars(α), such that h(p) is defined,
apply the substitution α(p/h(p)) and simplify the resulting formula by the
repeated application of logical simplification rules (e.g. replace T ∧p with p).
The input formula α is assumed to be passed “by-reference” to Simplify().

A literal is a propositional variable or its negation. A clause is a dis-
junction of literals. A c-clause is a conjunction of literals. A propositional
formula is said to be in Conjunctive Normal Form (CNF) if it is a conjunc-
tion of clauses, in Disjunctive Normal Form (DNF) if it is a disjunction of
c-clauses, and in Negation Norm Form (NNF) if the only logical connectives
that occur in the formula are the negation, conjunction and disjunction,
and the negation connective applies to variables only. Every propositional
formula has an equivalent formula in CNF, in DNF, and in NNF. By a k-
CNF formula we refer to a CNF formula in which each clause has exactly k
literals. By k-SAT we refer to the problem of determining the satisfiability
of k-CNF formulas.

Boolean Circuits

A Boolean circuit, or, simply a circuit is a directed acyclic graph (DAG)
(V,E), with the set of all 0-indegree nodes I ⊂ V being the set of input
nodes (or, inputs), and the set of all 0-outdegree nodes O ⊂ V being the set
of output nodes (or, outputs). In this paper we assume |O| = 1. Each node
v ∈ V \ I is associated with a Boolean function fv which has the same num-
ber of arguments as the indegree of v. This function computes the output
value of the node v, given the output values of its predecessors. The fanin
of a node v ∈ V is the set of its predecessors, i.e. the set {v′|(v′, v) ∈ E}.
Similarly, the fanout of v is the set of all of its successors.

A final remark: in this paper we distinguish between a SAT algorithm and
SAT solver, the latter being a computer program that implements the for-
mer.

The rest of this paper is organized as follows. In Chapter 2 we discuss
clausal, non-clausal and circuit SAT algorithms, in this order. In Chap-
ter 3 we describe some of the applications of SAT – applications to Bounded
Model Checking and Satisfiability Modulo Theories are covered in detail. We
conclude the paper in Chapter 4 with some ideas for our future research.

4

Chapter 2

SAT Algorithms

2.1 Introduction

SAT solving algorithms presented in this chapter are classified according to
their completeness, and according to the underlying formula representation.

Complete algorithms for SAT are those that are guaranteed to termi-
nate on any input formula within bounded time. If the formula is satisfi-
able, complete algorithms output the satisfying assignment. If the formula is
not satisfiable, most of the complete algorithms just output “no”, although
some of the more recent implementations also produce a trace, from which
a resolution refutation of the input formula can be extracted. Incomplete
algorithms, on the other hand, are not guaranteed to terminate, although
when they do, the answer will be correct. Practical incomplete SAT algo-
rithms are aimed only at finding satisfying assignments – if the algorithm
terminates, the formula is satisfiable. In general, this type of algorithms
can not establish unsatisfiability of the formula. A number of incomplete
algorithms aimed at proving unsatisfiability have been recently developed
(we mention some in Section 2.3), however these are not yet practical.

Although the vast majority of current SAT solving algorithms rely on
a CNF representation, in the past decade algorithms that work directly
on arbitrary propositional formulas and on boolean circuits have begun to
gain strength. The use of CNF for satisfiability solving was suggested in
[Davis and Putnam, 1960] by the authors of what is now considered the
first SAT solving algorithm DP1. Although simplicity of CNF has its clear
advantages, it has one significant drawback – conversion to normal form

1It is a little known fact that this algorithm had been discovered some 50 years earlier
by L.Löwenheim – see [Chvátal and Szemerédi, 1988] for the references to his work.

5

makes it difficult to recover the structure of the original problem. As a
simple example consider the formula

(p↔ q) ∧ (p↔ ¬q),

which is obviously unsatisfiable. The equivalent CNF formula

(¬p ∨ q) ∧ (p ∨ ¬q) ∧ (¬p ∨ ¬q) ∧ (p ∨ q),

is, of course, also unsatisfiable, however quite a bit more reasoning is required
to arrive to this conclusion. This, perhaps simple-minded, example is given
here only to demonstrate that the structure of the original problem can,
and should, be used to speed-up SAT solving algorithms. Thus, although
non-clausal and circuit SAT algorithms are not in the mainstream of SAT
research, in this chapter we devote a significant amount of attention to these
types of algorithms.

Before we proceed, a few words with regards to the performance eval-
uation of SAT algorithms. As most of the practical SAT algorithms are
extremely complex, they largely resist theoretical analysis, and so empirical
studies are often the only way to compare and assess their performance. To
this extent, for the past decade the SAT community organizes an annual
SAT competition 2, in which a large number of SAT solvers (30 in 2007)
are compared based on their ability to solve a wide variety of benchmark
problems. Solvers are evaluated both on the number of solved problems,
and on the CPU time required to solve each problem. The problems in the
competition are split into three categories:

• Random problems – these are randomly generated instances of k-SAT,
and other restricted classes of SAT. The most common of these is the
uniform-random k-SAT instances, in which clauses are obtained by
drawing k variables out of n uniformly at random, and negating each
with probability 1/2.

• Crafted problems – these are encodings of various problems from the
complexity class NP into SAT. Examples include encodings of the
graph coloring problem, the quazigroup completion problem, the min-
imal disagreement parity problem, factorization, and many others.

• Industrial problems – these result from translation of various hardware
and software verification problems to SAT. Many of these benchmarks
come directly from the industry.

2SAT competition website is at http://www.satcompetition.org

6

Random problems are of great interest both because they tend to be very
difficult for a wide range of SAT algorithms, and because they are sometimes
amendable to analytical treatment. Industrial problems are the closest to
the most practical applications of SAT and possess a lot of structure (sym-
metries, repeated sub-problems, variable dependencies, etc.). And crafted
instances bridge the gap between the two other classes by combining struc-
ture with randomness. Instances in each category are further divided into
satisfiable and unsatisfiable.

The rest of this chapter is organized as follows. In Section 2.2 and 2.3 we
discuss CNF-based algorithms, complete and incomplete. Section 2.4 and
2.5 are devoted to non-clausal SAT algorithms, and Section 2.6 and 2.7 deal
with circuit based algorithms. We conclude this chapter in Section 2.8 with
the discussion of the relative strengths and weaknesses of the various classes
of SAT algorithms.

2.2 Complete Clausal Algorithms

The majority of complete SAT algorithms for formulas in CNF are based on
the David-Putnam-Logemann-Loveland (DPLL) search method [Davis and
Putnam, 1960, Davis et al., 1962]. DPLL is a recursive backtracking search
procedure with various optimizations specialized to the CNF representation.
The search for a satisfying truth-value assignment is performed using the
recursive application of the splitting rule [Davis et al., 1962]:

Let the given formula α be put in the form (α1∨p)∧(α2∨¬p)∧α3,
where α1, α2, and α3 are free of p. Then α is inconsistent if and
only if α1 ∧ α3 and α2 ∧ α3 are both inconsistent3.

Thus, to check the satisfiability of a propositional formula α, the algo-
rithm recursively checks the satisfiability of simplified formulas α(p/T) and
α(p/F). If both formulas are unsatisfiable, then so is α. Otherwise, the
logical constant substituted for p in the satisfiable formula defines the truth-
value of p in the satisfying truth-value assignment for α.

The DPLL algorithm originally presented in [Davis et al., 1962] imple-
mented two CNF-specific optimizations: the unit propagation procedure,
and the pure literal rule.

The unit propagation procedure is based on the fact that in order to
satisfy a CNF formula, all clauses in the formula must evaluate to 1. Hence,
every clause that contains exactly one literal l(p) (so called unit clause)

3We have adjusted the notation in this quote to match ours.

7

forces the truth-value of p to be such that l(p) evaluates to 1. Thus, given
a CNF formula α = C1 ∧ · · · ∧Ck, and a truth-value assignment h, for each
unit clause Ci = l(p) in α, unit propagation extends h in such a way that
h(l(p)) = 1, and simplifies α. If the simplified formula contains unit clauses,
the procedure extends h again, and continues until no unit clauses are left.
At this point one of the following situations is possible:

• α is simplified to the logical constant F – this means that α is not
satisfiable.

• α is simplified to the logical constant T – in this case α is satisfiable,
and h is a (partial) assignment that satisfies α.

• α is not a logical constant and cannot be simplified further – in this
case h is a partial assignment which is implied by α.

Algorithm 1 contains the pseudocode of the procedure.

Algorithm 1 UnitPropagation([in, out] α, [in, out] h)

Input: α – formula in CNF; h – truth-value assignment (partial).
Output: α – simplified; h – extended to contain implied assignments.
1: Simplify(α, h)
2: while α contains unit clause l(p) do
3: ν ← if l(p) = p then 1 else 0
4: Simplify(α, {p 7→ ν})
5: end while

The second optimization technique, the pure literal rule, is based on the
fact that if α contains a variable that always appears negated (resp. always
appears unnegated), this variable can be assigned to 0 (resp. 1), and α can
be simplified to obtain an equisatisfiable formula α′. This rule, however, has
been abandoned shortly after its introduction due to the empirical observa-
tion that the benefits of applying the rule do not outweigh its computational
cost. Algorithm 2 demonstrates the pseudocode of the “standard” DPLL
procedure.

We take this opportunity to introduce some of the terminology used in
the SAT community. The variable p selected on line 7 is called the decision
variable, or the decision literal when combined with the selected truth-value.
The function Decide(), responsible for the selection of the decision literal,
implements some sort of decision heuristic, which could be as simple as
selecting a random unassigned literal (as it was originally done in [Davis

8

Algorithm 2 DPLL([in] α, [in, out] h)

Input: α – formula in CNF; h – truth-value assignment, initially ∅.
Output: SAT and h satisfying assignment exists; UNSAT – otherwise.
1: UnitPropagation(α, h)
2: if α = T then
3: return SAT
4: else if α = F then
5: return UNSAT
6: end if
7: 〈p, ν〉 ← Decide(α, h)
8: h′ ← h ∪ {p 7→ ν}
9: if DPLL(α, h′) = SAT then

10: h← h′

11: return SAT
12: end if
13: h′ ← h ∪ {p 7→ ¬ν}
14: if DPLL(α, h′) = SAT then
15: h← h′

16: return SAT
17: end if
18: return UNSAT

9

et al., 1962]), or as complex as look-ahead based selection which we will
discuss in Section 2.2.2. The assignment of a truth-value to p on lines 8
and 13 is called a decision assignment. The depth of the recursion stack at
the time of decision assignment is called the decision level – the very first
decision assignment is considered to be made on decision level 1. Variables
assigned on line 1 by the unit propagation procedure are called implied
variables, or implied literals when the truth-value is taken into account.
The decision level of the implied literals is considered to be the depth of
the recursion stack at the time of assignment minus one – thus, literals
assigned before any decisions have been made have decision level 0. When
unit propagation determines that the current formula is unsatisfiable, we
say that there is a conflict – the level of the most recent variable assignment
at the time of conflict is the conflict level.

Actual implementations of the DPLL algorithm and the unit propagation
procedure in SAT solvers differ from the descriptions that we gave earlier.
In a typical DPLL-based SAT solver, clauses are kept in the clause database
as arrays of literals – when a literal is assigned a truth-value, contrary to
our earlier description neither clauses nor the literal itself are removed from
the database. Instead, the truth-value of the literal is updated inside the
clauses that contain it, and clauses are marked as either satisfied or unre-
solved. A clause is unresolved if it has at least one unassigned literal, and
all of its assigned literals are false. When an unresolved clause has exactly
one unassigned literal, it triggers the unit propagation procedure.

Modern DPLL-based SAT algorithms typically fall into one of two cate-
gories: conflict-driven algorithms, or look-ahead algorithms. Conflict-driven
algorithms rely on the fact that conflicts during the DPLL search are caused
by certain combinations of variable assignments. By extracting and record-
ing such “bad” combinations, the algorithm can avoid exploring parts of the
search space that are known to lead to conflicts. Look-ahead SAT algorithms
take a different approach – instead of recording bad variable assignments at
the time of conflict, these algorithms try to avoid making bad assignments
in the first place. Look-ahead algorithms achieve this by focusing most of
the computational effort on the selection of decision variables that lead to
the largest reduction of the search space. We now will describe the two
categories of algorithms, and will defer the discussion of their comparative
strengths and weaknesses to Section 2.8.

10

2.2.1 Conflict-Driven SAT Algorithms

Conflict-driven SAT solvers record variable assignments performed during
the search in a datastructure called the implication graph. The implica-
tion graph is a DAG in which each vertex is associated with a variable
assignment. Each assignment is represented as a literal: literal p (resp. ¬p)
denotes the assignment p 7→ 1 (resp. p 7→ 0). Vertices with in-degree zero
correspond to decision assignments. Implied assignments are represented by
vertices with incident edges that capture the reasons for the assignments: if
l is an assignment made as a result of unit propagation through the clause
l1∨ ...∨ lk∨ l, then the vertex that corresponds to l will have incoming edges
from exactly the vertices that correspond to ¬l1, . . . ,¬lk. Construction of
the implication graph stops when a variable and its negation are inserted
into the graph – this corresponds to a conflict in the DPLL search. The
last inserted variable is called a conflict variable. To analyze the reasons
for the conflict, we only need to consider the subgraph of the implication
graph which contains the two conflicting assignments and the vertices that
are predecessors of these assignments. Such a subgraph is called a conflict
graph – the rest of the implication graph is irrelevant to the analysis of the
conflict.

As an example, consider a conjunction α of the following set of clauses:

c1 = ¬x1 ∨ x2 ∨ ¬x3 c4 = ¬x1 ∨ ¬x5 ∨ ¬x6

c2 = ¬x2 ∨ ¬x3 c5 = x4 ∨ x7

c3 = x3 ∨ ¬x4 c6 = x4 ∨ ¬x7

Assume that the search assigns x1 = 1 at decision level 1, and x5 = 1
at decision level 2. At this point, clause c4 becomes unit, and x6 is forced
to 0. Next, the algorithm assigns x4 = 1 (decision level 3), at which point
clause c3 becomes unit forcing x3 = 1, which in turn forces x2 = 0 via
clause c2, and x2 = 1 via clause c1, and so there is a conflict at decision
level 3. Figure 2.1(a) depicts the search process, and Figure 2.1(b) shows
the corresponding implication graph – note that for clarity we have marked
each assignment with the decision level in which the assignment has been
made. The grayed out nodes and edges in the implication graph are those
that are not in the conflict graph.

Let v be a conflict variable in the conflict graph for CNF formula α. Pick
any cut of the graph that has all decision variables on one side (this is the
reason side), and the conflict literals v and ¬v on the other side (this is the
conflict side). Let L = {l1, . . . , lk} be the set of literals on the reason side

11

(a) Search tree (b) Implication graph

Figure 2.1: The search tree and the implication graph at the time of first
conflict.

that have at least one edge going into the conflict side. It is not difficult to
see, that the construction of the conflict graph implies

α |= (l1 ∧ · · · ∧ lk → v ∧ ¬v). (2.1)

In other words, the assignments in L constitute the cause of the conflict, and
to avoid getting the same conflict in the future, we can make sure that this
combination of assignments will never happen again by conjoining a clause
(¬l1 ∨ · · · ∨ ¬lk) with α. This clause is called a conflict clause (associated
with a particular cut). Note, that (2.1) implies that

α |= (¬l1 ∨ · · · ∨ ¬lk),

and so α ∈ SAT if and only if α ∧ (¬l1 ∨ · · · ∨ ¬lk) ∈ SAT .
In our example the conflict clause associated with Cut 1 in Figure 2.1(b)

is cc1 = ¬x1 ∨ ¬x4, and the conflict clause associated with Cut 2 is cc2 =
¬x1 ∨ ¬x3. Both clauses could be useful in the event the search process
backtracks to level 2 and explores the search subtree that corresponds to
the assignment x5 = 0.

As we shall see now, however, non-chronological backtracking will force
the algorithm to skip the subtree x5 = 0 all together. Since the clause
cc1 = ¬x1 ∨ ¬x4 is now added to the formula, the value of the last decision
variable x4 is automatically forced to 0, and clauses c5, c6 cause a conflict on
variable x7. The implication graph at this point is shown in Figure 2.2(b).
The cut in the graph produces a conflict clause cc3 = ¬x1. Note that cc3

12

(a) Search tree (b) Implication graph

Figure 2.2: The search tree and the implication graph at the time of second
conflict.

says that the algorithm should give up on the subtree x1 = 1 – instead of
backtracking to the previous level 2, as “standard” DPLL would do, the
algorithm can backtrack directly to level 1. The clause cc3 guarantees that
such, non-chronological, backtracks will not miss any satisfying assignments.

