
Multiple Robot Graph Exploration

Hui Wang

Technical Report CSE-2007-06

November 2007

Department of Computer Science and Engineering

4700 Keele Street Toronto, Ontario M3J 1P3 Canada

MULTIPLE ROBOT GRAPH EXPLORATION

HUI WANG

TECHNICAL REPORT

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
YORK UNIVERSITY

TORONTO, ONTARIO
NOVEMBER 2007

Abstract

This report investigates the problem of exploration and mapping in an embedded

graph-like world. Graph-like worlds provide a useful theoretical model within which to

explore fundamental limits to exploration and mapping. It is demonstrated that a collec-

tion of identical robots, each equipped with its own unique marker can explore and map

an unknown graph-like environment. Developing such an algorithm addresses fundamen-

tal issues related to multiple-robot exploration, i.e., location disambiguation, merging

partial world representations obtained by multiple robots, partitioning the exploration

task, and rendezvous scheduling.

ii

Table of Contents

1 Introduction 1

2 Previous Work 6

2.1 Problem definition . 6

2.2 Robotic Mapping . 7

2.2.1 Mapping, localization and spatial representations 7

2.2.2 Probabilistic and deterministic representations 9

2.3 Metric approaches to mapping and localization 10

2.4 The deterministic SLAM approach of Dudek et al. 11

2.5 Mapping and localization with multiple robots 19

2.5.1 Coordination among robots through task allocation 23

2.5.2 Rendezvous problem . 27

2.5.3 Merging partial world representations 30

2.5.4 Extending SLAM to multiple robot systems 31

2.5.5 The work of Dudek et al. 32

2.6 Open problems . 35

2.7 Summary . 37

3 Multiple Robot Exploration 39

3.1 The model . 39

iii

3.1.1 The world . 39

3.1.2 Perception . 40

3.1.3 Robot communication . 41

3.1.4 Movement and marker operation 42

3.1.5 Memory . 42

3.1.6 Atomic actions and synchronization 43

3.2 The multiple robot exploration algorithm 44

3.2.1 Joint exploration . 44

3.2.2 Merging the partial representations 45

3.2.3 Statement of the algorithm . 52

3.2.4 Correctness proof of the merge algorithm 65

3.3 Evaluation Mechanism . 76

3.4 Sample operations . 80

3.5 Summary . 88

4 Enhancements to the basic algorithm 89

4.1 Exploiting neighbor topology information 89

4.1.1 Exploiting neighbor information in merging process 90

4.1.2 Exploiting neighbor information in the exploration process 95

4.2 Exploiting communication information . 98

4.2.1 Exploiting communication information later in the merge process . 99

4.2.2 Exploiting communication information in the exploration phase . . 102

4.3 Using multiple robots in the merge phase 104

4.4 Breadth-first exploration . 109

4.5 Lazy exploration . 115

4.6 Strategic rendezvous scheduling . 120

4.7 Merging with large groups of robots (k > 2) 124

iv

4.8 Summary . 128

5 Summary and future work 130

5.1 Within the current model . 131

5.2 Beyond the current model . 137

Bibliography 140

v

1 Introduction

Mobile robots have shown significant promise for remote exploration, going places that

are too distant, too dangerous, or simply too costly to allow human access (Figure 1.1).

If robots are to operate autonomously in extreme environments such as undersea, un-

derground, or on the surfaces of other planets, they must be capable of building maps

and navigating reliably according to these maps [39]. Even in benign and simpler en-

vironments such as the interiors of buildings, accurate mapping of the environment is

important. Without a map, many robotic tasks are difficult or even impossible. For

example, asking a robot to ‘go to my office’ requires a sufficiently rich representation to

encode the concept of places and paths between them.

Maps typically serve as the basis for motion planning, but maps often have value in

their own right [39]. For example, in July of 2002, nine miners in the Quecreek Mine

in Sommerset, Pennsylvania, were trapped underground for three and a half days after

accidentally drilling into a nearby abandoned mine. A subsequent investigation attributed

the cause of the accident to the use of inaccurate maps [39, 29]. Since the accident, mobile

robots and more advanced approaches have been investigated as a possible technology for

acquiring accurate maps of abandoned mines. One such robot, shown in Figure 1.1(b), is

capable of building 3D reconstructions of the interior of abandoned mines [57].

Acquiring maps with mobile robots is a challenging problem for a number of reasons

[55]. To acquire a map, robots must possess sensors that enable it to perceive the exter-

nal world. However, all sensors are subject to errors and range limitations, and errors

1

(a) Undersea robot (b) Underground robot (c) Robot on Mars

Figure 1.1: Various applications of robot exploration and mapping. Courtesy of M.
Montemerlo ([39]).

accumulate over time. This is illustrated in Figure 1.2, which shows an example path of a

mobile robot in a given map of the environment. In the example a small rotational error

in the robot’s initial orientation leads to a significant error between the map and laser

measurements. Possible changes in the environment is another challenging problem. For

example, facing a closed door that was previously modeled as open introduces another

way in which the seemingly inconsistent sensor measures can be interpreted. A critical

challenge arises from the fact that a robot must represent itself within the map as it is

being constructed. This requires the robot to estimate its pose in the map (localization).

The mapping problem is therefore like a ‘chicken and egg’ problem: constructing the

map requires the solution to localization, and solving localization requires a solution to

mapping. In the absence of both an initial map and exact pose information, the problem

is hard.

The combined problem has been coined SLAM, which is short for Simultaneous Local-

ization and Mapping. In the majority of SLAM approaches the spatial description of the

environment is represented through a metric map that captures the geometric properties

2

Figure 1.2: Small odometry (or control) errors can have large effects on later position
estimates (robot started in top-right). Courtesy of S. Thrun ([55]).

of the environment [55]. A common approach to solving the SLAM problem is to cast the

problem within a probabilistic framework. Due to the strong reliance on sensor measure-

ments, those probabilistic approaches are challenged by the nature of the measurement

noise, e.g., the solution fails when measurement error accumulates over a certain level

and that level must be known or approximated a priori.

An alternative to a metric-based representation is a representation based on a topolog-

ical or graph-like representation. A graph-like world represents the minimal information

that a robot must be able to represent in order to distinguish one place from another.

Dudek et al. [14, 15] developed a non-probabilistic SLAM algorithm for graph-like worlds.

In this work the world is modeled as a graph embedding, i.e., a graph in which there ex-

ists an ordering of edges incident upon each vertex. The model supposes the existence

of a unique marker (also referred to as beacon or pebble in the literature) that can be

used to help disambiguate locations in the environment (vertices in the graph-like map).

The approach assumes no distance or orientation metric. It has been shown that graph-

like worlds can be fully explored and mapped by a single robot equipped with a unique

3

marker [14, 15].

Dudek et al.’s single robot exploration algorithm in [14, 15] is a deterministic and

provably correct SLAM solution to the graph exploration problem. In later work Dudek

et al. provided an informal extension of the above algorithm to the case of multiple

robots [20]. This extension assumes the same environmental representation as described

in [14, 15] and populates the world with two or more robots each of which is equipped

with its own marker. In this extension the robots can only communicate when they are

in the same vertex. A multiple robots system is expected to provide performance that is

faster and more robust than a single robot system but the algorithm also faces challenges

including how to merge the partial representations obtained by individual robots, how

to partition the task between the robots, and rendezvous scheduling. The algorithm

sketched in [20] suggests several interesting extensions and variations and leaves several

practical problems to be addressed. It is worthwhile exploring these core techniques, with

an aim to develop a formal specification of the multiple robot exploration problem and,

based on the formal specification, investigate possible enhancements to the algorithm.

Problem statement and contribution

This report extends Dudek et al.’s model to the case of multiple robots, addressing the

core techniques necessary for the problem of multiple robot exploration, i.e., location

disambiguation, merging partial representations obtained by the individual robots, ren-

dezvous scheduling, and partitioning of the exploration task.

This report also explores a number of enhancements and extensions that can be made

to both Dudek et al.’s single robot exploration algorithm [14, 15] and the multiple robot

exploration algorithm [20]. The enhancements address some of the core techniques in-

volved in multiple robot exploration.

4

Structure of the report

The remainder of this report is organized as follows. Chapter 2 defines formally the

problem addressed in this report and surveys key techniques and related work in the field

of robotic mapping and exploration, with an extensive description of the deterministic

topological approach that is closely related to the work in this report. Open problems

are also identified. Chapter 3 defines formally the model of the work in this report,

develops and proves correct a basic multiple robot exploration algorithm and develops an

evaluation mechanism for multiple robot exploration algorithms. Chapter 4 explores a

number of enhancements that can be made to the multiple robot exploration algorithm.

Chapter 5 concludes the work and presents a discussion of possible directions for future

work.

5

2 Previous Work

This chapter begins by formally defining the problem to be addressed, and then reviews

approaches in the literature to the problem. The chapter concludes with an overview of

some of the open problems in single and multiple-robot exploration using a topological

representation.

