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1 Introduction

Research on intelligent agents can be divided into three related areas that focus on integrated treat-
ments of agents: agent theories, architectures, and languages. All three of these areas are concerned
with different aspects of the same enterprise, namely, the specification and implementation of intel-
ligent behavior. Agent theories use formal logic to model the agent’s mental attitudes (e.g. beliefs,
desires, intentions, etc.) and how they relate to each other and to the agent’s behavior. These
theories has also grappled with problems associated with multiple agents, such as the coordina-
tion of and communication between a group of agents, and the modeling of joint mental attitudes.
An agent architecture provides mechanisms for managing the mental and physical resources of
an agent to meet the demands of complex, dynamic environments. Agent programming languages
attempt to bridge the gap between theory and practice. The term “agent-oriented programming lan-
guage” was coined by Shoham [150]. He defined agent programming languages as programming
languages with representational primitives corresponding to various mental state components of
the agent, and where reasoning is performed on these primitives. The key issue in agent program-
ming language design concerns the “right way” of programming an agent, i.e. an autonomous,
reactive, proactive, situated, and interacting computing element [189, 9]. In other words, what
kind of programming language components should these languages contain so as to allow the pro-
grammer to design an agent in the most convenient, most natural, most succinct, most efficient,
and most comprehensible way, and how to effectively execute these agent programs. Shoham’s
ideas have been later taken up and modified by various researchers. As we will see, many agent
programming languages do not explicitly represent intentional attitudes, and have only very little
intellectual debt w.r.t. the original vision by Shoham.

According to [122], a key problem of agent programming research is to show a one-to-one
correspondence between the underlying agent theory and the abstract interpreter that the agent
programming language provides. Bridging the gap between agent theories and agent programming
frameworks has proven to be a lasting problem in agent research. The omission of so called
declarative goalsfrom agent programming frameworks seems to be the primary reason for this
gap. To be specific, most agent programming frameworks have focused mainly on plans or ‘goals-
to-do’ (where goals are defined as a set of procedures which are executed to achieve the goal), in
contrast to ‘goals-to-be’ (where goals are specified as a declarative description of the state of the
world which is sought) [34]. These user written plans or programs speed up the computation in
these systems making them more practical. However, a declarative notion of goal is also necessary
if one wants to fully model the pro-activity of an agent. With the omission of declarative goals,
the reason for executing plans is lost. In addition to providing a new abstraction mechanism, these
goals can be used to decouple plan failure/success from goal failure/success. An agent may be
able to successfully execute a plan. However, this does not necessarily mean that the agent was
successful in achieving the associated goal, since the environment may interfere with this goal.
Similarly, external interference may render a user-defined plan impossible to execute; but this
does not necessarily mean that the agent will never be able to achieve the associated goal (see
Section 5.1 for a concrete example). Thus, these declarative goals are essential for monitoring goal
achievement and performing recovery when a plan has failed. Since these goals capture the reason
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for executing plans, its not hard to see that they are also necessary to model rational deliberation
and action, and to model rational response to changes in goals that result from communication, e.g.
requests.

Recently, there has been a fair amount of work on establishing a link between agent logics and
agent programming frameworks by incorporating declarative goals in agent programming frame-
works [71, 172, 174, 34, 135, 185, 134]. Research in agent programming with declarative goals
is still at an early stage. As such, most of these frameworks suffer from various problems. For
instance, many of these frameworks do not provide a formal semantics for declarative goals. The
dynamics of these goals are usually specified using some sort of syntactic manipulation directed
by the ‘operational semantics’ of the language. Often, there are no requirements for an intended
plan to be consistent with an intended declarative goal. Also, these frameworks often assume com-
plete information, and thus do not formalize sensing actions. There has been very little work on
deliberation and planning in these frameworks. The primary reason for these deficiencies can be
identified and explained by the fact that there is a tradeoff between efficiency and expressiveness
in these languages, and that these agent programming languages are supposed to be more practical
than their agent theory counterparts. Thus defining practical rational agent programming languages
is much harder than simply developing an agent theory.

This survey reviews research related to agent programming languages with declarative goals.
It is organized in four sections. In the next three sections, relevant work on agent theories, agent
architectures, and agent programming languages broadly speaking are considered in turn. Then in
Section 5, we review work specifically on agent programming languages with declarative goals.
Finally, we conclude this survey with some possible future research directions.

2 Agent Theories

Viewing an entity as an agent involves ascribing high-level cognitive attitudes such as beliefs,
goals, desires, and intentions to agents. This is called taking anintentional stance. Often, we
design agents by representing such attitudes explicitly and implementing reasoning procedures
over them. Theories that formalize various aspects of agents are often known as belief-desire-
intention (BDI) theories.

Most of the existing agent theories attempt to deal with one or more of following questions:

• What are the connections between agents’ informational attitudes and their actions, i.e. what
are the informational preconditions of actions and what effects do actions have on these
attitudes?

• What motivational attitudes (e.g. goal, choice, and intention) are necessary, and how should
these attitudes be formalized? How should agents’ motivational attitudes change as a result
of actions?

• What inter-attitudinal constraints are required to manage the rational balance needed among
an agent’s beliefs, goals, plans, commitments, and intentions?
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• How should one formalize ability, i.e. under what conditions can one expect an agent to
succeed in achieving her intentions?

• What does it means for an agent to behave rationally? How should an agent’s future behavior
depends on her current mental attitudes?

• How can multiple agents coordinate to achieve a common goal?

In the following, we discuss previous work that attempts to address these questions.

2.1 Informational Attitudes and Action

One concern of BDI logic theories has been to formalize informational attitudes, such as knowl-
edge and belief, and their relationship to action. This relationship can be broken down into two
aspects, namely, the informational preconditions of actions, and the effects of actions on agents’
information. In BDI logic theories, the informational attitudes of the agents are almost always
modeled using accessibility relations on possible worlds [82, 83, 84]. However, along with the
associated computational complexity, possible worlds reasoning suffers from a number of other
problems, such aslogical omniscience(i.e. that of knowing all valid formulae, and that of knowl-
edge being closed under logical consequence). To deal with this, various other approaches has
been proposed in the literature [47].

Moore [105, 106] was a pioneer to integrate knowledge and action into a single framework. In
his formal theory, he accomplished this by formalizing Hintikka’s modal logic of knowledge [72]
within McCarthy’s first order situation calculus [102]. Variants of this model were later proposed
in [91, 136, 35]. Others added informational modalities to other logics of action, such as dynamic
logic [170] and CTL∗ [124, 158].

Moore’s main concern was to study the problem of knowledge preconditions for actions, that
is, the question of what an agent needs to know in order to be able to perform some action. Moore
formalized the ability to perform an action using an agent’s knowledge of the referent of the action.
In his framework, an agent knows the referent of an action, if it denotes the same action in all of
the agent’s possible worlds. If the agent knows that the action is also executable, then she is able
to perform the action.

Moore, and later others [133, 91, 158, 35], also define what it means for an agent to satisfy
the knowledge preconditions ofcomplex actions. The underlying concept in these accounts is that
to know how to do a parameterized action, the agent must know the “procedure” (i.e. the action
function), and know the value of the arguments of the action. For instance, an agent can perform
the action of dialing the combination of a safeSafe1 (i.e. dial(combOf(Safe1))) if she knows
the procedure thedial action refers to, and knows the value of the termcombOf(Safe1). Also,
an agent can perform a complex action if she knows that she can execute a sequence of primitive
actions that implements the complex action. However, the agent is not required to know in advance
the exact sequence of actions she will execute, since the sequence could depend on information
the agent gathers along the way. At all time points the agent must know how to execute the
current step of the complex action, know that she will eventually complete the execution of the
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complex action, and that she will know when the execution is complete. Both Moore’s and Singh’s
theories are limited to determinate complex actions, but Davis, Sardiña et al., and Lesṕerance et
al. handle indeterminate complex actions. Although Moore’s framework allows multiple agents,
the definition of ability with respect to a complex action involves only action by a single agent.
Also, Moore does not address the frame problem for actions, that is, how to specify what remains
unchanged after an action is performed. Finally, the framework ignores the formulation of ability
to achieve a goal and its relation with being able to perform a complex action. Others, however, do
mention how it is a simple matter to add.

A different account was presented in [165], where van der Hoek et al. introduces a primitive
capability operator in a propositional modal logic. This operator indicates, for each primitive action
and world, whether an agent is capable of performing that action in that world. In this account,
the capabilities of complex actions are defined in terms of capabilities of primitive actions. This
approach is more flexible than the others, since concepts such as moral capacity can be easily
incorporated in this account. However, in this account, one has to specify for each agent, world,
and primitive action whether the agent is capable of performing that action in that world. In other
words, every instance of a procedure/parameterized action needs to be handled distinctly in this
account.

An agent is unable to perform some action when she does not satisfy the informational prereq-
uisites of that action. In that case, it would certainly be useful if the agent had the means to acquire
the necessary information. Thus, any agent framework should formalize actions that an agent can
use to increase her information. These actions are often known asinformative actions[106], test
actions[168], andknowledge producing actions[136]. In most agent frameworks, the effect of
these actions on agents’ knowledge are handled in a similar manner. The result of performing an
action that tests the value of a propositionp is that the worlds that disagree with the value ofp in the
real world are removed from the epistemic accessibility relation. With the situation calculus based
formalisms [106, 136, 137], there is an additional requirement that after performing any actiona
in situations, the situations that are epistemically related tos are projected/extended bya to get
the updated state. In other words, the situations which have not resulted from performinga in an
epistemic alternative ins cannot be in the epistemic accessibility relation atdo(a, s). So, in this
case, even “noninformative actions” affect the knowledge of the agent in the sense that the agent
gets to know that it has just performeda. On the other hand, in [168], noninformative actions do
not affect the epistemic accessibility relation; also, in their dynamic logic based language, there is
no way to say that the agent has just performed actiona.

Most of the work already mentioned assumes that new information is consistent with existing
knowledge (this is calledbelief expansion). There has also been much work onbelief revision(and
contraction) where this may not be the case [61, 169]. Also various researchers have proposed
mechanisms for iterated belief change, possibly with noisy sensors [61, 148, 142].

2.2 Motivational Attitudes

Along with agents’ informational states, a general theory of agency must also take their motiva-
tions into account, since agents are expected to act to achieve their goals. To this end, the general
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trend followed in the literature is to specify a primitive motivational attitude, and then to define
compound and more useful motivational attitudes using this. There are two main categories of
motivational primitives, namelygoal [26, 124] (variously known aschoice[129], wish [16], and
preference[170]), andintention. While goals are sometimes allowed to be inconsistent and thus
difficult to formulate [16], intentions are mostly considered to be consistent. Another difference be-
tween these attitudes lies in the agent’s level of commitment towards them. Intention is sometimes
primitive [124, 81, 68] and sometimes a defined concept, specified in terms of goals [26, 129, 158].
In his philosophical work [16], Bratman argues that intention is different from goals. He identifies
the following important properties of intention:

1. Intentions pose problems for agents; they need to determine a way of bringing about their
intentions.

2. Intentions provide a filter for adopting new intentions; intentions that are incompatible with
an agent’s currently held intentions can not be adopted.

3. Agents will maintain an intention if they attempt to achieve it, the attempt fails, but they still
believe the intention is achievable.

Previous work on motivational attitudes mostly concern two aspects of these attitudes, namely,
when goals are satisfied, and how long should goals persist. The former differentiatesmaintenance
goalsandachievement goals, while the later can be used to specify different levels of commitments
to a goal. Maintenance goals are propositions that are currently true, and the agent wants it to re-
main true. Achievement goals, on the other hand, are propositions that are currently false, which
the agent would like to be true eventually. Most of the research in the literature focuses on achieve-
ment goals. In the literature, there have been various proposals characterizing different types of
persistence of motivational attitudes.

In their linear time temporal model, Cohen and Levesque [26] define a primitive goal modality
with its own accessibility relationG similar to the belief modality. Since their model does not have
branching futures, it cannot be used to distinguish between some/all branches; rather it can only be
used to talk about the actual future. Intuitively, theG-accessible worlds are the ones where all the
goals of the agent are satisfied. The goals of the agent are formally defined to be the propositions
that are true in all the agent’sG-accessible worlds. According to Cohen and Levesque’s definition,
an agent has a propositionp as an achievement goal if she has the goal thatp eventually be true,
and believes that it is currently false. Others have adopted a similar primitive motivational operator
[124, 129, 170].

Cohen and Levesque point out, following Bratman [16], that since an agent’s goals should be
compatible with her beliefs, her goal worlds should be constrained to be a subset of the believed
worlds. This constraint is known asrealism. It ensures that the agent does not have an impossible
goal. We discuss whether this constraint is actually desirable in the next section.

Cohen and Levesque [26] also investigated the persistence of achievement goals. To ensure that
agents do not procrastinate forever, they assume that eventually all achievement goals get dropped.
Using this assumption, they then define two types of persistence. According to them, an agent has
p as apersistent goalif p is one of her achievement goals, and if she does not drop the goal until
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either she believes the goal has been achieved, or believes that the goal will never be achieved.
Cohen and Levesque acknowledge that agents with persistent goals are fanatically committed to
their goals. To remedy this, they therefore define the notion of arelativized persistent goal, which
is a persistent goal with the further condition that the agent may drop the goal if she comes to know
that some propositionq has become false. Typically, the goalp is a means to achieving the super-
goalq, or q can be some requester agent’s intention. The idea behind this is that the agent adopted
the goal relative to the conditionq being true, so ifq becomes false the agent can freely drop the
goal. By Cohen and Levesque’s definition, it is not known whether an agent has a persistent goal
until the agent drops the goal.

Cohen and Levesque [26] define intention as a special kind of persistent goal. In their frame-
work, they distinguish between an intention to perform an action and an intention to achieve a
proposition. An agent intends to perform actiona, if she has a persistent goal to performa, imme-
diately after believing she would performa. Here, the constraint about the agent’s belief is required
to prevent the agent from intending to accidentally or unknowingly perform the action. An agent
intends to achieve propositionp if she has the persistent goal to perform some sequence of actions
a, after whichp is true. Moreover, immediately before performinga, it is required that the agent
believes that she is about to perform some (possibly different) sequence of actionsa0, after which
p holds, and that she does not to have the goal that it not be the case thatp is true immediately after
doinga. Note that the believed sequence of actions can be different from the actual sequence. The
reason for this is that it allows the agent to intend to bring about a state of affairs without knowing
in advance exactly how to do it. It is also required that in at least one of the agent’s chosen worlds,
the agent performsa, i.e., the sequence of actions that the agent really does, after whichp holds.
This is meant to rule out cases in which the agent is trying to do, say,a1 to bring aboutp, but in
the course of doinga1, she accidentally ends up bringing aboutp in a completely unforeseen way
before completinga1. Both these definitions of intention can be relativized to a conditionq by
replacing the persistent goal with a relativized persistent goal. Cohen and Levesque [26] show that
their definition of intention satisfies the properties of intention given by Bratman [16].

Rao and Georgeff [124] adopt a primitive intention modality in addition to the goal modality.
Their formal language is based on a first-order modal logic that is a variant of the Computation Tree
Logic (CTL∗) framework [44]. This is a branching-time temporal logic, so it can refer to possible
or optional futures (i.e. to formulae that hold in at least one branch among the paths emanating
from the current situation) and inevitable futures (i.e. formulae that hold in all branches emanating
from the current situation), in contrast to Cohen and Levesque’s account, where one can only talk
about the actual/inevitable future. However, unlike in the latter, there is no way to talk about the
actual future, i.e. the path that represents the actual evolution of the world. In their framework,
the intention accessible worlds are the worlds that the agent iscommittedto trying to actualize.
The intentions of the agent are then defined as the propositions true in all the intention accessible
worlds.

Rao and Georgeff [124] studied the persistence of intentions rather than the persistence of
goals. Like Cohen and Levesque, they assume that all intentions eventually get dropped. They
define three types of commitments, namely,blind commitment, single-minded commitment, and
open-minded commitment. An agent is blindly committed to an intention if she maintains her
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intention to achieve a goal until she believes that the goal holds. An agent is single-mindedly
committed to an intention if she maintains her intention to achieve a goal until she believes the
goal is true, or until she doesn’t believe the goal might eventually be true. Finally, open-minded
commitment is the same as single-minded commitment, except that the agent can drop the intention
if she drops the goal that the proposition might eventually be true, instead of dropping that belief.

Sadek [129] revises Cohen and Levesque’s account to incorporate a branching time temporal
logic. He uses a primitive goal modality calledchoice. One problem with Cohen and Levesque’s
realism constraint is that there is no way to distinguish between the goals due to realism (i.e. a goal
thatφ provided that the agent believes thatφ is inevitable) and the goals that the agent actually
wants. To distinguish between agents’ free choices and choices due to the realism constraint,
Sadek [129] introduces the concept ofrelevant choice. According to Sadek, an agenti relevantly
chooses thatφ, if she chooses thatφ, and that if she does not believe thatφ is not the case, then
she chooses thatφ (i.e. RC(i, φ)

.
= C(i, φ ∧ (¬B(i,¬φ) ⊃ C(i, φ)))). However, this does not fix

the “problem”. Sadek’s definition of relevant choice along with his KD45 logic of choice implies
that any chosen proposition is a relevantly chosen one. Thus Sadek’s choice modality seems to be
similar to Cohen and Levesque’s goal modality.

Sadek uses a weaker definition of achievement goals than Cohen and Levesque. In his branch-
ing time temporal model, he only requires that in every chosen world,p will eventually be true
in somepossible future. In contrast, Cohen and Levesque requiresp to be eventually true in all
possible futures (i.e. in their case, the only, inevitable future) of every chosen world. Sadek [129]
modified Cohen and Levesque’s definition of a persistent goal, by requiring that the agentchoose
not to drop the goal until either the agent believes that the goal has been achieved, or she believes
that the goal will never be achieved. Sadek’s definition is meant to allow agents to have some
awareness that they were adopting a persistent goal. However, a problem with this definition is
that it does not guarantee that the persistent goal will actually persist. This is due to the fact that an
agent may have a persistence goal at some time-point, but at a later time-point she might change
her preferences and thus drop the goal.

In [129], Sadek presents a definition of an intention to achieve a propositionp, where an agent
is allowed to include actions by other agents in her plan to achievep (as long as the initial actions
are done by the agent herself). Unfortunately, this definition has some problems. For example,
despite claims to the contrary, the given definition allows the agent to intendp when there is no
sequence of actions that the agent believes will bring aboutp.