Although it may not be apparent from our simple example, the cumu-
lative effect of the addition of conflict clauses and non-chronological back-
tracking can be profound. Experimental evaluation of the first conflict-
driven SAT solver GRASP [Marques-Silva and Sakallah, 1996] showed 2 to 5
orders of magnitude improvement in CPU time over the leading at a time
complete SAT solvers. Similar results were obtained shortly after that by
another conflict-driven SAT solver rel-sat [Bayardo and Schrag, 1997]. Six
years later, the power of clause learning (an umbrella term for conflict anal-
ysis and conflict clause extraction and maintenance techniques) has been
justified theoretically: in [Beame et al., 2003] the authors exposed a family
of unsatisfiable formulas on which the search tree of the “standard” DPLL
is exponentially larger than that of DPLL augmented with clause learning.

The performance of conflict-driven SAT solvers was pushed further with
the introduction of the watched literals technique and the Variable State In-
dependent Decaying Sum (VSIDS) variable selection heuristic in SAT solver
zChaff [Moskewicz et al., 2001]. We briefly describe these below.

The watched literals technique was designed to improve the efficiency
of the unit propagation procedure, which at the time of its introduction
became a bottleneck of conflict-driven SAT solvers. The main idea of the
technique is as follows. When a literal l is assigned 0, a traditional DPLL

13

implementation visits every clause c which contains l and checks if c is
satisfied. If this is the case, no further action is required. Otherwise, a
counter of false literals associated with c is incremented. When this counter
reaches |c| − 1, c triggers unit propagation on the last unassigned literal.
The trick introduced in zChaff was to maintain pointers to two unassigned
literals in each clause – these are the watched literals. Each literal lmaintains
a list of clauses in which it is watched. When l is assigned 0, only the clauses
from this list are visited, and each such clause c is checked whether it contains
an unassigned, non-watched literal l′. If it does, l′ becomes watched for c.
Otherwise, c contains exactly |c|−1 literals assigned to 0, and so the second
watched literal of c is assigned to 1 by unit propagation. Thus, the watched
literals technique significantly reduces the overhead associated with variable
assignments. Furthermore, since during backtracking the literals in a clause
are un-assigned in the reverse order from which they were assigned, there is
no need to change the pointers to watched literals, and the un-assignments
can be performed in constant time.

At the time of the introduction of zChaff most of the successful vari-
able selection heuristics relied on information about the current state of
the search: the number of unresolved clauses for each literal, the count of
unassigned literals in unresolved clauses for each literal, etc4. The problem
with this type of state-dependent heuristics is the computational overhead
involved in maintaining and updating various counters needed to implement
them. The decision heuristic introduced in zChaff, VSIDS, was designed to
address this problem: the heuristic selects literals based on a score which is
updated only for literals that appear in a conflict clause when it is added to
the clause database. Periodically all scores are divided by a constant. Lit-
erals with a high score tend to be those that appear in most recent conflict
clauses – in other words literals are selected based on their activity, as recent
conflict clauses correspond to the part of the search space currently explored
by the algorithm. Besides the fact that VSIDS has very a low computational
overhead, the resulting activity-based search strategy turned out to be very
successful, particularly on industrial instances. The authors of [Moskewicz
et al., 2001] reported an order of magnitude improvement in CPU time as a
result of the introduction of the new heuristic.

Modern conflict-driven DPLL solvers, such as minisat [Eén and Sörensson,
2004, 2005], employ all of the techniques outlined above (clause learning,
non-chronological backtracking, watched literals, activity based decision heuris-

4[Marques-Silva and Sakallah, 1999] gives a good overview of the state-of-the-art in
SAT decision heuristics circa 1999.

14

tics), as well as other important additions:

• The FirstUIP learning scheme introduced in [Marques-Silva and Sakallah,
1996, Bayardo and Schrag, 1997] allows to select empirically good cuts
in the conflict graph.

• Conflict clause minimization [Eén and Sörensson, 2005] attempts re-
ducing the size of conflict clauses: shorter conflict clauses block larger
parts of the search space and are faster for unit propagation.

• Randomized restarts introduced in [Gomes et al., 1998] and further
developed in [Baptista and Marques-Silva, 2000] force DPLL to restart
the search process after a certain number of backtracks, while keeping
the conflict clauses accumulated in the previous runs. In many cases
such restarts significantly improve performance in terms of the CPU
time per instance.

To conclude this section, we would like to refer the interested reader to
an excellent review of the techniques applied in the state-of-the-art conflict-
driven SAT algorithms in [Gomes et al., 2007].

2.2.2 Look-ahead SAT Algorithms

Prior to the introduction of activity-based decision heuristics in [Moskewicz
et al., 2001], the conventional wisdom in SAT community was that decision
heuristics should try to pick variable assignments that produce the largest
reduction in the formula after the application of unit propagation. Such
assignments are called effective assignments. To find effective assignments,
decision heuristics typically targeted variables with a large number of oc-
currences in short unassigned clauses. For example, a popular at a time
heuristic MOM’s [Pretolani, 1993] selected variable p that maximizes the
function

[f∗(p) + f∗(¬p)] · 2k + f∗(p) · f∗(¬p), (2.2)

with f∗(l) being the number of occurrences of literal l in the smallest unas-
signed clauses, and k a constant. The second term in (2.2) is designed to
favor variables that occur often in both polarities to improve chances of
constructing a short and balanced search tree.

One can view such heuristics as using an approximation of the relative
amount of formula reduction as a guideline for selecting decision variables.
However, instead of approximating this amount one can calculate it exactly

15

by performing a look-ahead – that is, actually assigning a truth-value to a
variable, performing unit propagation, and measuring the reduction. The
reduction for variable p is typically expressed as the product of the numbers
of clauses reduced as a result of assigning p to 0 and to 1. The DPLL
procedure which uses look-ahead to guide decision assignments was first
proposed in [Freeman, 1995] – SAT algorithms based on this idea are called
look-ahead algorithms.

Besides enabling selection of effective assignments, the look-ahead pro-
cedure allows to detect and assign forced variables: for example, if a look-
ahead on assignment p = 1 results in conflict (p is called a failed literal in
this case), p is forced to be assigned to 0, and the formula can be simplified.
Furthermore, if a look-ahead on assignment p = 1 results for example in
assignment q = 1, a clause ¬p ∨ q can be added to the original formula –
such clauses are called local learned clauses. The idea can be pushed even
further by recording the equivalences between variables when both ¬p ∨ q
and p ∨ ¬q are derived as local learned clauses (see, for example, [Li, 2003]
and [Heule et al., 2004]).

Despite the high computational cost associated with the look-ahead pro-
cedure, look-ahead SAT solvers are extremely efficient, particularly on ran-
dom and crafted instances. One one of the earliest look-ahead SAT solvers
satz [Li and Anbulagan, 1997a] outperformed the best at a time DPLL-
based solvers (including the conflict-driven GRASP and rel-sat) by an order
of magnitude on hard random 3-SAT instances. Today, the state-of-the-
art look-ahead solver march ks [Heule and van Maaren, 2007] is the best
performing SAT solver on random unsatisfiable and crafted satisfiable in-
stances. In march ks the basic look-ahead algorithm has been enhanced
with a number of important additions which we mention below. [Heule and
van Maaren, 2006] and [Heule and van Maaren, 2007] describe all relevant
details.

• Pre-selection heuristics introduced in [Li and Anbulagan, 1997b] are
responsible for selecting a subset of currently unassigned variables on
which to perform look-ahead, thus avoiding the cost associated with
look-ahead on all unassigned variables.

• Double look-ahead was suggested in [Li and Anbulagan, 1997a]. It was
observed that when look-ahead produces a large number of binary
clauses, the formula is often unsatisfiable. The double look-ahead
procedure attempts to detect unsatisfiability by performing additional
look-aheads.

16

• Direction heuristics [Heule and van Maaren, 2006] attempt to choose
which truth-value of a decision variable to assign first, based on results
of look-ahead. This improves performance on satisfiable instances.

We will not discuss look-ahead SAT algorithms further, and instead
would like to refer the interested reader to [Heule, 2008] for an excellent,
detailed presentation of this class of algorithms.

2.3 Incomplete Clausal Algorithms

Most of the incomplete algorithms for SAT are based on some variant of
stochastic local search (SLS) – see Algorithm 3. Given a propositional for-
mula α, the search starts by generating a random truth-value assignment
h to V ars(α). If h(α) = 1, the search terminates. Otherwise a variable
p ∈ V ars(α) is selected, and its truth-value is flipped – that is, it is assigned
1− h(p). The process is repeated until either a truth-value assignment that
satisfies α is found, or a maximum number of iterations MAX FLIPS (called,
cutoff) is reached, in which case the satisfiability status of the formula is
undecided. The selection of the variable to flip is usually a two-step process:
in the first step, a small set of candidate variables, candidate list, is selected
from V ars(α) based on a certain candidate list generation strategy (imple-
mented by the function Get CandList() in Algorithm 3); in the second
step, a variable to flip is selected from the candidate list using the variable
selection heuristic (implemented by function Select Var()).

Typically, the variable selection heuristic uses some kind of an objective
function which maps each truth-value assignment to some numeric value.
The only requirement to the objective function is that it should take a
designated value (e.g. 0) when the assignment is satisfying. In case of CNF,
for example, the number of currently unsatisfied clauses is a frequent choice.
We will discuss more examples in Section 2.3.1.

Besides SLS, two other successful incomplete algorithms for SAT are
known: the unit propagation based local search [Hirsch and Kojevnikov,
2005] which uses the unit propagation procedure (Algorithm 1, Section 2.2)
to make assignments during the local search, and the survey propagation
algorithm [Mezard et al., 2002] for hard random k-CNF formulas developed
based on insights from statistical physics. We will discuss the former in
detail, and refer the interested reader to [Braunstein et al., 2005] for a de-
scription of the latter.

Finally, in recent years, incomplete algorithms for unsatisfiability started
to appear [Prestwich and Lynce, 2006, Audemard and Simon, 2007]. These

17

Algorithm 3 SLS([in] α, [out] h)

Input: α – propositional formula;
Output: SAT and h if satisfying assignment is found; UNDECIDED –

otherwise.
1: h← random truth-value assignment to V ars(α)
2: flips← 0
3: while flips < MAX FLIPS do
4: if h(α) = 1 then
5: return SAT
6: end if
7: candlist← Get CandList(α, h)
8: p← Select Var(α, h, candlist)
9: h(p)← 1− h(p) ⊲ the flip

10: flips← flips+ 1
11: end while
12: return UNDECIDED

algorithms use local search to search through the space of incomplete proof
graphs (for example, resolution refutations) induced by a given CNF for-
mula. At this point, the algorithms are in the initial stages of development,
and do not appear to be of practical value.

2.3.1 Stochastic Local Search Algorithms

In this section we review only some of the CNF SAT algorithms based on
SLS. We choose algorithms that, in our opinion, had major impact on the
development of SLS-based SAT solvers. We refer the interested reader to
[Hoos and Stutzle, 2000] or [Hoos and Stutzle, 2005] for a detailed catalog
of various SLS-based methods for SAT.

GSAT, GWSAT and GSAT/Tabu

One of the first SLS algorithms for clausal satisfiability, GSAT, was in-
troduced in [Selman et al., 1992] and, independently, in [Gu, 1992]. The
candidate list in GSAT is the set of all variables in the input formula, and
the variable selection heuristic always picks the variable whose flip mini-
mizes the number of unsatisfied clauses – if there are several such variables,
one selected uniformly at random. Thus, GSAT is a greedy search that uses
the number of unsatisfied clauses as an objective function, and, as such,
the algorithm is prone to get stuck in local minima (or, local plateaus). To

18

remedy this problem, the search is restarted from a new random assignment
whenever a cutoff value is reached. The search is repeated up to a specified
maximum number of tries before declaring the formula undecided. At the
time of its introduction, GSAT significantly outperformed the best complete
algorithms on random, crafted and some industrial instances.

The addition of restarts to GSAT is very significant: without restarts
even the arbitrary long runs of the algorithm are not guaranteed to find a
solution (assuming it exists, of course). Algorithms with this property are
called essentially incomplete. On the other hand, if an arbitrary number
of restarts is allowed, while the cutoff is fixed, the probability that GSAT
finds a solution converges to 1 as run-time approaches infinity – this type
of algorithms is called probabilistically approximately complete (PAC). Even
though it is not clear whether a PAC algorithm will always perform better
than an essentially incomplete algorithm (since the convergence rate for a
PAC algorithm can be arbitrary small), in practice it has been often observed
that variants of SLS algorithms that are PAC do perform significantly better
than variants that are non-PAC [Hoos, 1999, Hoos and Stutzle, 2000].

Another modification that gives the PAC property to GSAT is the ad-
dition of conflict-directed random walk, suggested in [Selman and Kautz,
1993, Selman et al., 1994]. With probability wp (called walk probability) the
variable selection heuristic picks a variable that occurs in some unsatisfied
clause; with probability 1 − wp the heuristic follows the GSAT heuristic.
The resulting algorithm GWSAT performed significantly better than GSAT
([Selman et al., 1994]). Since then, random walk became an essential part
of all SLS algorithms for SAT.

Another idea that had significant impact on modern SLS solvers is that
of preventing the repetition of local moves by recording the age of each
variable – that is, the number of search steps taken since the variable was
last flipped. A variable becomes tabu, that is, the algorithm is prohibited
from flipping it, if its age is smaller than a certain threshold value tt (called
tabu tenure). The solver TWSAT, introduced in [Mazure et al., 1997], which
combined GSAT with tabu-based restrictions (GSAT/Tabu algorithm), out-
performed both GSAT and GWSAT on many problems – in fact, it is the
best performing variant of GSAT to date. Note, however, that it is not clear
whether GSAT/Tabu with fixed cutoff is PAC.

WalkSAT

The WalkSAT algorithm, introduced as WSAT in [Selman and Kautz, 1993],
is a subtle but significant modification of the GWSAT algorithm presented

19

above. First, in WalkSAT the candidate list is selected to be the list of
all variables that appear in some currently unsatisfied clause. Second, the
variable selection heuristic in WalkSAT is guided by the so-called break-value
of a variable, which is the number of currently satisfied clauses that become
unsatisfied (“broken”) if the variable is flipped. If there is a variable in the
candidate list with break-value of 0 that variable is always selected (zero-
damage step; ties are broken at random). Otherwise, with probability wp
the heuristic selects a random variable from the candidate list (random walk,
as in GWSAT), and with probability 1 − wp a variable with the smallest
break value (this is the greedy move, ties are broken at random, again).
Algorithm 4 demonstrates the variable selection procedure used in WalkSAT:

Algorithm 4 Select Var WalkSAT([in] α, [in] h, [in] candlist)

Input: α; h; candlist.
Output: v – variable to flip
1: if candlist contains variable v with break-value 0 then
2: return v ⊲ zero-damage step
3: end if
4: with-probability wp do
5: v ← random variable from candlist ⊲ random walk
6: end with-probability
7: with-probability 1− wp do
8: v ← variable with smallest break-value in candlist ⊲ greedy move
9: end with-probability

10: return v

Note that although closely related to GWSAT, the WalkSAT algorithm
explores the search space in quite a different manner. On one hand, Walk-
SAT is greedier than GWSAT in that it applies the random walk step only
when there is no variable with zero break-value. Thus, WalkSAT will make
improving steps as long as it can. On the other hand, when there is no
strictly improving variable, WalkSAT examines a significantly smaller num-
ber of candidates than GWSAT, and in this sense WalkSAT behaves less
greedy.

Generally WalkSAT outperforms GWSAT in terms of number of flips,
but does not always reach the performance of GSAT/Tabu. However, due
to the fact that WalkSAT examines only a small number of candidate vari-
ables, the average flip speed is significantly higher than in any of the GSAT
variants, and WalkSAT typically outperforms these algorithms in terms of
CPU time [Hoos and Stutzle, 2000]. Similar to GSAT/Tabu, a WalkSAT

20

variant in which a variable’s age is used to guide the variable selection heuris-
tic, WalkSAT/TABU, has been suggested in [McAllester et al., 1997]. Even
though the algorithm is essentially incomplete (as opposed to WalkSAT)
[Hoos, 1998], WalkSAT/TABU typically performs significantly better than
WalkSAT, particularly on crafted instances.

The walk probability parameter wp in WalkSAT (and in GWSAT) has
a major impact on the performance of the algorithm [McAllester et al.,
1997, Hoos and Stutzle, 2000]. The optimal walk probability varies from
instance to instance – sometimes this can be the case even for instances
from the same general class. Typically, the walk probability is hand-tuned
during preliminary runs of the algorithm, which is both time-consuming,
and does not necessarily produce optimal results. To avert this problem, in
[Hoos, 2002] the authors proposed an adaptive noise mechanism for Walk-
SAT, which monitors the progress of the algorithm, and gradually decreases
the walk probability as long as the algorithm makes progress. The walk
probability is increased when the algorithm appears to be stuck in a local
plateau. The proposed mechanism was shown to have good performance,
in some instances even outperforming a hand-tuned version of WalkSAT.
Since then, the adaptive noise mechanism has been introduced in a number
of other SLS-based SAT algorithms.