2.1 Problem definition

The problem addressed in this report can be formally summarized as follows: Given a

specific environment that can be modeled as an embedded graph, formulate a series of

plans for a group of multiple robots, so that after carrying out the actions specified by

the plans, the robots will have constructed a topological map that is isomorphic to the

underlying world being explored. In the development of such an algorithm a number of

critical problems must be addressed, including

• Given that inter-robot communication is limited to vertices, how should rendezvous

be scheduled so that the robots can explore the environment efficiently?

• Can the robots perform their exploration in a strategic way, taking advantage of

the fact that exploration becomes easier as more of the world is explored?

• Can local neighbor information be exploited so that location disambiguation can

be facilitated?

6

• How should parallelism be exploited during the merge process? How should merge

be scheduled for the case of a large group of robots?

• How should the robots communicate when they meet opportunistically so that

exploration and merge task can be facilitated?

• How should the robots divide up the world being explored in order to explore the

world efficiently?

2.2 Robotic Mapping

Robotic exploration and mapping addresses the problem of acquiring spatial models (a

‘map’) of physical environments autonomously using mobile robots. This problem is

generally regarded as one of the most important problems in the pursuit of building truly

autonomous mobile robot systems.

2.2.1 Mapping, localization and spatial representations

Formally, robot localization is the problem of determining the pose (location and orien-

tation) of a robot relative to a given map of the environment [56]. The robot mapping

problem therefore addresses two interrelated problems in robotics, namely, localization,

which is the problem of determining a robot’s pose in the growing map (‘where am I in

the world?’), and mapping, which is the problem of constructing a spatial representation

(map) of the environment (‘what does the world look like?’). Maps themselves can be cat-

egorized as being either metric or topological, and metric maps can be further subdivided

into feature based or location based representations [56] (Figure 2.1).

Metric representation Metric maps adopt a metric representation of space, which

captures the geometric properties (e.g., coordinates in a Cartesian representation) of

7

(a) Topological (graph-like)
map

(b) Feature (landmark) based
metric map

(c) Occupancy Grid map

Figure 2.1: Different spatial representations. Courtesy of S. Thrun [56].

the environment. Metric representations can be further divided into feature (landmark)

based maps and location based maps. In feature (landmark) based maps, the world is

represented as a set of spatially located features (landmarks), each with an associated

coordinate in the metric space. In location based maps, the world is represented as a set

of locations. A representative example of a location based map is the occupancy grid map

[23], in which the space is represented as a fine-grained grid defined over the continuous

space of locations. The main advantage of the feature-based map is its compactness,

which makes it suitable for operating in large environments. The primary drawback of

a feature based map is the need for some feature extraction mechanisms, which usually

assume prior knowledge of some structure in the environment [56]. The main advantage

of a location based map (e.g., occupancy grid map) representation is that it can be used

to represent unstructured environments. In addition, operating with location based maps

does not require the use of feature extraction mechanism, making the overall approach

more robust. The disadvantages of location based maps (e.g., occupancy grid maps)

include the fact that cells in the maps are considered independent so the representation

does not maintain dependencies among the cells, and the large storage requirements

8

associated with the them [55].

Topological representation Topological maps describe the connectivity of different

places. Environments in topological maps are represented as a list of significant places

(vertices) that are connected via arcs (edges). One advantage of the representation is

the abstract view of environment and the consequent low space complexity [55]. Another

advantage of the model is that map learning can be approached as a graph theoretic

problem, making it feasible to investigate general issues related to robot exploration

within this representation. In practice, metric maps are finer grained than topological

representations.

2.2.2 Probabilistic and deterministic representations

It is possible to build a map representation (either metric or topological) that is either

deterministic or probabilistic. Whereas deterministic schemes usually resort to the use

of additional tools (e.g., markers, threads) for disambiguation purpose, a probabilistic

representation uses probabilistic concepts to explicitly represent and manipulate spatial

uncertainty. Early work with probabilistic representations includes [21, 22, 4, 38, 40,

53, 52]. Since the 1990’s, with the introduction of powerful statistical frameworks for

simultaneously solving the mapping problem and the induced problem of localizing the

robot relative to its growing map, the field of robot mapping has been dominated by

probabilistic techniques [55]. The reason for the popularity of probabilistic techniques

stems from the fact that robot mapping is characterized by uncertainty and sensor noise

by pose. Probabilistic algorithms approach the problem by explicitly modeling these

different sources of noise and their effects on the measurements and the map models.

In robotic mapping and localization the task is usually modeled as inferring a state

quantity x (map or robot pose), based on some data d (measurement or control). Within

9

a probabilistic framework, this is represented as p(x|d), often referred as posterior prob-

ability, or belief [55].

2.3 Metric approaches to mapping and localization

Metric approaches to mapping and localization adopt a metric representation of space in

order to capture the geometric properties of the environment. Such approaches typically

use probabilistic concepts to explicitly represent and manipulate spatial uncertainty. In

SLAM, which is the problem of estimating both the mapping and localization problem at

the same time [56], the task is modeled as estimating a posterior probability distribution

over all possible states, i.e., all possible maps and all possible robot poses, given the

controls and sensor readings accumulated by the robot. This distribution is called the

SLAM posterior [39]. The Kalman filter [56, 34] and the particle filter [56, 27] are

important techniques to approximate the SLAM posterior.

Dudek et al. [12] summarized reasons and situations that make the representation and

construction of maps based on metric information alone problematic or inappropriate,

including: Long-term goals are often expressed in terms of semantic tokens or places,

rather than specific coordinates (i.e. going to a valley, a route or a room rather than a

specific coordinate); Absolute coordinate systems are typically very difficult to accurately

maintain at every scale; Complete metric representations may involve very large amounts

of data; And changes in the environment and the correspondence between objects may

be difficult to establish in a purely metric representation. For these and other reasons

there is interest in the use of more abstract map representations. Motivated by the need

for spatial representation other than the ones based on metric information, Kuipers et

al. [37] proposed a four-level spatial semantic hierarchy, in which metric and topological

representations are associated. The four levels, starting from the lowest, are

1. Sensorimotor (robot sensations and primitives actions).

10

2. Procedural (robot actions to accomplish place-finding and route-following tasks).

3. Topological (places and paths and their topological relations).

4. Metric (places and paths and their metric relations).

According to E. Davis [10], a topological map can be defined as a map including all fixed

entities in the world such as distinguishable places and regions, linked by topological

relations, e.g., connectivity. Such a map is often represented as a graph where vertices are

places and edges denote their adjacency relations. Kuipers et al. proposed a topological

model of the world [35, 36, 37]. In this model, a place is defined as a point which maximizes

some distinctiveness measures (its signature) allowing it to be locally distinctive within

its immediate neighborhood.

2.4 The deterministic SLAM approach of Dudek et al.

In order to avoid dealing with the problems encountered in making primitive measure-

ments for the construction of metric maps, and in general with many of the low level tasks

associated with robotics, Dudek et al. [14, 15] proposed a model based on a topological

representation of the environment. This approach assumes that the world can be modeled

as a collection of isolated locations of interest that are connected by featureless pathways.

Specifically, the world is modeled as a graph embedding consisting of vertices, a set of

edges between them and an ordering defined on all edges incident upon each vertex. A

similar world model is also assumed in [16, 12, 48, 11]. The work in [14, 15] presents a de-

terministic approach to the SLAM problem, in which disambiguation is achieved through

the use of a recognizable marker that can be put down and picked up by the robot.

There are several properties of the model in [14, 15] that are worth noting. First is

the embedding assumed. With embedding, there exists an ordering defined on all edges

incident upon each vertex. The ordering captures the relative direction (orientation) in

11

Figure 2.2: A vertex with fixed order (relative direction) of edges (exits) leave the vertex.

which edges (viewed as exits) leave a vertex (Figure 2.2). As long as one edge is identified,

the labelling or ordering of the others can be determined. Without embedding, for a vertex

having d incident edges, there would be d! ways of labeling the edges, in terms of their

relative positions. This embedding assumption, together with the relevant assumption

that a robot can enumerate edges in a consistent way, greatly simplifies the problem.

The power of embedding can be seen throughout the algorithm. For example, in [14, 15]

a route (path) can be specified as a sequence of edge ordering (relative direction) with

respect to the entry edge, e.g., ‘take the 3rd exit on the right (with respect to the entry

edge), upon arrival take the 2nd exit on the right’. Such a specification of route or

movement would not be possible without an embedding (any other edges can be ‘the 3rd

right exit’ with respect to the entry exit). Another property of the model is that this

graph-like representation is minimalist. In the model, edges are completely featureless

and vertices are featureless except for the paths to other vertices. In the notion of node

signature proposed by Kuipers [36], the degree of a vertex is used as a specific instance of

the signature function, and the marker is used to establish a ‘temporary’ unique signature

of a vertex, making it distinctive relative to other vertices. No error-prone spatial metric

12

such as distance or orientation is required, i.e., the algorithm operates on a topological

representation that is devoid of metric information. Techniques that are able to build an

environmental map without such metric information can be viewed as assuming worst-

case performance bounds for environments with noisy metric observation. In reality much

more information is likely to be available at a given location than is assumed under this

model. Such information would only help to make the signature more distinctive and

therefore make the problem easier [36].