Another account of both achievement and maintenance goals was presented in [145, 141] where
Shapiro et al. define goal using a knowledge accessibility relationK and a primitive “want” acces-
sibility relationW (orH). Intuitively, theW -accessible worlds for an agent are thehappy worlds
where all her goals are satisfied. They then define goal accessible worldsG as the intersection ofW
and the knowledge accessible relationK, in the sense that aG-accessible world is aW -accessible
world that has aK-accessible world in its history. The reason for imposing this constraint is that
this assures that agents goals are realistic, i.e. an agent does not have a goal that she knows is
impossible to achieve (this also holds in Cohen and Levesque’s framework, as discussed below).
Goals are then defined to be all the formulae that are true over the interval[now, then], wherenow
is aK-accessible world, andthen is aG-accessible world. Their account is more flexible than
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others as it handles both types of goals in a uniform way.
One principle that a logic of intention should satisfy is theside-effect-freeprinciple, i.e. that an

agent should not necessarily intend all the believed “side-effects” of their intentions. For instance,
consider the following example (adopted from [26]): suppose that an agent has the intention to go
to the dentist to get her teeth fixed, and also believes that getting her teeth fixed will always involve
pain. A normal modal logic1 of intention along with the realism constraint entails that the agent
also have the intention to have pain. Thus, even if after the surgery, she finds out that the procedure
didn’t cause any pain, she will actively pursue her intention to have pain! This causes problems
for many of the normal modal logics of intentions seen so far. We discuss this in detail in the next
section. To avoid the problem altogether, various researchers have proposed to use non-normal
model logics to model motivational attitudes.

Konolige and Pollack’s [81] only motivational operator is a primitive intention operator. The
main advantage of their account is that it follows directly from their non-normal modal semantics
that intention is not closed under logical consequence and conjunction. Thus it does not suffer
from the side-effect problem, unlike Cohen and Levesque and Sadek’s account. In their semantics,
intentions are associated with a set ofscenariosI. A scenario is the set of possible worlds that
satisfies some sentence in the non-modal sub-language of their language. An interpretation satisfies
Intend(p) if there is anI ∈ I that is a scenario forp, i.e. p is true in all the worlds inI and every
world that satisfiesp is in I. Their non-normal semantics of intention is equivalent to the minimal
model semantics of Chellas [25]. Unfortunately, in their framework they have no requirements
that intentions persist, and thus their intention modality is closer to what others use as the goal
modality.

In an attempt to obtain a minimal logic of intention, Herzig and Longin [68] model intention
using a primitive modal operator. Their semantics of intention modality is a non-normal one, and
thus in their framework intention is neither closed under logical truth, nor under logical conse-
quence, conjunction, and material implication.

Other researchers have incorporated a procedural motivation component in their framework;
sometimes these are used to define the agent’s intentions, and sometimes to model the agent’s
commitment towards actions. In his branching future logic, Singh [158] offers such a model of
intention. The underlying temporal logic of his framework is a very expressive one, and one can
model true concurrent execution of actions (modeled not just as interleaved actions, but parallel
execution of actions), and actions with varying durations. Moreover, unlike Rao and Georgeff’s
model, Singh’s interpretations single out a branch that corresponds to the actual future. Thus, his
language can talk about what will really happen. Singh also introduces a procedural motivation
component, called astrategy. A strategy is an abstract plan or program built-up from constructs
such as primitive actions, waiting for conditions, sequences, conditional strategies, and conditional
loops, and is viewed as a description of what the agent is currently trying to achieve. In this
framework, agents are assigned a strategy in each state. This is modeled using a functionCY that
associates a strategy with an agent at a world and a time. Singh defines intentions in terms of

1A normal modal logic is one that satisfies theK axiom, i.e.G(φ ⊃ ψ) ⊃ (Gφ ⊃ Gψ). Modal operators with a
classical possible worlds semantics satisfy this axiom.
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the strategy the agent is following. An agent is said to intend propositionp if it is a necessary
consequence of executing her strategy. Singh uses a strong notion of the persistence of intentions,
and stipulates that agents do not change their strategies as long as they are able to continue to
follow them.

van Linder et al. [170, 103] use a primitive preference modality calledwish. Wishes are inter-
preted as a necessity operator over an accessibility relationW . Thus, agents can have contradictory
wishes. They offer a strong definition of achievement goals, where the agent is required to know
that there is a sequence of primitive actions that she is able perform and whose execution will
achieve the goal, i.e. that the goal isimplementable. In their framework, achievement goals are
known to be currently false. Furthermore, they constrain that a goal must be known to be anexplicit
preferenceof the agent (defined using theawareness approachof [46]). To this end, they intro-
duce a special action calledselect. The result of performingselect φmarks the wishφ as selected.
They then define achievement goals as selected wishes that are unfulfilled and implementable. The
advantage of this formalization of goals is that it does not suffer from the side-effect problem, and
thetransferenceproblem, i.e. the problem that all logical tautologies are goals of the agent. This is
due to the fact that goals are defined not just as wishes, but explicitly chosen wishes/preferences.
van Linder et al. require that agents never drop any of their wishes. However, in their framework,
goals are dropped as soon as they are fulfilled or become non-implementable, as required by their
definition of goals. Due to this, their goals are really intentions.

To model an agent’s commitment, van Linder et al. use a semantic primitive called anagenda.
They define two meta-actions,commit(a)anduncommit(a), that update the agenda of the agent
so that the agent becomes committed to and uncommitted from the complex actiona. An agent
can only be committed to a single complex action at any one time. To commit to a complex
action, the agent must be able to perform this action and it must achieve one of her goals; she
must also have finished executing her previous commitments (i.e. the agenda must be empty).
An agenda is a function that maps an agent and a world to a finite sequence of primitive actions
and test actions. This action sequence corresponds to one of the terminating executions of the
complex action that the agent is committed to achieving. The result of committing to a complex
deterministic action (built from primitive actions, tests, sequences, conditional compositions, and
iterations) in a given worldw is defined in way such that it updates the agent’s agenda by adding
the appropriate sequence of primitive and test actions to the agenda not only inw, but also in all the
knowledge-accessible worlds inw, and in all the worlds that lie along the execution trajectory of
the action (i.e. that can be reached from these worlds by performing some prefix of this sequence).
This ensures that commitments are known, and that a commitment to a complex action is linked
to commitments to its constituents. On the other hand, an agent can uncommit from a complex
action if it is no longer useful in achieving any of her goals. Thus the agenda along with the two
meta-actions can be used to model an agent’s commitment towards actions that achieve one of
her goals. While this account links an agent’s declarative intentions with her intended actions, it
abstracts from how an agent comes to know that a plan is appropriate for a goal. Also, nothing in
the framework prevents an agent from performing something that is not in her agenda.
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2.3 Interattitudinal Constraints and Properties

In order to capture some of our intuitions about the intentional attitudes and to prove desirable
properties about them, the primitive attitudes discussed in previous sections need to be constrained.
One constraint introduced by Cohen and Levesque [26] that received some attention is therealism
constraint. This is a semantic constraint that says that the goal worlds should be a subset of the
believed worlds. The reason for imposing this constraint is that it is unintuitive for a rational agent
to adopt an achievement goal that she believes will never hold (this property is also known as
intention-belief inconsistency[16]). This constraint rules out these states of affairs. Since, each of
the agent’s goals must be satisfied in at least one of the believed worlds, the agent cannot believe
the negation of any of its goals. This constraint is also adopted by Sadek [129] and Konolige
and Pollack [81], although Konolige and Pollack constrain the intended worlds (in contrast to the
goal worlds, as in Cohen and Levesque’s framework) to be a subset of the believed worlds. As
mentioned earlier, this constraint also follows from Shapiro et al.’s [145] definition of goal.

Rao and Georgeff [123, 124] introduce two variants of the realism constraint, namely,weak
realismandstrong realism. Weak realism constrains the intersection of the believed worlds and
the chosen/intended worlds to be non-empty, and is thus weaker than realism. Rao and Georgeff
[123] also adopt a similar constraint between chosen worlds and intended worlds. The strong
realism constraint [124], that can only be defined for worlds that have branching futures, requires
that for every believed world, there is a goal world that is a sub-tree of the believed world with
the same truth assignments and accessibility relations at all timepoints. They also adopt a similar
constraint between goal worlds and intended worlds. This constraint is stronger than realism in the
sense that it restricts the agent to choose only goals that it believes it will always be able to achieve,
regardless of what happens in the future. Singh [158] imposes a constraint that ensures that if an
agent intends a propositionp, then it does not believe thatp will never hold in the real future.

As discussed earlier, another property of intentions proposed by Bratman [16] is that agents
need not always intend the believed side-effects of their intentions. There are various forms of this
“side-effect-free” principle. The weak version states that an agent should be able to consistently
intend thatp, believe thatp always impliesq, and not intend thatq. Cohen and Levesque [26] and
Singh [158] show that their theories are consistent with this. A stronger version of the principle
says that an agent should be able to consistently intend thatp, andalwaysbelieve thatp always
implies q, without intending thatq. Cohen and Levesque [26], Rao and Georgeff [123, 124] and
Sadek [129] show that their theories are consistent with this version of side-effect-free principle.
However, for Cohen and Levesque, this holds for the wrong reason, i.e. because the agent may
believe that the side-effect already holds, and thus will not have the persistent goal that the side
effect hold, and hence the intention to achieve it. Rao and Georgeff’s weak and strong realism
constraints are meant to ensure that side-effects need not be intended; these constraints do not
rule out the existence of an intention/goal-accessible world that does not agree with the belief-
accessible worlds on the truth values of a formula, and thus there may be goal/intention-accessible
worlds wherep ⊃ q does not hold. However, their theory is still closed under conjunction. Both
van Linder et al.[170] and Konolige and Pollack [81] show that their frameworks are consistent
with yet another stronger version of the side-effect-free principle, which says that ifp logically
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impliesq, and the agent prefers or intendsp, then the agent may consistently not preferq.
Rao and Georgeff [123] argue that although agents’ goals should be potentially achievable,

no rational agent should be forced to choose all her beliefs; they call this propertybelief-goal
transference. They point out that Cohen and Levesque’s realism constraint sanctions this property.
Since the chosen worlds are a subset of the believed worlds, the agent chooses all of its beliefs.
Sadek [129] argues that transference is not problematic, if one can differentiate between choices
made due to the realism constraint and choices made freely by the agent. Rao and Georgeff [123],
on the other hand, argue that transference is irrational, and show that both strong and weak realism
avoid transference. One could claim that the realism constraint causes problems in Cohen and
Levesque’s framework because their logic deals with the actual future, rather than possible futures.
For instance, in Shapiro’s branching future framework, the realism constraint seems unproblematic.
What the realism constraint sanctions in Shapiro is that you can’t have the goal thatp if you believe
that¬p is inevitable, and this seems unproblematic.

2.4 Success Theorems and Rational Action

One important aspect of an agent theory is the connection between beliefs, goals, and intentions
and the agent’s action. Theorems that link these attitudes to an agent’s future behavior and the
achievement of her goals have been calledSuccess Theorems[158], since they characterize condi-
tions under which one can expect an agent to succeed in fulfilling her intentions. Success theorems
are important for motivating goal delegation via communication. For instance, to plan a complex
action that involves delegating sub-goals to other agents, waiting for those sub-goals to hold, and
then resume working on the goal, it is necessary for the agent to know that the delegated sub-goals
will eventually become true. Using a success theorem, it is adequate for the agent to know about
the other agent’s intentions and abilities to infer this.

In [26], Cohen and Levesque present a success theorem which states that if an agent has propo-
sitionp as a persistent goal, is always competent with respect top (i.e., whenever the agent believes
p, p is true), and it is not the case that the agent will believep will never occur before she drops
p, then eventuallyp will hold. To relate agents’ intentions with their actions, Cohen and Levesque
assume that all intentions eventually get dropped. This implies that the agents do not procrastinate
indefinitely with respect to their intentions (AKA theno infinite deferralassumption). Accord-
ing to the definition of persistent goal, it can only be dropped if the agent believes that the goal
has been achieved or is impossible to achieve. The latter case is ruled out by the premise of the
theorem, therefore the agent eventually believesp. Moreover, since the agent is competent with
respect top, it follows that p eventually holds. Note that, this theorem does not imply that the
agent will eventually act, because some external event might achievep. But Cohen and Levesque
claim that if the agent knows that it is the only one that can act to realizep, then under certain
(unstated) circumstances, the agent will act. Nevertheless, this account can be criticized since the
no infinite deferral assumption should follow from other axioms of the theory, rather than be im-
posed separately [78]. Rao and Georgeff [124] also offer similar theorems for their three forms of
commitments to intentions.

Singh [155] criticizes these success theorems as being too powerful. In particular, he points out
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that they do not take into account the abilities of agents. He requires that agents always perform
actions that they know will ensure the eventual success of their strategies. Using this assumption,
he showed that if an agent knows how to follow her strategy, and if her strategy necessarily leads
to p (and thus she intends thatp), then eventuallyp will hold. Both Shapiro et al. [144] and Khan
and Lesṕerance [78] also prove success theorems in which the agent is only guaranteed to achieve
her intentions if she isable to achieve them. The latter consider multiple agents, in the sense that
agents are allowed to delegate actions to other agents.

One important concept that has largely been left out of agent theories is that of rational choice
of action. If agents are not acting rationally, then they cannot be expected to achieve their intentions
even if they have the required commitment. Singh’s agents are trying to “achieve strategies”. His
assumption that agents perform actions that they know will achieve their strategies actually ensures
that agents act rationally. In their earlier work, Shapiro et al. [144] formalize strategies as functions
from situations to actions (calledAction Selection Function (ASF)). They use the agent’s goals to
provide an ordering on ASFs for each situation. For a given situations, an ASFσ1 is said to be as
good as another ASFσ2 iff σ1 achieves all of the agent’s goals in all the alternative situations where
σ2 does. They then define an ASFσ to be a rational course of action for a given situations iff it is
maximal in the ordering fors. In [135], Sardĩna and Shapiro extended this concept of domination
of strategies to deal withprioritized goals. Building on Shapiro et al.’s model of goals in [145, 141],
Khan and Lesṕerance [78] also use an agent’s goals to provide an ordering on complex actions
(i.e. plans) for each situation. Plans in their framework can include actions by other agents.
They then define a plan to be rational for an agent in a situation iff the plan in maximal in that
ordering for that agent in that situation, and the plan isepistemically and intentionally feasible
for the agent. The additional condition on epistemic feasibility ensures that the agent fulfills the
knowledge preconditions required to execute the plan. In case the plan includes actions by others,
the agent is also required to know that the executing agent fulfills the knowledge preconditions
of the actions delegated on her, and that she intends to execute the appropriate actions in the plan
when it is her turn to act. In other words, the plan must be both epistemically and intentionally
feasible with respect to the agent. Most work on rational action selection has been done in the
decision theory setting, where the outcomes of actions are assigned numerical probabilities and
utilities [15, 181, 41]. Boutillier [15] provides a framework for analyzing rational action selection
in a logical setting using qualitative orderings for preferences and likelihoods.

2.5 Multiagent Systems: Collective Mental Attitudes, Communication, and Coordination

So far, we have mainly discussed work on modeling individual agents. The study of collective
mental attitudes and collaborative action has also received attention. The motivation for such
collaborative action is that it is often the case that although no individual member of a group
can bring about some goal, collectively they can achieve it if they coordinate and cooperate with
each other. Work in this field is variously known as teamwork, cooperative problem solving, team
activity, and cooperative plans.

Researchers in multiagent systems have formalized various collective mental attitudes. Com-
mon knowledge can roughly be modeled using infinite nesting of a group knowledge (i.e. “ev-
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eryone in the group knows that”) modality. It is possible to formulate common knowledge as a
fixed point formula [67]. Joint intentions are often formalized as a non-primitive construct built
using concepts such as mutual belief and intention [139, 29, 30, 65, 66, 76, 77, 95, 160]. Although
joint intentions imply individual commitments for the team members, these collective intentions
are usually not reducible to summation of individual intentions. Others formalize group inten-
tion from an external perspective by utilizing an explicit social structure for a group [152, 157].
Examples of work on joint ability include [65, 94, 114, 115, 154, 166, 184, 188, 190].

When multiple agents are working together to solve a problem, they need some mechanism for
exchanging information, such as beliefs, plans, intentions, synchronization information, and so on.
Communication plays an important role in the coordination of multiple agents. Agent communi-
cation theories are founded onSpeech act theory[3, 138], which originated in the philosophy of
language. The key idea in speech act theory is that communication acts can be viewed as regular
actions. While most actions are performed to change the physical state of the world, communi-
cation actions are mainly done to alter the hearer’s mental states. Speech acts can be categorized
into assertives (e.g. informing), directives (e.g. requesting), commissives (e.g. promising), declar-
atives, permissives, and prohibitives.

The literature on speech act theory is quite extensive. Cohen and Levesque showed that in
a BDI framework, many properties of speech act theory can be derived from an independently
motivated theory of rational interaction, which is in turn grounded in the rational theory of action
[27, 28]. Following this approach, they proposed formal semantics for speech acts. They model
speech acts as attempts to bring about some effects by performing some sequence of events, but
with the intent to produce at least some result. For instance, arequestto achieveφ is considered
as an attempt by the speaker to have the hearer bring aboutφ, with the intent of at least making
the hearer believe that it is mutually believed that the speaker has the goal that the hearer brings
aboutφ. Singh [156], on the other hand, argued that the semantics of speech acts corresponds to
their satisfaction conditions, and identified these conditions for different types of speech acts. For
instance, an assertive is satisfied if its propositional content is true at the time of the utterance. A
directive is satisfied if its proposition comes to hold at a later point in the future, and the hearer has
the know-how and the intention to achieve it. A commissive is almost like directive except that
the role of hearer and speaker is switched, and so forth for permissive, prohibitive, and declarative
speech acts. Herzig and Longin [68] proposed some cooperative principles, and showed how these
rules can be used to infer the effects of ayes-noquestion and that of arequestfrom that of an
associated assertive. Their model provides a simpler logical account where only assertives are
primitive.