Novelty+

The Novelty+ algorithm [McAllester et al., 1997, Hoos, 1998], is a result of
the combination of the candidate list generation strategy and the conflict-
directed random walk from WalkSAT, with the idea of a history-based vari-
able selection heuristic, as in GSAT/Tabu. The algorithm has two param-
eters: the walk probability wp (as in WalkSAT), and the novelty noise p.
As in WalkSAT, the candidate list in Novelty+ is a set of variables from a
randomly selected unsatisfied clause. To select the variable to flip, Novelty+
uses the age of the variable (as in GSAT/Tabu), and the GSAT objective
function – that is, the number of unsatisfied clauses if the variable is flipped
(variable’s score). The algorithm is presented in Algorithm 5.

For p > 0, the age-based restrictions of Novelty+ prevent the algorithm
from flipping the same variable over and over again, and at the same time the
score-based restrictions allow for a bad flip to be reversed, if no alternative
is available. The small amount of random walk prevents the algorithm from
getting stuck in unprofitable regions of the search space. Novelty+ com-
bined with an adaptive noise mechanism (AdaptiveNovelty+ [Hoos, 2002])
produced the highest-performing SAT algorithm for random instances in the

21

Algorithm 5 Select Var Novelty+([in] α, [in] h, [in] candlist)

Input: α; h; candlist.
Output: v – variable to flip
1: with-probability wp do
2: v ← random variable from candlist ⊲ random walk
3: return v
4: end with-probability
5: with-probability 1− wp do
6: v ← variable with the smallest score in candlist
7: if v is not the youngest in candlist then
8: return v
9: else

10: with-probability p do ⊲ novelty noise
11: v ← variable with second smallest score in candlist
12: end with-probability
13: return v
14: end if
15: end with-probability

SAT 2004 competition.

Dynamic Local Search

The main idea of dynamic local search (DLS) algorithms is to associate a
weight with each clause in the CNF formula, and use a weighted objective
function to guide the variable selection heuristic. A sum of weights of the
currently unsatisfied clauses is an example of such an objective function,
commonly used in DLS-based algorithms. Initially, all clause weights are
initialized to the same value (1, for example), and as the search progresses,
the values of clauses are adjusted – typically, the clauses that are deemed
“difficult to satisfy”, according to some criterion, have their weights in-
cremented, so that the search process focuses on these clauses. The earliest
example of a DLS algorithm for SAT, proposed in [Selman and Kautz, 1993],
simply increases the weights of the clauses unsatisfied at the end of each try
of GSAT.

Many successful state-of-the-art DLS algorithms for SAT are based on
the Exponentiated Subgradient algorithm (ESG) proposed in [Schuurmans
et al., 2001]. ESG starts by assigning weight 1 to all of the clauses of
the formula. At each step, ESG selects all variables in a random unsatisfied

22

clause as a candidate list, and chooses a variable whose flip will minimize the
total weight of unsatisfied clauses in the formula. When a local minimum
is reached (that is, no flip leads to a decrease in the objective function),
with a certain probability η the algorithm chooses a random variable from
all currently unsatisfied clauses, and continues the local search. However,
with probability 1− η the algorithm enters the weight update phase, which
is performed in two stages. In the scaling stage the weights of all clauses are
multiplied by a factor which depends on their satisfaction status: αsat for
satisfied clauses, αunsat for unsatisfied ones. In the smoothing stage all clause
weights are adjusted towards their mean using the formula weight(c) =
ρ · weight(c) + (1 − ρ) · w̄, where w̄ is the current mean clause weight, and
0 < ρ < 1. The local search is then continued. The procedure is repeated
until either the satisfying assignment is found, or a maximum number of
iterations is reached.

While ESG was superior in terms of number of search steps to the best at
the time SLS algorithm Novelty+, the computational cost of weight updates
had a negative impact on the runtime of the algorithm. Subsequent work of
authors in [Schuurmans et al., 2001] resulted in a significant improvement
of ESG. However, it was the Scaling and Probabilistic Smoothing (SAPS)
algorithm proposed in [Hutter et al., 2002] that succeeded to outperform
Novelty+ on many instances in terms of CPU time.

The most successful SLS-based SAT algorithm known today, gNovelty+
[Pham and Gretton, 2007], the winner of SAT 2007 competition on random
satisfiable instances, incorporates ideas from both the Novelty+ and SAPS
algorithms.

2.3.2 Unit Propagation Local Search

The unit propagation local search algorithm, UnitWalk, [Hirsch and Ko-
jevnikov, 2005] was developed based on the results of theoretical work in
[Paturi et al., 1997] and [Paturi et al., 1998] on weakly exponential worst-
case upper bounds for SAT. We will try to give some intuition behind these
results – please consult the cited papers for further (very interesting) details.

Consider a CNF formula α(p1, . . . , pn) that has exactly one satisfying
assignment hS . Pick a random truth-value assignment h – if n values in h
were guessed correctly (same as in hS), then we have a satisfying assignment.
However, note that not all n values must be guessed. Take p ∈ V ars(α),
assume hS(p) = 1, and let C be a clause in which p is the only true literal
under hS . Such C must exist, as otherwise we could flip p and obtain

23

another satisfying assignment. Now, if we guess correctly the assignments
to all literals in C except p, then the correct assignment to p can be derived
using unit propagation. Of course, for this to work we also need to guess
in the correct order – all variables in C must be assigned before p. It turns
out, that for any k-CNF formula, the expected number of variables that
need to be guessed correctly, over all possible orderings of variables, is at
most (n− n/k) – this, in essence, is the Satisfiability Coding Lemma (SCL)
in [Paturi et al., 1997].

We can now construct (“guestruct” would be a better word) a satisfying
assignment h for a k-CNF formula α using the following procedure. Pick a
random truth-value assignment hR, fix an ordering of the variables in hR,
and for each variable p according to this ordering do the following: if α
contains a unit clause p (resp. ¬p), and does not contain unit clause ¬p
(resp. p), then h(p) = 1 (resp. h(p) = 0), otherwise h(p) = hR(p). In any
case, simplify α to be α(p/h(p)). According to the SCL, the truth-value
assignment h obtained at the end of this procedure will be satisfying with
probability 1/2n−n/k, and so by repeating this procedure O(2n−n/k) times
we find the satisfying assignment with a probability arbitrary close to 1.

Motivated by the procedure described in the previous paragraph, the au-
thors in [Hirsch and Kojevnikov, 2005] proposed the algorithm, UnitWalk,
outlined in Algorithm 6. The inner loop of the algorithm, called a period, is
an implementation of the assignment construction procedure, as described
above, with two modifications. First, all unit clauses are processed as soon as
they appear, and not only the ones that contain the variable assigned accord-
ing to the current ordering. Second, the truth-value assignment obtained at
the end of the period is used as a seed for the next period. Additionally,
if at the end of the period no modifications to the initial assignment have
been made, a random variable is flipped – although in practice this happens
very rarely, this is essential to make the algorithm PAC.

The SAT solver UnitWalk, based on the UnitWalk algorithm, includes
additional enhancements to the basic procedure such as the combination
with SLS and periodic addition of short resolvents, all of which are described
in full in [Hirsch and Kojevnikov, 2005]. The solver won the SAT 2003
competition on random satisfiable instances.

2.4 Complete Non-clausal Algorithms

The DPLL procedure presented in Algorithm 2 in Section 2.2 can be gen-
eralized in a straightforward manner to work on non-clausal formulas. The

24

Algorithm 6 UnitWalk([in] α, [out] h)

Input: α – formula in CNF
Output: SAT and h if satisfying assignment is found; UNDECIDED –

otherwise
1: h← random truth-value assignment to V ars(α)
2: periods← 0
3: while periods < MAX PERIODS do
4: π ← random permutation of V ars(α)
5: α′ ← α
6: for all p ∈ π do
7: while α′ contains unit clauses do ⊲ make all propagations
8: l← a random unit clause from α′;
9: v ← the variable in l

10: if α′ does not contain unit clause ¬l then
11: h(v)← if l = v then 1 else 0 ⊲ unit-directed flip
12: end if
13: Simplify(α′, {v 7→ h(v)})
14: end while
15: if p ∈ V ars(α′) then ⊲ p has not been eliminated
16: Simplify(α′, {p 7→ h(p)})
17: end if
18: if α′ = T then
19: return SAT
20: end if
21: end for
22: if no flips in h were made then
23: flip random variable in h
24: end if
25: periods← periods+ 1
26: end while
27: return UNDECIDED

25

only part that needs to be modified is the unit propagation procedure
which relies on the fact that the input formula is in CNF. Unit propagation
can be replaced with the Boolean Constraint Propagation (BCP) procedure
[McAllester, 1980, 1990]. When a non-clausal formula is viewed as a tree,
BCP is simply a repeated application of the set of rules based on the truth-
tables of connectives of propositional logic to the nodes of the tree. For
example, “if an AND node is assigned 1, assign 1 to all its children”, or “if
an OR node assigned 1 and all but one of its children are 0, assign 1 to the
remaining child”. Note that if a CNF formula is viewed as a 2-level tree, the
two aforementioned rules define exactly the unit propagation procedure.

The first such generalization of DPLL that we are aware of appeared
in [Van Gelder, 1988], where also a non-trivial worst-case running time of
the algorithm was developed. Since such a generalized DPLL procedure
would also work on circuits, we postpone the discussion of the procedure
to Section 2.6, and, instead, in this section focus on algorithms designed
specifically for non-clausal formula trees.

One of such algorithms, presented in [Gutiérrez et al., 2002], is based
on the special datastructure, ∆-tree [Gutiérrez et al., 2000], designed to
represent and support various operations on NNF formulas. It is difficult to
say whether the algorithm is competitive with CNF-based SAT algorithms,
as the authors experimented with very small formulas, and did not compare
their implementation with any CNF-based SAT solver. Nevertheless, the
results presented by the authors indicate that the proposed algorithm could
be of interest.

Another interesting SAT solving algorithm for non-clausal formulas is
based on a first-order proof procedure called General Matings. We discuss
the algorithm below.

2.4.1 General Matings

General Matings is a first-order proof procedure originally proposed in [An-
drews, 1981]. One its distinguishing features is that the propositional frag-
ment is handled directly in non-clausal form. In [Jain et al., 2006] the
authors propose a non-clausal SAT procedure based on General Matings.

At the heart of the procedure is a special 2-dimensional format for rep-
resentation of NNF formulas called vertical-horizontal path form (vhpform).
In this form disjuncts are arranged horizontally, so α ∨ β is represented as
[α ∨ β], while conjuncts are arranged vertically, so α ∧ β is represented as

26

[

p ∨ q ∨ ¬r
t

]

∨

¬p
r ∨ s
q

[

¬s
]

Figure 2.3: The vhpform of NNF formula (2.3).

[

α
β

]

. Figure 2.3 demonstrates the vhpform for the formula

(((p ∨ q ∨ ¬r) ∧ t) ∨ (¬p ∧ (r ∨ ¬s) ∧ q)) ∧ ¬s. (2.3)

Vhpforms can be analyzed in terms of vertical and horizontal paths. A
vertical path through a vhpform is a sequence of literals formed by choosing
one disjunct from each disjunction, and deleting all parts of the vhpform that
are not chosen. For example, the set of all vertical paths through the vhp-
form in Figure 2.3 is {〈p, t,¬s〉, 〈q, t,¬s〉, 〈¬r, t,¬s〉, 〈¬p, r, q,¬s〉, 〈¬p, s, q,¬s〉}.
Similarly a horizontal path through a vhpform is a sequence of literals formed
by choosing one conjunct from each conjunction, and deleting all parts of the
vhpform that are not chosen. The set of all horizontal paths in Figure 2.3
is {〈p, q,¬r,¬p〉, 〈p, q,¬r, r, s〉, 〈p, q,¬r, q〉, 〈t,¬p〉, 〈t, r, s〉, 〈t, q〉, 〈¬s〉}.

Let V P (α) and HP (α) be the sets of all vertical and all horizontal paths
in a vhpform of NNF formula α. It is not very difficult to see that vertical
paths correspond exactly to the c-clauses in a DNF of α, and that, in fact,
α ≡

∨

π∈V P (α)

∧

l∈π l. Similarly, horizontal paths correspond to clauses in a
CNF of α, and α ≡

∧

π∈HP (α)

∨

l∈π l. Therefore,

• α is satisfiable if and only if there exists a vertical path in the vhpform
of α that does not contain two complimentary literals. This path
represents a (partial) satisfying assignment for α.

• α is a tautology if and only if every horizontal path in the vhpform of
α contains two complimentary literals.

To determine the satisfiability of an arbitrary propositional formula α,
the algorithm in [Jain et al., 2006] transforms α into NNF (when α does
not contain equivalence connectives, this can be done at linear cost), and
searches the corresponding vhpform for a vertical path that does not contain
two complimentary literals. If such path is found, then α is satisfiable, and
the path gives a satisfying assignment for α, otherwise α is not satisfiable.

27

The algorithm is guaranteed to terminate because the number of vertical
paths in any vhpform is finite.

To implement the search efficiently the authors construct two directed
acyclic graphs - vgraph to represent all vertical paths, and hgraph to repre-
sent all horizontal paths. Figures 2.4(a) and 2.4(b) demonstrate the graphs
for our example formula (2.3). Note that the graphs can be easily con-
structed without explicit construction of the vhpform.

(a) vgraph (b) hgraph

Figure 2.4: The vgraph and hgraph that correspond to vhpform in Fig-
ure 2.3.

The vgraph is searched for a satisfying path – the path from one of the
root nodes to one of the leaf nodes that does not contain complimentary
literals. At each step, the algorithm attempts to extend the current partial
path π = {l1, . . . , lk} by adding one of the children l of the node lk in the
vgraph. If l = ¬li for some li ∈ π, the algorithm backtracks. If the hgraph
contains a path with exactly the literals {¬l1, . . . ,¬lk,¬l} the algorithm
backtracks as well, because this path represents a falsified clause in the
CNF representation of α – i.e. a conflict. If the hgraph contains a path with
exactly the literals {¬l1, . . . ,¬lk,¬l, l

′} for some unassigned literal l′ , then
l′ is assigned truth-value 1 – this is the equivalent of unit propagation in
clausal solvers. The performance of the algorithm is further enhanced by
addition of clause learning and non-chronological backtracking. See [Jain
et al., 2006] for further details of the algorithm5.

The experimental evaluation of the General Matings SAT algorithm per-
formed by the authors, indicates that the algorithm works particularly well

5See also SatMate website at http://www.cs.cmu.edu/ modelcheck/satmate/, which
unpublished an document with detailed description of the solver.

28

on crafted problems. The performance of the SatMate [URL-b] solver based
on the algorithm is at least competitive, and in some instances significantly
better than the performance of state-of-the-art CNF based conflict-driven
SAT solvers. However, the algorithm did not fare well on hardware verifica-
tion industrial benchmarks.

2.5 Incomplete Non-clausal Algorithms

With the success of SLS-based algorithms in the 1990’s it was natural to
attempt to generalize this class of algorithms to non-clausal formulas. The
first such attempt was published in [Sebastiani, 1994] where the author gen-
eralized the GSAT procedure (Section 2.3.1) to formulas in NNF by using a
scoring function which, in effect, counted the number of unsatisfied clauses
in the equivalent CNF representation of the non-clausal formula. The au-
thor did not present the results of experimental evaluation of the algorithm,
and we suspect that since the scoring function did not take any advantage
of the underlying structure of the NNF formula, the algorithm would not be
competitive with CNF-based algorithms.

The first successful non-clausal SLS based algorithm, DAGSAT, was
presented in [Kautz et al., 1997]. Although positioned as an algorithm for
boolean DAGs (circuits), the algorithm transformed the input DAG into
an NNF formula tree before solving it, hence we consider it in this section.
The NNF representation used in the algorithm was constructed in such a
way that the resulting formula tree had alternating AND and OR levels,
starting from the AND at the root. The algorithm was based on WalkSAT
(Section 2.3.1) and used the number of false OR nodes in the second level
of the tree as the objective function. The candidate list was selected by
implicitly constructing a violated “virtual clause” – that is, the clause that
would be violated in the equivalent CNF representation of the formula. The
SAT solver based on the DAGSAT algorithm significantly outperformed
WalkSAT on randomly generated formula trees, however did not do well on
circuit verification problems.

The algorithm we discuss here, polSAT, first developed in [Stachniak,
2002], and further improved in [Stachniak and Belov, 2008], is an SLS-based
algorithm which uses the concept of logical polarity [Stachniak, 1999] to
guide the search for satisfying assignments.