It has been shown in [14, 15] that such graph-like worlds can be fully explored and

mapped by a single robot equipped with a unique marker. Compared with [36], the

work can be viewed as introducing a different rehearsal procedure that includes portable

markers, since the marker makes the place uniquely distinctive to other places. In contrast

to the work on random walks of a graph [3], Dudek et al.’s approach visits vertices of a

graph according to deterministic strategies. Related to the hierarchy proposed by Kuipers

et al. [37], the work provided precise definitions of what corresponds to the sensorimotor,

procedural and topological levels associated with the learning and navigation in a graph-

like world, assuming no metric information is either sensed or stored.

The following sections present a detailed introduction to the model and exploration

algorithm in [14, 15]. This model and algorithm form the basis of the algorithm developed

within this report.

The Model

The world in [14, 15] is modeled as an augmented graph. The abstraction used serves

as a lowest common denominator for real robotic systems, but is sufficient to represent

location in a meaningful way. The goal of the robot’s exploration is to build an augmented

undirected graph that is isomorphic [30] to the finite world it has been assigned to explore.

The robot’s inputs are its sensations and it can interact with the world only through its

13

actions. The robot’s actions and sensations are rather impoverished.

The World The following definitions follow those provided in [14]. The world is defined

as an embedding of an undirected graph G = (V,E) with a set of vertices V = {v1, ..., vn}

and a set of edges E = {(vi, vj)}. The world is assumed to have no multiple edges

between two vertices and no edge incident twice at the same vertex. The definition of

an edge is extended to allow for the explicit specification of the order of edges incident

upon each vertex of the graph embedding. This ordering is obtained by enumerating the

edges in a systematic (e.g. clockwise) manner from some standard starting direction. An

edge ei,j incident upon vi and vj is assigned labels n and m, one for each of vi and vj

respectively. n and m represent the ordering of the edge ei,j with respect to the consistent

enumeration of edges at vi and vj respectively. The labels n and m can be considered

as general directions, e.g., from vertex vi then n’th exit takes edge ei,j to vertex vj . A

route (path) can be specified as a sequence of edge labels such that the entry edge at a

vertex is always the reference edge and the successive labels specify the exit edges (e.g.,

take the 3rd edge on the right, then take the 2nd edge on the right etc).

Movement and Marker operation A robot can move from one vertex to another

by traversing an edge (a move), it can pick up a marker that is located at the current

vertex and it can put down a marker it holds at the current vertex (a marker operation).

Assume the robot is at a single vertex vi, having entered the vertex through edge el,i.

In a single move, it leaves vertex vi for vj by traversing the edge ei,j , which is located r

edges after el,i according to the edge order at vertex vi (Figure 2.3). This can be formally

expressed by the transition function

δ(vi, el,i, r) = vj .

14

Figure 2.3: Transition Function.

The following property of the transition function is assumed: if δ(vi, el,i, r) = vj and

δ(vj , ei,j , s) = vk, then δ(vj , ej,k,−s) = vi. This implies that a sequence of moves is

invertible, and can be retraced. A marker operation is fully specified by indicating whether

it is being picked up, put down, or not operated upon. A simple action is defined as a

marker operation accompanied by (followed by) a move, i.e., the robot performs some

operation on the marker in the current vertex and then moves to a new location.

Perception A robot’s perception is of two kinds, marker-related and edge-related per-

ception. Marker-related perception enables a robot to sense whether the marker is present

at the current vertex. With edge-related perception, a robot can determine the relative

positions of edges incident on the current vertex vi in a consistent manner, e.g., by a

clockwise enumeration for a planar graph. As a result, the robot can assign an integer

label to each edge incident on vi, representing the order of that edge with respect to the

edge enumeration at vi. The label 0 is assigned arbitrarily to the edge through which

the robot entered vertex vi. Entering the same vertex from two different edges leads

to two different local orderings, one of which is a shifting (circular translation) of the

other. If the robot visits the same vertex twice, it must relate the two different local

orderings produced and unify them into a single global ordering. Determining when the

15

same vertex has been visited twice and generating a global ordering for each vertex is a

key component of exploration.

Memory The robot remembers all raw sensory information that it has acquired and all

of its actions. Specifically, if the robot has performed steps 0, 1, ..i, the raw memory of the

robot contains the sequence of information at each step. For the i-th step, it remembers

marker sensing at the step, the order of edges incident on the vertex visited at step i,

and the action taken at step i. By “remembering” the motion sequence, the robot may

retrace any previously performed motion.

Exploration algorithm

It was shown in [14, 15] that as long as the explorer is equipped with a single unique

marker that can be dropped and picked up at will it is possible for a robot to fully map

its environment. The core technique is to validate (disambiguate) locations that could

be confused. This is achievable due to the fact that the path taken by the robot can be

retraced, and that the marker is unique.

The following description of the exploration algorithm follows that presented in [14].

The basis of the exploration algorithm is the maintenance of an explored subgraph of the

full graph. As new vertices are encountered, they are added to the explored subgraph,

and their outgoing edges are added to the set of edges that lead to unknown places and

therefore must be explored. More formally, the algorithm maintains an explored subgraph

S, and a set of unexplored edges U , which emanate from vertices of the explored subgraph.

A step of the algorithm consists of selecting an unexplored edge e = (v1, v2) from U , and

“validating” the vertex v2 at the unexplored end of the edge (the other vertex v1 incident

upon e is already in the subgraph S). Validating a vertex v2 means making sure that

it is not identical to any other vertex in the explored subgraph. This is carried out by

16

(a) Marker found, v2 is known (b) S augmented by new edge e

Figure 2.4: Marker found, S augmented by adding new edge e (dotted and solid lines
represent unexplored and explored portion of the world respectively. The marker is
denoted by a �).

placing the marker at v2 and visiting all vertices of the known subgraph S along edges

of S, looking for the marker. There are potentially two possible situations: the marker is

found somewhere in S, and the marker is not found in S.

If the marker is found at vertex vi of the explored subgraph S (Figure 2.4(a)), then

vertex v2 (where the marker was dropped) is identical to the already known vi (where

the marker was found). In this case, edge e = (v1, v2) must be assigned an index with

respect to the edge ordering of vertex vi. To determine this, the robot drops the marker

at v1 and goes back to v2 along the shortest path in the explored graph S. At v2, the

robot tries going out of the vertex along each of its unexplored incident edges. One of

the unexplored edges will take the robot back to v1, which the robot will immediately

recognize due to the presence of the marker. Note that the index of e with respect to the

edge ordering of v1 is known by construction. Edge e is then added to the subgraph S

and removed from U (Figure 2.4(b)).

If the marker is not found at one of the vertices of S (Figure 2.5(a)), then vertex v2

17

(a) Marker not found, v2 is a new vertex (b) S augmented by vertex v2 and edge e

Figure 2.5: Marker not found, S augmented by adding new vertex v2 and new edge e.

is not in the subgraph S, and therefore is a new vertex and must be added to S. The

previously unexplored edge e is also added to S, which has now been augmented by one

edge and one vertex (Figure 2.5(b)). Adding the vertex to the subgraph causes all edges

incident upon it to be assigned an index with respect to the edge e by which the robot

entered the vertex (edge e is assigned index 0) and the new edges are added to the set

of unexplored edges U . Note that no other edge of the new vertex has been previously

added to the subgraph, because otherwise v2 would have already been in the explored

subgraph. This index assignment establishes the edge ordering local to v2. The algorithm

terminates when the set of unexplored edges U is empty. A formal proof of correctness

of the algorithm is presented in [14].

Performance Metric

Certain steps of the above algorithm are executed mechanically (e.g. edge traversals)

while others are executed electronically as the robot reasons about the model. As the time

constant associated with moving a robot is considerably larger than that associated with

18

a computational step, mechanical complexity is the limiting factor in the performance

of the algorithm. For the above single robot and the extended multiple robot algorithm

(next section) the mechanical time complexity of the task is the critical measurement of

performance. Assuming one mechanical step for the traversal of one edge, the main cost

of exploring the graph in terms of edges traversed by the robot (mechanical complexity)

is O(MN) ≤ O(N3), where N is number of vertices and M is number of edges [14]. This

cost comes from the need for the robot to go back to its known sub-graph and visit all

of the locations there to solve the key problem of ‘have I visited here earlier?’. Note

that this problem is closely related to the challenging problem of “loop closing” in the

probabilistic SLAM literature.

2.5 Mapping and localization with multiple robots

Most robotic systems consider a single robot for the exploration and mapping task. In

recent years, there has been increased research interest in systems composed of multiple

robots that exhibit cooperative behavior. Exploring an unknown environment with teams

of mobile robots is suggested to have several advantages over single robot system and leads

to a variety of design tradeoffs (see [8, 18, 19, 44]). A team of robots may be able to

accomplish more complex tasks than a single robot that works alone: By working in

parallel, cooperating robots have the potential to accomplish a single task faster than

single robot; A team of robots can be expected to be more fault-tolerant than only one

robot. Due to the possible redundancy of the system of robots, destruction of a single

member of a large teams of robots may not be catastrophic while the failure of the

robot in a conventional single robot system is usually disastrous; The individual robots

in multi-robot systems could have a simpler design than a larger, single robot, both

in terms of the physical appearance (hardware) and computational ability (software).