In the ARTIMIS rational agent model [130], Sadek formalizes planning for communicative
actions using a backward chaining planning mechanism that utilizes thefeasibility preconditions
(FP) andperlocutionary effects(PE) of the speech acts. Here, the FP specify the conditions that
have to be satisfied in order to plan for the act, and the PE correspond to the rational effects of the
action. For instance, consider the action ofi informing j thatφ is true. The preconditions for this
inform action is thati should believe thatφ holds, andi should not know thatj knows thatφ holds.
On the other hand, the rational effects of this action are thatj will learn thatφ holds. Sadek argues
that rational effects of a communicative act serve as the reason for planning that act, in the sense
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that an agent should select an action only if she needs to achieve the rational effect of that action.
One problem with this account is that it fails to specify the conditions under which the rational

effects become actual effects; one cannot reason about these conditions. Moreover, the planning
mechanism in [130] is incomplete and many rational plans cannot be inferred. Louis [97] recently
extended this framework to incorporate a more general model of planning (state space planning
by regression and hierarchical planning) and plan adoption. His framework is more complex, and
uses defaults (as does Sadek’s). The approach supports multiagent plans and has been imple-
mented. But there is no formalization of epistemically feasible plans, and no success theorem.
Also, commitment to a plan is modeled using a special predicate rather than using the intention
attitude.

Examples of other interesting agent communication theories include [183, 182, 116, 31, 117,
85]. Using these theories, researchers have developed artificial languages for agent communication
(e.g. FIPA-ACL [53], KQML [45]), proposed semantics for agent communication protocols [49,
50, 51, 52, 79], and implemented cooperative spoken dialogue systems (e.g. ARTIMIS [131, 132]).

Recently, there have been many proposals for semantics of communication acts based on social
commitments [159, 193, 60, 177]. The commitments associated with a conversation would be
accessible to an observer and relevant social rules could be enforced. While it is very important
to capture and enforce the social aspects of agent communication, i.e. the obligations that go
with membership in an agent society, it should be noted that communication cannot be reduced
to this public social commitments level [78]. There has also been a suggestion that public social
commitment semantics support more efficient reasoning and are more “tractable”. However, it has
been also pointed out that this is an orthogonal issue [78].

Another way of coordinating agents is to use social laws [5, 151, 109]. These laws are often
modeled by incorporating various deontic logic notions [24], such as obligations, prohibitions, and
rights into the framework.

3 Agent Architectures

The aim of agent architectures is to shift the emphasis from theory to practice. Thus, researchers in
this field are concerned with issues surrounding the construction of computer systems that satisfy
the properties specified by agent theorists. In classical planning, the agent is given a model of the
actions available and their preconditions and effects on the domain states and a goal, and her job
is to find a sequence of actions whose execution brings about this goal. Thus classical planning
assumes a static environment. However, real environments tend to be dynamic, that is, they often
change in unexpected ways at run-time. They may include exogenous actions (i.e. actions by other
agents or natural events) and the world may change during planning. The initial state could change
before the agent starts executing the plan. The world might not change as a result of plan execution
as expected due to the occurrence of exogenous actions. Thus, a classical planning agent will often
not do well in such environments. This is one of the areas where work on agent architecture
contributes, by taking into account the resource limitations of the agent. Researchers in this area
are concerned with designing agents that may have incomplete information about the current state
of the world, are not always able to accurately predict the effects of their actions, can deal with
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external interference, and do not have arbitrary time to deliberate.
One important issue addressed by the agent architecture community is the tradeoff between

commitment vs. intention reconsideration, i.e. how strongly should an agent be committed to her
intentions in a changing environment. Generally, intentions are considered to be persistent, and
are only dropped when they are achieved or they become impossible to achieve, as discussed in
Section 2.2. However, prior intended plans may be subject to reconsideration or abandonment
when the agent’s beliefs change in various ways, for instance, when the agent becomes aware
of a more attractive way of achieving her goal. But, according to Bratman [17], “...if an agent
constantly reconsiders her plans, they will not limit her deliberation in the way they need to for a
resource-bounded agent.” Nevertheless, if an opportunity with very high utility arises, the agent
should take advantage of this by weighing competing alternatives and reconsidering her current
intentions. Thus, there exists a tension between the stability of intended plans that is required for
practical reasoning, and the revocability inherent in these plans, as these are often formed based
on incomplete information.

Another related issue in agent architecture is the tradeoff between reactivity and deliberation.
While agents need some mechanism to support goal-directed reasoning and deliberation, they must
also be able to react rapidly to unanticipated changes in the environment. Moreover, since they only
have incomplete information about their environment, it is not always possible for them to produce
a complete plan for a given goal. Rather, information about how to best achieve a goal can often
be acquired after executing some initial part of the plan.

Researchers have proposed various agent architectures that differ depending on how the agent’s
ability to act is realized. Previous work on agent architecture can be classified roughly into four
categories, namely, deliberative architectures, reactive architectures, reactive plan execution archi-
tectures, and hybrid architectures. In the following we discuss these categories.

3.1 Deliberative Architectures

A deliberative architecture is one that contains an explicitly represented symbolic model of the
world (i.e. beliefs, desires, intentions, and actions), and where decisions, such as what actions to
perform next, are made via logical reasoning (i.e. planning). Thus deliberative architectures are
based on Newell and Simon’s [111]physical-symbol system hypothesis–they use a physically real-
izable set of symbols that can be combined to form structures and are capable of running processes
that operate on those symbols according to symbolically coded sets of instructions, in order to pro-
duce intelligent action. Most innovations in deliberative architecture design have come from the
AI planning community. Since deliberative architectures have a planning process as their central
component, these architectures can deal with unanticipated goals. However, the disadvantage of a
purely deliberative approach lies in the computational complexity of planning: the agent may not
be able to find plans in a timely manner. Also, the plans generated by a deliberative architecture
often fail in a dynamic environment. Examples of deliberative architectures whose primary com-
ponent is a planner include the Integrated Planning, Execution, and Monitoring (IPEM) system [1]
(based on a sophisticated non-linear planner), and Wood’s AUTODRIVE system [186] (a traffic
simulation with planning agents).
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One particularly interesting class of deliberative architectures isplan-baseddeliberative archi-
tecture. The role of commitment to adopted plans or intentions is a critical component in plan-
based architectures. Thus, these architectures use adopted plans to limit practical reasoning. The
range of reasoning modeled by these frameworks include means-end analysis (planning), choos-
ing between alternative courses of action (decision analysis), checking consistency of plans and
beliefs, and revising beliefs and goals in response to external events.

Building on Bratman’s philosophical work in [16], Bratman et al. [17] consider adopted partial
plans to structure and focus practical reasoning in their (mostly) deliberative architecture IRMA
(Intelligent Resource-bounded Machine Architecture). IRMA has four key data structures: a plan
library, and explicit representations of beliefs, desires, and intentions. In this architecture, once an
agent adopts a plan, she becomes committed to executing this plan. The agent’s commitment to a
plan implies that she will not reconsider this adopted plan, unless the environment has changed in
a relevant way, and reconsidering this plan will result in a reasonable increase in utility. Also, she
will not adopt any further intentions that are inconsistent with achieving her adopted plans.

The adopted plans can be both temporally and structurally partial, meaning that these plans
schedule actions for some time period, but not for others, and that these plans specify goals to be
achieved leaving open the means to achieve these ends. As discussed above, the motivation for
this is that often at plan time, the agent only has partial knowledge about the world, and thus it
is not always possible to decide on a complete course of action. These adopted intentions limit
the agent’s deliberation since they focus means-ends reasoning, and they constrain the number of
alternative options for actions that are feed to the decision process.

A partial plan needs to be filled out using means-ends reasoning. Thus, these adopted partial
plans focus the means-ends reasoning of the agent. Given a partial plan, the means-end reasoning
process outputs some options for courses of actions that refine this plan. But not all suggested
courses of actions will be consistent with the already adopted plans. Thus, before these suggested
courses of actions are supplied to the decision-making process, they need to be passed through
a ‘compatibility filter’. After filtering out the inconsistent plans, the compatible options are then
feed to the decision-maker for further deliberation. Bratman et al. remarked that the compatibility
filter must be computationally efficient relative to the deliberation process.

In addition to allowing deliberation, IRMA also attempts to provide some form of reactivity
unlike most deliberative architectures. IRMA utilizes an ‘opportunity analyzer’ and ‘filter override
mechanism’ in an attempt to model reactivity. The opportunity analyzer takes the agent’s beliefs
and goals as input, and watches for opportunities to satisfy the agent’s desires when some change in
the environment is detected. While doing this, it ignores the agent’s adopted plans. When it detects
such an opportunity, it suggests a course of action to fulfill the goal to the compatibility filter.
While the compatibility filter’s job is to detect and eliminate inconsistent plans, the filter override
mechanism can be used to allow some of these inconsistent options to be passed to the decision-
maker for deliberation. If the filter override mechanism passes such an option to the decision-
maker, it must be the case that at least one of the agent’s adopted plans are incompatible with
this option. So, in that case, the decision-maker needs to decide to either ignore this incompatible
option, or to revise the adopted plans that conflicts with this option. Note that, although this
process is able to handle unanticipated changes in the environment, it is not a completely reactive
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mechanism, due to the deliberation involved.

3.2 Reactive Architectures

Some architectures that have been proposed are completely reactive in nature. In these, all the
deliberation is done in advance and compiled into the architecture itself. In some approaches, the
designer is responsible for this compilation (e.g. [20]). Another way of doing this is to use an
automatic compilation process [128]. Thus these architectures neither contain a symbolic model
of the world nor a reasoner for manipulating rules and finding plans (i.e., they are not knowledge-
based). Although such architectures are very efficient and can perform simple tasks quite well,
a major problem is that they are ineffective in environments that deviate from those expected by
the designer. The primary reason for this is that the behavior of the agents in these frameworks is
essentially hardwired. Also, it is often hard to design agents with multiple complex goals in these
frameworks.

Perhaps the best known reactive agent architecture is Brooks’ subsumption architecture [21, 22,
23]. Brooks proposed that intelligent behavior can be generated without explicit representations
of symbols and without explicit abstract reasoning, and that intelligence is an emergent property
of certain complex systems. He identifies two key properties of intelligence – ‘real’ intelligence
is situated in the world and not disembodied (such as theorem provers or expert systems), and
intelligence arises as a result of a system’s interaction with its environment.

To demonstrate the validity of his claims, Brooks built a number of robots using his subsump-
tion architecture. A subsumption architecture consists of a hierarchy of task-achieving behav-
iors/layers. Each layer in this hierarchy is used to implement a certain goal of the robot. These
behaviors compete with each-other to exercise control over the robot. Lower layers are used to
encode more primitive kinds of behavior, and have precedence over the layers further up in the
hierarchy. Each layer’s goal subsumes that of the underlying layers. Each of these layers accesses
some of the sensor data and generates actions for the actuators. It should be emphasized that the
generation of actions in this system is extremely computationally efficient and does not involve
any explicit reasoning, or even pattern matching. A layer can inhibit inputs or overrule outputs of
the layers below it. This allows the lowest layers to work like fast-adapting mechanisms, while the
higher layers control the main direction to be taken in order to achieve the overall goal. Thus this
architecture is capable of reacting quickly to changes in the environment.

3.3 Reactive Plan Execution Architectures

A reactive plan execution architecture is one that includes a user-defined library of hierarchical
plans. Each of these plans consists of a trigger condition (i.e. goal), a precondition (i.e. context),
and a body. The trigger condition specifies what the plan is good for, that is, what goal can be
achieved using the plan. The context condition describes the conditions under which the plan
should be considered for execution. Another component of a reactive plan execution architecture
is triggering events. An agent in this kind of architecture responds to events from an event-queue
by adopting the appropriate plan, and by eventually executing it. In addition to primitive actions,
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the body of a plan can contain sub-goals (i.e. events), which may in turn trigger the selection and
execution of other plans (sub-plans). Thus, in these architectures, the changes in the environment
determine which plans should be executed, and how these plans are decomposed.

The most well known version of this architecture is the Procedural Reasoning System (PRS)
[63, 62]. A PRS agent consists of a belief-base, a goal-base, a set of plans, and a set of inten-
tion structures. Beliefs in PRS are facts about both the external world and the agent’s internal
state expressed in first-order logic. Goals are represented as temporal formulae, which include
formulae for achieving a property, testing for a condition, waiting for a condition to hold, and pre-
serving/maintaining a condition. These goals are meant to be used in the triggering event part of a
plan. Like IRMA, PRS also uses plans to structure reasoning. Plans in PRS are complex structures
calledKnowledge Areas(KA). Each of these KAs is a rule, and consists of an invocation condition
that specifies when it is applicable, and a body that describes a set of steps to be achieved. The
body of a KA can be viewed as a graph with a single start node and possibly multiple end nodes.
Arcs in this graph represent sub-goals. A successful execution of a KA amounts to achieving each
of the sub-goals in a path between the start node and one of the end nodes. Intentions of a PRS
agent consists of the set of active KA stacks, each of which keeps track of all the subgoals of the
original KA.

PRS uses KAs to encode procedural knowledge about the domain. KAs may be activated in a
goal-driven fashion, i.e. as a result of acquisition of a new goal, or in a data-driven/reactive fashion,
i.e. as a result of some change in the agent’s beliefs. These adopted KAs can be used to structure
the practical reasoning, since they constitute the entire reasoning process. At each iteration of
the PRS interpreter, the set of applicable KAs are determined (by unification) using the agent’s
beliefs and active goals. Then one or more of these KAs are selected and inserted into the intention
structure for execution. Finally, one of the intentions from the (root of the) intention structure is
selected, and a step of this intention is executed. This execution can involve an unelaborated sub-
goal; in that case, this goal is added to the goals of the system. The interpreter then loops to the
next iteration, where a new set of applicable KAs are determined based on the perceived changes.
Note that, if the selected KA arose as a result of the acquisition of a new goal (calledintrinsic goal)
or a change in belief, then it is inserted into the intention structure as a new intention. On the other
hand, if the selected KA was triggered due to the execution of an already existing intention (called
operational goal), this KA is pushed on top of the KA stack comprising that intention.

PRS uses a special class of KAs (namely, meta-level KAs) to update the beliefs, goals, and
intentions of the PRS agent. Meta-level KAs can also be used to control the adoption of lower-
level KAs (e.g. in case more than one KA is applicable), create new sub-goals, handle failures,
reorder the intentions in the intention structure, etc. Thus KAs are very powerful and can be used
to capture procedural domain knowledge as well as decision knowledge.

PRS can be used to guarantee some form of reactivity. In fact, it was shown in [63] that there
exists a bound on the ‘reaction time’ of a PRS agent. Note that, in each iteration, the interpreter
checks for applicable KAs and places one or more appropriate KAs in the intention structure. This
process uses unification and is able to ‘react’ in a timely manner. Note however that, although an
PRS agent is able to promptly recognize changes in the environment and adopt intentions accord-
ingly, she may take arbitrarily long to ‘react to the environment’ by executing some action. This is
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due to the fact that there is nothing in the framework that ensures that the process of hierarchical
plan decomposition will quickly converge to a sequence of a primitive actions. In other words,
the execution of a knowledge area may involve a long and possibly even an infinite chain of sub-
goaling. Thus the term ‘react’ above (as used by Georgeff et al. [63]) is used in a weak sense, and
should be read as ‘recognize’. Nevertheless, it should be noted that PRS assumes that the designer
is responsible to ensure that plan decomposition completes in a reasonable time. In practice, these
architectures generally respond fairly quickly to changes in the environment.

3.4 Hybrid/Cognitive Architectures

There has also been work on architectures that handle the tradeoff between reactivity and de-
liberation by implementing reactive mechanisms and a deliberation module in two different but
interacting layers. Some architectures also include additional layers for plan execution and/or co-
ordination. These architectures are known as layered architectures. A typical layered architecture
works as follows: the reactive layer generates potential courses of action in response to time criti-
cal events that happen too quickly to be handled by the other layers. It is often implemented using
a set of situation-action rules, and thus does not involve complex reasoning. The reactive execu-
tion layer (or scheduler) selects precompiled plans to achieve current goals and schedules them for
execution. The deliberation layer uses an explicit model of the world and a planner to generate
new plans. Finally, the multiagent coordination (A.K.A. the modeling) layer contains models of
the cognitive states of other agents in the environment (including human agents). These models
are used to manage the dependencies between the activities of the agent and those of other agents
(e.g. to identify and resolve goal conflicts). Some of these architectures have control mechanisms
to decide which layer controls execution at a given time. Depending on what layers are included in
the framework, layered architectures are capable of providing a guaranteed level of responsiveness,
performing resource-bounded deliberation to cope with exceptional events, as well as providing the
flexibility to adapt ongoing plan as required by changes in the environment. Examples of layered
architectures include Touring Machines [48], Inhabited Dynamical Systems [98], and InterRRap
[110].

Some proposals were made to capture human-like functionalities and capabilities. Since these
architectures model structures for performing a wide variety of cognitive tasks, they are often
called cognitive architectures. Examples of cognitive architectures are SOAR [86], Homer [178],
and OSCAR [121], to name a few. In addition to ascribing to the agents intentional modalities such
as beliefs, goals, and intentions, these architectures often attempt to formalize learning, problem-
solving, natural language processing and generation, planning, memory, defeasible reasoning, etc.
However, cognitive architectures have not dealt with the main problems faced by researchers in
agent architecture, namely, the tradeoff between deliberation and reactivity, and handling resource
boundedness.
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3.5 Relation to Agent Theories

In [125], Rao and Georgeff attempt to relate their agent theory in [124] to a simplified version of
the PRS interpreter. This “abstract” interpreter operates on a (logically) closed and consistent set
of beliefs, goals, and intentions. Also, the belief-base is closed w.r.t. an agent’s plans, i.e. the agent
knows all her plans, and all possible decompositions of her plans are pre-computed. Using these,
it generates all the options for action in a single cycle. Then it selects an action for execution,
executes this action, and updates the agent’s mental states. Rao and Georgeff informally discuss
how to constrain various procedures called by this interpreter, and thus implement some of the basic
axioms of their theory in this architecture. This includes axioms that relate various mental states
(such as belief-goal compatibility), and axioms that model various forms of commitment (e.g.
blind commitment). They also have an axiom which is similar to Cohen and Levesque’s ‘no infinite
deferral’ assumption (i.e. that all intentions must be eventually dropped). Unfortunately, they do
not consider axioms related to agents’ abilities required to achieve goals, and axioms that deal
with rationality (e.g. that agents should not adopt plans that are very unlikely to achieve a goal).
They then present a “practical” interpreter that is similar to the PRS interpreter, in the sense that it
operates on a knowledge-base of explicit (and grounded) beliefs and goals that is not closed under
logical consequence, and that it computes the decomposition of the adopted plans over an arbitrary
number of cycles of the interpreter. At every step of the interpreter, in response to an event, the
option generator iterates through the plan library and returns the plans whose invocation condition
matches this event and whose context condition follows from the agent’s beliefs. The deliberator
then utilizes meta-level rules to decide which of these options should be selected. In the next step,
one of the intentions is executed. Like in PRS, the execution of an intention may involve triggering
of another event, or execution of a primitive action. While Rao and Georgeff acknowledge that this
practical interpreter does not obey all the axioms of their agent theory, no suggestions for revising
the axioms were given. They did however hint that under certain circumstances, namely when
no external events occur during the execution of a goal, the practical interpreter behaves like the
abstract one, and satisfies these axioms. However, it is not clear that this is the case. For instance,
there is no way of preventing the adoption of a plan that is inconsistent with the agent’s adopted
intentions, since no lookahead mechanism is incorporated in this practical interpreter. Thus the
axiom which states that the agent’s intentions should be consistent clearly does not follow from
this interpreter.