29

2.5.1 Polarity Guided Local Search

Given a propositional formula α in NNF, an occurrence of variable p ∈
V ars(α) is said to be negative if it is negated, and positive otherwise. A
variable p ∈ V ars(α) is said to have positive polarity, if all of its occurrences
are positive, and negative polarity if all of its occurrences are negative. If p
has both positive and negative occurrences, then it is said to have no polar-
ity. A formula α is polarized if all of its variables are polarized. Polarized
formulas can be seen as generalization of clauses – each non-tautological
clause is a polarized formula. Just as with unit propagation for clauses,
BCP through a set of polarized formulas can be performed very efficiently
[Stachniak, 1999].

When solving satisfiability, the concept of polarity can be useful as well.
For example, if p ∈ V ars(α) is positive, then α(p) |= α(p/T), and so
α ∈ SAT if and only if α(p/T) ∈ SAT . In other words, every polarized
variable can be substituted for an appropriate logical constant to obtain an
equisatisfiable formula – this is analogous to the pure literal rule for DPLL
mentioned in Section 2.2. Furthermore, by considering polarities of variable
occurrences only, an objective function for non-clausal local search can be
developed as in suggested in [Stachniak, 2002]. This objective function, used
in the polSAT algorithm, is defined in terms of the polarity clash of formula
α with respect to a truth-value assignment h:

Definition 1. Let α be a formula in NNF and h be a truth-value assignment
for α. The polarity clash of α with respect to h, clash(α, h), is:

• if α is a literal, then clash(α, h) = 1− h(α);

• if α = β1 ∨ · · · ∨ βk, then clash(α, h) = min1≤i≤k clash(βi, h);

• if α = β1 ∧ · · · ∧ βk, then clash(α, h) =
∑

1≤i≤k clash(βi, h).

Intuitively, the clash value of a formula indicates the “amount of work”
(in flips) required to make the formula true. It is not difficult to see that
clash(α, h) = 0 if and only if h(α) = 1. As an example, consider the formula

α = ((q ∧ p) ∨ ¬r) ∧ (¬q ∧ ¬r) (2.4)

depicted in Figure 2.5(a) as a tree. The clash values of subformulas under
the truth-value assignment h = {p 7→ 1, q 7→ 0, r 7→ 1} are marked under
the nodes of the tree, and clash(α, h) = 2.

Note that even though in Definition 1 we assume that α is in NNF,
the concept of polarity clash can be generalized to arbitrary formulas in

30

(a) Clash calculation (b) Candidate list generation

Figure 2.5: Polarity clash calculation and candidate list generation for for-
mula (2.4). Clashes are marked under the nodes. Dashed and dotted paths
in (b) show two different ways to collect candidates.

a straightforward manner. Nevertheless, since SAT solvers based on the
polSAT algorithm convert their input to NNF for efficiency reasons, in our
discussion we assume that non-clausal formulas are always in NNF.

polSAT forms candidate lists by collecting all variables that can be
reached from the root of the formula in the following manner:

• at a conjunction with non-zero clash value branch into one random
child that has non-zero clash value;

• at a disjunction with non-zero clash value branch into all children.

Figure 2.5(b) shows two possible ways to collect candidates for the for-
mula (2.4). Following the dashed path we obtain {q, r}, and following the
dotted path we obtain {r}.

Let cl(α, h) be the candidate list for formula α and truth-value assign-
ment h constructed in the above manner. As shown in [Stachniak and Belov,
2008], cl(α, h) has the following nice property: for every satisfying truth-
value assignment hS for α, cl(α, h) contains at least one variable p, such
that h(p) 6= hS(p). In other words, we know that at least one variable in the
candidate list must be flipped in order to arrive at a satisfying assignment.
To select the variable to flip, polSAT may use any of the clausal SLS vari-
able selection heuristics described in Section 2.3.1 – the only modification
required is to use the clash value instead of the number of unsatisfied clauses.
For example, the polSAT-N algorithm in [Stachniak and Belov, 2008] uses

31

the variable selection heuristic of the AdaptiveNovelty+ algorithm [Hoos,
2002]. It is rather interesting that good clausal variable selection heuristics
seem to work well in the non-clausal setting as well.

The performance of the SAT solver polSAT, based on the polSAT-N
algorithm, is competitive with the state-of-the-art CNF-based SLS solvers.
In fact, on some classes of random and industrial problems, polSAT is faster
by 2-3 orders of magnitude (in terms of CPU time). Though for some
problems, it seems that the cost of additional computations outweighs the
benefits of non-clausal representation.

Before we conclude the discussion of polSAT, we would like to men-
tion another interesting aspect of the candidate lists generated by polSAT.
The fact that the candidate list cl(α, h) contains at least one variable that
must be flipped in order to satisfy α can be represented by the clause
∨

p∈cl(α,h) l(p), where l(p) = ¬p if h(p) = 1 and l(p) = p if h(p) = 0. Such
a learned clause can easily be shown to be an implicate of α, and in fact,
the conjunction of all possible learned clauses is a CNF representation of α.
Thus, learned clauses can be used to extract variable dependencies (equiv-
alences, implications, etc.) from α on-the-fly, and, to refine the variable
selection heuristic by combining the clausal and non-clausal information.
Some of these ideas are explored in [Stachniak and Belov, 2008].

2.6 Complete Algorithms for Circuits

SAT algorithms for circuits were developed in the early 1980s in the context
of Automated Test Pattern Generation (ATPG). One of the tasks in ATPG
is to find a set of assignments to inputs of a circuit that result in a specified
output value of one of the internal nodes. The backtrack search algorithm
for this problem proposed in [Goel, 1981] can be seen as a generalization of
the DPLL procedure (Section 2.2) which takes into account the structure of
the circuit. In the modern literature this procedure is often called circuit
DPLL, we will use this name as well.

Conceptually, circuit DPLL has one essential modification from the orig-
inal DPLL – the algorithm is allowed to make decision assignments to the
internal nodes of the circuit in addition to circuit inputs. Although this
was originally motivated by the nature of the ATPG problem, [Järvisalo
et al., 2005] demonstrated a family of circuits on which DPLL restricted to
branching on input nodes only must explore an exponentially larger search
tree than DPLL allowed to branch on all circuit nodes. Thus, branching
on internal nodes is essential for the algorithm’s performance. Also, in cir-

32

(a) Circuit (b) AIG

Figure 2.6: A Boolean circuit, and the corresponding AIG.

cuit DPLL branching is allowed only on values of inputs of the currently
assigned but not justified nodes. A node is justified when its output value
is implied by its inputs. This way the search in circuit DPLL is focused
only on parts of the circuit that are known to have impact on the values of
currently assigned nodes. A moment of reflection will make one realize that
the clausal DPLL procedure acts in a similar manner, when one considers
a CNF formula as a two-level circuit (with a top-level AND node, and OR
nodes for each of the clauses).

Most of the current implementations of circuit DPLL rely on the sim-
plified circuit representation called And-Inverter Graph (AIG) [Kuehlmann
and Krohm, 1997]. In this representation circuits are constructed from 2-
input AND gates and inverters only. Graphically such circuits are repre-
sented as DAGs with internal nodes being AND gates, and inverters marked
as dots on the edges. Figure 2.6 shows a simple circuit, and its AIG repre-
sentation. During construction of AIGs, common sub-circuits can be easily
identified [Ganai and Kuehlmann, 2000], and so resulting AIG is typically
more compact than the original circuit. See [Bjesse and Boralv, 2004] for
discussion of this and other representations of circuits used in the modern
EDA tools.

The pseudocode for the DPLL procedure on AIG circuits is shown in
Algorithm 7. The procedure is invoked by passing an output node out,
the desired truth-value ν, and an empty truth-value assignment h. The
algorithm maintains a list of nodes that need to become justified – this is
the justification queue. When all nodes are justified, the circuit is satisfiable
(meaning that there is an assignment to inputs that results in the truth-value
ν on the output node out). If the algorithm fails to justify the node out, the
circuit is unsatisfiable.

33

Algorithm 7 Circuit DPLL([in] n, [in] ν, [in, out] h)

Input: n – node; ν – truth-value; h – truth-value assignment, initially ∅.
Output: SAT and h if satisfying assignment exists; UNSAT – otherwise;
1: if ! Imply(n, ν, h) then
2: return UNSAT
3: end if
4: if justification queue.empty() then
5: return SAT
6: end if
7: n← justification queue.get node()
8: h′ ← h ⊲ backup assignment
9: if Circuit DPLL(n.left, 0, h) then ⊲ or 1 if n.left is negated

10: return SAT
11: end if
12: h← h′ ⊲ undo assignments
13: if Circuit DPLL(n.right, 0, h) then ⊲ or 1 if n.right is negated
14: return SAT
15: end if
16: h← h′ ⊲ undo assignments
17: return UNSAT

34

At the core of the algorithm is the implication procedure Imply (Al-
gorithm 8) which is the circuit analog of the unit propagation procedure of
clausal DPLL. In AIG-based and other systems with gate fanin set to a small
constant, the implication procedure can be implemented very efficiently by
means of lookup tables – Table 2.6 shows parts of such table schematically.
In [Thiffault et al., 2004] and [Wu et al., 2007] the authors suggested us-
ing the watched literals scheme (Section 2.2.1) to allow efficient implication
through gates with arbitrary fanin. Although the authors did claim that
their approach results in faster propagation through gates with large fanin
(as compared to the equivalent tree of binary AND gates), no experimental
data to support this claim was presented. Note that for clarity we omitted
the special treatment of the input nodes in Algorithm 8.

Algorithm 8 Imply([in] n, [in] ν, [in, out] h)

Input: n – node; ν – truth value for n; h – current truth-value assignment.
Output: FALSE – conflict; TRUE – no conflict; implied assignments are

added to h.
1: h← h ∪ {n 7→ ν}
2: νleft ← h(n.left) ⊲ X if n is unassigned
3: νright ← h(n.right) ⊲ X if n is unassigned
4: s← Lookup(ν, νleft, νright)
5: if s.action = CONFLICT then
6: return FALSE
7: else if s.action = JUSTIFY then
8: justification queue.enqueue(n)
9: return TRUE

10: else if s.action = PROP-LEFT-RIGHT then
11: return Imply(n.left, s.lvalue, h) && Imply(n.right, s.rvalue, h)
12: else if . . . then
13: . . .
14: end if

The optimal strategy for selection of the next node from the justification
queue (Algorithm 7, line 7) is largely dependent on a particular instance.
Often depth-first selection produces good results, as it tends to generate
conflicts quickly. Other strategies such as using a mixture of breath-first
and depth-first, performing look-ahead (as in Section 2.2.2), or targeting
nodes that are involved in small cuts of the circuit graph, were suggested as
well [Kuehlmann, 2008]. Unfortunately, we were not able to find any more
specific information or analysis of different selection strategies in circuit SAT

35

Current Assignment Action Next Assignment

· · · · · · · · ·

Table 2.1: Implication lookup table for AIG circuits

algorithms. In the ATPG literature, it is commonly accepted that a selection
strategy based on backtracing [Fujiwara and Shimono, 1983, Hamzaoglu and
Patel, 1998] produces the best results – curiously, we could not find any
publications related to use of this strategy in circuit SAT solvers.

We now briefly describe some of the optimizations used in state-of-the-art
circuit SAT solvers, all of which, perhaps with the exception of conflict-based
learning, take advantage of the underlying circuit structure.

• Static learning is a preprocessing technique originally suggested in
[Schulz et al., 1988] and designed to identify the so-called indirect im-
plications in the circuit. An implication is direct if it can be derived us-
ing the implication procedure as in Algorithm 8. More specifically, let
n1 and n2 be two nodes, ν1 and ν2 be truth-values, and h be an empty
truth-value assignment. Then, if after the invocation Imply(n1, ν1, h),
h contains assignment n2 7→ ν2, we say that (n1 = ν1)→ (n2 = ν2) is a
direct implication. Consider now the circuit in Figure 2.7. Assignment
n1 = 0 directly implies assignment n2 = 1 (see Figure 2.7(a)). Note,
that (n1 = 0) → (n2 = 1) is equivalent to (n2 = 0) → (n1 = 1), but
this latter implication could not be obtained by Imply(). In fact, an
assignment of 0 to n2 during search makes n2 unjustified and causes
branching (see Figure 2.7(b)). Once the indirect implication has been
detected, it can be inserted into the circuit, as demonstrated in Fig-
ure 2.7(c) – note that now, assignment n2 = 0 directly implies n1 = 1.

The algorithm for detection of indirect implications presented in [Schulz
et al., 1988] picks a node from the circuit, assigns a truth-value to that
node, performs direct implications and reverses them (as above), and
uses a heuristic to determine which of the resulting implications are

36

(a) Direct implica-
tion

(b) Indirect impli-
cation

(c) Modified circuit

Figure 2.7: Static learning example. The node marked F in (c) is assigned
to constant 0.

indirect. Thus, the algorithm is incomplete in a sense that it produces
only a subset of the indirect implications. A complete algorithm for
static learning called recursive learning is due to [Kunz and Pradhan,
1992].

• Dynamic learning also proposed in [Schulz et al., 1988] and subse-
quently improved in [Kunz and Pradhan, 1993] is, just like static learn-
ing, a process of deriving indirect implications. However, as opposite
from static learning, dynamic learning is performed during the search,
detecting implications that are valid only in the current part of the
search space. Even though the learned implications cannot be added
to the circuit structure permanently, they can still be used by the
implication procedure.

• Conflict-based learning, in conjunction with non-chronological back-
tracking, as described in Section 2.2.1, was first incorporated into cir-
cuit SAT solvers in [Ganai et al., 2002]. The algorithm proposed by the
authors maintains the conflict clauses in a separate clausal database –
the motivation behind this decision is to combine the strengths of the
fast implication algorithm of AIG-based solvers, and the fast unit prop-
agation of the conflict-driven CNF solvers. Combining clause learning
with a circuit-based decision heuristic resulted in a solver that consis-
tently outperformed the best at a time CNF solver (zChaff), in some
cases by an order of magnitude. More recently, the authors in [Wu
et al., 2007] suggested inserting the conflict clauses into the circuit
as OR gates. Combined with their improved watched literals scheme
for arbitrary-fanin gates, their algorithm faired favorably compared

37

to some of state-of-the-art CNF solvers (e.g. minisat). However, no
comparison with the hybrid technique of [Ganai et al., 2002] was pre-
sented.

• Correlation detection [Lu et al., 2003, 2004] is the idea of using random
simulation of the circuit to detect relationships that are likely to hold
between signals of the circuit. During random simulation a small set of
random assignments to the inputs of the circuit is generated, and the
values of internal nodes are recorded. If the recorded values show that,
for example, node n1 is assigned 0 whenever node n2 is assigned 1, it is
likely that n1 = ¬n2. Such “suspected” relationships are stored, and
used during the search to guide decision heuristic – in our example, if
n1 is currently assigned 1, and the decision heuristic has a choice of the
value to assign to n2, it will choose 1 first with the intention to generate
conflict as soon as possible. The authors in [Lu et al., 2003] also
suggested to use the relationship information derived during simulation
for the so called incremental solving. The idea is that if, for example,
we suspect that n1 = ¬n2 for two nodes with small transitive fanin,
we first try to solve (n1 = 1) ∧ (n2 = 1) – since the problem is likely
to be unsatisfiable, the process should generate many conflict clauses,
which then can be used to solve the larger circuit. Thus, incremental
solving can be seen as another form of learning (the authors call it
explicit learning). In [Lu et al., 2004] both techniques are reported to
result in significant performance gains.

2.7 Incomplete Algorithms for Circuits

To our knowledge, there is only one published attempt to develop an in-
complete SAT solving algorithm for circuits. In [Muhammad and Stuckey,
2006] the authors presented an SLS-based algorithm SNCNFS which is a
generalization of the original version of polSAT [Stachniak, 2002] to arbi-
trary boolean circuits. We omit the description of SNCNFS here due to the
fact that polSAT is covered in detail in Section 2.5.1 – it worth mention-
ing, however, that the authors worked out the detailed calculations of clash
values for various non-standard gates (for example XOR and “at-most-k”
gate), and also given the explicit rules for calculation of “negative” clash
values required for non-NNF formulas (in [Stachniak, 2002] only the rules
for “positive” clash values were explicitly presented).

The results of the experimental study presented in [Muhammad and
Stuckey, 2006] indicate that the algorithm performs well on circuits obtained

38

by encoding some of the crafted SAT problems. However, the circuits used
in the study are of relatively small size and, perhaps most importantly,
small depth. We emphasize this point, as our (unpublished) experiments on
industrial-size circuits indicate that such a straightforward generalization of
the polSAT algorithm does not work well.

2.8 Conclusion

To conclude this chapter we review some of the known “performance pro-
files” of the various classes of SAT algorithms. As it was already mentioned
in Section 2.1, benchmark instances used to evaluate SAT algorithms are
drawn from one of the following three categories – random, crafted and
industrial. Perhaps the richest source of information on comparative per-
formance of different classes of SAT algorithms are the results of SAT com-
petitions. Unfortunately, SAT competitions are mostly designed specifically
for CNF-based algorithms, and so there is no objective data for comparison
of non-clausal and circuit-based algorithms. Nevertheless, we believe that
the comparative strengths and weaknesses of different types of CNF-based
algorithms could be indicative of the behavior of the algorithms based on
the richer representation.