Therefore it may cost less to construct and maintain the multi robot system. In addition,

19

the constructive, synthetic approach inherent in cooperative mobile robotics may yield

insights into fundamental problems in the social sciences (organization theory, economics),

and life sciences (theoretical biology, animal ethology) [8].

Deployment of multiple robots also introduces a number of challenges. To make the

collective design reliable, robust and efficient, fundamental issues have to be addressed

including communication and coordination, synchronization, task division, motion plan-

ning, rendezvous scheduling, architecture design and task reconfiguring. Practical con-

siderations such as limits of communication and interference of sensor readings further

contribute to the complexity of a multi-robot system.

Compared with the single robot system, the field of cooperative autonomous mobile

robotics is still new enough that no topic area within this field can be considered mature

and supporting theory is still in its formative stage. The study of multiple robot systems

naturally extends research on single robot systems, but is also a discipline unto itself [8, 1].

Some research illustrates theoretical accomplishments, while others presents practical

embodiments. Most proposed algorithms so far address a specific component (problem)

necessary for the multiple robot system. These include robot-robot communication (e.g.,

[2]), rendezvous scheduling (e.g., [50]), merging of partial maps (e.g., [33]) and task

allocation during exploration (e.g., [47], [60]). In spite of the variety of the frameworks

and solutions proposed in these research areas, they share the same main idea, i.e., to

coordinate the work of robots to achieve better performance, e.g., improved accuracy of

mapping and localization, reduced exploration time. Reviews of earlier work in multi-

robot systems can be found in [8] and [19]. More recent work is reviewed in [24], [44] and

[1].

Taxonomies and other theoretic work Research has been carried out in an effort

to develop the classification of robot collaboration research by defining a taxonomy or

20

Axis Description

Collective Size The number of autonomous agents in the collective.
Communication Range The maximum distance between two elements of the collective such

that communication is still possible.
Communication Topology Of the robots within the communication range, those which can be

communicated with.
Communication Bandwidth How much information elements of the collective can transmit to each

other.
Collective recongurability The rate at which the organization of the collective can be modified.
Processing Ability The computational model utilized by individual elements of the collec-

tive.
Collective Composition Are the elements of the collective homogeneous or heterogeneous.

Table 2.1: Robot collective taxonomy proposed in [19].

collection of research axes [8, 18, 19, 13, 24, 44]. The objective of each of these taxonomies

is to provide a common language for the description of seemingly disparate theoretical

and practical results, to clarify the strengths, constraints and tradeoffs of various designs,

and more importantly, to highlight various design alternatives and research directions.

For example, the taxonomy described in [8] identifies group architecture, conflict resolu-

tion strategy, origins of cooperation, learning and geometric problem as ‘research axes’

within which different systems can be compared. The alternative taxonomy provided in

[18], [19] and [13] emphasizes design dimensions for communication and coordination, for

which a finer granularity is defined in order to highlight the importance of different com-

munication strategies on the overall capacity of the collective (see Table 2.1 for the axes

and their descriptions). For example, for communication range, the authors list three

key classes for the dimension. These include COM-NONE, i.e., robots cannot commu-

nicate with other robots directly, COM-NEAR, i.e., robots can only communicate with

other robots which are sufficiently nearby and COM-INF, i.e., robots can communicate

with any other robot. For communication bandwidth, sample points along this dimension

include BAND-INF, i.e., communication bandwidth is sufficiently high that the commu-

nication cost and overhead can be ignored (communication is free), BAND-MOTION,

i.e., communication costs are of the same order of magnitude of the cost of moving the

21

robot between locations, BAND-LOW, i.e., communication costs are very high and are

much more than the cost of moving from one location to another and BAND-ZERO,

i.e., no communication is possible. The taxonomy described in [44] instead organizes the

research by the principal topic areas that have generated significant levels of study, in-

cluding biological inspirations, communication, architecture and localization etc. Rather

than characterizing architectures, some work seeks to categorize the underlying problems

involved in multi-robot system, such as task allocation [28] and communication [2, 43].

For example, [28] provides a taxonomy on task allocation in multi-robot systems. The

work proposes the following three axes for use in describing multi-robot task allocation

(MRTA) problem:

• single-task robots (ST) vs. multi-task robots (MT) - each robot is capable of exe-

cuting at most one task at a time (ST) or some robot can execute multiple tasks

simultaneously (MT).

• single-robot-tasks (SR) vs. multi-robot tasks (MR) - each task requires exactly one

robot to achieve (SR) or some task can require multiple robots (MR).

• instantaneous assignment (IA) vs. time-extended assignment (TA) - if the avail-

able information permits only instantaneous assignment of tasks (IA), or includes

information for tasks that can be assigned in the future (TA).

Under this taxonomy, a particular MRTA problem is defined by a combination (triple) of

each of the axes. For example, a problem in which multi-robot tasks must be allocated

once to single-task robots is designated ST-MR-IA. There are eight problems (combina-

tions) allowed by these axes. For each problem, relevant theories and heuristic solutions

are discussed. The effects of different kinds of communication on the performance of a

multi-robot team in a variety of tasks is analyzed in [2]. The work distinguished three

different types of communication, i.e., No Communication, i.e., no direct communication

22

among robots, State Communication, i.e., robots are able to detect the internal state of

other robots, and Goal Communication, which involves the transmission and reception

of specific goal-oriented information. The work examines the extent to which various

amounts of shared information facilitate certain simple multi-robot tasks, and how task

and environment can affect communication payoffs. For example, if robots are grazing

(consuming) some widely distributed resource to what extent is it helpful to have them

explicitly transmit information on which regions have already grazed? While the work

has concluded that communication provides certain benefits for particular types of tasks,

it also suggested that the extent to which it does so (or sometimes fails to do so) must

be carefully weighted against the additional cost of transmitting the information.

2.5.1 Coordination among robots through task allocation

While some research addresses issues such as rendezvous scheduling and merging par-

tial representations (discussed next), a considerable amount of work addresses strategic

task allocation to achieve coordination of robots during exploration. Broadly speaking,

enforcing explicit coordination and cooperation among robots during exploration serves

two purposes: improving the accuracy of mapping and localization, and reducing the

exploration time.

Improving mapping and localization accuracy Several researchers have studied

the problem of using multiple robots to reduce the localization and mapping error during

exploration (e.g., [17, 47, 46, 49]). For example, the work described in [47], [46] and [49]

focuses on the problem of reducing the odometry error during exploration. In [47], the

world is modeled as a set of simple polygonal boundaries. Exploration is performed by

two robots that jointly assist one another. Each robot is equipped with two sensors. The

first sensor is an object detector, able to detect any object in the immediate vicinity of the

23

(a) Trapezoidation of a simple polygon with
holes

(b) Triangulation of the same polygon

Figure 2.6: Decomposition of polygons. Courtesy of I. Rekleitis [47].

robot. The second sensor is a robot tracker with the ability to locate another robot when

there is a free line of sight between them, and to report accurately the distance to the

second robot and its orientation. The robots explore the unknown environment by pro-

gressively covering free space in the polygonal world. Systematic exploration is achieved

using planar decomposition [42, 45], i.e., trapezoidation and triangulation (Figure 2.6).

In the work, trapezoid decomposition is used for large areas ensuring an exploration

strategy that finishes with the total free space mapped as a set of trapezoids. For small

areas, triangulation of the free space is used. Reduction in the size of odometry errors

is accomplished by having only one robot move at any time, while the other robot(s)

observes it. The stationary robot acts as an artificial landmark in order for the moving

robot to recover its pose with respect to it. The procedure is referred to as cooperative

localization. Moreover, when one robot is moving and maintains an uninterrupted line of

visual contact with the stationary robot, it effectively maps the area covered by the line of

visual contact. Later on the roles are reversed: the robot that had been moving becomes

24

the observer while the other robot moves. The algorithm assumes full communication,

which enables the moving robot to obtain its current position from the observer(s) at any

time. Cooperative localization is also used in [49] where cooperative localization is used

to explore the visual domain.

Reducing exploration time While the above approach can reduce the odometry er-

ror, it is not designed to distribute the robots over the environment, so exploration time

may not be reduced. There has been considerable work done in addressing explicit coordi-

nation during exploration to achieve reduced exploration time. The basic idea behind the

work is to allocate the task in such a way that redundant work is avoided or reduced (see

[60, 6, 51]). Consider the work of [60, 51]. The key idea here is to explicitly coordinate the

robots so that they simultaneously explore different regions of their environment. In [60] a

technique is described in which robots build a common map in a distributed fashion. The

work introduces the notion of a frontier. Frontiers are regions on the boundary between

open space and unexplored space. An occupancy grid is used as the spatial representa-

tion. Each cell of the grid stores the probability that the corresponding region in space

is occupied. A process analogous to edge detection and region extraction in computer

vision is used to find boundaries between open space and unknown space. Any open cell

adjacent to an unknown cell is labeled a frontier cell. Adjacent edge cells are grouped into

frontier regions. Any frontier region above a certain minimum size (roughly the size of

the robot) is considered a frontier. Once frontiers have been detected within a particular

grid, the robot attempts to navigate to the nearest accessible, unvisited frontier using a

depth-first search on the occupancy grid. Each robot has its own global occupancy grid

that represents its own knowledge about the environment. Whenever a robot arrives at

a new frontier, it sweep its sensor and constructs a local occupancy grid representing its

current surroundings. The novelty of the work is that the robot also broadcasts the local

25

grid to all of the other robots. Each robot stores the local grid received from other robots.