4 Agent Programming Languages

The beginning of the current interest in agent programming languages (APLs, henceforth) might
be attributed to Shoham’s proposal of Agent-Oriented Programming (AOP) [149, 150], as a ‘new
programming paradigm based on a societal view of computation’, and as a specialization of object-
oriented programming. The key idea of this AOP paradigm is to use mentalistic and intentional
notions formalized by agent theorists to design and program agents.

Another front that pushed the concept of agent-oriented programming is Rao and Georgeff’s
PRS architecture. As we have seen, the key concept in the PRS architecture is that of using events
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for selecting hierarchically decomposed plans, and thus avoiding planning from scratch. In the
following, we will see that many APLs in the literature are based on a simplified version of the
PRS architecture.

Thus, most of the APLs in the literature can be classified into two classes, namelydeductive
reasoninglanguages andreactive plan executionlanguages. While the former was derived from
various agent theories, logics, and calculi, the roots of the later can be traced back to reactive plan
execution architectures (viz. PRS and dMARS [80]).

Logic based APLs are usually more expressive and strongly grounded into the underlying logic.
The latter means that programs written in these can often be verified easily by theorem proving or
model checking. However, this expressiveness and ease of verification usually comes at the cost of
computational complexity. Most of these languages also suffer from other significant limitations,
such as poor scalability and modularity, and no support for physical distribution of the computation,
nor for the integration of external packages and languages. Examples of logic-based APLs include
AGENT0 [149, 150] (based on modal and deontic logic), Concurrent METATEM [54, 55] (based
on modal and temporal logic), the Golog family [96, 36, 37] (based on the situation calculus),
FLUX [162] (based on the fluent calculus), and MINERVA [87, 88] (based on a non-monotonic
logic).

In contrast, efficiency and modularity are two areas where the reactive plan execution lan-
guages shine. In addition, these languages provide means for encoding control knowledge by using
user-defined plan/rule libraries. Nevertheless, most of these PRS-based languages often have lim-
ited expressiveness. Examples of reactive plan execution languages include AgentSpeak(L) [122],
3APL [70], and CAN [185].

APLs also differ on how they handle several issues. For instance, some of these incorporate
BDI concepts such as beliefs, desires, goals, etc (e.g. AgentSpeak(L), 3APL, PLACA, etc.), while
others do not (e.g. Golog and Concurrent METATEM). A few of these languages handle incom-
plete knowledge and sensing actions (e.g. Golog and FLUX). Some languages allow planning
with lookahead; others only allow reactive plan selection (from a user-defined plan library) and
execution. Examples of APLs that allow offline planning include Golog and CAN-PLAN [134].
Some of these languages allow modeled exogenous actions (e.g. ConGolog), have constructs to
support communication (e.g. PLACA, Jason), support multiple agents (e.g. JACK), or provide a
programming logic on top of the associated programming language to specify agent properties,
such as liveness and safety properties (e.g. GOAL, Dribble).

Besides these two classes of APLs that we have identified, there has also been work on purely
behavior-based or reactive languages [22, 23, 2, 100]. However, these are closer to agent archi-
tectures than APLs. Also, researchers have developed various agent-oriented software engineering
methodologies (e.g. Prometheus [113] and Gaia [191]) and tools. Surveys of these can be found
in [8] and [9].

In the following, we review work on APLs in our two classes. Later in Section 5, we focus on
more recent work on agent programming languages that incorporate declarative goals.
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4.1 Logic-Based/Deductive Reasoning Languages

AOP, AGENT0, PLACA

Shoham [150] identifies three essential components of an AOP language: a theory for defining
the mental state of agents; an interpreted programming language for programming agents, whose
semantics must be faithful to the theory; and an ‘agentification’ process, which wraps components
of physical systems into agents. He acknowledges that the agentifier is not necessary for systems
designed with AOP in mind. However, he envisions applying the AOP framework even to ordinary
devices, such as watches and cameras, for which the agentification process is required.

AOP incorporates a quantified multi-modal logic with direct reference to time-points. The the-
ory contains three modalities, namely, belief, commitment (also referred to as choice or decision),
and ability. Commitment is a derived operator, and defined in terms ofobligation to oneself. An
example of a formula of the logic is as follows:CAN7

a open(safe)9 ⊃ B7
b CAN

7
a open(safe)9.

This says that if at time 7, agenta can ensure that she is able to open a safe at time 9, then at time
7, agentb believes this. Unfortunately, AOP does not include a formal semantics for this modal
logic.

Shoham’s first attempt at an AOP language resulted in the AGENT0 programming language
[150]. In AGENT0, an agent is specified in terms of a set of initial beliefs and commitments, a
set of (fixed) capabilities, and a set ofcommitment rules. The set of commitment rules is a key
component in AGENT0, and it determines how the agent acts. A commitment rule associates a
message condition and a mental condition with an action. If the message conditions match an
incoming message and the mental conditions are true in the agent’s current mental state, then
the corresponding commitment rule fires, and as a result, the agent becomes committed to the
associated action. Commitment to an action in AGENT0 amounts to no more than scheduling an
action. The AGENT0 interpreter maintains a database of committed to actions and their scheduled
times, and when the appropriate time arrives, the action is executed. Along withprivate actions
(i.e. internally executed subroutines), AGENT0 also providescommunicativeactions in the spirit
of speech-act theory [3, 138, 31]. The basic loop of the AGENT0 interpreter consists of two steps:
in the first step, it reads the current incoming message and updates the mental state (i.e. the agent’s
beliefs and commitments) by applyingall applicable commitment rules; in step 2, it executes the
commitments for the current time, possibly further updating the mental state.

In her 1993 Doctoral thesis [163], Thomas introduces the PLAnning Communicating Agents
(PLACA) language as a more refined implementation of AGENT0. PLACA addresses a severe
drawback to AGENT0, namely the inability of agents to plan and to communicate theirdeclarative
goals (via requests). The overall structure of PLACA is very similar to that of AGENT0. To han-
dle planning, the initial mental state now also contains adeclarativemotivational intention-base,
and aproceduralplan-base. Also, commitment rules are now replaced withmental-change rules,
each of which associates a set of mental state changes with a set of message conditions/mental
conditions/(outgoing) message-list. At every tick of the global clock, these mental change rules
are used to update the agent’s declarative intentions. Plans on the other hand are fed to the system
using an external planner, described as a black box in [164], which is responsible for updating
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the plan-base at every tick of the clock. For longer deliberations, the planner may request the
‘mental-rule checker’ module to skip some cycles (while queuing the incoming messages) and
allow uninterrupted planning. The architecture also utilizes a separate executor module that is re-
sponsible for sending outgoing messages, and for executing the scheduled actions when the time
has come.2 Thus, PLACA separates deliberation about which intentions to adopt from considera-
tions of means of achieving the adopted intentions. While the agent program is used to formalize
the former, the latter is modeled using a black-box external planner and not properly fleshed out
(i.e. mostly unspecified) by the framework.

In [161], Tan and Weihmayer discuss an AOP-based framework for cooperative problem solv-
ing that integrates AGENT0 and the state-space planner PRODIGY [104]. The major difference
between PLACA and this framework is that in the latter, planning occurs directly as a result of
the firing of commitment rules, and thus is not interruptible. Therefore, planning in this account
behaves like a single primitive action. Also, since many rules may fire during a cycle, several plan-
ning processes may be triggered, which is computationally demanding and may hamper reactivity.

All of these languages were only intended as prototypes. Thus, various simplifying assump-
tions were incorporated. For example, AGENT0 lacks a formal semantics. Also, agents can only
commit to primitive actions that can be directly executed. AGENT0 and PLACA both assume a
global clock. Although PLACA includes declarative goals that trigger planning, it does not for-
mally specify how plan generation and commitment to plans are handled.

Concurrent M ETATE M and its BDI-Extensions

A problem with AGENT0 and PLACA is that no formal semantics for agent program execution
is provided. Also, the execution of these languages cannot be said to truly execute the associated
logic. A desirable property of any APL semantics is that it should be strongly coupled to the under-
lying (BDI) logic. In other words, the program execution semantics should satisfy the underlying
logic. This ensures that these two are compatible with each-other; for instance, if the underlying
theory sanctions that an agent is (physically and mentally) able to perform some action in some
situation, then it is only intuitive that the APL execution semantics agrees with this and that one
could derive that there is a legal transition of the agent program with this action in that situation.
The Concurrent METATEM language proposed by Fisher and Barringer [56], and its extensions
[54, 55] attempt to address these issues.

A Concurrent METATEM system is a collection of concurrently executing objects, whose be-
havior is specified directly using an executable temporal logic. These objects can communicate
via asynchronous broadcast message passing. Each object is specified using an object-interface
and a set of executable temporal rules. An object-interface identifies the messages that an object
can recognize, together with the messages that it can produce. The temporal rules associated with
the objects form the bulk of a Concurrent METATEM program. These have the following general
form: ‘past and present formula’⊃ ‘present and future formula’, and are assumed to hold at all
time-points. In Concurrent METATEM, an object’s specification is directly executed to generate

2Recall that every action is dated, i.e. has a time-stamp associated with it.
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its behavior. The execution of an object involves iteratively constructing a model from the corre-
sponding temporal formulae, in the presence of input from the program’s environment. Starting
from the initial state, at each step the program rules are consulted to check which of the rules have
antecedents that are satisfied by the partial model constructed so far. The consequents of all such
rules are collected together. These consequents represent constraints on present and future prop-
erties of this model, and these along with any outstanding constraints generated in some previous
steps are used to construct the current state. Any outstanding constraints are passed to the next step.
If at any point, a contradiction is generated, the system may backtrack (i.e. undo some actions)
to a previous choice-point and attempt to construct a model for the program in a different way,
giving up indicating an execution failure when no choice-points are remaining. Note that, sources
of non-determinism (i.e. choice-points) include the execution of a rule whose consequent contains
a disjunction or an3-formula, i.e. the execution of eventual satisfaction of some formula.

To summarize, Concurrent METATEM differs from other languages in that it based on a sat-
isfiability point of view. As mentioned, an advantage of Concurrent METATEM is that in this
framework, the theory and the programming language are strongly coupled. Also, the semantics
of program execution is closely related to the semantics of the associated temporal logic. Thus,
verifying agents’ properties specified in the language is a viable proposition. In [55], Fisher uses
a series of examples to demonstrate that Concurrent METATEM can be used to specify intelligent
objects that exhibit an interesting range of behaviors, which include cooperation and competition,
negotiation, obeying safety and liveness constraints, and so forth. Also it can be used to specify
groups of objects (societies) and hierarchical problem solving objects. Unfortunately, Concurrent
METATEM has some limitations. For instance, recall that building a model may require backtrack-
ing; it seems that this is not always possible, e.g., in some domains, the effects of actions may not
be reversible. Also, like satisfiability, it requires complete knowledge.

Recently, Fisher and Ghidini [57] extended Concurrent METATEM by incorporating the no-
tions of belief, ability, and the “motivational” operatorconfidence. Agents’ beliefs are represented
using a (KD45)multi-context logic[64]. Multi-context logic is a formal framework for modular
representation of (nested) beliefs of multiple agents, and is based on the notion of belief contexts.
A belief context is a representation of a collection of beliefs that an agent ascribes to herself and
to other agents. For example, and agenti may have some beliefs about the world; in addition she
may have some beliefs about another agentj, beliefs aboutj’s beliefs about another agentk, etc.
In a multi-context logic, each of these sets of beliefs is represented using a distinct formal lan-
guage, and the interpretation of such a language is local to the belief context it is associated with.
A context structure in a multi-context logic contains an infinite tree (where the root of the tree
represents the belief context of the agent whose belief is under consideration), and allows one to
represent arbitrarily nested beliefs. Although distinct, the contents of different belief contexts can
be related. For instance, an obvious relation is the following: if a sentence of the formP is in the
belief context fori’s beliefs aboutj (i.e. in the contextij), then a sentence of the form “j believes
thatP ” is in the belief context fori. Another relation says that a sentence of the formP is in ij,
only if a sentence of the form “j believes thatP ” is in the contexti. Depending on the relations
among different contexts, one can model agents having different reasoning capabilities. As we
can see from the above description the key feature of belief-contexts is modularity. Note that, the
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extended Concurrent METATEM incorporates the appropriate relations so that agents’ beliefs are
KD45.

An agent’s abilities are constant over time. The semantics of the ability operator is formalized
using a functionr that associates a belief context to a (fixed) set of formulae. Thus, e.g. ifr
associates{φ} with the context for agenti, theni has the ability thatφ; on the other hand ifr
associates{φ, ψ} with the context for agentk’s belief about agentj’s belief about agenti, thenk
believes thatj beliefs thati has the ability to achieveφ andψ. Confidence inφ, which is a derived
attitude, is defined asbelieving thatφ will eventually happen(i.e. Bi3φ). As in the original
Concurrent METATEM, agents are specified using an agent-interface and a set of temporal rules
in this framework. However, rules are now allowed to have modal operators; the rules must be in
normal forms that only allow present and future temporal operators.

The key idea in this framework is that the language provides a mechanism for deriving con-
crete specification of motivations from more abstract ones. Consider the interaction between the
following temporal goal formulae (in descending order in terms of abstractness):Bi3φ, Bi3jφ,
3φ, andφ, that is, the agenti is confident aboutφ, i is confident aboutφ and believes thatj is re-
sponsible for bringing aboutφ, φ will eventually hold, andφ is currently true, respectively. Fisher
and Ghidini argue that by providing rules that can be used to derive a more concrete goal formula
from one of these abstract goal formulae, we are essentially specifying arational agent. One such
rule is as follows:

(Bi3φ ∧ Aiφ) ⊃ 3φ.
This says that, if agenti is confident aboutφ, and is able to achieveφ, thenφ eventually holds.
Another example of this is that an agent may move from ‘confidence’ (i.e.Bi3φ) to ‘confidence
in another agent’ (i.e.Bi3jφ, wherei 6= j), through deduction or communication. Again, moving
from3φ to φ is essentially a matter of scheduling.

In this framework, various rules can be tailored and various constraints onBi can be imposed
to specify realism, strong-realism, and weak-realism properties (see Section 2). Also, rules can be
used to implement sensing actions. Thus, this extension of Concurrent METATEM brings it closer
to other BDI languages. Even more recently, Fisher et al. [59, 58] extended Concurrent METATEM
to include groups of agents and show how agents can be efficiently organized to collectively solve
problems.

One problem with these frameworks is that in these languages, the programmer needs to ex-
plicitly specify the behavior of the agents using temporal rules. Thus although verification of agent
properties is relatively straightforward, programming even simple agents puts a heavy burden on
the programmer. The examples in [55] and [57] show this. Also, while it is possible to write
chaining rules (i.e. rules whose consequent fires other rules) in this language, these rules do not
exactly correspond to hierarchically decomposed procedures/plans. Finally, this model of agent
programming is problematic in the sense that although specifying rational actions (or in this case,
rational temporal rules) is left to the programmer, there is nothing to prevent the programmer from
writing inconsistent or non-terminating sets of rules.
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Golog, ConGolog, and IndiGolog

Another style of agent programming is developed in the logic programming-based Golog family
[96, 36, 37]. In Golog, the programmer first declaratively specifies the agent’s knowledge of the
dynamics of the world (i.e. preconditions and effects of actions), and the initial state of the world
in a situation calculus dialect, a first-order language for dynamic domains which incorporates a
solution to the frame problem due to Reiter [126, 127]. Then various Golog constructs, such as
primitive actions, testing for a condition, sequences, non-deterministic branch, loops, etc. are used
to write programs. Given a program and the domain axioms, the interpreter attempts to prove that
the program has a terminating execution starting in the initial situation. A sequence of actions for
executing the program is uniquely identified by the terminating situation. Once an action sequence
is found, the agent executes the program, by executing one action at a time. Thus, Golog redefines
the planning problem of ‘looking for a legal sequence of actions to achieve some goal’ as the
problem of ‘searching for a legal sequence of actions that amount to a legal execution of the high-
level program’. The program can encode search control knowledge.

In contrast to most other logic-based APLs where the agent’s state must be explicitly updated
by the executing program, Golog and its successors employ an automatic state update mechanism
using their background action theory for the domain. Also, unlike other APLs where the designer
specifies the agent’s behavior using some form of rules, Golog has the programmer specify a high-
level non-deterministic program, and the underlying interpreter’s task is to search for an execution
of this program.

ConGolog extends Golog to include concurrency by providing constructs for non-deterministic
iteration, concurrency (with and without priority), and interrupts, which makes it easier to write
reactive programs. ConGolog also replaces theevaluation semanticsof Golog with atransition
semantics, since a single-step semantics is better suited for concurrency.