The performance profiles of different classes of CNF-based SAT algo-
rithms are summarized in Table 2.8. For each class in the table, the “very
good” entry indicates that this class generally outperforms all others, “good”
indicates that this class performs well, “med” indicates that algorithms of
this class are capable of solving medium difficulty problems, but fail on dif-
ficult ones, and, finally, “bad” indicates that performance of the algorithms
from this class is unacceptable.

Random Crafted Industrial
SAT UNSAT SAT UNSAT SAT UNSAT

Conflict-driven bad bad good very very very
DPLL good good good

Look-ahead good very very good med med
DPLL good good

Stochastic very n/a med n/a bad n/a
local search good

Unit propagation good n/a good n/a med n/a
local search

Table 2.2: Performance profiles of SAT algorithms.

39

Please keep in mind that the table gives only a very high-level view –
there are many cases when algorithms that generally perform poorly on a
class of problems, solve particular problems from this class extremely well.
For example, the SLS-based algorithm presented in [Pham and Gretton,
2007] was the first algorithm ever to handle a certain very difficult problem
from the crafted category.

Nevertheless, some conclusions can be drawn even from such a gener-
alized picture. In particular, it is clear that there is no one class of SAT
algorithms that performs well across the broad spectrum of problem types.
This observation motivates research in two, slightly overlapping, directions.
One is the development of hybrid SAT algorithms, for example by integrat-
ing certain features of complete and incomplete algorithms. Some of the
recent work in this direction is presented in [Jussien and Lhomme, 2000,
Richards and Richards, 2000, Fang and Ruml, 2004, Habet and Vasquez,
2007, Fang and Hsiao, 2008]. Another promising research direction is the
development of so-called algorithm portfolios which combine SAT solvers of
different types and automatically determine which solver to run based on
the properties of the SAT instance at hand. This line of research resulted
in the portfolio-based SAT solver SATZilla which dominated in both the
crafted and the random categories in the 2007 SAT competition. A recent
paper [Xu et al., 2008] describes this approach in great detail.

Finally, with respect to non-clausal and circuit SAT algorithms, the re-
sults of various empirical studies published in [Ganai and Kuehlmann, 2000,
Ganai et al., 2002, Lu et al., 2003, 2004, Thiffault et al., 2004, Jain et al.,
2006, Muhammad and Stuckey, 2006, Wu et al., 2007, Stachniak and Belov,
2008] seem to indicate that SAT algorithms based on the enriched represen-
tation have the potential to outperform CNF-based algorithms, at least on
some types of problems.

40

Chapter 3

Applications of SAT

3.1 Introduction

In this chapter we discuss some of the practical applications of SAT solving
algorithms. One of the reasons for the incredible amount of attention de-
voted to the development of SAT algorithms is the applicability of SAT to a
large variety of problems in hardware and software design and verification.

In this chapter we give detailed examples of two of such applications of
SAT, namely in Bounded Model Checking (BMC) and in solving the Satis-
fiability Modulo Theories (SMT) problem. We selected these two applica-
tions for a number of reasons. First, both BMC and SMT are very general
techniques and so are widely applicable both in hardware and in software
verification applications. Second, the two techniques are based on very dif-
ferent principles: BMC works with models of computation, while SMT is
purely logical. We thought it would be informative to demonstrate the way
SAT is used in two such different applications. Third, SAT solving in both
of these applications is geared towards finding satisfying assignments, rather
than proving unsatisfiability. Thus, we believe both methods could benefit
from incomplete SAT solving techniques, which are of interest to us.

The rest of this chapter is organized as follows: we start with the discus-
sion of BMC in Section 3.2. We overview SMT in Section 3.3, and we finish
this chapter in Section 3.4 with the listing of other practical applications of
SAT and some concluding remarks.

41

3.2 Bounded Model Checking

Bounded model checking (BMC) is a SAT-based incomplete variant of a
technique for verification of temporal properties of finite-state systems called
model checking [Clarke and Emerson, 1982, Queille and Sifakis, 1982]. In
model checking the system under consideration is modeled as a finite state
transition system in which each state is associated (or, labeled) with some
set of atomic propositions that hold in this state. Atomic propositions are
arbitrary application-specific expressions that evaluate to true or false. For
example, in the model of two concurrent processes a state could be labeled
by a set {pc0 = 2, has mutex0, pc1 = 3}.

Formally, such, labeled, finite state transition systems are represented
by Kripke structures:

Definition 2 (Kripke structure). Let P be a set of atomic propositions.
A Kripke structure is a tuple M = (S, I, T, L), where S is a finite set of
states, I ⊆ S is a set of initial states, T ⊆ S × S is a transition relation,
and L : S 7→ 2P is a labeling function which associates with each state s ∈ S
a set L(s) of atomic propositions that hold in s.

To simplify the presentation, we will assume that for every s ∈ S, there
exists s′, such that (s, s′) ∈ T , i.e. T is total. Additionally, we will assume
that L is one-to-one, and so a state s is uniquely defined by its label L(s) –
note that in the general case, the states with identical labels can be collapsed
into one.

Specifications, that is the properties to be verified, of systems in model
checking are expressed by formulas of temporal propositional logic. Seman-
tics of specification formulas depend on the view of time in the logic used.
With linear time temporal logics, which view time as a sequence of points,
the expectation is that every possible execution path of the system will ad-
here to the specification. With branching time temporal logics, in which
each time point can have multiple successors, the expectation is that the
(unique) computation tree of the system will adhere to the specification.
There has been a considerable debate in the literature regarding the com-
parative strengths and weaknesses of linear and branching time logics. Even
though a definitive conclusion has not been reached, in a most recent review
on this subject Vardi [Vardi, 2001] gives a compelling argument for the ad-
vantages of the linear time view. In addition, the linear time view fits more
naturally BMC than the branching time view. Thus, in this section, we will
focus on a logic called Linear Temporal Logic (LTL), which, as the name
suggests, adopts the linear time view.

42

The syntax of LTL is defined in the following way:

Definition 3 (LTL syntax). Let P be a set of atomic propositions. The
set of LTL formulas is a smallest set L such that

• P ⊆ L ;

• If α ∈ L , and β ∈ L , then so are (¬α), (α ∧ β), (Xα) – pronounced
“next α”, (αUβ) – pronounced “α until β”.

The semantics of LTL formulas are given in terms of sequences of states,
or paths, in a Kripke structure: given a Kripke structure M = (S, I, T, L),
a path is a infinite sequence π = (s0, s1, . . .) that respects the transition
relation T , i.e. for all i, si+1 ∈ T (si, si+1)

1. If s0 ∈ I, then path is called
initialized. Given a path π = (s0, s1, . . .), we will denote si as πi, the
subsequence (si, . . . , sj), for i ≤ j as πi,j, and the suffix (si, . . .) of π as
πi,∞. Note that if π is a path, then so is πi,∞ for all i ≥ 0.

Definition 4 (LTL semantics). Let P be a set of atomic propositions,
M = (S, I, T, L) be a Kripke structure, and π be a path in M . An LTL
formula α holds on π, in symbols, π |= α, if the following conditions hold:

• if α = p for some p ∈P, then p ∈ L(π0);

• if α = (¬β), then β does not hold on π (π 2 β);

• if α = (β ∧ γ), then π |= β and π |= γ;

• if α = (Xβ), then π1,∞ |= β;

• if α = (βUγ), then there exists i ≥ 0, such that for all j, 0 ≤ j < i,
πj,∞ |= β, and πi,∞ |= γ.

An LTL formula α holds in M , in symbols, M |= α, iff α holds on all
initialized paths of M . Finally, two LTL formulas α and β are equivalent,
in symbols, α ≡ β, iff for every Kripke structure M , M |= α iff M |= β.

Thus, the intuitive meaning of Xα is that α has to be true in the next
state, and the intuitive meaning of αUβ is that α has to be true until β
becomes true (and β must become true at some point).

1Earlier we made an assumption that the transition relation T of Kripke structures is
total, and so the systems modeled by such structures do not terminate. Since paths are
intended to model execution sequences, it makes sense to require for paths to be infinite.
Some authors add a set of terminating states F to the Kripke structure, and require all
paths to be maximal (i.e. either ending in terminating state or infinite).

43

Additional propositional connectives (∨, →, ↔, etc.) as well as logical
constants T and F are introduced into LTL by usual means. Additional
LTL-specific operators can defined in the following way.

• Fα , (TUα)

Pronounced “finally α”. Thus, π |= (Fα) if for some i ≥ 0, πi,∞ |= α.
The intuitive meaning of Fα is that α has to be true at some state
now or in the future.

• Gα , ¬(F(¬α))

Pronounced “globally α”. Thus, π |= (Fα) if for all i ≥ 0, πi,∞ |= α.
The intuitive meaning of Gα is that α has to be true in all states.

Its worth to note that alternative notation and naming for LTL-specific
operators is common: ◦α instead of Xα, ♦α (pronounced “eventually”)
instead of Fα, and �α (pronounced “always”) instead of Gα.

When M |= α we often say that α is universally valid in M , because α
is required to hold on all initialized paths in M . Sometimes it is convenient
to require that α holds only on some initialized path in M . We say that
α is existentially valid in M if there exists an initialized path π in M such
that π |= α. Although in the literature, authors often borrow operators A
and E from Computational Tree Logic (CTL) to denote universal validity
by M |= Aα, and existential validity by M |= Eα, we feel that M |=∀ α
and M |=∃ α is more appropriate choice. Clearly, M |=∀ α if and only if
M 2∃ ¬α.

LTL model checking problem can now be stated formally as: given a
Kripke structure M and an LTL formula α, determine whether M |=∀ α.

As an example we consider a problem of verification of a synchronous circuit
design depicted in Figure 3.1(a)2. Assume that the flip-flop reads the new
input on the clock rise, and outputs the new value on the clock fall. As it is
common in model checking of synchronous circuits, we will ignore the clock
and the timing issues, and so we will assume that the input hold is provided
well enough in advance. The circuit implements a one-bit counter with hold
– when hold line is reset, the output alternates between 0 and 1, otherwise
when hold is set the output is fixed at the most recent output value.

The state of the system is completely described by the values of hold
and out on clock rise. Since both values are binary, we let P = {hold, out}.
Figure 3.1(b) depicts the Kripke structure M of the system. Note that since

2A reader unfamiliar with the hardware circuit notation may safely skip this paragraph.

44

(a) Circuit diagram (b) Kripke structure

Figure 3.1: The one bit counter with hold.

hold is an external input, every state has two successors, reflecting the fact
that the input value may or may not change between the clock rises.

The following illustrates the use of LTL for specification of properties of
this system. Note that here, and in the remainder of this section, we will
omit brackets in LTL formulas when no ambiguity may arise.

• Formula α1 = G(¬hold → (out ↔ X¬out)) specifies that as long as
hold is reset, out changes from 0 to 1 on each subsequent clock. This
is an example of a so called safety property – intuitively, a property
that “something bad does not happen”. It is not difficult to see that
M |=∀ α1.

• Formula α2 = G((hold ↔ X¬hold) → F(out ↔ X¬out)) asserts that
if hold changes at certain point, then out must also eventually change.
This is an example of a liveness property – intuitively, a property that
“something good eventually happens”. Note that M |=∀ α2.

• Formula α3 = F(hold ∧ out) asserts that eventually hold and out will
be both set. This is also an example of a liveness property. In this
case M 2∀ α3, but M |=∃ α3.

Safety and liveness properties are among the most common properties
used with model checking. In fact, every LTL formula is equivalent to a
conjunction of a formula that expresses safety property and a formula that
expresses a liveness property [Alpern and Schneider, 1985].

A classic algorithm for LTL-based model checking [Holzmann, 1991] is
based on the observation that both the Kripke structure and LTL formulas
can be associated with a computational model called Buchi automaton. A

45

Buchi automaton is a non-deterministic finite automaton extended to accept
infinite words. Languages recognized by Buchi automata are called ω-regular
languages. Each path π in a given Kripke structure M = (S, I, T, L) can
be described by an infinite word over an alphabet Σ = 2P , where P is the
set of atomic propositions. The i-th symbol in this word is the set L(πi).
Thus, the set of all initialized paths of M constitutes a language L(M) over
Σ. In a similar manner, given an LTL formula α, the set of all paths in
which α holds can be associated with the language L(α). Hence, in order
to determine whether M |=∀ α one can check whether L(M) ⊆ L(α), or,
equivalently, whether L(M) ∩ L(¬α) = ∅. Both L(M) and L(α) can be
shown to be ω-regular languages (see [Clarke and Schlingloff, 2001]), and
therefore the latter condition can be verified by testing the emptiness of
the product automaton of the Buchi automaton for L(M) and the Buchi
automaton for L(¬α).

The automata for both M and ¬α can be constructed on-the-fly [Cour-
coubetis et al., 1992, Hammer et al., 2005] thereby avoiding building the
whole product automaton which can contain unreachable states. Never-
theless, in many industrial applications, particularly in model checking of
hardware designs, the size of the reachable state space is prohibitive – con-
sider, for example, the exponential in n size of the reachable state space of
an n-bit counter.

Symbolic model checking introduced in early 1990’s by Burch et al. [Burch
et al., 1990] addresses this so called state explosion problem by recording
and manipulating sets of states instead of individual states. The basic prin-
ciple is as follows. As usual, let P be a set of atomic propositions, and let
M = (S, I, T, L) be a Kripke structure. Consider the set P ′ =

⋃

s∈S L(s).
Assuming that |P ′| = n, one can represent each state s ∈ S by a Boolean
vector ~v ∈ {0, 1}n – each element of this vector corresponds to a particular
p ∈P ′, and is set to 1 if p ∈ L(s), and 0 otherwise. This way, each state s
can be described by a truth-value assignment to the variables in ~v. Given
such a truth-value assignment, one can write a Boolean formula ψs(~v) which
is true for exactly that assignment, and so can be used to encode s. Further-
more, since a Boolean formula can have many satisfying assignments, given
a set of states S′ ⊆ S, one can construct a formula ψS′(~v) which encodes the
states in S′. By adding a second vector of propositional variables, ~w, with
the intended purpose of representing the “next state”, one can also write a
Boolean formula ψT (~v, ~w) which encodes the transition relation T – every
truth-value assignment to variables from ~v and ~w which satisfies ψT (~v, ~w)

46

encodes two states s and s′ such that (s, s′) ∈ T . In this manner, the formula

ψI(~w) ∨ ∃~v (ψI(~v) ∧ ψT (~v, ~w))

for example, represents the set of states reachable from I in at most one
step3.

Symbolic model checkers use Reduced Ordered Binary Decision Dia-
grams (ROBDDs, or often, though incorrectly, simply BDDs) [Bryant, 1986,
1992] to represent and manipulate Boolean formulas efficiently. A BDD for a
propositional formula can be seen as a compact representation of binary deci-
sion tree of the Boolean function represented by that formula. Given a fixed
ordering on variables of the formula, it can be shown that this representation
is unique. Hence, BDDs are a canonical form for Boolean formulas. BDDs
are often substantially more compact than traditional normal form repre-
sentations such as CNF or DNF. The basic logical operations of negation,
conjunction, disjunction, substitution for variable, and projection (∃pα(p))
on Boolean formulas can still be implemented efficiently when formulas are
represented with BDDs.

Thus, if, for example, α is an LTL formula without temporal connectives,
then in order to verify M |= Gα (an invariant property) a naive symbolic
model checking algorithm would construct a BDD of the formula ψ(~v) which
represents the set of all reachable states, a BDD of the formula ψα(~v) which
represents the set of states in which α holds, and check if the BDD of the
formula ψ(~v)→ ψα(~v) represents a tautology.

Since its introduction, symbolic model checking techniques based on
BDDs have been extremely successful and gained wide adoption in industry.
Unfortunately, as the complexity of designs grew, BDD based methods have
begun to find their limitations. The main issue is the amount of memory
required to store BDDs – this issue is particularly prominent in verification
of synchronous hardware and concurrent software systems. In addition, the
BDD size is extremely sensitive to the ordering of the variables, and so BDD
based symbolic model checkers often require a large amount of application-
specific manual tuning.

Like symbolic model checking, bounded model checking (BMC), introduced
in [Biere et al., 1999], is based on the idea of casting the LTL model checking
problem into propositional logic. In BMC, given a Kripke structure M , an
LTL formula α and a bound k ∈ N we construct a propositional formula
[[M,α]]k with the following property. If [[M,α]]k is satisfiable, then every

3The expression ∃pα(p) is an abbreviation for α(p/F) ∨ α(p/T)

47

satisfying truth-value assignment represents a finite prefix π0,k of a path π
in M such that π0,k alone is enough to guarantee that π |= α. Thus, a
satisfying assignment represents a witness of length k to the fact that α is
existentially valid in M . Conversely, if [[M,α]]k is not satisfiable then no
witness of length k exists.