When a robot arrives at a new froniter, it integrates these received local grids with its

global grid along with the new local grids it constructs (by sweeping its sensor) at the

frontier. This has the advantage of being both cooperative and decentralized. All of the

information obtained by any robot is available to each robot. This allows robots to use

the data from other robots to determine where to navigate. Based on this information,

a robot can determine which areas have already been explored by other robots and then

choose to explore an unexplored region. A robot can also discover that a frontier de-

tected by another robot is nearby and decide to investigate. While information is shared,

control is independent, allowing the team to be robust to failures of individual robots.

This approach, however, has its limitations. Since navigation is independent, robots may

waste time by navigating to the same frontier, i.e., there is no coordination component

which chooses different frontiers for the individual robots. This work is extended in [6]

and [51] by coordinating the robots so that they don’t choose the same frontier, signifi-

cantly decreasing the time needed to accomplish the exploration task. For example, the

work in [51] considers two coordination problems: creating a single global map from the

sensor information of the individual robots (coordinated mapping), and deciding where

each robot should go in order to create the map most effectively (coordinated exploration).

The basic approach to both coordination problems is similar: distribute most of the com-

putation amongst the individual robots and integrate their results asynchronously by

using centralized modules performing efficient global computations over the data. This

operates under the assumption that the robots know their pose relative to one another

and have access to high-bandwidth communication. These two coordination problems are

interrelated during the exploration process, as we show below. For coordinated mapping,

each robot processes its own laser data to create a consistent local map. The laser data

is communicated to the central mapper. The central mapper module then integrates the

26

local maps received to create a consistent global map, which is sent to the individual

robots. The central mapper improves the map (minimizes localization error) by itera-

tively combining data from the robots. Similarly, the approach to coordinated exploration

combines distributed computation with global decision making. The individual robots

construct “bids”, which describe their estimates of the expected information gain and

costs of traveling to various frontier cells from the current position. The bids are sent

to a central executive, which assigns tasks to each robot based on all the bids received.

The cost in the bid is computed based on the optimal path of visiting a frontier cell from

the current position. The information gain is evaluated based on the number of unknown

cells from the frontier cell that the robot can sense. A robot constructs a new bid each

time it receives a map update from the central mapper. The central executive receives

the bids and assigns tasks based on all the bids, attempting to maximize overall utility,

while trying to minimize overlap in coverage by the robots. Thus while a robot may

prefer to visit one location the executive might assign it a different location if another

robot is expected to gain much the same information.

2.5.2 Rendezvous problem

There is also research that addresses the problem of schedulling the rendezvous of indi-

vidual robots. [50] considers the problem of rendezvous between two robots exploring an

unknown environment. That is, how can two autonomous exploring robots that cannot

communicate with one another over long distances (i.e., COM-NEAR) meet if they start

exploring at different locations in an unknown environment? This work is the first to

formalize the characteristics of the rendezvous problem, with limited communication and

unknown starting places. In the simplest, idealized noise free case, if the robots have a

pre-arranged notion of what constitutes a good rendezvous point, the rendezvous problem

would be simple, as the following steps show.

27

1. Travel throughout environment.

2. Find good rendezvous locations (landmarks).

3. At the pre-arranged meeting time, choose the best rendezvous location.

4. Travel to that rendezvous location, and share information with the other agents.

In practice the problem with this idealized scenario is that due to sensor variations, or

disjoint landmark sets, the robots may not agree on where the ideal landmark is situated,

or may not arrive at the landmark as scheduled (at the pre-arranged meeting time). The

work examines how to choose good rendezvous locations, what can cause a rendezvous

attempt to fail, and how to recover from failure. The work first models the environment

as a function of the sensors. This function gives rise to a distinctiveness surface, defined

over the domain of the environment. The work then chooses landmarks at the local

extrema of the surface, limiting the knowledge of the surface only to those points that

the agents have visited. Which points the robot visited is dictated by the trajectory

prescribed by the underlying task. The robot assigns a value to every point and orders

the resultant landmarks in the environment in terms of distinctiveness. This ordering

allows the landmarks to be ranked in terms of their likelihood to lead to a successful

rendezvous. To develop robust rendezvous strategies that permit a robot to interleave

exploration and attempted rendezvous so that even if the rendezvous fails, the robots

can continue exploring, the authors identify the following attributes that characterize the

rendezvous problem:

• Similarities (sensor noise) - the reproducibility of the perceptions between robots.

Due to sensor noise, distinctiveness measures observed by the two robots are unlikely

to be identical. This leads to strategies that must consider a larger number of

candidate rendezvous landmarks since a single guaranteed candidate may not be

determined reliably.

28

• Landmark Commonality - the extent of overlap between the spatial domains of

the agents. The robots may have explored different areas and may have selected

different landmarks that are not in the common region, i.e., the landmark sets are

not identical. The effect of the non-commonality is that both robots must consider

a larger subset of candidate landmarks, since any given landmarks selected by one

robot may not be known to the other robot.

• Synchronization - the level of synchronization between the agents. If the agents

do not agree on the rendezvous time, or have delays in travel to the rendezvous

place, there is the possibility that the rendezvous will be missed. This is called

asynchrony. This effect leads to a need for strategies that may revisit the same

landmarks repeatedly to compensate for missed meetings.

Two main classes of algorithms (deterministic and probabilistic) are described in [50]

along with examples of each class of algorithm. The deterministic class of algorithm cre-

ates a list of all possible combination of landmarks and specifies the order in which the

landmarks should be visited. There is no random aspect to the landmark visit sequence,

and therefore the algorithms generate the same sequence of landmark visits for a given

landmark set. The probabilistic class of algorithm does not generate an a priori ordering

of landmarks but rather simply generates probabilities for landmarks being visited at any

proposed rendezvous. For example, the simplest deterministic sequential algorithm would

be: ‘one agent picks a landmark and waits there for the other agent, which visits every

landmark in turn. If the second agent has visited every landmark without encountering

the first agent, the first agent moves to another landmark it has not yet visited.’ In order

to determine the characteristics of the algorithms, the work provides a closed-form analy-

sis of the worst and expected-case complexity of the algorithms at points in the attribute

(parameter) space. The closed-form analysis is complemented by a numerical description

of the performance of the algorithms at a range of points in the parameter space. An

29

interesting conclusion from these results is that depending on a combination of these

attributes (confounding factors) no strategy is canonically a good or bad choice. Each of

the algorithms has particular advantages and disadvantages. Different algorithms have

their own domains of superiority. For example, the deterministic sequential algorithm is

simple and is preferable when asynchrony is low. The probability approach, on the other

hand, outperforms the other algorithms when asynchrony is a problem but sensor noise

is not.

2.5.3 Merging partial world representations

An algorithm for merging two topological maps obtained by robots having no common

reference frame or global positioning, assuming rendezvous has occurred is represented

in [33]. The spatial representation mechanism is similar to that modeled in [14, 15], i.e.,

representing the environment as embedded topological maps where vertices represent

“places” and edges represent paths between the places. Edges incident to a vertex in a

topological map have spatial interrelationships, e.g., clockwise ordering for planar case.

In contrast with Dudek et al.’s model in [14, 15], the robot in the work can measure

orientation and the distance between places. So edges and vertices in maps have attributes

such as length and global orientation. The algorithm proceeds in two phases and is

inspired by methods from graph matching [5] and image registration [26]. The first phase

of the algorithm identifies hypothesized matches, i.e., possible sets of vertex and edge

pairs, between the two maps. These correspond to common connected subgraphs of

the maps and reflect areas of the environment with identical structure. In testing the

compatibility of vertex and edge pairs, exactly known attributes of paired vertices or

edges such as the degree of vertices in a static world, should match perfectly. Attributes

that are subject to measurement error, such as the length of an edge or the angles between

edges leaving a vertex are compared using a similarity test that takes into account the

30

relevant error model. The second phase of the algorithm considers the global geometry

of the hypothesized matches. For each hypothesis, the algorithm estimates the geometric

transformation that must be applied to one map in order to bring paired vertices into

alignment. Geometrically compatible hypotheses give rise to similar transforms, so the

hypotheses can be clustered in the transformation space. The best cluster (based on size

and error) is returned as the algorithm’s result, and the vertex and edge correspondences

from that cluster are used to merge the maps. The algorithm has been demonstrated

on simulated and real-world maps. Results show that the algorithm is most sensitive to

discrepancies between the error model used and the true error in the maps. The algorithm

performs well when there was less error than assumed. When there is more error in the

map than assumed, the algorithm performs poorly. According to the authors, the reason

of the poor performance is that the correct hypothesis may be rejected. This is because

under the underestimated error model, corresponding edges or vertices of some correct

hypotheses appear too different so they are treated as incorrect hypotheses and therefore

are mistakenly rejected.