The ConGolog interpreter proves that some branch of the non-deterministic program yields a
terminating state of the program, and thus resolves the non-determinism in an off-line style using
lookahead planning. This offline planning cannot handle dynamically changing worlds too well,
especially when sensing and exogenous actions are involved. For instance, consider the following
program:(a|b); senseq; if q then∆1 else∆2 endIf;φ?, which says that the agent should first non-
deterministically choose betweena andb and execute it, then sense the truth-value ofq, and based
on this value, should execute either∆1 or∆2, terminating successfully if the testφ? succeeds. Note
that, an offline interpreter for this program cannot commit to eithera or b in advance, since it does
not know which of these will ensure thatφ, and thus cannot use the sensing action to determine
whetherq would hold after the action. The only option available to the interpreter is to check if one
of the actionsa or bwill lead toφ for bothvalues ofq. Thus, early occurrences of non-deterministic
choices can result in unacceptable delay. The situation gets even worse when loops are involved.
To deal with this, the language IndiGolog [37] was proposed. In IndiGolog, programs are executed
incrementally to allow for interleaved action, planning, sensing, and exogenous events. Informally,
the semantics of incremental execution is as follows: an incremental execution of a program finds
a next possible action, executes it in the real world, obtains the sensing results afterwards, and
repeats this cycle until the program is finished. Since this makes it possible to quickly execute the
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actions without much deliberation, this approach is suitable for realistic changing worlds. How-
ever, since the program may contain non-deterministic choice points, some lookahead mechanism
is required to avoid unsuccessful (dead end) executions. For this reason, a search operatorΣ is
introduced in IndiGolog. Intuitively,Σ(prog) selects from all possible transitions ofprog one for
which there exists a sequence of further transitions that leads to a terminating configuration. The
IndiGolog interpreter automatically monitors the execution of a plan generated by such a search
block, and re-plans when the current plan fails or is no longer appropriate due to changes in the
environment. IndiGolog also supports a simple form of contingent planning, where the dynamic
environment is modeled as a simple deterministic reactive program [92].

Thus, IndiGolog is a powerful language that is able to handle incomplete knowledge, sensing,
and exogenous actions, and allows the specification of prompt reactive behavior as well as user-
controlled deliberation. Note however that, the standard implementation of IndiGolog makes a
dynamic closed-world assumption, i.e. it assumes that a program has sufficient knowledge to
evaluate a query/test by the time it is evaluated, and if initially the answer to the query is not
known, sensing actions will be executed before the query is made. Thus it is assumed that the on-
line interpreter has complete knowledge of the relevant fluents by the time the query is evaluated.
To avoid this limitation, an extension of the Golog formula evaluator was presented in [176, 175],
where the evaluator keeps track of thepossible valuesthat functional fluents can take in a given
history (i.e. a situation along with the sensing results obtained so far). A fluent is said to be known
at some historyh iff it has only one possible value ath. Note that this only handles limited forms of
incomplete knowledge, namely, not knowing the value of a fluent; general disjunctive knowledge
is not handled. This work is still at an early stage, and the issue of how to deal with efficient belief
update in the presence of incomplete knowledge is still not completely clear.

FLUX

One disadvantage of IndiGolog and some other logic-based non-BDI languages is that the knowl-
edge of the current state is represented indirectly using histories, i.e. via the initial conditions and
the actions that the agent has performed so far. A consequence of this is that each time the agent
needs to evaluate a condition, she has to consider the entire history of actions and perform regres-
sion. Thus these languages do not handle long running agents efficiently. The fluent calculus-based
high-level programming language FLUX (FLUent eXecutor) [162] attempts to solve this problem
using an explicit state representation and progressing it when an action is performed. FLUX incor-
porates an implementation of the fluent calculus, a language for reasoning about actions. The fluent
calculus provides a basic solution to the frame problem using the concept of state update axioms.
It also addresses a variety of other aspects such as, ramifications, qualifications, nondeterministic
and concurrent actions, continuous change, and noisy sensors and effectors.

A FLUX agent program consists of three parts, namely a background theory that encodes the
agent’s internal model of the environment, a kernel that provides the agent with cognitive abilities
to reason about her actions and acquired sensor data, and a strategy that specifies the agent’s task
oriented behavior. The types of incomplete knowledge FLUX can encode are restricted. The
underlying inference engine of FLUX is sound but incomplete. However, it can be shown that
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reasoning in FLUX is linear in the size of the internal state representation. Thus FLUX scales up
well to long-term control. FLUX allows the use of full expressive power of logic programming in
defining strategies. It also facilitates formal proofs of correctness of strategies.

MINERVA

The MINERVA agent programming language [87, 88] utilizes logic programming and several non-
monotonic knowledge representation and reasoning mechanisms to provide a common multiagent
framework. A MINERVA agent consists of several specialized concurrently running sub-agents
performing various tasks. These agents can read and manipulate a common knowledge base spec-
ified in the Multi-dimensional Dynamic Logic Programming language (MDLP). In MINERVA,
agents are driven by an observation-deliberation-action cycle. The behavior of these agents is
specified in the Knowledge and Behavior Update Language (KABUL).

MDLP provides an extension of Answer Set Programming (ASP). In MDLP, an agent’s knowl-
edge is represented using logic programs arranged in an acyclic digraph, in which the vertices
are sets of logic programs, and edges represent the relationship between these programs. MDLP
benefits from the advantages of ASP, such as default negation, which can be used to deal with
incomplete knowledge. Also, it can be used to represent the evolution of knowledge, and prefer-
ences.

KABUL is a logic programming language that can be used to specify updates to knowledge
bases, and to the KABUL program itself. A KABUL program consists of a set of condition-action
rules that encode the agent’s behavior. Since actions in KABUL can update both the knowledge
base represented in MDLP and the KABUL program itself, it can be used to specify agents that
change their behavior over time. Conditions in these rules can refer to external observations,
the epistemic state of the agent, as well as to occurrences of exogenous actions. Since no external
stimuli are needed to trigger the behavior of the agent, KABUL can be used to specify both reactive
and proactive behavior.

Other Logic-Based APLs

There has been work on various other logic-based APLs. Those that gained some popularity in-
clude APRIL [101], the deontic logic-based IMPACT [42, 43], the dynamic logic-based Dylog
[4], the linear logic-basedεhhf [38], the ambient calculus-based CLAIM [140], the Horn Clauses
and Least Herbrand Models based DALI [32], and ReSpecT [112]. Surveys of some of these
languages can be found in [99, 8, 9]. In the next section, we discuss some of the reactive plan
execution languages.
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4.2 Reactive Plan Execution Languages

AgentSpeak and its Variants and Implementations (Jason, JACK, Jadex)

As discussed in Section 2, there has been much work on agent theories, and current theories are
quite mature and well established. However, there is a large gap between agent theories and BDI
APLs.3 In [122], Rao introduced the AgentSpeak(L) language as an attempt to show a one-to-
one correspondence between the model theory, proof theory, and the abstract interpreter of this
language. Here, model theory, proof theory, and abstract interpreter refers to the underlying BDI
theory, the formal semantics of the programming language (often specified using a transition se-
mantics, as discussed below), and the implemented interpreter for the language, respectively. Rao
argues that there is a better chance of unifying theory and practice by taking a simple specification
language as the execution model of an agent, and then ascribing mental attitudes to this agent. To
this end, he used the Procedural Reasoning System (PRS) and its more recent incarnation the dis-
tributed Multi-Agent Reasoning System (dMARS) [80] as a starting point for the AgentSpeak(L)
implemented system. To establish the link between agent theories and APLs, it is necessary to
have a way of deriving the formal semantics of program execution from the underlying agent
logic. To do this, Rao first defined program states of an APL using agent configurations. An agent
configuration consists of a sentential description of an agent’s beliefs and her motivational states,
derived from associated components of the underlying agent theory. Intentions in a configuration
is represented procedurally as in PRS. He then defined program execution or agent behavior as
transitions from configuration to configuration. These transitions are guided by a set of transition
rules (A.K.A. proof rules), which specify how an agent configuration and its components may
change as a result of executing an action, and what actions can be executed. AgentSpeak(L) is
based on reactive plan execution architectures, where rather than deliberating on which action to
execute next, the agents utilize the changes in the environment to decide which given hierarchical
plan should be adopted, and how to decompose and execute this hierarchical plan.

An AgentSpeak(L) agent consists of a belief-base, a set of plans, and a set of intentions. When
an agent acquires a new goal, or notices a change in her environment, she may trigger additions
or deletions to her goals or beliefs. These events are referred astriggering events. Agents in
this framework respond to triggering events. Plans in AgentSpeak(L) are rules of the form:(e :
cc ← p). Intuitively, this says that in response to the evente, the agent should adopt the plan-
body/intention thatp, provided that the context conditioncc follows from her belief. The plan-body
can be built using sequences of goals and actions. Goals in AgentSpeak(L) are of two types, namely
achievementgoals, andtestgoals. Achievement goals are an abstraction mechanism, and serve
the same purpose as procedure calls in imperative programming. In other words, the execution
of an achievement goal triggers an event, and as a result, the agent adopts the appropriate plan
as her intention, just as the execution of a procedure in imperative programming amounts to the
execution of the procedure body. These plans may in turn include achievement goals in them, and

3Here, BDI APLs refers to APLs that incorporate concepts such as beliefs, desires, goals, and intentions. Also,
note that the original proposal of Concurrent METATEM, the Golog family, and many other declarative APLs are
tightly coupled to the associated logic/theory. However, most of these languages are notper setypical BDI-languages.
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in that case when executed, they will trigger the adoption of other plans. Thus achievement goals
and plans together provide a mechanism for event-invoked hierarchical decomposition of goals.
AgentSpeak(L) also uses these plans to revise agents’ beliefs and goals by generating primitive
addition/deletion events. Test goals involve testing the belief-base and may be used to compute
variable bindings. Intentions in AgentSpeak(L) are stacks of partially instantiated plans. At any
time, the agent may have multiple intentions. Initially, each of these intention stacks contain only
one element, namely, the plan that was adopted in response to anexternal event(i.e. due to a
change in the external environment). The execution of these intentions may involve executing an
achievement goal, which triggers the adoption of new intentions. In that case, this new intention is
pushed on top of the intention stack that triggered the adoption of this intention.

The overall control flow of the system is determined by the AgentSpeak(L) interpreter, and
goes as follows. The interpreter uses a given selection functionSE to determine which pending
event to process next. Then it computes therelevant plansby checking the plans whose associated
event matches (i.e. can be unified) with this event. From these plans, it then computes the set of
applicable plansby checking whether an instance of the context condition follows from the agent’s
beliefs. Another selection functionSO is used by the interpreter to choose one of the applicable
plans, and this plan is then added to the intention base. The interpreter uses a third selection
function SI to decide which of these intentions should be executed next. As discussed above,
these adopted intentions can in turn post so called internal events. Internal events are processed
similarly to regular or external events. However, rather than adding the selected applicable plan to
the intention base, it is now pushed on top of the intention-stack that posted this event. Only the
plans that are on top of an intention stack are considered for execution, and only one of them are
executed in each cycle.

For instance, suppose that an agent has the following plans in her plan-base:

+!φ1 : true←!ψa; a1; a2,

+!ψa : true← a3; a4.

Here+ and!φ refers to an addition event and an achievement goalφ, respectively. The first plan
says that in response to the event where the agent acquires the goal to achieveφ1, she should
adopt the plan to achieve the goalψa first, and then execute the primitive actiona1 followed by
a2. Similarly, the second plan says that in response to the event where the agent acquires the
goal to achieveψa, she should adopt the plan to execute the primitive actiona3 followed bya4. For
simplicity, we assume that both of these rules have atrue context condition. Now, suppose that the
agent acquires the goal to achieveφ1 through some external event (such as, via arequest action),
and thatSE chooses to process this event next. Since the first rule’s trigger condition matches
(unifies) with this event, the context condition trivially follows, and there is only one applicable
rule (i.e. SO returns this plan), she will adopt this plan as her intention. Thus, a new intention
[+!φ1 : true←!ψa; a1; a2] will be added to her intention base (lets call this intentioni1). Similarly,
each time she acquires an intention due to an external event, a new intention will be added to the
intention-base. Now, suppose thatSI chooses to executei1. Since executing the first action ofi1
involves executing the achievement goalψa, it will generate the event that+!ψa, and this event
will be added to the event queue. In the next cycle, suppose thatSE chooses to process the event
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+!ψa. In response to this event and after unifying the trigger condition and verifying the context
condition, the agent will adopt the intention that[+!ψa : true ← a3; a4], since there is only one
applicable rule. But, since this event was generated due to the execution of another intention,
namelyp1, it will be pushed on top of the stack forp1 rather than being added as a new intention.
Recall that, when deciding on which intention to execute next, only the plans that are on top of
the intention stack are considered. This ensures that the agent will executea3; a4 before executing
a1; a2.

An AgentSpeak(L) agent is specified by a tuple〈E,B, P, I, A, SE , SO, SI〉, whereE is a set of
possible events,B is a set of possible base beliefs (defined using a ground set of atoms),P is a set
of possible plans,I is a set of possible intentions,A is a set of actions (denoting the possible set of
actions that the agent has performed so far), andSE , SO, andSI are the three selection functions.
An AgentSpeak(L) agent can have a number of executions defined in terms of the configurations
reachable from the initial configuration. A BDI configuration is a tuple of〈Ei, Bi, Ii, Ai, i〉, where
Ei ⊆ E,Bi ⊆ B, Ii ⊆ I, Ai ⊆ A, andi is the label of the configuration. Note that, an agent’s
plans are considered to be static, and thus are not included in a configuration. The semantics of
the AgentSpeak(L) programming language is defined using a labeled BDI transition system that
specifies how agents can evolve from one configuration to another. A BDI transition system is a
pair〈Γ,`〉, whereΓ is a set of BDI configurations, and̀is a binary transition relationΓ×Γ defined
using a set of proof (transition) rules. A BDI derivation/execution is defined to be a (possibly
infinite) sequence of BDI configurationsγ0, γ1, · · · , γi, · · · such that for alli, γi ∈ Γ, γ0 is the
initial configuration, and for any consecutive pair of configurations(γj, γj+1), γj ` γj+1. For the
AgentSpeak(L) programming logic, the notion of ‘refutation’ is defined in terms of an intention:
it starts when the agent adopts an intention, and ends when her intention stack becomes empty.
Rao argued that this programming logic can be used to formally prove certain properties about
an agent’s behavior, such as safety and liveness of the agent system. Also, there is an one-to-one
correspondence between the AgentSpeak(L) interpreter and AgentSpeak(L) transition rules.

Since Rao’s original proposal [122], other researchers have proposed various extensions and
implementations of the AgentSpeak(L) language. In [40], d’Inverno and Luck use theZ specifi-
cation language to formally specify a complete abstract interpreter for AgentSpeak(L) similar to
that given to dMARS [39]. In [107], the operational semantics of AgentSpeak(L) is specified us-
ing a more standard Plotkin-style structural approach [118]. The three major implementations of
AgentSpeak(L) include JACK [74], Jason [12, 9], and Jadex [18, 120]. In the following, we briefly
discuss these, and also point out the extensions provided by these implementations.

The Java Agent Compiler and Kernel (JACK) Intelligent AgentsTM framework [74] is a com-
mercial agent-oriented programming tool developed by Agent-Oriented Software Pty. Ltd. Unlike
Jason and Jadex, JACK does not provide a logic-based language to specify agents’ beliefs and
intentions; rather, it uses an extension of Java to implement some features of the underlying logic,
such as logical variables, events, beliefs, and plans. One of the design goals of JACK was to pro-
vide developers with a robust, stable, light-weight product that can be used to develop components
of larger environments, such as legacy software systems. To this end, JACK provides three exten-
sions of Java. It extends the Java syntax to include BDI-related keywords, declaration of attributes,
and statements. It provides a compiler that compiles these BDI syntactic additions into pure Java
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classes that can be used by other ordinary Java code. Finally, it incorporates a set of kernel classes
that provide the required runtime support to the generated code.

From a functionality point of view, JACK incorporates six components, namely, agent, capa-
bility, belief-set, view, event, and plan. The agent construct defines the behavior of an agent by
including the capabilities an agent has, the types of events she responds to, and the plans she uses to
achieve her goals. The capability concept structures the reasoning capabilities of agents into clus-
ters. Capabilities are built up from events, beliefs, plans, Java code, etc. They simplify agent design
by allowing code reuse and encapsulate agent functionality. This allows the agent architect to build
up a library of capabilities over time, and create an agent promptly by simply plugging in the re-
quired capabilities. JACK uses a generic relational model to represent the agents’ beliefs. A belief-
set consists of relations of the following form:relationName(key1, key2, · · · , data1, data2, · · ·).
Each relation can be identified by the relation name and any number of keys. The data fields are
used to encode the attributes of a relation. Elements of a belief-set can be retrieved using unifica-
tion as in Prolog. The view construct is central to JACK’s data modeling capability. It is built up
from multiple belief-sets or arbitrary Java data structures, and allows general purpose queries to be
made about an underlying data model. Events and plans are similar to AgentSpeak(L).

On top of these architecture independent facilities, JACK provides a set of plug-in compo-
nents that address the requirements for specific agent architectures. Currently it supports two such
plug-ins, namely a PRS/dMARS-based BDI interpreter, and a plug-in for building teams of agents,
calledSimpleTeam. The underlying concept behind SimpleTeam is that it allows the programmer
to specify a high-level view of the coordinated behavior of a team, and then map this high-level
view to the individual activities of the participating agents. JACK also include a graphical agent de-
velopment environment, a debugger, and an object modeling toolkit to support object transport and
interaction with existing applications in Java and C++. JACK has been used to develop commercial
applications, such as decision support and defense simulation for analysis applications.

Recently, Bordini and Ḧubner developed a Java-based open source practical interpreter for
AgentSpeak(L) called Jason [12, 9], that incorporates an extension of the AgentSpeak(L) semantics
to support speech-act based inter-agent communication [108]. To allow for both closed-world
and open-world belief-bases, Jason also allows the use of strong negation in beliefs and plans of
agents. Jason also has provision for handling plan failure. This is done by generating a “deletion
of goal” event when some action fails (or when some sub-goal fails as a result of the absence of an
applicable plan for achieving that sub-goal), and then handling that goal deletion event by searching
for an applicable plan in the rule library, eventually executing one of these plans. However, for this
to work properly, the user must define appropriate responses to various plan failures. In case no
such plans are defined, the Jason interpreter just drops the intention altogether. In Jason, it is
possible to design plan failure handling rules in a way so that plan failure is propagated up the
intention stack. To do this, Jason provides some special actions calledinternal actions. Internal
actions only change an agent’s mental states and have no effect on the world. These actions can
be used both in the context and the body of plans. For instance, if the designer under certain
conditions wants to propagate a plan failure up the intention stack, he/she can write a plan failure
handling rule whose context condition encodes these conditions, and whose body has an internal
action that removes the appropriate intentions.
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In [7], Bordini et al. aim to provide a more practical programming language by specifying
various selection functions of AgentSpeak(L). In particular, they provide specifications of relations
between plans and quantitative criteria (such as the quality, duration, and cost of plans, and the
deadlines specified for them) for their execution, and then use efficient decision-theoretic task
scheduling to automatically guide the choices made by an agent’s intention selection function.
The design of the Jason APL allows atomic formulae and plans to haveannotations[179, 108]
which can be used by various user-defined selection functions.4 For instance, annotations within
the belief base can be used to register the source of the associated information, and can later be
utilized by the (user-defined) belief update function. Annotations in action expressions can be
used to implement sophisticated applicable plan selection and efficient decision theoretic intention
selection functions. Another interesting feature of Jason is that it can be easily configured to run
on various hosts. This is done using an agent communication infrastructure called SACI [75].