Hence, given an LTL formula α, and a Kripke structure M , a BMC-
based model checker uses a SAT solver to test the satisfiability of formulas
[[M,¬α]]k for sequentially increasing values of k until one of the following
occurs:

1. [[M,¬α]]k is satisfiable for some k. This implies that M |=∃ ¬α, and
therefore M 2∀ α. Since a satisfying assignment is a witness for the
existential validity of ¬α it provides a counterexample to the universal
validity of α in M – in other words, a path in M which violates α.

2. [[M,¬α]]k is unsatisfiable. If k reached the so called completeness
threshold, (see below) then the model checker declares that M |=∀ α,
otherwise k is incremented and [[M,¬α]]k is checked for satisfiability
again.

Given a Kripke structure M and an LTL formula α, the completeness
threshold for M and α is a natural number ct such that if no witness
of length ct or less exists, then M 2∃ α. In [Biere et al., 1999] authors
show that ct is at most |S| · 2|α|, however for realistic applications this
value is not of practical use. Computing the smallest value of ct is at
least as hard as deciding whether M |= α [Clarke et al., 2004], and so
several authors have developed techniques for computing useful over-
approximations of ct for some simple classes of LTL formulas [Biere
et al., 1999, Kroening and Strichman, 2003, Clarke et al., 2004].

3. The formula [[M,¬α]]k becomes too difficult to handle by the SAT
solver. In this case, the model checker terminates without giving a
definitive answer – all we know is that no execution of length k or less
violates the property specified by α.

In many realistic applications the completeness threshold can rarely be
reached, and so BMC is used for finding bugs rather than for the model
checking proper.

Given a Kripke structureM = (S, I, T, L), an LTL formula α and a bound k,
the formula [[M,α]]k may be constructed in several different ways. We give

48

an example of such a construction inspired by the method proposed in [Lat-
vala et al., 2004]. The details of the original method, as well as proofs of the
theoretical underpinnings of BMC are available in [Biere et al., 1999]. Also
of interest is an automata-based construction developed in [Clarke et al.,
2004].

Consider the Kripke structure M of the one bit counter with hold pre-
sented earlier in this section (see Figure 3.1). Although F(hold∧ out) is not
a desirable property of the system, for the sake of example, let us assume
that it is, and so that we would like to check whether M |=∀ F(hold ∧ out),
or equivalently whether M |=∃ G¬(hold ∧ out). A witness for existential
validity of G¬(hold ∧ out) would constitute a counterexample for universal
validity of F(hold ∧ out).

Let ~s = {h, o} be the propositional representation of the states in M , in
which h corresponds to atomic the proposition hold, and o corresponds to
the atomic proposition out. Then, the formula

I(h, o) = ¬h ∧ ¬o

represents the set of initial states in M , and the formula

T (h, o, h′, o′) = (¬h ∧ ¬o)→ o′ ∧

(¬h ∧ o)→ ¬o′ ∧

(h ∧ ¬o)→ ¬o′ ∧

(h ∧ o)→ o′

represents the transition relation of M .
In BMC we are looking for a witness of bounded length k. Let k = 2

be the current bound (i.e. no witness of length k = 0 and k = 1 has been
found), and let ~s0, ~s1, ~s2 be the three states of the witness, starting from
initial state ~s0. If each state ~si, i = 0, 1, 2 is encoded by two variables hi, oi,
the formula

I(h0, o0) ∧ T (h0, o0, h1, o1) ∧ T (h1, o1, h2, o2) (3.1)

expresses the constraint that these three states do indeed constitute a prefix
of a valid path in M.

For any LTL formula α, any finite prefix that is a witness for Gα must
contain a loop. Thus, we require that state ~s2 has to be the same as either
state ~s0 or ~s1. The formula

(h2 ↔ h0 ∧ o2 ↔ o0) ∨ (h2 ↔ h1 ∧ o2 ↔ o1) (3.2)

49

expresses this loop constraint.
Finally, we have to make sure that the states of the witness fulfill the

requirements imposed by the formula G¬(hold ∧ out) – that is, in every
state, ¬(hold ∧ out) has to hold:

¬(h0 ∧ o0) ∧ ¬(h1 ∧ o1) ∧ ¬(h2 ∧ o2). (3.3)

The conjunction of formulas (3.1), (3.2), and (3.3) is the formula [[M,G¬(hold∧
out)]]2, which now is checked for satisfiability. The formula is satisfiable:
the assignment {h0 = 0, o0 = 0, h1 = 0, o1 = 1, h2 = 0, o2 = 0} is sat-
isfying. This assignment represents a finite prefix (s0, s1, s0) of a path
(s0, s1, s0, s1, . . .) that violates the property G(hold ∧ out).

To conclude this section, we would like to make a few observations. First,
we would like to point out that SAT formulas created during BMC contain
many identical subformulas (this can be seen even in our simple example)
and therefore most naturally represented as DAGs. Furthermore, the formu-
las contain many structurally identical subformulas – consider for example
the multiple instantiations of formula T (h, o, h′, o′). Thus, we believe that
in the context of BMC, SAT solvers that work directly on DAGs could be
of advantage compared to CNF-based solvers. Although to our knowledge
no comparative studies to support or refute this claim have been performed,
the results of experimental evaluation of circuit SAT solvers on BMC bench-
marks presented in [Ganai et al., 2002] and [Wu et al., 2007] seem to be
promising.

The second point we would like to make is that due to the fact BMC
is used almost exclusively as a bug finding technique, in the context of
BMC we are more interested in finding satisfying assignments, rather than
proving that the formula is not satisfiable. Thus, we believe that there is
a place for incomplete SAT solvers in BMC – one can envision a system
where an incomplete solver works in parallel with a complete solver, with
the former looking for satisfying assignments, and the latter working on
proving unsatisfiability.

3.3 Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories (SMT) is a problem of determining the sat-
isfiability of a first-order logic (FOL) formula in one or more background
theories. Typically, the formulas are quantifier-free and the theories of in-
terest are those of integers, reals, arrays, recursive datatypes, bitvectors,

50

and uninterpreted functions. As an example, consider the following formula

P ∧ (x ≤ y) ∧ ((select(a, x) = f(y))→ ¬Q ∨ (select(a, y) = f(x))), (3.4)

where x, y and ≤ are from the theory of integers, P , Q and f are uninter-
preted symbols4, and select and a are from the theory of arrays.

Formally, given a set of FOL theories T1, . . . , Tn over the languages
L1, . . . ,Ln, respectively, and a quantifier-free FOL formula α over the lan-
guage L = L1 ∪ · · · ∪Ln, the task is to determine whether there exist a
model M of the theory T = T1 ∪ · · · ∪ Tn such that M |= T ∪ α[s] for some
assignment s to the free variables of α. If the answer is affirmative (α is
called T -satisfiable in this case), we are typically interested to obtain the
variable assignment s, as well as the interpretation of uninterpreted symbols
of L that appear in α. The languages Li are assumed to include =, and,
with the exception of =, assumed to be disjoint. All of the theories are
assumed to include the axioms asserting that = is a congruence relation.

We now list some of the theories frequently used in various hardware and
software verification applications. The approach to solving SMT described
in this section relies on the availability of decision procedures for theories
of interest, and so we provide references to the publications which contain
descriptions of such procedures. Additional information is available from
[Manna and Zarba, 2003] and [Sebastiani, 2006].

The theory of Equality and Uninterpreted Functions (EUF) is a first-order
theory over the language LEUF = 〈f1, . . . , fk;P1, . . . Pm〉, with k,m ≥ 0,
and symbols fi, Pj of arbitrary arity. As the name suggests, the predicate
and function symbols are left uninterpreted, and so the theory is axioma-
tized by specifying only that = is a congruence relation. Although EUF
is undecidable (due to undecidability of first-order logic), the quantifier-
free fragment of EUF is decidable in polynomial time [Ackermann, 1954].
A modern efficient algorithm can be found in [Nieuwenhuis and Oliveras,
2005]. EUF formulas arise in hardware verification (for example, in proces-
sor control verification in [Burch and Dill, 1994]).

The theory of Linear Integer Arithmetic (LA(Z)), also known as Presburger
Arithmetic is the set of all sentences over the language LLA = 〈+, 0, 1;≤〉
that are valid in the structure with the set Z as domain and the stan-
dard interpretation of the rest of the symbols. The integer numerals, the

4Propositional variables are uninterpreted 0-ary predicate symbols, and so in this sec-
tion they will be denoted by capital letters.

51

rest of the relations (<,>,≥, 6=), and multiplication by an integer constant
can be introduced via abbreviations. LA(Z) is decidable – this is the fa-
mous result of [Presburger, 1930]. The decision procedure for LA(Z) has
triple-exponential time complexity [Oppen, 1973], and cannot be improved,
unless P = NP [Fischer and Rabin, 1974]. The decision problem for the
quantifier-free fragment of LA(Z) – commonly known as the integer pro-
gramming problem – is NP-complete [Papadimitriou, 1981]. Nevertheless,
algorithms that work well in practice are available (for example, Omega Test
[Pugh, 1991]). Some applications that produce LA(Z) formulas are verifica-
tion of timing diagrams [Amon et al., 1997], buffer overrun detection in C
code [Wagner et al., 2000], and RTL datapath verification [Brinkmann and
Drechsler, 2002].

The theory of Linear Real Arithmetic (LA(R)) is, similarly to LA(Z), the
set of all valid LLA sentences, but this time over the structure with R as
domain. As with LA(Z), the integer numerals, the relations <,>,≥, 6=,
and multiplication by an integer constant can be introduced via abbrevia-
tions. Rational constants, and multiplication by rational constant are al-
lowed in formulas as well, as every such formula can be rewritten into an
equivalent formula that involves only integer constants and multiplication
by integer. LA(Z) is decidable – in fact, the decidability result holds for
the larger theory which has the operation of multiplication in the language
[Tarski, 1948]. Decision procedure for LA(R) [Ferrante and Rackoff, 1975]
has double-exponential runtime, and cannot be improved, unless P = NP
[Fischer and Rabin, 1974]. The quantifier-free fragment of LA(R), known
as linear programming, is decidable in polynomial time [Khachiyan, 1979],
although worst-case exponential algorithms, such as Simplex [Nelson, 1981]
seem to work better in practice. LA(R) formulas arise in software verifi-
cation [Dellacherie et al., 1999] and test pattern generation for hardware
designs [Fallah et al., 2001].

The Unit-Two-Variable-Per-Inequality (UTVPI) theory is a syntactic frag-
ment of LA(Z), in which the allowed form of atomic formulas is ±x± y ≤ c,
where x, y are variables, and c ∈ Z is a constant. Being subset of LA(Z),
UTVPI is decidable, and, as opposed to full linear integer arithmetic, the
quantifier-free fragment of UTVPI is decidable in polynomial time [Har-
vey and Stukey, 1997], and very efficient practical algorithms are available
[Lahiri and Musuvathi, 2005]. UTPVI formulas often comprise a large por-
tion of the sets of linear integer arithmetic formulas that arise in verification
applications (see [Ball et al., 2004] for an example from symbolic model

52

checking).

The theory of Integer Difference Logic (DL(Z) is a further restricted frag-
ment of UTVPI. Atomic formulas of DL(Z) are of the form x− y ≤ c. Effi-
cient algorithms specialized to decide the satisfiability quantifier-free DL(Z)
formulas are available [Cotton and Maler, 2006]. As with UTPVI, DL(Z)
formulas comprise a large portion of linear inequalities produced in program
verification [Pratt, 1977, Detlefs et al., 2005].

Other theories with decidable quantifier-free fragments that are of inter-
est in software and hardware verification are the theory of Bit Vectors (BV)
[Bozzano et al., 2006, Bruttomesso et al., 2007], the theory of Arrays (AR)
[Stump et al., 2001], and the theory of Recursive Datatypes (RDT) [Bonacina
and Echenim, 2007].

Algorithms for solving SMT can be obtained via a combination of theory-
specific decision procedures with algorithms for SAT. This class of SMT al-
gorithms was proposed in [Barrett et al., 2002] and [Flanagan et al., 2003],
at the time when the solving power of SAT algorithms has dramatically in-
creased due to the introduction of various optimization techniques discussed
in Section 2.2.

To check the T -satisfiability of a quantifier-free FOL L -formula α, the
basic idea is to construct a Boolean abstraction αB of α by replacing each
atomic formula in α with a new propositional variable. If αB is (proposi-
tionally) unsatisfiable then α is T -unsatisfiable. Otherwise, a (partial) sat-
isfying assignment τB for αB can be mapped into a conjunction of atomic
L -formulas τ , T -satisfiability of which can be checked by the decision proce-
dure for T (so called T -solver). If τ is T -satisfiable, we are done. Otherwise,
a clause prohibiting τB is added to αB , and the satisfiability of the new for-
mula is checked again.

To continue, we introduce the following notation5. Let Props(α) be a
set of propositional variables in α, Atoms(α) the set of atomic formulas in α
other than those in Props(α), and V a set of auxiliary propositional variables
{V1, . . . , Vn} such that |V | = |Atoms(α)| and V ∩ Props(α) = ∅. To con-
struct the Boolean abstraction of α we define a bijection t2b : Atoms(α) 7→
V (“theory-to-Boolean”). We denote the inverse bijection t2b−1 by b2t
(“Boolean-to-theory”). Then, αB is obtained from α by the simultane-
ous replacement of all atomic formulas φ in α with t2b(φ). Similarly, given

5Inspired by [Sebastiani, 2006].

53

a, possibly partial, truth-value assignment τB to variables in V , the corre-
sponding conjunction τ of atomic L -formulas is defined as

∧

Vi∈V and τB(Vi) defined

if τB(Vi) = 1 then b2t(Vi) else ¬b2t(Vi).

As an example, consider the formula α from (3.4):

P ∧ (x ≤ y) ∧ ((select(a, x) = f(y))→ ¬Q ∨ (select(a, y) = f(x))).

Then, the map t2b is defined as

x ≤ y 7→ V1

select(a, x) = f(y) 7→ V2

select(a, y) = f(x) 7→ V3,

and αB = P ∧ V1 ∧ (V2 → ¬Q ∨ V3). A partial truth-value assignment
that satisfies αB is τB = {P 7→ 1, V1 7→ 1, V2 7→ 0}, and the corresponding
conjunction τ of atomic formulas is (x ≤ y) ∧ ¬(select(a, x) = f(y)).

The SMT algorithm outlined in the previous paragraph is presented in
Algorithm 9. To implement the T -solver the algorithm relies on the pro-
cedure T Solve([in] τ , [out] S), which, given a conjunction τ of atomic
L -formulas, returns UNSAT if h is not T -satisfiable, and SAT otherwise,
in which case S contains the required variable assignment and the inter-
pretation of uninterpreted symbols in τ . Additionally, the SMT algorithm
presented in Algorithm 9 uses a complete SAT solver implemented by the
procedure SAT Solve([in] αB, [out] τB).

To make the SMT-Solve algorithm efficient in practice, a T -solver
should posses the following properties:

• Conflict Set Generation – whenever the T -solver determines that a
conjunction τ is T -unsatisfiable, it is capable of returning a subset
τ ′ ⊂ τ which caused T -unsatisfiability – this is the conflict set. Then,
the clause cl constructed in line 7 of Algorithm 9 can be built from τ ′B
instead of τB. In practice, conflict sets are often significantly smaller
than the initial conjunction, resulting in shorter clauses and a speed-up
of the SAT solving step.

• Incrementability – often there is a significant overlap between the con-
junctions τ passed in consecutive calls to the T -solver. Hence, it is
desirable for a T -solver to be able to keep state between invocations.

54

Algorithm 9 SMT Solve([in] α, [out] S)

Input: α – a quantifier-free L -formula
Output: SAT and S if α is T -satisfiable; UNSAT – otherwise.
1: construct αB from α
2: while SAT Solve(αB, τB) = SAT do
3: construct τ from τB
4: if T Solve(τ , S) = SAT then
5: return SAT
6: end if
7: cl =

∨

Vi∈V and τB(Vi) defined if τB(Vi) = 1 then ¬Vi else Vi

8: αB ← αB ∧ cl
9: end while

10: return UNSAT

Incrementability is also desirable in the SAT solver, as only one extra clause
is added on every invocation of the solver.