2.5.4 Extending SLAM to multiple robot systems

Although not closely related to the work in this report, it is worth mentioning that there

exist a number of multiple robot SLAM formulations based on the Kalman filter and its

derivatives [25, 58, 59] and on the particle filter and its derivatives [54, 32]. [25] takes the

“classical” approach of generalizing the extended Kalman filter (EKF) SLAM formulation

to handle multiple robots. Similarly, [58] and [59] reformulate the SLAM problem using

the sparse extended information filter, which has some inherent advantages over EKF. The

information filter is then generalized for the multi-robot case. The work in [54] describes

a hybrid algorithm that combines maximum likelihood mapping with particle filters. To

address the challenging problem of determining the initial poses of the robots, the work in

31

[32] (which in part is a generalization of the work in [54]) proposes an online algorithm for

multiple robot SLAM. The starting point is the single-robot Rao-Blackwellized particle

filter [31]. The particle filter is extended to handle multi-robot SLAM problems in which

the initial pose of the robots is known, and an approximation is introduced to solve the

more general problem in which the initial pose of robots is not known a priori (such as

occurs when the robots start from widely separated locations).

2.5.5 The work of Dudek et al.

Finally we present the work by Dudek et al. on multiple robots [20], which is the starting

point for the work in this report. The work in [20] presents an informal extension of the

algorithm in [14, 15] to the case of multiple robots. This extension assumes the same

environmental representation as described in [14, 15] and populates the world with two

or more robots, each of which is equipped with its own marker. Due to the deployment

of multiple robots, some definitions and assumptions are different from those in [14, 15]

and these are described below.

The Model

The World The same environmental representation as [14] is assumed, i.e., the envi-

ronment is represented as an embedding of an undirected graph, that is, as a fixed set

of discrete locations or regions with an ordered set of bidirectional paths between them.

In addition, it is assumed that each node has sufficient space to hold multiple robots (so

robots can meet in a node) and multiple markers (so different markers can be dropped

in the same node).

Perception A robot’s perception is of three kinds: edge-related, marker-related, and

robot-related. The edge-related perception is same as described in [14], i.e., a robot can

32

determine the relative positions of edges incident on the current vertex vi in a consistent

manner. As a result, the robot can assign an integer label to each edge incident on vi,

representing the order (relative position) of that edge with respect to the edge enumera-

tion at vi. The marker-related perception of a robot allows a robot to sense whether or

not its unique marker is present at the current vertex. It also allows it to sense whether

or not other robots’ markers are at the current vertex. With robot-related perception, a

robot is able to sense the presence of the other robot(s) at the current vertex (robots can

meet in a vertex and sense each other when they meet).

Movement and marker operation A robot can move and handle its own marker. As

in [14], a robot moves from one vertex to another by traversing an edge (a move). Note

that to ensure the fairness of robots, one robot cannot pass another in an edge. Again, it

is assumed that a sequence of moves is invertible and thus can be retraced. A robot can

put down the marker it holds at the current vertex and it can pick up its marker that is

located at the current vertex (a marker operation). Note that this implies that a robot

can sense the others’ markers but only manipulates its own marker.

Robot communication A robot can communicate with other robot(s) when they are

at the same vertex. It is assumed that all robots in the same vertex can communicate

with each other, and that there exists sufficient bandwidth and synchronization strategies

for this to take place. Robots may only communicate when they are in the same vertex.

We can see that according to the axes in the taxonomy proposed in [19], the model

can be specified by COM-NEAR (robots only communicate when they are sufficiently

nearby), BAND-INF (communication is free), TOP-ADD/BROAD (robots communicate

by broadcast, or by robot name and address). In addition, in the model, robots are

homogeneous (COMP-HOM), the relationship between members of the collective can

change arbitrarily (ARR-DYN). Compared with the model in [33], this model does not

33

allow measurement of orientation and edge length, so there are no edge lengths and angles

in the model. On the other hand, since the robots start at the same location, robots have

a common reference frame.

Outline of the exploration algorithm

The following description of the exploration algorithm follows that presented in [20]. Joint

exploration is achieved through alternating phases of independent exploration and coordi-

nated merging of the independently acquired sub-graphs. At any time, the robots retain

a common representation of some part of the world (the commonly known subgraph) as

well as additional information regarding other parts of the world that the other robot may

not be aware of. The algorithm proceeds by having the robots start at a single location

with a common reference direction (the initial definition of the common representation),

and partitioning the unknown edges leaving the commonly known representation so that

each robot explores independently, using the exploration algorithm sketched in [14, 15].

After exploring for a previously agreed-upon interval, the robots return to a commonly

known location to merge their individual partial world models, after which the merged

map is shared between the robots, becoming the new commonly known representation

and the remaining unknown portions of the common map are re-partitioned between the

robots and the entire algorithm repeats until the environment is fully explored.

The key step in the multiple robot exploration algorithm is the merge phase. Sim-

ilar to the strategy for single robot exploration [14, 15], the merging of partial maps is

accomplished by visiting portions of one map and disambiguating them with portions

in the other map. The main techniques in [20] including the merging technique will be

discussed in Chapter 3, which builds on and extends the work in [20].

34

2.6 Open problems

Dudek et al.’s single robot exploration algorithm [14, 15] and multi-robot algorithm [20]

suggest several interesting extensions and variations. Most of these variations and prob-

lems are related to the core techniques involved in single and multiple robot exploration,

including details related to the search for disambiguation, merging the partial repre-

sentations obtained by multiple robots, partitioning of the world to be explored, and

rendezvous scheduling.

Search Strategy The main cost of exploration is the cost associated with the search

for the marker used for disambiguation. In [14, 15] and [20] a brute force strategy is

adopted, i.e., each incoming search task is performed, irrespective of how ‘hard’ it is. In

a connected bidirectional graph a new node or edge can be approached and validated via

different routes with different costs. It is worthwhile exploring more sophisticated search

techniques. For example, a ‘lazy exploration’ approach, in which ‘hard’ search tasks are

put off to later phases may produce significant improvement to the cost of exploration.

How to predict the difficulty of a specific search task and to what extent (how far) to put

off the task are interesting and challenging problems. Another approach is a ‘breadth-

first’ exploration, in which unknown places that are immediate neighbors of a new place

are fully explored before more remote unknown neighbors. How to adaptively adopt this

approach and the current depth-first exploration so as to minimize the search cost is an

interesting problem worth investigating.

Disambiguation Strategy A problem closely related to search cost is the electronic

disambiguation process before the search. The algorithm in [14] and [15] use the vertex

degree to disambiguate vertices before doing mechanical search. Vertices that don’t have

the same degree (signature) as the marker-dropped place are identified as not being

35

potentially confusing and are not visited. All vertices having the same degree as the

marker-dropped place (and having unexplored exit(s)) are identified as being potentially

confusing and are searched. If we can, before the search, ‘electrically’ disambiguate

more potentially confusing vertices, then the subsequent search can be alleviated or even

avoided. The more information we have to describe a vertex, the more likely it is that

we can disambiguate vertices. One piece of information that can be exploited is local

neighbor information. This strategy is especially appealing in the merge phase, where

portions of the world being disambiguated are known (explored by different robots) and

therefore significant neighbor information is available.

Rendezvous Scheduling As one of the core techniques in multiple robot exploration,

rendezvous scheduling defines how, when, and where the merge should be performed.

The algorithm in [20] adopts a very simple schedule, e.g., to merge after an arbitrarily

chosen fixed interval, and at the initial starting place. It is worthwhile investigating issues

related to rendezvous scheduling, e.g., how different rendezvous intervals and locations

can affect the performance, and how these factors are related to the underlying graph

and the current partial maps, how to adaptively decide subsequent intervals and locations

based on the results from previous intervals.

Merge Strategy In the merge phase of multiple robot exploration, coordination and

parallelism should be explored. In [20] the merge task was performed by one robot. To

achieve higher utilization of robots and lower execution cost, it is worthwhile parallelizing

the merge task by having other robots involved, e.g., to share the search and validation

task.

How to merge subgraphs when more than two robots are deployed is another prob-

lem, especially when a large number of robots are deployed. Parallelism and coordination

should be explored. For example, the algorithm described in [20] adopts a simple sequen-

36

tial merge, in which the order is chosen randomly. Approaches such as a binary partitioned

merge might be explored. In addition to exploiting parallelism, more strategic techniques

should be explored to exploit the availability of multiple robots, e.g., dispatching some

robots to the known graph to facilitate search and validation.

Evaluation mechanism Finally we note that an evaluation mechanism needs to be

defined for the general multiple robot exploration problem. An evaluation mechanism

for the multiple robot exploration algorithm is not as simple as that in the single robot

case. For example, suppose we wish to evaluate the mechanical cost of performing the

exploration task. For the single robot case (e.g., [14, 15]), the cost of the task is the

mechanical cost of the robot. In the multiple robot case, there are both parallel and

sequential work involved, due to possible synchronization mechanisms used. For example,

when multiple robots are involved in the merge task, they may need to meet during the

parallel work, then start parallel work again. We need to define a general evaluation

framework to accommodate for possible interleaving of parallel and sequential work.