Another implemented agent programming framework is the Jadex software framework [18,
120]. Jadex is implemented as an agent reasoning layer that sits on top of the middleware agent
infrastructure JADE [6]. The reasoning engine of Jadex is similar to that of AgentSpeak(L). Jadex
utilizes both declarative and procedural approaches to define various components of an agent. It
uses Java to procedurally define plan bodies (i.e. actions), and the XML language to declaratively
define all other mental attitudes. While Jadex provides a semantics for declarative goals (as dis-
cussed in the next section), the current implementation does not utilize these goals. The Jadex
toolkit comes with a graphical debugger and various other tools to help the application developer.
Jadex has been used in various applications such as simulation, scheduling, and mobile computing.

Bordini and Moreira [13] use the transition semantics in [107] to prove various BDI properties
of AgentSpeak(L) agents, including the intention-belief inconsistency principle. There has also
been some work on automatic verification of AgentSpeak(L)-like programs. In [14, 10, 11], Bor-
dini et al. introduce a toolkit called CASP which can be used to translate a simplified version of
AgentSpeak(L) into the input language of existing model checkers for linear temporal logic, such
as SPIN [73] and JPF2 [180].

An Abstract Agent Programming Language (3APL)

Another major PRS-based agent programming language that can be found in the literature is An
Abstract Agent Programming Language (3APL) [70]. Like AgentSpeak(L), 3APL utilizes a proce-
dural notion of goals/intentions, and specifies a static set of rules, now calledPractical Reasoning
rules or PR-rules, which operate on these goals. However, 3APL differs from AgentSpeak(L) in
various ways and we discuss these differences below.

3APL incorporates the notion ofbasic actions, which are used to specify agents’ basic capa-
bilities. These actions are viewed as application dependent mental state transformers in that these
change agents’ beliefs. The specification of belief updates associated with a basic action is for-
mally represented using a partial functionT that returns the result of updating a belief base by
performing an action. Note thatT is a partial function, since the action may not be executable in

4However, these sophisticated selection functions are not yet provided with the current distribution of Jason.
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some belief states. In contrast, recall that in AgentSpeak(L) one uses rules to update beliefs by
generating a primitive addition/deletion event which triggers some update rules (treated like any
other plan).

A 3APL agent consists of a belief-base, a goal-base, and a set of rules. While AgentSpeak(L)
agents respond to events, 3APL agents respond to goals in their evolving goal-base. The concept
of event is missing from 3APL. 3APL rules are triggered by conditions on the goals and belief-
bases, rather than events. If an agent has reacted to some new goal or belief, she should memorize
it so that the relevant rule won’t fire twice. In [69], it has been shown that 3APL can bi-simulate
AgentSpeak(L).5 In response to a goal in the goal-base, a 3APL agent searches for a rule whose
trigger condition can be unified with this goal, and whose context-condition follows from her
beliefs. The agent then replaces the goal in the goal-base with the body of one such rule. Thus, the
agent’s goal-base in 3APL evolves over time and works like the intention-base in AgentSpeak(L).

3APL provides a richer set of rules than AgentSpeak(L). Also, the plan-body of a rule can now
be constructed using various imperative programming constructs, rather than only using sequences
as in AgentSpeak(L). PR-rules can be classified into four types, namely, failure rules, reactive
rules, plan rules, and optimization rules. The roles of these rules are as suggested by their names.
A typical failure or optimization rule is of the formπh ← φ | πb, whereπ (possibly with subscripts)
denotes a plan/program. This says that ifπh is part of the agent’s plan, and she believes thatφ,
then this plan should be replaced byπb. Note that failure rules with empty bodies can be used to
drop a goal (plan). Reactive rules are rules with an empty head (i.e. of the form← φ | π), and
states that whenever the agent believes thatφ, it should adopt the plan/goal thatπ. These rules
are used to create new goals. Finally, a plan rule is of the formG(

−→
t ) ← φ | π, and states that

when the agent believes thatφ, one way of achieving the (atomic) goalG(
−→
t ) is π. In addition to

facilitating planning for simple achievement goals, these rules in some sense provides a mechanism
for revision and monitoring of goals.

Thus, a 3APL agent is a tuple〈Π, σ,Γ〉, whereΠ is a possible goal-base,σ is a possible
belief-base, andΓ is a possible PR-base. The operational semantics of 3APL is provided using a
transition semantics. 3APL provides two sets of transition rules, one for specifying the execution
of individual plans, and another for specifying the execution of an agent. Plan-level execution
rules define what it means to execute a single goal, and include rules for executing basic actions,
test goals, sequential goals, non-deterministic choice, and application of PR-rules. Agent-level
execution rules, which are defined in terms of these plan-level execution rules, specify what it
means for an agent to execute multiple goals in parallel. The overall semantics of 3APL is defined
in terms ofcomputations. A computation is a finite or infinite sequence of mental states such that
the first mental state in this sequence is the initial mental state of the agent, and the successive
mental states can be derived using the agent-level transitions.

Another novel feature of 3APL is that it separates the semantic specifications for the agent lan-
guage, and its control structure, by introducing a distinction between an object-level and meta-level
semantics. The control structure at the meta-level specifies which goals should be executed and

5The underlying idea for this involves the generation of an event-queue from the goal-base, and the creation of an
intention-base from the goal-base and rule-base. However, this technique does not cover the deletion of goal events,
and the addition and deletion of belief events (i.e. it only handles the addition of goal events).
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which rules should be applied next. To this end, 3APL introduces a meta-language that includes
some meta-actions and a meta-level transition system. To determine which goals (rules) should be
executed (applied, respectively) next, the meta-language assumes that there is a fixed user-defined
ordering on goals (rules, respectively). The transitions of the meta-actions are derived in terms of
the object-level transitions. For instance, if there is a rule in the object-level transition system that
says that a goalg is executable, then a meta-level transition rule selectsg for execution provided
thatg is maximal w.r.t. the ordering on the set of all goals. The overall control structure of 3APL
is a specialization of the update-act cycle. In theplanning/application phase, the ordering on rules
and goals is used to determine the strongest applicable reactive, plan, or optimization rule, and
if there is such a rule, it is then applied to the agent’s plan. After this, in thefiltering phase, the
controller uses the ordering on goals to choose a goal, searches for failure rules applicable on that
goal, and appliesall such rules. Finally, in theexecution phase, it executes a single step of the cho-
sen goal, provided that the first action of the chosen goal is executable. While AgentSpeak(L) has
a similar control mechanism provided via the three selection functionsSE , SO, andSI , the major
difference is that (the original proposal of) AgentSpeak(L) [122] does not handle plan failure, and
thus the filtering phase of 3APL is omitted from AgentSpeak(L).

5 Declarative Goals in Agent Programs

As mentioned, an important concept in the context of agent programming is that of declarative
goals. We start our discussion on declarative goals by pointing out the differences in expressiveness
between declarative and procedural goals, and the advantages of incorporating these goals in APLs.

5.1 Advantages of Declarative Goals

Declarative goals in agent programs are necessary for a variety of reasons. The major difference
between declarative and procedural goals lies in the way they express an agent’s degree of commit-
ment towards a goal. Being committed to a procedural goal amounts to nothing more than being
committed to a plan, i.e. to execute a (possibly infinite) sequence of actions that the procedural
goal can be decomposed to. On the other hand, being committed to a declarative goal is much
more expressive, and it amounts to being committed to one of all possible plans that achieve the
goal. Thus, the difference between them can be viewed as commitment towards some means to an
end vs. commitment towards an end. For a static environment, where the agent programmer has a
complete model of the world and knows about all possible exogenous actions in advance, it may
be possible for him/her to specify an extensive set of hierarchical rules that covers all the ways to
achieve some goal (like a policy). However, this may require much effort; also this becomes even
harder when the agent designer only has partial knowledge about the domain, and cannot predict
all possible interruptions (generally a fixed utility function is assumed). Also, from a technical
point of view, procedural goals have limited expressiveness. Procedural goals cannot be combined
using logical operators. For instance, even if the agent programmer specifies two procedures for
achieving two separate goalsP andQ, he/she needs to write a third procedure for the conjunctive
goal(P ∧Q).
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Motivations for declarative goals in agent programs can be roughly classified into two cate-
gories, namely theoretical and practical motivations. From a theoretical point of view, it has been
argued that declarative goals are required in order to bridge the gap between agent theories and
APLs [71, 185, 171]. The reason for this is that in agent theories, goals are declarative concepts,
and thus the incorporation of these goals is viewed as a necessary prerequisite for bridging this
gap. From a practical perspective, various advantages of declarative goals have been pointed out
in the literature. In the following, we discuss these advantages.

One reason for using declarative goals is to decouple plan execution and goal achievement.
A declarative (achievement) goal represents a state that is to be reached. Declarative goals can
be used to decide whether a plan was successful in achieving the associated goal or not. The
successful execution of a plan does not necessarily indicate the successful achievement of a goal.
Also, failure to execute a plan does not mean that the goal can’t be achieved, since there might
be another way of achieving the goal, one that is not described by the procedural goal. For in-
stance, consider the following example of a hungry cat (from [185]). Initially, the cat knows
that some food has been left on the table, and has the goal of reaching the food. If we are
using a procedural representation of goals, one way to define this goal is using the cat’s plan
thatleapOnChair(chair); fromChairJumpToTable(chair, table), i.e. it should first jump on a
chair that is close to the table, and then jump from the chair to the table, where the food is located.
Suppose, with this goal in mind, the cat leaps on to the chair. At this point, a nearby human, realiz-
ing the cat’s intention, moves the chair further away from the table. Thus, since the second action
is no longer executable, the cat’s plan has failed, and since we are using a procedural definition
of goal, the cat’s goal has also failed. Note that, by using only procedural goals,the reason for
performing the planis lost. On the other hand, if we were using a declarative definition of goals,
we can useNextTo(Cat, Food) as the goal. In that case, even though the cat’s plan fails, it can
try to plan again using this goal. Consider another example in the same domain: suppose that the
cat was successful in jumping on to the table. Note that, this does not necessarily mean that it
was successful in reaching food, since somebody might have removed all the food from the table.
These examples illustrate that the success and failure of a plan do not tell us much about the suc-
cess or failure of the associated goal. Once again, this is especially true in dynamic environments
where unexpected events may occur, and it is impossible for the designer to predict all possible
interruptions caused by exogenous actions.

Declarative goals can also be used to detect fortuitous achievement of goals. For instance,
suppose that some food was left on the chair. So after leaping onto the chair, the cat can detect this,
and since its goal to reach the food has been achieved, it can drop the plan to jump to the table. Now,
consider why an APL that does not incorporate declarative goals, such as 3APL, cannot detect this.
Recall that in 3APL, the agent programmer specifies rules that can be triggered due to the presence
of procedural goals in the goal-base. Then the procedural goal is decomposed to/replaced with
the rule-body, and eventually executed to achieve the goal. Suppose that the programmer only has
partial knowledge about the cat’s environment, and wrote the following rule that can be used to
achieve the cat’s goal:

goNextToFood(Cat)← true | leapOnChair(Chair); fromChairJumpToTable(Chair, Table).
Assume that the programmer does not know that unusual situations such as one where food is left
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on the chair can occur. In response to the procedural goalgoNextToFood(Cat) in the goal-base,
the cat will adopt the planleapOnChair(Chair); fromChairJumpToTable(Chair, Table). Af-
ter executing the first action, the cat is on the chair. However, although food is at its current loca-
tion, the 3APL-cat not knowing that the state that needs to be reached (i.e.NextTo(Cat, Food))
has been reached, will not drop the goal of jumping to the table. Thus, if goals are defined proce-
durally, the cat still has the plan to jump on the table even though its goal has been satisfied. Note
that, while a 3APL PR-rule of the form(δ ← φ | nil), which says that if the agent believes thatφ
and has the plan thatδ, then she should give up this plan, can be used to detect this, it involves the
use of a declarative goalφ in the context condition. Also, in order to do this, the agent programmer
needs to specify an extensive set of such rules. The reason for this is that an exogenous action
could occur at any stage during the execution of the plan, and thus the dropping of the current plan
due to early achievement of the associated goal should be considered for all possible configura-
tions of the plan. For instance, even for a simple plana1; a2; a3 that includes three primitive actions
in sequence, the programmer needs to specify the three following rules:(a1; a2; a3 ← φ | nil),
(a2; a3 ← φ | nil), and(a3 ← φ | nil).

Another important motivation for using declarative goals is communication. While an agent
can delegate a procedural goal to another agent, she is required to plan for the goal before she
can delegate it. Moreover, the requester may not know how to achieve the goal. Thus the use
of declarative goals allows distribution of both computation and knowledge, in the sense that the
requesting agent need not plan for all of her goals. Declarative goals are also necessary for reasoned
responses to communication. For instance, to determine if an agent should adopt a request to
achieve a goal, she must know whether this requested goal conflicts with her own goals. Moreover,
even if this requested goal conflicts with one of her plans, she (being a very helpful agent) might
still decide to adopt it provided that it does not conflict with the associated declarative goal.

Declarative goals are essential for rational behavior. In addition to allowing an agent to plan
from scratch when all her plans in the plan library have failed, declarative goals facilitate reasoning
about interferences among goals. An agent may have two conflicting goals in the goal base. To
decide which goal to achieve, it can do some reasoning with these declarative goals to find out
which of these is more important to the agent.

5.2 Issues in Agent Programming Languages with Declarative Goals

As mentioned earlier, recently there has been some work on APLs with declarative goals. Before
going over these frameworks, we briefly discuss the common issues in APLs with declarative goals.

One issue in APLs with declarative goals concerns the type of goals handled by an APL. Most
APLs use achievement goals as the only type of goals. Achievement goals refer to a goal that needs
to be achieved once. Some APLs also allow the use of other types of goals, e.g. maintenance goals
and perform goals (i.e. a goal to execute some actions). Some also allow the use of inconsistent
goal bases (e.g. GOAL [71], Dribble [174]). They assume that two inconsistent achievement
goals need to be achieved at different times. Thus, although in these frameworks the goal-base
can be inconsistent, the adopted declarative goals (i.e. intentions) must be consistent with each-
other. Note that, the need for such inconsistent goal-bases arises from the fact that these APLs take
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goals to be state formulae, rather than general temporal formulae. For instance, if an agent has
two inconsistent achievement goalsφ and¬φ, the agent’s goal state could be represented by the
temporal formula3φ ∧ 3¬φ, i.e. the goal to eventually achieveφ and to eventually achieve¬φ,
which is consistent. One exception to this is [135], that defines a goal as a path formula; however it
does not deal with the dynamics of declarative goals. Some frameworks model goals with different
priorities (e.g. [135]).

Another issue concerns the representation of declarative goals and intentions. In other words,
how can one incorporate these goals as a part of the programming language, and what features of
these goals are included in the framework. Most APLs keep declarative goals and procedural plans
in two separate databases. They then use these goals to trigger some AgentSpeak(L) or 3APL-like
rules. Other frameworks treat declarative goals as individual and active components that manage
their own state and post events as required (e.g. Jadex [19]). These events are then handled by
AgentSpeak(L)-like agents. These frameworks also define the life-cycle of these goals explicitly.

A third issue concerns the consistency of intentions. Two intended goals can be conflicting in
various ways, such as:

• A goal can be directly inconsistent with another goal. In that case, all the plans for achieving
that goal conflicts with all of the plans to achieve the other goal.

• A goal can be inconsistent with some of the plans to achieve another goal, and not others.
In that case, any plan to achieve the first goal is in conflict with some of the plans to achieve
the second.

• Two goals may be mutually consistent. However, it may be the case that some of the plans
to achieve one goal are inconsistent with some of the plans to achieve the other.

Thus, while selecting a plan to achieve a goal, the agent must check that only consistent plans
are selected. This ensures that the agent will not commit to and execute a plan that makes one of
her goals impossible to achieve. Unfortunately, in most APLs with declarative goals, there is no
requirement that a declarative goal be consistent with a procedural goal, i.e. plan. The fact that
these APLs maintain intended goals and plans in two separate databases makes it even harder to
ensure this consistency. In fact, to the best of our knowledge, no APL in the literature handles
these issues.

A fourth issue involves the representation of means-ends relationship between goals and sub-
goals or plans adopted to achieve these goals, i.e. how these frameworks capture the dependency
between sub-goals and their parent-goals. Recall that, PRS-based agents adopt plans in response
to procedural goals. Similarly, in PRS-based declarative goal oriented APLs, agents adopt plans
in response to declarative goals in the goal-base. These plans may in turn involve the achievement
of other declarative (sub)goals that may trigger the adoption of other plans. Note that, the only
reason the agent intends any of these sub-goals and plans is due to her commitment towards the
parent goal. In other words, the agent’s commitments towards these sub-goals can be viewed
as conditional intentions, (implicitly) conditioned on intending the super-goal. Thus, if in any
situation the agent drops the super-goal, she should also drop all these sub-goals. Most APLs do
not model this dependency, and thus fail to give up sub-goals or plans when the associated goal is
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dropped. The ones that do, share a similar underlying technique: they introduce some construct
in the language that captures the fact that a sub-goal was adopted to achieve a goal (and a sub-
sub-goal was adopted to achieve the sub-goal, etc.). Then, when the goal is dropped, they use
this information to drop all such sub-goals (and the sub-sub-goals etc., if any). For instance, GD-
3APL [34] attaches a declarative goal with each intended plan, and this information can be used
to abandon plans when necessary. However, no mechanism is provided to use this information to
effect the appropriate goal contraction. CAN [185] includes a procedural construct that includes
both the associated declarative goal and its failure condition with an adopted plan.