The approach to integration of SAT solving algorithms and T -solvers
outlined in Algorithm 9 is called offline integration, as in this approach the
SAT solver is treated as a black-box. In the online integration approach, the
search for an assignment that satisfies the Boolean abstraction is integrated
with the search for the T -assignment in one monolithic framework. Such
tight integration allows to perform various optimizations. For example, one
can check T -satisfiability of τ during the search for τB – in many cases calls
to the T -solver allow to terminate search paths that will produce unsatisfi-
able conjunctions τ before the SAT solver completes the construction of τB .
This optimization technique is called early pruning. Another idea that works
well in practice is to integrate the unit propagation procedure in the SAT
solver with reasoning in the theory T – this is so called theory propagation.
For example, even though an αB may not contain a clause ¬V1 ∨ ¬V2 ∨ V3,
where p2t(V1) = (x ≤ y), p2t(V2) = (x ≥ y), and p2t(V3) = (x = y), a the-
ory propagation procedure will be able to deduce the assignment {V3 7→ 1}
given an assignment {V1 7→ 1, V2 7→ 1}, and pass it to the SAT solver. Note
that incrementability of the T -solver is essential for these two optimization
techniques. There are many other optimizations of this kind – we refer to
[Sebastiani, 2006] for detailed exposition of the online integration approach.

To conclude this section, we would like to draw the reader’s attention to
the fact that even though the completeness of SAT algorithms in SMT ap-
plications is required for proving unsatisfiability, the search is mostly geared

55

towards the satisfying assignments. This suggests that it may be possible
to integrate efficient incomplete SAT algorithm into the SMT framework.
The fact that SLS-based incomplete algorithms operate on complete (rather
than partial) truth-value assignments may make this class of incomplete
algorithms not appropriate in the SMT setting, as large conjunctions of
atomic formulas would need to be handed off to T -solvers (though, incre-
mentability of the T -solver may be able to compensate for that). Hence, the
development of incomplete SAT algorithms that operate on partial truth-
value assignments could be of interest – one such algorithm was proposed in
[Prestwich, 2000, 2002].

3.4 Other Applications of SAT

Over the past forty years, SAT solvers have been used in a myriad of applica-
tions. Below we list some of the applications that are relevant to the current
state-of-the-art in Computer Science and its industry. For each of the listed
applications we give a short description (when appropriate), and provide a
reference to the early publications which contain the initial ideas, as well as
to some of the publications that describe the more recent developments.

• Automatic Test Pattern Generation (ATPG) is a technique used in
hardware verification. Given a description of a circuit and a location
of a possible fault, the goal of ATPG is to find a pair of assignments
to the inputs of the circuit that will allow to distinguish correctly
manufactured circuits from the faulty ones. Applications of SAT in
ATPG are described in [Larrabee, 1992], [Marques-Silva and Sakallah,
1997], [Biere and Kunz, 2002].

• Equivalence Checking (EC) is also a hardware verification technique.
The goal of EC is to ensure that two different circuit designs have
the same functionality. The problem arises during the hardware de-
sign process as the high-level specification (Register-Transfer Level, or
RTL) gets transformed in multiple stages into a low-level design. EC is
used to ensure that the functionality is unaltered between the stages.
Applications of SAT in EC are described in [Marques-Silva and Glass,
1999], [Goldberg et al., 2001], [Disch and Scholl, 2007]

• Logic Synthesis is a term that refers to a transformation from a higher-
level design to a lower-level design in the hardware design process.
Some of the applications of SAT to logic synthesis are described in

56

[Gu and Puri, 1995], [Wood and Rutenbar, 1998], [Khomenko et al.,
2006], [Safarpour et al., 2006].

• Scheduling is a classic combinatorial optimization problem. Applica-
tions of SAT to scheduling are described for example in [Crawford and
Baker, 1994], [Memik and Fallah, 2002], [Zhang et al., 2004].

• AI Planning is another classic problem. SAT can be used in planning
to derive bounded-length plans – an approach somewhat similar to
BMC. Applications of SAT to planning are described in [Kautz and
Selman, 1992], [Rintanen et al., 2006], [Hoffmann et al., 2007].

• Cryptanalysis is a relatively new area of application of SAT which
became practical with the recent increase in power of SAT solvers.
[Massacci and Marraro, 2000], [Fiorini et al., 2003], [Eibach et al.,
2008] describe some of such applications.

We conclude this chapter with a somewhat general observation. Clearly,
a good understanding of applications is instrumental for the development
of effective application-specific search strategies for SAT. However, in many
cases techniques previously developed for the applications turn out to be
of great benefit to the development of efficient SAT algorithms as well.
A classic example is the techniques of conflict-driven learning and non-
chronological backtracking (Section 2.2.1), which were originally developed
for the constraint satisfaction problem [Prosser, 1993]. More recently, SAT
solvers benefited from the recursive-learning technique developed in ATPG
[Marques-Silva and Glass, 1999]. We believe that a study of various appli-
cations of SAT is essential to the development of new efficient SAT solving
algorithms.

57

Chapter 4

Conclusion

In conclusion we outline some of the potentially promising research direc-
tions that we have alluded to in various parts of the paper.

In Section 3.2, we argued that an efficient incomplete circuit SAT algo-
rithm can be used in some of the industrial applications of SAT, particularly
in BMC. Although the development of an such algorithm is a challenging
problem, we believe we have identified some of its potential “ingredients”,
for example:

• Integration of Boolean constraint propagation into the search along
the lines of the unit propagation local search algorithm presented in
Section 2.3.2.

• Circuit-oriented search heuristics, partly inspired by ATPG research.

• Combination of search with learning techniques, such as the clause
learning developed in [Stachniak and Belov, 2008], and some of the
learning techniques used in complete circuit SAT solvers (Section 2.6);

• Some ideas from Dynamic Local Search (Section 2.3.1), since DLS al-
gorithms seem to work well on industrial instances [Velev and Bryant,
2001].

Another research direction worth pursuing is the identification of the
application areas of SMT which may benefit from the non-clausal SAT algo-
rithms. If non-clausal algorithms turn out to be of use in SMT, the develop-
ment of efficient incomplete non-clausal algorithms for SAT, along the lines
of polSAT, (Section 2.5.1) should be pursued. As indicated in Section 3.3,
these algorithms may need to be able to search through the space of partial

58

truth-value assignments – some ideas on how to accomplish this are outlined
in [Prestwich, 2000, 2002].

Finally, an issue raised in Section 2.6 should be addressed as well: al-
though ATPG is a well developed area, there seem to be very little in-
formation available concerning the applicability of ATPG-specific variable
selection heuristics to circuit SAT algorithms.

59

Bibliography

W. Ackermann. Solvable Cases of the Decision Problem. North Holland
Publishing Company, 1954.

B. Alpern and F.B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181–185, 1985.

T. Amon, G. Borriello, T. Hu, and J. Liu. Symbolic timing verification
of timing diagrams using presburger formulas. In Proceedings of Design
Automation Conference (DAC 1997), pages 226–231, 1997.

P.B. Andrews. Theorem proving via general matings. Journal of ACM, 28
(2):193–214, 1981.

G. Audemard and L. Simon. GUNSAT: A greedy local search algorithm for
unsatisfiability. In Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI 2007), pages 2256–2261, 2007.

T. Ball, C. Cook, S.K. Lahiri, and L. Zhang. Zapato: Automatic theorem
proving for predicate abstraction refinement. In Proceedings of the 16th
International Conference on Computer Aided Verification (CAV 2004),
volume 3114, pages 457–461, 2004.

L. Baptista and J.P. Marques-Silva. Using randomization and learning to
solve hard real-world instances of satisfiability. In Proceedings of the 6th
International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2000), pages 489–494, 2000.

C.W. Barrett, D.L. Dill, and A. Stump. Checking satisfiability of first-order
formulas by incremental translation to SAT. In Proceedings of the 14th
International Conference on Computer Aided Verification (CAV 2002),
pages 236–249, 2002.

60

R.J.Jr. Bayardo and R.C. Schrag. Using CSP look-back techniques to solve
real-world SAT instances. In Proceedings of the 14th National Conference
on Artificial Intelligence (AAAI 1997), pages 203–208, 1997.

P. Beame, H.A. Kautz, and A. Sabharwal. Understanding the power of
clause learning. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI 2003), pages 1194–1201, 2003.

A. Biere and W. Kunz. SAT and ATPG: Boolean engines for formal hard-
ware verification. In Proceedings of the 2002 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD 2002), pages 782–785,
2002.

A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Proceedings of the 5th International Conference on
Tools and Algorithms for Construction and Analysis of Systems (TACAS
1999), pages 193–207, 1999.

P. Bjesse and A. Boralv. DAG-aware circuit compression for formal verifi-
cation. In Proceedings of the 2004 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD 2004), pages 42–49, 2004.

M.P. Bonacina and M. Echenim. Rewrite-based satisfiability procedures
for recursive data structures. Electronic Notes in Theoretical Computer
Science, 174(8):55–70, 2007.

M. Bozzano, R. Bruttomesso, A. Cimatti, A. Franzén, Z. Hanna, Z. Khasi-
dashvili, A. Palti, and R. Sebastiani. Encoding rtl constructs for mathsat:
a preliminary report. Electr. Notes Theor. Comput. Sci., 144(2):3–14,
2006.

A. Braunstein, M. Mézard, and R. Zecchina. Survey propagation: An algo-
rithm for satisfiability. Random Structures and Algorithms, 27(2):201–226,
2005.

R. Brinkmann and R. Drechsler. Rtl-datapath verification using integer
linear programming. In ASP-DAC ’02: Proceedings of the 2002 conference
on Asia South Pacific design automation/VLSI Design, page 741. IEEE
Computer Society, 2002.

R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel,
A. Palti, and R. Sebastiani. A lazy and layered SMT({BV }) solver for

61

hard industrial verification problems. In Proceedings of the 19th Inter-
national Conference on Computer Aided Verification (CAV 2007), pages
547–560, 2007.

R.E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

J.R. Burch and D.L. Dill. Automatic verification of pipelined microprocessor
control. In Proceedings of the 6th International Conference on Computer
Aided Verification (CAV 1994), 1994.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-
bolic model checking: 1020 states and beyond. In Proceedings of the Fifth
Annual IEEE Symposium on Logic in Computer Science (LICS 1990),
pages 1–33, 1990.

V. Chvátal and E. Szemerédi. Many hard examples for resolution. Journal
of ACM, 35(4):759–768, 1988.

E.M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Proceedings on Work-
shop on Logic of Programs, pages 52–71, 1982.

E.M. Clarke and B.-H. Schlingloff. Model checking. In Handbook of Auto-
mated Reasoning, volume 2, pages 1635–1790. Elsevier Science Publishers
B. V., 2001.

E.M. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Completeness
and complexity of bounded model checking. In Proceedings of the 5th
International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI 2004), pages 85–96, 2004.

S.A. Cook. The complexity of theorem-proving procedures. In Conference
Record of 3rd Annual ACM Symposium on Theory of Computing (STOC
1971), pages 151–158. ACM, 1971.

S. Cotton and O. Maler. Fast and flexible difference constraint propagation
for DPLL(T). In Proceedings of the 9th International Conference on The-
ory and Applications of Satisfiability Testing (SAT 2006), pages 170–183,
2006.

62

C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-
efficient algorithms for the verification of temporal properties. Formal
Methods in System Design, 1(2/3):275–288, 1992.

J.M. Crawford and A.B. Baker. Experimental results on the application
of satisfiability algorithms to scheduling problems. In Proceedings of the
12th National Conference on Artificial Intelligence (AAAI 1994), pages
1092–1097, 1994.

E. Dantsin, E.A. Hirsch, S. Ivanov, and M. Vsemirnov. Algorithms for
sat and upper bounds on their complexity. Electronic Colloquium on
Computational Complexity (ECCC), 8(12), 2001.

M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of ACM, 7(3):201–215, 1960.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of ACM, 5(7):394–397, 1962.

S. Dellacherie, S. Devulder, and J.-L. Lambert. Software verification based
on linear programming. In Proceedings of the Wold Congress on Formal
Methods in the Development of Computing Systems (FM 1999), pages
1147–1165, 1999.

D. Detlefs, G. Nelson, and J.B. Saxe. Simplify: a theorem prover for program
checking. Journal of ACM, 52(3):365–473, 2005.

S. Disch and C. Scholl. Combinational equivalence checking using incre-
mental sat solving, output ordering, and resets. In Proceedings of the
12th Conference on Asia South Pacific Design Automation (ASP-DAC
2007), pages 938–943. IEEE, 2007.

N. Eén and N. Sörensson. An extensible SAT-solver. In Selected Revised
Papers of the 6th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2003), 2004.

N. Eén and N. Sörensson. MiniSat - a SAT solver with conflict-clause min-
imization. In Posters of the 8th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2005), 2005.

T. Eibach, E. Pilz, and G. Völkel. Attacking bivium using SAT solvers. In
Proceedings of the 11th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2008), pages 63–76, 2008.

63

F. Fallah, S. Devadas, and K. Keutzer. Functional vector generation for
hdl models using linear programming and boolean satisfiability. IEEE
Transactions on CAD of Integrated Circuits and Systems, 20(8):994–1002,
2001.

H. Fang and M.S. Hsiao. Boosting SAT solver performance via a new hybrid
approach. Journal on Satisfiability, Boolean Modeling and Computation,
5:243–261, 2008.

H. Fang and W. Ruml. Complete local search for propositional satisfiability.
In Proceedings of the 19th National Conference on Artificial Intelligence
(AAAI 2004), pages 161–166, 2004.

J. Ferrante and C. Rackoff. A decision procedure for the first order theory of
real addition with order. SIAM Journal on Computing, 4(1):69–76, 1975.

C. Fiorini, E. Martinelli, and F. Massacci. How to fake an RSA signature
by encoding modular root finding as a SAT problem. Discrete Applied
Mathematics, 130(2):101–127, 2003.

M.J. Fischer and M.O. Rabin. Super-exponential complexity of Presburger
arithmetic. In Proceedings of a Symposium in Applied Mathematics of the
American Mathematical Society and the Society for Industrial and Applied
Mathematics (SIAMAMS), 1974.

C. Flanagan, R. Joshi, X. Ou, and J.B. Saxe. Theorem proving using lazy
proof explication. In W.A.Jr. Hunt and F. Somenzi, editors, Proceedings of
the 15th International Conference on Computer Aided Verification (CAV
2003), pages 355–367, 2003.

J.W. Freeman. Improvements to Propositional Satisfiability Search Algo-
rithms. PhD thesis, University of Pennsylvania, Philadelphia, PA, USA,
1995.

H. Fujiwara and T. Shimono. On the acceleration of test generation algo-
rithms. IEEE Transactions on Computing, 32(12):1137–1144, 1983.

M.K. Ganai and A. Kuehlmann. On-the-fly compression of logical circuits. In
Proceedings of International Workshop on Logic Synthesis (IWLS 2000),
2000.

M.K. Ganai, P. Ashar, A. Gupta, L. Zhang, and S. Malik. Combin-
ing strengths of circuit-based and CNF-based algorithms for a high-

64

performance SAT solver. In Proceedings of the 39th Conference on Design
Automation (DAC 2002), pages 747–750, 2002.

P. Goel. An implicit enumeration algorithm to generate tests for combi-
national logic circuits. IEEE Transactions on Computers, 30(3):215–222,
1981.

E.I. Goldberg, M.R. Prasad, and R.K. Brayton. Using SAT for combi-
national equivalence checking. In Proceedings of the Conference on De-
sign,Automation, and Test in Europe (DATE 2001), pages 114–121, 2001.

C. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satisfiability solvers.
In F. Van Harmelen, V. Lifschitz, and B. Porter, editors, Handbook of
Knowledge Representation. Elsevier, Amsterdam, The Netherlands, The
Netherlands, 2007.

C.P. Gomes, B. Selman, and H.A. Kautz. Boosting combinatorial search
through randomization. In Proceedings of the 15th National Conference
on Artificial Intelligence (AAAI 1998), pages 431–437, 1998.

J. Gu. Design efficient local search algorithms. In Proceedings of the 5th
International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems (IEA/AIE 1992), pages 651–
654, 1992.

J. Gu and R. Puri. Asynchronous circuit synthesis with boolean satisfiability.
IEEE Transactions on CAD of Integrated Circuits and Systems, 14(8):
961–973, 1995.

G. Gutiérrez, I.P. de Guzmán, J. Mart́ınez, M. Ojeda-Aciego, and
A. Valverde. Reduction theorems for boolean formulas using delta-trees.
In Proceedings of the European Workshop on Logics in Artificial Intelli-
gence (JELIA 2000), pages 179–192, 2000.

G. Gutiérrez, I.P. de Guzmán, J. Mart́ınez, M. Ojeda-Aciego, and
A. Valverde. Satisfiability testing for boolean formulas using delta-trees.
Studia Logica, 72(1):85–112, 2002.

D. Habet and M. Vasquez. Improving local search for satisfiability problem
by integrating structural properties. In Proceedings of 2007 IEEE Inter-
national Conference on Research, Innovation and Vision for the Future,
pages 50–57, 2007.

65

M. Hammer, S. Merz, and I. Lorraine. Truly on-the-fly LTL model check-
ing. In Proceedings of the 11th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2005),
2005.