2.7 Summary

This chapter defined formally the problem to be addressed, i.e., robotic exploration and

mapping problem in a graph-like world where multiple robots are deployed. It reviewed

approaches in the literature to related problems, beginning with an introduction to the

problem. Topics discussed include the interrelated problem in robot mapping (mapping

and localization), basic spatial representations (metric and topological representation)

and the pros and cons of each of the representations, and deterministic and probabilis-

tic representation schemes. Metric approaches to the mapping problem were presented

with an emphasis on approaches to solving the mapping and localization problems si-

multaneously within a probabilistic framework. The posterior of the SLAM problem was

37

presented and two approaches that estimate the posterior, i.e., Kalman filter and parti-

cle filter were discussed. Topological approaches to the problem were reviewed with an

emphasis on Dudek et al.’s deterministic topological approach that forms the basis of

the algorithms developed in this report. The model, algorithm details and performance

concerns of Dudek et al.’s approach were reviewed. The chapter also presented a survey

of multiple robot exploration systems, including Dudek et al.’s multiple robot exploration

algorithm, upon which the work in this report is built. The chapter concluded with an

overview of some of the open problems in single and multiple robot exploration using a

topological representation. This includes how to measure the performance of multiple

robot system, how to perform rendezvous scheduling, how to perform exploration in a

strategic way, how to split up tasks, and how to perform merging when large groups of

robots are involved. The next chapter formally extends Dudek et al.’s model and their

approach to the case of multiple robots.

38

3 Multiple Robot Exploration

This chapter begins by defining formally the models used in this work and then provides a

detailed description of the multiple robot exploration algorithm, with particular emphasis

on the process of merging the partial representations obtained by individual robots. The

chapter also presents a detailed formalism of one possible merge algorithm, followed by

a proof of its correctness and sample operations. In order to compare different solutions,

a performance metric for multiple robot exploration is developed as well.

3.1 The model

The task addressed in this report is that of mapping in a graph-like world using a collection

of robots with limited communication abilities, with all of the robots initially deployed

in a common location. We begin by developing a formal definition of the world in which

the robots exist and which is to be mapped.

3.1.1 The world

The same environmental representation as [14] is assumed. For completeness of defi-

nition, we briefly present it here. The environment is represented as an embedding of

an undirected graph G = (V,E) with set of vertices V = {v1, ..., vn} and set of edges

E = {(vi, vj)}. The world is assumed to have no multiple edges between two vertices

and no edge incident twice at the same vertex. The definition of an edge is extended to

39

allow for the explicit specification of the order of edges incident upon each vertex of the

graph embedding. This ordering is obtained by enumerating the edges in a systematic

(e.g. clockwise) manner from some starting direction. An edge ei,j incident upon vi and

vj is assigned labels n and m, one for each of vi and vj respectively. n and m represent

the ordering of the edge ei,j with respect to the consistent enumeration of edges at vi

and vj respectively. The labels n and m can be considered as local directions, e.g., from

vertex vi then n’th exit takes edge ei,j to vertex vj . A route (path) can be specified as a

sequence of edge labels such that the entry edge at a vertex is always the reference edge

and the successive labels specify the exit edges. Our model assumes that each vertex has

sufficient space to hold multiple robots (so that robots can meet in a vertex) and multiple

markers (so that different markers can be dropped in the same vertex).

3.1.2 Perception

A robot’s perception is of three kinds: edge-related, marker-related, and robot-related.

Edge-related perception The edge-related perception is the same as described in [14].

Assume that the robot is at vertex vi (having arrived via edge ej,i), the robot can de-

termine the relative positions of edges incident on the current vertex vi in a consistent

manner, e.g., by a clockwise enumeration starting with ej,i. As a result, the robot can

assign an integer label to each edge incident on vi, representing the order of that edge

with respect to the edge enumeration at vi. The label 0 is assigned arbitrarily to the

edge ej,i, through which the robot entered vertex vi. Thus for each vertex vi the robot

defines a mapping m that maps vi’s incident edge ei,k onto an integer m(ei,k), where

0 ≤ m(ei,k) < degree(vi). This mapping depends on the entry edge ej,i. Entering the

same vertex from two different edges leads to two mappings one of which is a permutation

of the other. As a byproduct of this ability, the robot can also sense the degree of the

40

current vertex. We also assume that all robots follow the same consistent edge enumera-

tion rule. This ensures the comparability and computability of edge ordering of different

vertices in the map.

Marker-related perception The marker-related perception of a robot allows a robot

to sense the set of markers present at the current vertex. This is the same marker-related

perception as in [20]. Assume that the robot is at vertex vi, also assume that there

are K robots involved. The marker-related perception of the robot at vi is a K -tuple

MSi = (ms1,ms2, ...,msK), where each element msk has a value from the set {present,

not present}, according whether robot k’s marker is present at vertex vi.

Robot-related perception A robot is able to sense the presence of the other robot(s)

at the current vertex. Again, assume that the robot is at vertex vi, also assume there

are K robots involved. The robot-related perception of the robot is a K -tuple RSi =

(rs1, rs2, ..., rsK), where each element rsk has a value from the set {present, not present},

according to whether robot k is currently present at vertex vi.

3.1.3 Robot communication

Communication between robots is only possible when they are at the same vertex (COM-

NEAR). It is assumed that all robots in the same vertex can communicate with each other

(TOP-ADD/BROAD), and that there exists sufficient bandwidth and synchronization

strategies for this to take place (BAND-INF). Robots may only communicate when they

are present at the same vertex. A robot can only receive communication messages from

robots in the same vertex.

41

3.1.4 Movement and marker operation

As in [14] a robot can move from one vertex to another by traversing an edge (a move).

Assume the robot is at a single vertex, vi, having entered the vertex through edge el,i.

In a single move, it leaves vertex vi for vj by traversing the edge ei,j , which is located r

edges after el,i according to the edge order at vertex vi. This can be formally expressed

by the transition function

δ(vi, el,i, r) = vj .

A single move is thus specified by the order r of the edge, along which the robot exits the

current vertex, where r is defined with respect to the edge, along which the robot entered

such vertex. As in [14], it is assumed that a sequence of moves is invertible and thus can

be retraced.

As in [14, 15], a robot can put down the marker it holds at the current vertex and it

can pick up its marker that is located at the current vertex (a marker operation). This

is specified by Mop, where Mop has a value from the set {pickup, putdown, null}. Note

that a robot can sense the other’s markers but only manipulates its own marker.

3.1.5 Memory

The robot remembers all raw sensory information that it has acquired so far, all com-

munications that it has engaged with, and all of its actions. Specifically, if the robot

has performed steps 0, 1, ..i, the raw memory of the robot contains the sequence of in-

formation at each step. For the i-th step, it remembers marker sensing at the step, the

order of edges incident on the vertex visited at step i, and the action taken at step i.

By “remembering” the motion sequence, the robot may retrace any previously performed

motion.

42

3.1.6 Atomic actions and synchronization

In extending the problem of graph exploration to multiple robots, a critical issue is the

nature of parallelism and synchronization. Here we make the synchronization assumption

that all of the robots operate in parallel but that each robot executes a specific tuple of

operations as an atomic unit and that during that operation no other robot is operating.

Each robot executes the following sequence

(sense, initiate-communications, manipulate, move)

as an atomic operation. That is, even though all robots operate in parallel, the sequence

(sense, initiate-communications, manipulate, move) is executed as a single operation.

• sense – this includes marker, robot and edge-related perception.

• initiate-communications – the robots currently in a specific vertex may communi-

cate. This communication is only initiated by the robot that is currently executing.

• manipulate – the robot manipulates its marker (pick up or put down or null).

• move – the robot may choose to exit the current vertex and move along an edge to

the next vertex.

There are a number of properties of this model that are worth observing:

1. As a move is a complete transit of an edge, robots never meet in hallways, only at

vertices.

2. Robots never manipulate each other’s markers.

3. If the active robot chooses not to initiate communication then the other robot(s) in

the same vertex may not have an opportunity to communicate with it.

43

4. We do not assume that robots get to see which edge another robot entered the vertex

from. Although this would be a powerful source of information and an interesting

direction for future work.

The parallelism does not assume a global clock, or that distance or velocity informa-

tion is available. Thus the only ‘clock’ that robots have access to is the number of edges

that they themselves have traversed. It is not assumed that the parallelism is ‘fair’ [7, 9]

in that one robot may move over and over again while another robot ‘sleeps’.

The assumption of an atomic sequence of action simplifies synchronization in vertices.

There is no possibility of having multiple robots acting on the set of markers and ‘running

into’ each other, or worrying about synchronization between perception and action. In

practice, some sort of synchronization mechanism would have to be developed in order to

permit this type of atomic operation (e.g. the use of semaphores [7, 41] or mutexes [41]).

But this is beyond the scope of this work.

3.2 The multiple robot exploration algorithm

Given the set of assumptions given above, this section presents the multiple robot explo-

ration. Fundamental issues and techniques are discussed, followed by formal description

of the merge algorithm and a correctness proof and sample operations of the algorithm.