Another issue concerns how these declarative goals are used by these frameworks, i.e. which
of the aforementioned advantages of declarative goals are realized. As mentioned earlier, the liter-
ature identifies three major uses of declarative goals: selecting plans using these goals, decoupling
plan success/failure from goal success/failure, and planning for goals on-the-fly.

In the following, we discuss in more detail various declarative goal-oriented APLs found in the
literature.

5.3 Declarative Goal Oriented Languages

GOAL

The programming language Goal Oriented Agent Language (GOAL) [71] can be identified as one
of the firsts to attempt to incorporate declarative goals in agent programming languages. Like
3APL, GOAL integrates theory and programming in a single framework by providing both an
agent programming framework and a programming logic, the later derived from the operational
semantics of the former. Thus statements proven in the logic concern properties of agents specified
in the programming language. Unfortunately, GOAL does not take most of the advantages of
declarative goals (as discussed in Section 5.1) into account, and only uses declarative goals to
select plans.

A GOAL agent keeps a propositional belief-base and a declarative goal-base. To consider
the possibility of mutually inconsistent goals (to be achieved at different time steps), the goal-
base is allowed to be inconsistent. However, individual goals need to be consistent, and believed
propositions cannot be in the goal-base. An agent’s goals are then defined to be the formulae that
are entailed by an entry in the goal-base, rather than those that are entailed by the entire goal-base.
The reason for doing this is that, since the agent can have mutually inconsistent goals, defining
goals using the later can trivialize the logic. Thus agents’ goals are modeled using a weak logic
that does not include the K axiom, and as a result, goals do not distribute over implication, and
two goals cannot be conjoined to form another goal. Note that, this formalization of goals is very
“syntactic” and can only handle achievement goals.

A central idea in GOAL is that ofconditional actions. These actions are used to help agents
decide what actions to perform next, and thus can be viewed as very simple action selection rules.
Intuitively, a conditional actionφ → do(a) states that the agent may consider executing the basic
actiona if the mental state conditionφ holds. Basic actions are defined similarly as in 3APL, i.e.
using a (unspecified) partial function on the belief-base. Also, two special actionsadopt anddrop
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are introduced to respectively adopt a new goal, or drop some old goals. The semantics ofadopt,
drop, and conditional actions are specified in terms of the semantics of basic actions. GOAL adopts
a simple blind commitment strategy [26]. The authors argue that this is just a default strategy, and
that conditional actions (with adrop in the consequence) can be used to override this commitment
strategy. However, it is not obvious how any other strategies can be adopted. E.g., say one wants
to specify a commitment strategy that enables an agent to give up her goals when they become
impossible to achieve. Without a temporal component built into the goal semantics, this is clearly
impossible to express.

A GOAL agent is thus defined to be a tuple〈Π,Σ0,Γ0〉 consisting of a set of conditional
actionsΠ and an initial mental state〈Σ0,Γ0〉, whereΣ0 is the initial belief-base andΓ0 is the
initial goal-base. While AgentSpeak(L) and 3APL agents search for applicable rules and execute
intended actions at every step, a GOAL agent searches for an appropriate conditional action. Since
a conditional action associates a basic (primitive) action with a mental condition, the deliberation
mechanism of GOAL is indeed a very primitive one. The overall operational semantics of GOAL
agents is given usingtraces, which are infinite sequences of consecutive mental states interleaved
with scheduled conditional actions, where the first state of each of the traces is the agent’s initial
mental state.

The specification for basic actions provides the basis for the programming logic of GOAL.
Actions are specified using Hoare triples of the form{φ} a {ψ}, whereφ andψ are mental state
formulae. Hoare triples for conditional actions are interpreted relative to the set of traces associated
with the GOAL agent, and a time-point in these traces. These user-defined Hoare triples are used to
specify preconditions, post-conditions, and frame conditions of actions. On top of the Hoare triples
for specifying actions, a temporal logic is defined for specifying properties of GOAL agents. One
can then express variouslivenessandsafetyproperties of an agentA by considering the temporal
formulae that are valid with respect to the set of tracesSA associated withA. It can be shown
that such properties are equivalent to a set of Hoare triples. Thus the properties can be proven by
showing that the Hoare triples are entailed by the specifications of the actions that appear in the
program. Thus it is very straightforward to verify the properties of agents in GOAL.

Note that, a rich notion of action structure is missing in the GOAL programming language. All
one has is simple condition-action rules. Moreover, the only deliberation and planning mechanism
in GOAL is provided via conditional actions that allow the agents to select primitive actions based
on their mental states.

Dribble

Unlike GOAL, Dribble [174] incorporates a procedural motivation component (i.e. plans) in the
language. In particular, Dribble takes 3APL’s [70] mechanism forcreating and modifying plans
during the execution of the agents, and GOAL’s facility forusing declarative goals for selecting
actionsinto account, and combines these in a single framework. Thus, Dribble uses declarative
goals to allow agents to select and modify plans when required. Moreover, as in GOAL, Dribble
also includes a dynamic logic on top of its operational semantics to specify and verify properties
of agents.
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In addition to beliefs and declarative goals, the mental state of a Dribble agent also includes a
plan component. Only a single plan can be handled at any one time (no concurrency). The plan
of an agent can be changed through application of rules as well as execution of executable actions.
Dribble defines two types of rules, namelyGoal rules, andPractical Reasoning(PR) rules. A goal
rule g is a pairϕ → π such thatϕ is a propositional formula involving beliefs and goals, andπ is
a plan. Intuitively a goal rule says that the planπ can be adopted if the mental conditionϕ holds.
Goal rules are used toselectplans for the first time (i.e. when the plan component of the agent is
an empty plan). The condition inϕ specifies what the planπ is good for. On the other hand, PR
rules are similar to rules in 3APL, and can be used to create plans (possibly from abstract plans),
to modify plans, and to model reactive behavior (using rules with empty heads).

Programming a Dribble agent amounts to specifying its initial beliefs and goals and writing
sets of goal rules and PR rules. Formally, a Dribble agent is a triple〈〈σ0, γ0, E〉,Γ,∆〉, where
〈σ0, γ0, E〉 is the initial mental state with initial belief-baseσ0, initial goal-baseγ0, and an empty
planE, and whereΓ is a set of goal rules and∆ is a set of PR rules. Note that the initial plan of
a Dribble agent is the empty planE. The reason for this is that a Dribble agent should be able to
select a plan (using rules) based on its declarative goal specification, and giving the agent a plan at
start up is counter-intuitive in this respect. The operational semantics of the Dribble programming
language is specified using a transition system. A computation runCR(s0) is a finite or infinite
sequences0, · · · , sn or s0, · · ·, wheresi ∈ 〈σi, γi, πi〉 are mental states (whereπi denotes the plan
of the agent), and for alli there exists a transition fromsi−1 to si as defined in the transition system
for the Dribble agent. The meaning of a Dribble agent〈〈σ0, γ0, E〉,Γ,∆〉 is then defined to be
the set of its computation runsCR(〈σ0, γ0, E〉). Thus the first state of the computation runs is the
initial mental state of the Dribble agent.

As mentioned, Dribble is an expressive language that improves on GOAL by adding complex
plans and rules to manipulate goals. Nevertheless, it has some limitations. Although the authors
argue that goal rules and PR rules together can be used as a regression planning mechanism, this
is misleading, since no lookahead is incorporated. Also, Dribble does not support exogenous
actions; e.g., suppose that the agent hasδ as a plan, and some exogenous action happens, which
makes the preconditions ofδ false forever. While a PR rule with an empty body can be used drop
this plan, without a temporal component built into the language, it is impossible to detect that the
plan has become forever impossible to execute. Note that, such a mechanism is important if one
wants to ensure that the agents do not intend unachievable goals. Moreover, Dribble only allows
sequential plan adoption and execution. In other words, agents cannot concurrently commit to
two different plans. Finally, one major problem in Dribble is that it uses distinct databases for
two types of intentions, i.e. declarative goals and procedural plans, and there is no mechanism
for ensuring consistency between these two. Put otherwise, Dribble semantics allows agents with
an inconsistent intention-base, e.g. an agent can have a declarative goalφ and a plan that makes
φ unachievable. While other programming languages address some of the problems mentioned
earlier, to the best of our knowledge, no BDI agent programming language with both declarative
and procedural goals offer a solution to this problem.
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Goal Directed 3APL (GD-3APL)

In [34], Dastani et al. present an extension of 3APL [70], called Goal Directed 3APL (GD-3APL),
that incorporates both declarative and procedural goals into a single framework. GD-3APL agents
are similar to Dribble agents, in that they have beliefs, goals, plans, and rules. The overall se-
mantics is also very similar. The major difference is that GD-3APL uses a more expressive first
order language, and that it defines an additional rule type to allow the agents to reason about and
modify their declarative goals. GD-3APL provides three types of rules:Goal Revision(GR) rules,
Plan Selection(PS) rules, andPlan Revision(PR) rules. GR rules can be used to revise goals, and
variants of GR-rules can be used to generate, extend, or drop goals. In some sense, these rules
allow agents to reason about their declarative goals. PS rules are like Dribble’s Goal rules and PR
rules are similar to practical reasoning rules in Dribble and 3APL.

Another advantage of GD-3APL is that an agent’s plans/procedural intentions are modeled
using a〈plan-body, goal〉 pair, where the second element is added to record the goal for which the
plan was selected. So if the goal gets dropped for some reason or revised by a GR rule before the
agent has finished executing this plan, this information is used to also drop the plan. This facilitates
decoupling of plan success from goal success. However, exactly how this information can be
utilized is left open in the framework. Finally, GD-3APL agents can concurrently handle several
goals, by committing to and executing multiple plans, unlike Dribble agents. Note that, GD-
3APL does not provide a logic to verify properties of agent programs. Also, an offline lookahead
mechanism for planning is still missing.

A BDI Extension of the Golog-Family

One problem with all of the above frameworks is that although they may support declarative goals,
they do not support planning in the sense that there is no lookahead mechanism built into these
frameworks. Also, most of these frameworks are not grounded on a formal theory of action, and
thus only allow limited reasoning. The agent programming language proposed by Sardiña and
Shapiro [135] (let us call it S&S) combines two existing approaches to agent theory (viz. the
work in [144]) and to agent programming (namely, IndiGolog) to provide an expressive BDI-
agent programming language that supports planning/lookahead. S&S is built on top of a situation
calculus-based action theory.

In S&S, an agent program consists of a high-level procedural specification of the agent’s be-
havior (i.e. a single non-deterministic program), a declarative specification of the agent’s mental
states, and an underlying action theory. The interpreter’s job is to search for arational execution of
the given program (i.e., one that satisfies the agent’s goals, as discussed below). An agent’s mental
state consists of her beliefs and her goals. S&S incorporates a KD45 model of knowledge and a KD
model of goals, both specified in terms of accessibility relations over possible worlds. The model
of goals has a temporal component associated with it, and thus it can handle both achievement and
maintenance goals. Also, S&S supports prioritized goals through prioritized accessibility relations
and all goals are not assumed to be equally important.(φ1 > φ2 > · · · > φn)s is used to represent
that the agent in situations hasn prioritized goals, whereφi denotes all the goals of the agent
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at leveli, φ1 being the highest priority goal. Moreover, S&S’s language is rich enough to allow
queries of whether the agent is able to achieve certain goals in a given situation.

To help the agents decide which plans are preferable, S&S defines an ordering on plans/strategies,
which are modeled using action selection functions (as discussed in Section 2.4). It then defines a
rational course of action to be a strategy that the agentknows-how(i.e. is able) to execute, and she
knows is one of the most preferred strategies w.r.t. her prioritized declarative goals.

As discussed above, most reactive plan execution languages that incorporate declarative goals
include a pre-compiled plan library. The agents use their declarative goals as triggers to select plans
from this library, and hierarchically decompose and execute these plans. Unlike these APLs, S&S
uses an IndiGolog-style controller. Recall that, in IndiGolog, the programmer’s job is to model
the domain using the appropriate axioms, and specify the agent’s behavior using a high-level non-
deterministic program. Given a starting situation, the IndiGolog interpreter tries to (incrementally)
find an execution of this non-deterministic program. S&S uses a similar control strategy. However,
the S&S interpreter also needs to take the agent’s declarative goals into account.

To this end, the rational-search operator∆rat(δ : XG) was introduced in S&S. The idea of
this construct is that, given a non-deterministic IndiGolog programδ and a set of prioritized goals
XG = φ1 > φ2 > · · · > φn, the ∆rat(δ : XG) operator will produce a simple and ready to
execute terminating deterministic plan (i.e. sequence of actions or conditional plans)δ′, whose
execution respects both the given programδ, in the sense thatδ′ is an instantiation ofδ, and the
set of declarative goals, in that it achieves as many highest priority goals as possible (i.e. it is a
rational course of action w.r.t. the given set of declarative goals). S&S assumes that the given
program has the highest priority, and thus any declarative goals that conflict with this program will
not be achieved. This operator provides a mechanism for combining a procedural specification of
behavior and a set of prioritized declarative goals, and is meant to be used by the agent programmer
to specify when lookahead is necessary.

To the best of our knowledge, S&S is one of the only two BDI agent programming frame-
works6 that offers deliberation with lookahead, and thus supports planning. Thus, S&S combines
a procedural representation of behavior and prioritized declarative goals in an expressive language
that is able to model ability and know-how, the temporal aspects of goals and actions, and the rel-
ative importance of goals. However, this expressiveness of S&S comes at the cost of complexity –
determining whether a plan is rational or not involves searching the plan space defined by the given
high-level non-deterministic program, and comparing all the strategies that can be induced by this
program. This is clearly problematic in a dynamic environment. In fact it is unknown whether
there exists a practical procedure to implement this mechanism. Also, it can be argued that agents
in S&S are not so goal-directed, since their overall behavior is controlled by the given program.

CAN and CAN-PLAN

As mentioned earlier, another agent programming language that supports lookahead/planning is
CAN-PLAN [134], which is an extension of the Conceptual Agent Notation language (CAN)

6Another such language, as discussed below, is CAN-PLAN.
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[185]. In contrast to the situation calculus based S&S, CAN-PLAN is a PRS-based language.
The underlying basic infrastructure of CAN is similar to that of AgentSpeak(L). Agents in

CAN have a first-order belief-base, a set of plans, and a first-order intention-base, and thus an
agent configuration is modeled as a tuple〈B,A,Γ〉, whereB is a possible belief-base,A denotes
the actions performed by the agent so far, andΓ represents a possible intention-base. Plan-bodies
or programs in CAN can be constructed from primitive actions, operations to add/delete beliefs,
tests for conditions, events or achievement goals!e, sequences, parallelism, the operatorI{· : ·}J
which is used to represent a set of guarded alternatives as discussed below, the choice operator dual
of sequencingP1 � P2 which executesP1 and then executesP2 only if P1 fails, and the operator
Goal(φs, P, φf ) (discussed later). CAN uses a set of transition rules to specify the evolution of an
agent. Agents in this language respond to events. In response to an evente, a CAN agent uses
the plan-libraryΠ with rules of the form(e′ : φi ← Pi) to collect all context condition-plan-body
pairsφi : Pi whose evente′ can be unified withe, places these pairs inside the special construct
I{}J to form the planI1 = Iφ1 : P1, · · ·φn : PnJ,7 and insertsI1 into the intention-base.
Another transition rule is then used to (non-deterministically) choose from one of the plan-bodies
in I1 whose context condition holds. Suppose that the context conditionφ1 holds, and the agent
chooses to tryP1 first. In that case,I1 will be replaced with the new intentionP1 � I2, where
I2 = I1 − {φ1 : P1}, i.e. with the plan thatP1 should be tried first, and if the execution ofP1 fails
for some reason, the intentionI2 (which is similar toI1 but now does not include the pairφ1 : P1)
will be attempted. Thus, unlike AgentSpeak(L) and similarly to Jason and 3APL, CAN provides a
mechanism for handling failure of plans. However, this is very different from 3APL failure rules.

In addition to this basic infrastructure, CAN provides a mechanism for representing both
declarative and procedural goals in a uniform manner. For this purpose, it uses the procedural
constructGoal(ψs, P, ψf ), which can be read as: the agent should achieve the declarative goalψs

using the set of proceduresP (which is of the formI1 discussed above), failing ifψf becomes true.
CAN provides a set of transition rules forGoal(ψs, P, ψf ) defined in terms of the above rules. The
execution of aGoal(ψs, P, ψf ) construct is specified such that at every step, it only updates the
associatedP (by executing a step ofP ), giving up only when the goalψs is achieved, or when it
is no longer possible (i.e. whenψf holds). Using these rules, CAN guarantees that the execution
of Goal(ψs, P, ψf ) will obey some of the properties of declarative goals discussed in Section 5.1.
For example, the explicitly specified success condition can be used by the semantic specification
to detect early/fortuitous achievement of goals (i.e. achievement of goals before the associated
plan has been fully executed) and drop the associated goal and plan. Also, it can be used decouple
successful execution of plans from successful achievement of goals. This is done by checking
whether the success conditionφs holds after the execution of a plan fromP ; if the plan has been
successfully executed, but the goal has not been achieved yet, the CAN agent will try another plan
from P . If the goal remains false after all plans inP have been executed, the CAN agent will
retry the plans inP . This mechanism is provided by replacing the intentionGoal(ψs, P, ψf ) with
Goal(ψs, P �P, ψf ) at the beginning of the execution, and wheneverP is not of the formP1�P2

(i.e. after it has already triedP but failed to achieve the associated goal). Similarly, the failure

7Note that we simplified the notation a bit by getting rid of the variable bindings.

44



condition is specified to decouple plan failure from goal failure, and to remove any committed-to
plans when the associated goal has failed (or becomes impossible). This special construct is meant
to appear in the plan body part of rules specified by the agent programmer. Thus, this mechanism
of CAN can be used for both failure handling and monitoring of declarative goals.