I. Hamzaoglu and J. H. Patel. New techniques for deterministic test pattern
generation. In Proceedings of the 16th IEEE VLSI Test Symposium (VTS
1998), 1998.

W. Harvey and P. Stukey. A unit two variable per inequality integer con-
straint solver. In Proceedings of Australian Computer Science Conference
(ACSC 1997), pages 102–111, 1997.

M. Heule. SmArT solving: Tools and techniques for satisfiability solvers.
PhD thesis, Technische Universiteit Delft, 2008.

M. Heule and H. van Maaren. March dl: Adding adaptive heuristics and a
new branching strategy. Journal on Satisfiability, Boolean Modeling and
Computation, 2:47–59, 2006.

M. Heule and H. van Maaren. march ks. Solver descrip-
tion submitted to SAT 2007 competition. Available online at:
http://www.satcompetition.org/2007/march ks.pdf, 2007.

M. Heule, M. Dufour, J. van Zwieten, and H. van Maaren. March eq: Imple-
menting additional reasoning into an efficient look-ahead SAT solver. In
Revised Selected Papers of the 7th International Conference Theory and
Applications of Satisfiability Testing (SAT 2004), pages 345–359, 2004.

E.A. Hirsch and A. Kojevnikov. Unitwalk: A new SAT solver that uses
local search guided by unit clause elimination. Annals of Mathematics
and Artificial Intelligence, 43(1):91–111, 2005.

J. Hoffmann, C.P. Gomes, and B. Selman. Structure and problem hard-
ness: Goal asymmetry and DPLL proofs in SAT-based planning. Logical
Methods in Computer Science, 3(1), 2007.

G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
1991.

H.H. Hoos. Stochastic Local Search – Methods, Models, Applications. PhD
thesis, TU Dermstadt, FB Informatik, Darmstadt, Germany, 1998.

66

H.H. Hoos. On the run-time behaviour of stochastic local search algorithms
for SAT. In Proceedings of the 16th National Conference on Artificial
intelligence (AAAI 1999), pages 661–666, 1999.

H.H. Hoos and T. Stutzle. Local search algorithms for SAT: An empirical
evaluation. Journal of Automated Reasoning, 24(4):421–481, 2000.

H.H. Hoos and T. Stutzle. Stochastic Local Search Foundations and Appli-
cations. Elsevier, 2005.

Holger H. Hoos. An adaptive noise mechanism for walkSAT. In Proceedings
of the 18th National Conference on Artificial intelligence (AAAI 2002),
pages 655–660, 2002.

F. Hutter, D. Tompkins, and H.H. Hoos. Scaling and probabilistic smooth-
ing: Efficient dynamic local search for SAT. In Proceedings of the 8th
International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2002), pages 233–248, 2002.

G. Istrate. Satisfying assignments of random boolean constraint satisfaction
problems: Clusters and overlaps. Journal of Universal Computer Science,
13(11):1655–1670, 2007.

H. Jain, C. Bartzis, and E. Clarke. Satisfiability checking of non-clausal for-
mulas using general matings. In Proceedings of the 9th International Con-
ference on Theory and Applications of Satisfiability Testing (SAT 2006),
2006.

M. Järvisalo, T. Junttila, and I. Niemelä. Unrestricted vs restricted cut
in a tableau method for Boolean circuits. Annals of Mathematics and
Artificial Intelligence, 44(4):373–399, 2005.

N. Jussien and O. Lhomme. Local search with constraint propagation and
conflict-based heuristics. In Proceedings of the 17th National Conference
on Artificial Intelligence (AAAI 2000), pages 169–174, 2000.

H. Kautz, D. McAllester, and B. Selman. Exploiting variable dependency
in local search. In Abstracts of the Poster Sessions of International Joint
Conference on Artificial Intelligence (IJCAI 1997). 1997.

H.A. Kautz and B. Selman. Planning as satisfiability. In Proceedings of
European Conference on AI, pages 359–363, 1992.

67

L.G. Khachiyan. A polynomial algorithm in linear programming. Soviet
Mathematics Doklady, 20:191–194, 1979.

V. Khomenko, M. Koutny, and A. Yakovlev. Logic synthesis for asyn-
chronous circuits based on STG unfoldings and incremental SAT. Funda-
menta Informaticae, 70(1):49–73, 2006.

D. Kroening and O. Strichman. Efficient computation of recurrence diame-
ters. In Proceedings of the 4th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI 2003), pages 298–
309, 2003.

A. Kuehlmann. Boolean functions and circuits. Lecture Notes for EECS
219B, Spring 2008, UC Berkely, 2008.

A. Kuehlmann and F. Krohm. Equivalence checking using cuts and heaps. In
Proceedings of the 34th Annual Conference on Design Automation (DAC
1997), pages 263–268, 1997.

O. Kullmann. Investigations on autark assignments. Discrete Applied Math-
ematics, 107(1-3):99–137, 2000.

W. Kunz and D.K. Pradhan. Recursive learning: An attractive alternative
to the decision tree for test genration in digital circuits. In Proceedings
of the IEEE International Test Conference on Discover the New World of
Test and Design, pages 816–825, 1992.

W. Kunz and D.K. Pradhan. Accelerated dynamic learning for test pat-
tern generation in combinational circuits. IEEE Transactions on CAD of
Integrated Circuits and Systems, 12(5):684–694, 1993.

S.K. Lahiri and M. Musuvathi. An efficient decision procedure for utvpi
constraints. In Proceedings of the 5th International Workshop on Frontiers
of Combining Systems, pages 168–183, 2005.

T. Larrabee. Test pattern generation using Boolean satisfiability. IEEE
Transactions on CAD of Integrated Circuits and Systems, 11(1):4–15,
1992.

T. Latvala, A. Biere, K. Heljanko, and T.A. Junttila. Simple bounded LTL
model checking. In Proceedings of the 5th International Conference on
Formal Methods in Computer-Aided Design (FMCAD 2004), 2004.

68

C.-M. Li. Equivalent literal propagation in the DLL procedure. Discrete
Applied Mathematics, 130(2):251–276, 2003.

C.-M. Li and Anbulagan. Look-ahead versus look-back for satisfiability
problems. In Proceedings of the 3rd International Conference on Princi-
ples and Practice of Constraint Programming (CP 1997), pages 341–355,
1997a.

C.-M. Li and Anbulagan. Heuristics based on unit propagation for satisfia-
bility problems. In Proceedings of the 15th International Joint Conference
on Artificial Intelligence (IJCAI 1997), pages 366–371, 1997b.

F. Lu, L.-C. Wang, K.-T. Cheng, and R. Huang. A circuit SAT solver with
signal correlation guided learning. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE 2003), 2003.

F. Lu, Wang L.-C., K.-T. Cheng, J. Moondanos, and Z. Hanna. A sig-
nal correlation guided circuit-SAT solver. Journal of Univeral Computer
Science, 10(12):1629–1654, 2004.

I. Lynce and J.P. Marques-Silva. An overview of backtrack search satisfi-
ability algorithms. Annals of Mathematics and Artificial Intelligence, 37
(3):307–326, 2003.

Z. Manna and C.G. Zarba. Combining decision procedures. In Revised
Papers of 10th Anniversary Colloquium of UNU/IIST, pages 381–422,
2003.

J.P. Marques-Silva and T. Glass. Combinational equivalence checking using
satisfiability and recursive learning. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE 1999), pages 145–149.
IEEE Computer Society, 1999.

J.P. Marques-Silva and K. A. Sakallah. GRASP – a new search algorithm
for satisfiability. In Proceedings of the 1996 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD 1996), pages 220–227,
1996.

J.P. Marques-Silva and K. A. Sakallah. The impact of branching heuristics
in propositional satisfiability algorithms. In Proceedings of the 9th Por-
tuguese Conference on Artificial Intelligence (EPIA 1999), pages 62–74,
1999.

69

J.P. Marques-Silva and K.A. Sakallah. Robust search algorithms for test
pattern generation. In Proceedings of the International Symposium on
Fault-Tolerant Computing (FTCS 1997), pages 152–161, 1997.

F. Massacci and L. Marraro. Logical cryptanalysis as a SAT problem. Jour-
nal of Automated Reasoning, 24(1/2):165–203, 2000.

B. Mazure, L. Sais, and E. Grégoire. Tabu search for SAT. In Proceedings
of the 14th National Conference on Artificial Intelligence (AAAI 1997),
pages 281–285, 1997.

D. McAllester, B. Selman, and H. Kautz. Evidence for invariants in lo-
cal search. In Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI 1997), pages 321–326, 1997.

D.A. McAllester. An outlook on truth maintenance. AI Memo 551, Artificial
Intelligence Laboratory, MIT, 1980.

D.A. McAllester. Truth maintenance. In Proceedings of the 8th National
Conference on Artificial Intelligence (AAAI 1990), pages 1109–1116,
1990.

S.O. Memik and F. Fallah. Accelerated SAT-based scheduling of con-
trol/data flow graphs. In Proceedings of the 20th International Conference
on Computer Design (ICCD 2002), 2002.

M. Mezard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution
of random satisfiability problems. Science, 297(5582):812–815, 2002.

D.G. Mitchell. A SAT solver primer. Bulletin of the EATCS, 85, 2005.

M.M. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
engineering an efficient SAT solver. In Proceedings of the 38th Conference
on Design Automation (DAC 2001), pages 530–535, 2001.

R. Muhammad and P.J. Stuckey. A stochastic Non-CNF SAT solver. In
Proceedings of the 9th Pacific Rim International Conference on Artificial
Intelligence (PRICAI 2006), 2006.

G. Nelson. Techniques for program verification. Technical Report CSL-81-
10, Xerox Palo Alto Reasearch Center, 1981.

R. Nieuwenhuis and A. Oliveras. Proof-producing congruence closure. In
Proceedings of the 16th International Conference on Term Rewriting and
Applications (RTA 2005), 2005.

70

D.C. Oppen. Elementary bounds for Presburger arithmetic. In Proceed-
ings of the 5th annual ACM Symposium on Theory of Computing (STOC
1973), 1973.

C.H. Papadimitriou. On the complexity of integer programming. Journal
of ACM, 28(4):765–768, 1981.

R. Paturi, P. Pudlak, and F. Zane. Satisfiability coding lemma. In Proceed-
ings of the 38th Annual Symposium on Foundations of Computer Science
(FOCS 1997), page 566, 1997.

R. Paturi, P. Pudlák, M.E. Saks, and F. Zane. An improved exponential-
time algorithm for k-SAT. In Proceedings of the 39th Annual Symposium
on Foundations of Computer Science (FOCS 1998), page 628, 1998.

D.N. Pham and C. Gretton. gnovelty+. Solver description
submitted to SAT 2007 competition. Available online at:
http://www.satcompetition.org/2007/gnovelty+.pdf, 2007.

V. Pratt. Two easy theories whose combination is hard. Technical report,
Massachusetts Institute of Technology, 1977.

M. Presburger. Über die Vollstäendigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation her-
vortritt. In Comptes-rendus du I Congrés des Mathématiciens des Pays
Slaves, Varsovie 1929, pages 92–101,395, 1930.

S.D. Prestwich. A hybrid search architecture applied to hard random 3-
SAT and low-autocorrelation binary sequences. In Proceedings of the 6th
International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2000), pages 337–352, 2000.

S.D. Prestwich. Randomised backtracking for linear pseudo-boolean con-
strainty problems. In In Proceedings of the 4th International Workshop
on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimisation Problems (CPAIOR 2002), 2002.

S.D. Prestwich and I. Lynce. Local search for unsatisfiability. In Proceed-
ings of the 9th International Conference of Theory and Applications of
Satisfiability Testing (SAT 2006), 2006.

D. Pretolani. Efficiency and stability of hypergraph SAT algorithms. In
Proceedings of DIMACS Challenge II Workshop, 1993.

71

P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-
putational Intelligence, 9(3):268–299, 1993.

W. Pugh. The omega test: a fast and practical integer programming algo-
rithm for dependence analysis. In Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, pages 4–13, 1991.

J.-P. Queille and J. Sifakis. Specification and verification of concurrent
systems in cesar. In Proceedings of the 5th Colloquium on International
Symposium on Programming, pages 337–351, 1982.

E.T. Richards and B. Richards. Nonsystematic search and no-good learning.
Journal of Automated Reasoning, 24(4):483–533, 2000.

J. Rintanen, K. Heljanko, and I. Niemelä. Planning as satisfiability: parallel
plans and algorithms for plan search. Artificial Intelligence, 170(12-13):
1031–1080, 2006.

S. Safarpour, A. Veneris, G. Baeckler, and R. Yuan. Efficient SAT-based
Boolean matching for FPGA technology mapping. In Proceedings of the
43rd Annual Conference on Design Automation (DAC 2006), pages 466–
471, 2006.

M.H. Schulz, E. Trischler, and T.M. Sarfert. SOCRATES: a highly efficient
automatic test pattern generation system. IEEE Transactions on CAD
of Integrated Circuits and Systems, 7(1):126–137, 1988.

D. Schuurmans, F. Southey, and R.C. Holte. The exponentiated subgradient
algorithm for heuristic boolean programming. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence (IJCAI 2001),
pages 334–341, 2001.

R. Sebastiani. Lazy satisfiability modulo theories. Journal on Satisfiability,
Boolean Modeling and Computation, 1, 2006.

R. Sebastiani. Applying GSAT to non-clausal formulas (research note).
Journal of Artificial Intelligence Research (JAIR), 1:309–314, 1994.

B. Selman and H.A. Kautz. Domain-independent extensions to GSAT: Solv-
ing large structured satisfiability problems. In Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI 1993), pages 290–295,
1993.

72

B. Selman, H.J. Levesque, and D.G. Mitchell. A new method for solving hard
satisfiability problems. In Proceedings of the 10th National Conference on
Artificial Intelligence (AAAI 1992), pages 440–446, 1992.

B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving lo-
cal search. In Proceedings of the 12th National Conference on Artificial
Intelligence (AAAI 1994), pages 337–343, 1994.

Z. Stachniak. Going non-clausal. In Proceedings of the 5th International
Symposium on the Theory and Applications of Satisfiability Testing (SAT
2002), 2002.

Z. Stachniak. Polarity guided tractable reasoning. In Proceedings of the
17th National Conference on Artificial intelligence (AAAI 1999), pages
751–758, 1999.

Z. Stachniak and A. Belov. Speeding-up non-clausal local search for proposi-
tional satisfiability with clause learning. In Proceedings of the 11th Inter-
national Conference on Theory and Applications of Satisfiability Testing
(SAT 2008), pages 257–270, 2008.

A. Stump, C.W. Barrett, D.L. Dill, and J.R. Levitt. A decision procedure
for an extensional theory of arrays. In Proceedings of IEEE Symposium
on Logic in Computer Science (LICS 2001), pages 29–37, 2001.

A. Tarski. A decision method for elementary algebra and geometry. The
Rand Corporation, Santa Monica, California, 1948.

C. Thiffault, F. Bacchus, and T. Walsh. Solving non-clausal formulas with
DPLL search. In Proceedings of the 10th International Conference on
Principles and Practice of Constraint Programming (CP 2004), pages
663–678, 2004.

URL-a. SAT competition website. http://www.satcompetition.org.

URL-b. SatMate website. http://www.cs.cmu.edu/ modelcheck/satmate/.

A. Van Gelder. A satisfiability tester for non-clausal propositional calculus.
Information and Computation, 79(1):1–21, 1988.

M.Y. Vardi. Branching vs. linear time: Final showdown. In Proceedings of
the 7th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2001), pages 1–22, 2001.

73

M.N. Velev and R.E. Bryant. Effective use of boolean satisfiability proce-
dures in the formal verification of superscalar and vliw microprocessors.
In Proceedings of the 38th Design Automation Conference (DAC 2001),
pages 226–231, 2001.

D. Wagner, J.S. Foster, E.A. Brewer, and A. Aiken. A first step towards
automated detection of buffer overrun vulnerabilities. In Proceedings of
the Network and Distributed System Security Symposium (NDSS 2000),
2000.

R.G. Wood and R.A. Rutenbar. FPGA routing and routability estimation
via Boolean satisfiability. IEEE Transactions on VLSI Systems, 6(2):
222–231, 1998.

C.-A. Wu, T.-H. Lin, C.-C. Lee, and C.-Y. Huang. QuteSAT: a robust
circuit-based SAT solver for complex circuit structure. In Proceedings of
Design Automation and Test in Europe (DATE 2007), pages 1313–1318,
2007.

L. Xu, H. Hutter, H.H. Hoos, and K. Leyton-Brown. SATZilla: Portfolio-
based algorithm selection for SAT. Journal of Artificial Intelligence Re-
search, 32:565–606, 2008.

H. Zhang, D. Li, and H. Shen. A SAT based scheduler for tournament
schedules. In Proceedings of the 7th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2004), 2004.

74