CAN-PLAN [134] extends CAN by including a lookahead mechanism to support offline plan-
ning. To perform offline planning, one needs an action theory. To this end, agents in CAN-PLAN
are equipped with a simple STRIPS-like action description libraryΛ that contains rules of the form
a : ψa ← Φ−

a ; Φ+
a , one for each actiona in the domain. Hereψa corresponds to the preconditions

of a andΦ+
a andΦ−

a denotes the add and delete list of atoms, respectively. CAN-PLAN incorpo-
rates the additionalPlan(P ) operator in the plan language. This operator searches for a complete
hierarchical decomposition ofP before executing a single step in a similar way to an HTN plan-
ner. It is very similar to the IndiGologΣ search operator, in thatPlan(P ) can evolve toPlan(P ′),
provided thatP can evolve toP ′ and can reach a final configuration in a finite number of steps.
In CAN-PLAN, the agent programmer can mix theGoal() andPlan() operators in various ways
to produce different types of failure handling and lookahead. For example, consider the construct
Goal(φs, P lan(Goal(φs, P, φf )), φf );

• The externalGoal() operator ensures that the agent will use the programP ∗ =
Plan(Goal(φs, P, φf )) towards the eventual satisfaction of the goalφs. The agent is com-
mitted toφs, in thatP ∗ is reinstantiated and retried untilφs holds. Also, It is not necessary to
completely execute the plan returned by the planner (i.e.P ∗), e.g. ifφs is satisfied beforeP ∗

has been fully executed. Finally, the goalφs is dropped when failure conditionφf becomes
true.

• The Plan() operator guarantees that the programP ∗ has a terminating execution. Note
that, an exogenous action might render this program non-executable; however, as mentioned
above, in that case the externalGoal() operator will call the planner again.

• The internalGoal() operator ensures that the agent will use the programP towards the
eventual satisfaction of the goalφs. Also, at plan-time,P is solved up to the point where the
goal is met.

It can be shown that for a restricted class of CAN-PLAN agents,8 the Plan() operator indeed
corresponds to a HTN-planner in the sense that for an agent, there is an execution ofPlan(P ) in
CAN-PLAN, if and only if there is a solution to the corresponding planning problem in a HTN-
planner. Also, any execution ofPlan(P ) corresponds to a HTN-plan solution.

Thus, CAN-PLAN provides a mechanism for on demand lookahead planning to the agent pro-
grammer. While thePlan() operator itself does not consider potential interaction with exogenous
actions, in some senseGoal() andPlan() can be mixed to handle external interferences. For
instance,Goal(φs, P lan(P ), φf ) will re-plan if the initial plan obtained fails due to an external in-
terference. Nevertheless, CAN-PLAN’s lookahead feature is local in the sense that it does not take
into account other concurrent intentions. In other words, the result of planning may include actions

8This constraint restricts the belief-base language of an CAN-PLAN agent to that of an HTN planner.
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that are in conflict with other goals of the agent. Also, while CAN-PLAN uses an action theory for
deliberation, it does not utilize this for updating the agent’s state, which is a bit inconsistent.

Jadex

Following [33, 167, 89], Braubach et al. [19] propose to treat declarative goals as first class objects
in the Jadex framework. Declarative goals in Jadex are individual entities that manage their own
state (in contrast to being managed by the agent), and post appropriate events as necessary. Recall
that Jadex agents are PRS based agents that have a built-in plan library, and that respond to events.
Thus, to handle these declarative goals, all an agent has to do is to listen to and respond to these
events posted by the goal objects by adopting, executing, or dropping the appropriate plan. Note
that, the current implementation of Jadex [18] does not utilize these declarative goals, and thus it
only provides a specification of an extended version of the language.

Braubach et al. studied various goal oriented agent programming languages, architectures, and
methodologies, and identified four different types of goals: achievement goals, maintenance goals,
perform goals, and query goals. Here, a perform goal specifies some activities to be done, and
hence the success of the perform goal depends only on the fact that the activity was performed.
They argued that perform goals are different from achievement or maintenance goals, since they do
not require any state to be achieved or maintained. Query goals serve the purpose of information
acquisition. If there is enough information in the agent’s knowledge-base to answer a query goal,
it succeeds with that answer; otherwise it becomes the achievement goal of collecting enough
information to answer that query.

By analyzing these goals, Braubach et al. identified various states that a goal can be in its
lifecycle. The basic three states of a generic goal arenew, adopted,andfinished. An adopted
goal can in turn be in various sub-states, such asoption, active,andsuspended. Adopting a goal
makes it desirable to achieve it and thus it can be seen as an option that the agent can possibly
pursue when the actual circumstances allow. To actively pursue a goal, the agent’s deliberation
mechanism must activate the goal to initiate goal processing. Active goals can be later deactivated
by the deliberation mechanism, and saved as an option. For instance, an active goal needs to be
deactivated when it conflicts with another higher priority goal. On the other hand, an active or
option goal can be suspended when its context becomes invalid. For example, a robot that has a
goal of guarding some property during the night can suspend this goal in the day. Unlike options,
suspended goals are not fed to the deliberator when it is deciding on what goal to actively pursue
next. When the context becomes valid again, the suspended goal is added as an option.

For each of the four goal types, Jadex specifies a refinement of the active state by considering
various attributes and the specific life cycle of these goals. For instance, an achievement goal has
three sub states of the active state, namelyin process, succeeded, andfailed. It also consists of two
conditions, atarget condition, and afailure condition. The target condition specifies the world state
that the achievement goal wants to bring about, and the failure condition specifies the conditions
under which the goal should be dropped and considered to have failed. An active achievement
goal will first check the target condition for fulfillment of the goal, and if the condition is met, the
goal can be moved to the succeeded state and eventually dropped. If both the target and the failure
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conditions are false, the active achievement goal can post a goal addition event to the event queue.
In response to this event, the agent will eventually adopt an applicable plan, and execute this plan
to achieve the goal. At any stage of this execution, if the target or failure conditions are met, the
goal will move to the succeeded or failed state, and post a drop event. To handle this event, the
agent needs to drop this plan (along with all sub-goals adopted for this goal). Braubach et al.’s
proposal also specifies how the other three types of goals are processed (see [19] for details).

Thus, like CAN, Jadex allows full decoupling of goals and plans by monitoring declarative
goals. In other words, this framework provides a way to decouple both goal-plan failure and suc-
cess. Moreover, as in CAN, it provides a mechanism for detecting fortuitous or early achievement
of goals. Unfortunately, Jadex does not provide a formal semantics for these goals and their dy-
namics. While it allows the use of incompatible goals, it does not deal with the relationships
between these incompatible goals. For instance, it does not require a plan adopted to process a
goal to be compatible with another adopted goal.

6 Open Problems and Research Directions

In this document, we reviewed research concerning logical formulation of declarative goals in
agent programming languages. Many of the existing agent programming languages do not incor-
porate declarative goals. Moreover, the ones that do, often do not utilize many of the advantages
of declarative goals, as discussed above. A few existing frameworks that model planning either are
intractable, or only consider one goal at a time. In other words, while planning, they ignore other
concurrent goals of the agent, and as a consequence, the output of planning may not be consistent
with other adopted goals. As we have seen in Section 5.1, there is no doubt that declarative goals
are more expressive than procedural ones. However, an agent programming framework that incor-
porates most of the advantages of declarative goals has yet to be developed. In this section, we
suggest some possible extensions to the existing frameworks, which might advance this objective:

• Developing a uniform formalization of intended goals and plans in an expressive first order
language like the situation calculus – adopted declarative goals should be consistent with
adopted plans. An agent’s intentions should be side-effect free, introspectable, etc. (as dis-
cussed in Section 2), and expressive enough to capture conditional and prioritized intentions,
as well as temporal intentions (e.g. maintenance goals).

• Modeling dynamics of intention – in addition to modeling intentions, clearly the issue of
intention/goal dynamics needs to be handled. It should satisfy the properties of intentions
given by agent theorists, such as in [26]. For instance, it should always maintain the consis-
tency of the intention-base. Also, intentions should be achievable by the agent, thus already
achieved and unachievable intentions should be dropped. It should handle general forms of
contraction and revision of intentions (i.e. similar to the ones that can be done in belief-
revision frameworks [61]).

• Managing the means-ends relationship between goals and sub-goals – sophisticated mecha-
nisms are required to capture the dependencies between declarative goals and the sub-goals
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and plans adopted to achieve those goals. For instance, sub-goals and plans (and possibly
sub-sub-goals, etc.) adopted to bring about a goal should be dropped when the associated
goal fails or is achieved.

• Formalizing more realistic lookahead/planning – planning should account for other concur-
rent goals, as discussed in Section 5.3. This is required for both maintaining the consistency
of the intention-base (in the sense that generated plans should not be contradictory to adopted
goals and plans), and ensuring that the agent does not intentionally do anything that makes
one of her intentions impossible to achieve.

• Achieving a balance between deliberation and execution to cope with dynamic worlds –
APLs should allow both reactive plan execution and deliberation. While reactive execu-
tion of plans speeds up the agent’s operations considerably, deliberation is also necessary to
handle unanticipated situations. Moreover, a reasonable model for determining how much
lookahead is necessary, formalizing whether employing deliberation has good pay off in a
given situation, and capturing how quickly the agent has to act to achieve a goal etc. needs
to be developed. Note that, these issues are related to the resource-boundedness of the agent
(as discussed at the beginning of Section 3).

• Developing representations of (incomplete) knowledge, and nested beliefs and goals, i.e. an
agent’s beliefs about others’ beliefs and goals that can be reasoned with efficiently – this
is required for dealing with incompletely known environments when multiple agents are
involved.

Additional issues may arise when developing a unified agent programming framework that deals
with many of the above issues. For example, there is a direct tradeoff between expressiveness and
tractability in these languages, and thus an efficient APL is more likely to be not so expressive, and
vice versa.

In particular, S&S’s framework discussed in Section 5.3 is a unique framework (that is built
on top of a fully specified formal theory of action, unlike most other APLs) that can be used as a
starting point. The following is a list of possible extensions to this particular framework:

1. One extension involves modifying the execution style, and the representation of declarative
goals and procedural goals or plans. Recall that, in this framework, the programmer speci-
fies, among other things, a single non-deterministic program and an ordered set of declarative
goals. The interpreter’s job is to search for an execution of the program. If the programmer
requires lookahead, he/she can utilize the on-demand rational search operator. In that case,
the interpreter will also ensure that the planned program/sub-program satisfies as many of
the highest priority goals of the agent as possible. As discussed in Section 5.3, it can be
argued that this style of program execution does not really model goal-directed behavior.
The reason for this is that in this framework, an agent’s goals do not determine what plans
she should execute; rather, the program (which is assumed to have the highest priority) is in
control. It would be thus interesting to modify this framework to model a more goal-driven
program execution. To this end, one could start with an execution scheme similar to the
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PRS-based or HTN planning APLs, where user specified rules can be used to trigger plans
from a pre-compiled plan-library. Thus, instead of an ordered list of goals and a single pro-
gram, we would like to generalize this framework by incorporating an ordered set of goals
and a set of plans, and developing a mechanism for merging these goals with the adopted
plans so that the consistency of the intention-base is maintained.

Another reason for incorporating rules in this framework is to allow arbitrary modification
of intended plans. As we have seen in Dribble and GD-3APL, an agent’s (plan revision)
rules can arbitrarily modify a plan by utilizing the context of the plan (i.e. using pattern
matching). In other words, these rules can be used to write very expressive ‘self-modifying
programs’. It is not clear how this can be done in IndiGolog.

2. The framework can be extended by incorporating a formal model of dynamics of intention.
As mentioned above, the dynamics of intention should preserve various useful properties
of intention, should be flexible enough to handle arbitrary revisions and contractions, and
model the dependency between goals and sub-goals.

3. It would be interesting to develop an on-demand lookahead/planning mechanism in the mod-
ified framework with multiple goals and a set of plans. Planning/search should be not only
implementable, but also be reasonably efficient. So, one question is if there is a mechanism
for the user to specify the agent in a way that allows considerable pruning of the search space
to ensure that planning is efficient. Also, recall that, determining rational plans is computa-
tionally intractable in S&S’s framework. So limited forms of rationality can be considered
as a means of increasing efficiency. In particular, some meta-level/syntactic mechanism
could be developed to model the cost of deliberation, and could be used to check whether
deliberation is worth the effort.

4. The framework can be extended to include communicative actions, and to model changes in
agents’ goals as a result of communication.

In the future, we look forward to investigate some of these issues.
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France (1993)

[82] S. Kripke. Semantical Analysis of Modal Logic I. Normal Propositional Calculi. InZeitschrift
fur math. Logik und Grundlagen der Mathematik, 9, pp. 67–96 (1963)

[83] S. Kripke. Semantical Considerations on Modal Logic. InActa Philosophica Fennica, 16, pp.
83–94 (1963)

[84] S. Kripke. Semantical Analysis of Modal Logic II. Non-Normal Propositional Calculi. In J.
W. Addison, L. Henkin, and A. Tarski (eds.),The Theory of Models, pp. 206–220 (1965)

[85] S. Kumar, M. J. Huber, D. McGee, P. R. Cohen, and H. J. Levesque. Semantics of Agent
Communication Languages for Group Interaction. InProceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Ar-
tificial Intelligence (AAAI/IAAI-00), pp. 42–47 (2000)

[86] J. E. Laird, A. Newell, and P. S. Rosenbloom. SOAR: An Architecture for General Intelli-
gence. InArtificial Intelligence, 33, pp. 1–64 (1987)

[87] J. A. Leite.Evolving Knowledge Bases, Frontiers in Artificial Intelligence and Applications-
81, IOS Press (2003)

[88] J. A. Leite, J. J. Alferes, and L. M. Pereira. MINERVA – A Dynamic Logic Programming
Agent Architecture. In J.-J. Meyer and M. Tambe (eds.),Proceedings of the 8th International
Workshop on Agent Theories, Architectures, and Languages (ATAL), Intelligent Agents VIII,
pp. 141–157, LNAI-2333, Springer-Verlag (2002)

[89] E. Letier and A. van Lamsweerde. Deriving Operational Software Specifications from System
Goals. InProceedings of the 10th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 119–128, ACM Press (2002)
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[171] M. B. van Riemsdijk.Cognitive Agent Programming : A Semantic Approach. Ph.D. Thesis,
Department of Information and Computing Sciences, Universiteit Utrecht, SIKS Dissertation
Series, No. 2006-19 (2006)

[172] M. B. van Riemsdijk, M. Dastani, F. Dignum, and J.-J. Ch. Meyer. Dynamics of Declarative
Goals in Agent Programming. InProceedings of the 2nd International Workshop on Declarative
Agent Languages and Technologies (DALT-04), pp. 1–18, LNCS-3476, Springer-Verlag, New
York, NY, USA (2004)

[173] M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Semantics of Declarative Goals in
Agent Programming. InProceedings of the 4th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-05), pp. 133–140, Utrecht, The Netherlands (2005)

[174] M. B. van Riemsdijk, W. van der Hoek, and J.-J. Ch. Meyer. Agent Programming in Dribble:
from Beliefs to Goals using Plans. InProceedings of the Second International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-03), pp. 393–400 (2003)

[175] S. Vassos and H. J. Levesque. Progression of Situation Calculus Action Theories with In-
complete Information. InProceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI-07), pp. 2029–2034, Hyderabad, India (2007)

[176] S. Vassos, S. Sardiña, and H. J. Levesque. A Feasible Approach to Disjunctive Knowledge
in the Situation Calculus. (draft)

[177] M. Verdicchio and M. Colombetti. A Logical Model of Social Commitment for Agent
Communication. InProceedings of the Second International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-03), pp. 528–535, Melbourne, Australia (2003)

[178] S. Vere and T. Bickmore. A Basic Agent. InComputational Intelligence, 6, pp. 41–60 (1990)

63



[179] R. Vieira, A. Moreira, M. Wooldridge, and R. H. Bordini. On the Formal Semantics
of Speech-Act Based Communication in an Agent-Oriented Programming Language (unpub-
lished)

[180] W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. InProceedings of
the Fifteenth International Conference on Automated Software Engineering (ASE-00), pp. 3-12,
IEEE Computer Society (2000)

[181] M. P. Wellman and J. Doyle. Preferential Semantics for Goals. InProceedings of the Ninth
National Conference on Artificial Intelligence (AAAI-91), pp. 698–703, Anaheim, California,
USA (1991)

[182] E. Werner. Toward a Theory of Communication and Cooperation for Multiagent Planning.
In Proceedings of the Second Conference on Theoretical Aspects of Reasoning about Knowledge
(TARK-88), pp. 129–143, Morgan Kaufman (1988)

[183] E. Werner. Cooperating Agents : A Unified Theory of Communication and Social Structure.
In Distributed Artificial Intelligence, 2, pp. 3–36 (1989)

[184] E. Werner. What Can Agents Do Together? A Semantics for Reasoning about Cooperative
Ability. In Proceedings of the 9th European Conference on Artificial Intelligence (ECAI-90),
pp. 694–701, Stockholm, Sweden (1990)

[185] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and Procedural Goals
in Intelligent Agent Systems. InProceedings of the 8th International Conference on Principles
and Knowledge Representation and Reasoning (KR-02), pp. 470–481, Toulouse, France (2002)

[186] S. Wood.Planning and Decision Making in Dynamic Domains, Ellis Horwood Ltd. (1993)

[187] M. Wooldridge.Reasoning about Rational Agents. MIT Press (2000)

[188] M. Wooldridge and N. R. Jennings. Formalizing the Cooperative Problem Solving Pro-
cess. InProceedings of the 13th International Workshop on Distributed Artificial Intelligence
(IWDAI-94), pp. 403–417, WA, USA (1994)

[189] M. Wooldridge and N. R. Jennings. Agent Theories, Architectures, and Languages: A Sur-
vey. InECAI Workshop on Agent Theories, Architectures, and Languages (ATAL-94), pp. 1–39,
LNCS-890, Springer-Verlag (1995)

[190] M. Wooldridge and N. R. Jennings. The Cooperative Problem Solving Process. InJournal
of Logic and Computation, 9(4), pp. 563–592 (1999)

[191] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia Methodology for Agent-Oriented
Analysis and Design. InJournal of Autonomous Agents and Multi-Agent Systems, 3(3), pp.
285–312 (2000)

64



[192] M. Wooldridge and A. Rao.Foundation of Rational Agency. Kluwer Academic Publishers
(1999)

[193] P. Yolum and M. P. Singh. Commitment machines. InProceedings of the 8th International
Workshop on Agent Theories, Architectures, and Languages (ATAL-01), pp. 235–247, LNCS-
2333, Springer-Verlag (2002)

65