3.2.1 Joint exploration

We begin by considering the problem of two robots exploring the world in concert. Ex-

tensions to k ≥ 2 robots are examined later. Joint exploration is achieved through

alternating phases of independent exploration and coordinated merging of the indepen-

dently acquired sub-graphs. The algorithm proceeds by having all of the robots start

at a single location with a common reference direction, and partitioning the unknown

44

edges leaving the known world so that each robot explores independently, using the ex-

ploration algorithm described in [14, 15]. After exploring for a previously agreed-upon

interval, which is defined in terms of the number of edges traversed, the robots return to

a commonly known location to merge their individual partial world models, after which

the remaining unknown portions are re-partitioned between the robots and the entire

algorithm repeats until the environment is fully explored. At any time during the explo-

ration, if a robot discovers that no further unexplored edges exist in its assigned set, it

heads to the rendezvous location and waits there.

3.2.2 Merging the partial representations

The challenging task of multiple robot exploration is the task of efficiently merging the

partially explored environments obtained by the two robots. Each merge process takes

two partial maps and involves disambiguating possible confusions between the two maps

obtained by the robots. One of the partial maps is chosen as the base map that will be

augmented with information collected by the other robot. After merging the base map

with the other partial map, the augmented base map is shared among (copied to) both

robots, becoming the new commonly known world representation.

Partial representations before merge process After the two robots have explored

independently, robot1’s partial map S1 consists of a commonly known part S0
m and the

portion of the world S0
1 that robot1 has independently explored, i.e., S1 = S0

1 ∪ S0
m (the

superscript on S1 and Sm signifies that this is the map before the merge process starts,

i.e., at merge timestep 0). Similarly robot2’s partial map S2 consists of the commonly

known part S0
m and the independently explored part S0

2 , i.e., S2 = S0
2 ∪S0

m. The problem

becomes that of integrating S0
1 , S0

2 and S0
m. Figure 3.1(a) shows sample exploration

patterns of two robots on a lattice-like world and Figure 3.1(b) shows the resulting two

45

(a) Exploration patterns by robots (b) Partial maps obtained by the
robots (before the merge)

Figure 3.1: Partial maps to be merged and exploration patterns generating the maps.

partial maps obtained by the robots. In the figure, explored edges are represented by solid

lines connecting their end vertices, unexplored edges are represented by short dotted lines

leaving their known ends. Vertices and edges in the independently explored map S0
1 (by

robot1) are colored blue, edges and vertices in the independently explored partial map S0
2

(by robot2) are colored red, the common map S0
m is colored green. Several properties of

the partial maps are worth observing. Firstly, we can see that each independent partial

map has its own local specification (vertex labelling and edge ordering). In this example,

both S0
1 and S0

2 have a ‘vertex 2’ but they refer to different places in the lattice world they

explore. Secondly, the independent partial maps S0
1 and S0

2 may intersect. Here ‘vertex

3’ in S0
1 and ‘vertex 3’ in S0

2 refer to the same place in the real world. Determining which

vertices refer to the same real world location and which vertices do not is a critical merge

process task. Thirdly, both S0
1 and S0

2 are ‘distinct’ from S0
m. This is because robot1 has

already disambiguated vertices and edges in S0
1 with that in S0

m and robot2 has already

disambiguated vertices and edges in S0
2 with that in S0

m.

46

Partial presentations during merge process Clearly either S1 or S2 can be treated

independently as being correct, so without loss of generality we choose robot1’s map S1

as the base map which will be augmented during the process. (In practice one would

choose the larger map as the base map.)

Throughout the process, due to the properties of the partial maps, the merging of

S2 with S1 involves disambiguating (‘fusing’) vertices and edges in St
2 with that in St

1

and including them into St
m, where St

m is the set of vertices and edges in the partial

maps that have been merged (and therefore are commonly known) at timestep t. Here

St
2 is the independently explored part of the world in robot2’s map that has not been

disambiguated and included into St
m, and St

1 is the independently explored part of the

world in robot1’s map that has not been disambiguated and included into St
m. So during

the process, St
m grows and St

2 shrinks. Upon termination (at timestep n),

• Sn
1 ∪ Sn

m (augmented S1) is the merged result.

• Sn
2 = {}, i.e., all vertices and edges in S0

2 have been disambiguated and included

into Sn
m.

• Sn
1 is the set of edges and vertices independently explored by robot1 but not by

robot2 (so they are not merged into Sn
m).

• Sn
m = S0

m ∪X, where X is the set of edges and vertices independently explored by

robot2 (may or may not be explored by robot1 as well).

In the following discussions, the superscript t will be omitted unless it is necessary.

Frontier edges and fusing of frontier edges To visit vertices and edges in S2 in

a systematic and efficient way, the algorithm starts from Sm, studying independently

explored edges (by robot2) that are grounded in Sm but which extend into S2. We call

such edges frontier edges. Formally, a frontier edge is an edge e = (v1, v2) such that

47

(a) The frontier edge was also ex-
plored by robot1

(b) Expanding edge (vI , vE2/E1)
into Sm

Figure 3.2: Electronic fusing.

1. e ∈ S2, i.e., e has not been merged.

2. exactly one of {v1, v2} ∈ Sm (call this the interior vertex) and the other ∈ S2 (call

this the exterior vertex).

Each iteration of the algorithm involves choosing a frontier edge from S2 and processing

it. As each frontier edge is processed it is removed from the set of frontier edges (by

expanding the common area Sm) and additional edges in S2 may become frontier edges.

Consider a frontier edge (vI , vE2), where vI is the agreed upon label of the interior

end in Sm. Assume l is the agreed upon edge ordering of the edge in vI . Denote the

same edge in S1 (if it exists) by edge1{vI , l} and the other end vertex of the edge by vE1.

Depending on the status of edge1{vI , l} in S1, there are a number of possible cases.

• Case 1: (Electronic Fusing)

edge1{vI , l} ∈ S1, vE1 ∈ S1

Both robot1 and robot2 explored this edge independently (Figure 3.2(a), where Sm

48

(a) Both the frontier edge and the
exterior end were not explored by
robot1

(b) Expanding edge (vI , vE2) into
Sm

Figure 3.3: Mechanical fusing, marker not found.

is colored green, S2 colored red and S1 colored blue). As both robot1 and robot2

have vI in common, the common ordering of edges in vI is known. We can also

trivially define the common label of vE2 and vE1, and the common ordering of the

edge at vE2/E1 (‘fuse’ the edges), then expand the ‘fused’ edge (vI , vE2/E1) into Sm

and reduce S1 and S2 by the edge (Figure 3.2(b)).

• Case 2: (Mechanical Fusing)

edge1{vI , l} /∈ S1.

Robot2 explored this edge but robot1 did not. vE2 has been disambiguated against

S2 and Sm but not S1. Disambiguation against S1 must be done via mechanical

motion of one of the robots. In the simplest case one of the robots moves to vE2

and drops its marker. It then visits all potential matches to vE2 in S1. There are

two possibilities.

49

(a) The frontier edge was not ex-
plored by robot1, but the exterior
end was

(b) Expanding edge (vI , vE2/E1)
into Sm

Figure 3.4: Mechanical fusing, marker found.

– Case 2a: The marker is not found in S1. Then clearly vertex vE2 /∈ S1 (Figure

3.3(a)). We can simply add the edge (vI , vE2) to Sm and remove the edge from

S2 (Figure 3.3(b)).

– Case 2b: The marker is found in some vertex in S1 (call this vertex vE1, as in

Figure 3.4(a)). In this case vE1 and vE2 correspond to different local labellings

by the two robots of the same vertex. It is necessary to establish the common

ordering of the edge (its embedding) in vE2/E1 (‘fuse’ vE2 and vE1). There are

many possible approaches to this, but perhaps the simplest is to have the robot

go back to vI , drop its marker, move to vE2/E1 and then try each edge in vE2/E1

to identify the specific edge that leads to vI . Once this has been accomplished,

the edge (vI , vE2/E1) can be added to Sm and removed from S2. Vertex vE1 is

removed from S1 (Figure 3.4(b)).

50

(a) (vY , vE2) is a frontier
edge

(b) Establishing (vI , vE)
makes (vY , vE2) a direct
edge

(c) Expanding direct edge
(vY , vE) into Sm directly

Figure 3.5: Direct edge and direct fusing.

Direct edge and direct fusing The process of establishing the edge (vI , vE2/E1) in Sm

can change edges in S2 in different ways. While the process can change inner edges in S2

into (new) frontier edges, (eventually) leading to visits of all edges and vertices in S2, it

can also provide evidence of other edges that can be merged directly (electronically). To

see this, suppose vertex vY ∈ Sm and edge (vY , vE2) is an edge that has been explored by

robot2 (the edge may or may not be explored by robot1). Edge (vY , vE2) is another frontier

edge that has not been processed yet (Figure 3.5(a)). Establishing edge (vI , vE2/E1) makes

both ends of edge (vY , vE2) commonly known (in Sm), therefore also trivially establishes

edge (vY , vE2/E1) in Sm (‘fuses’ edge (vY , vE2) and the corresponding edge (vY ,vE1) if the

corresponding edge exists in S1) and allows us to remove the edge (vY , vE2) from S2

(Figure 3.5(b), 3.5(c)). (Also remove the corresponding edge (vY , vE1) from S1 if it exists

in S1.) We call edge (vY , vE2/E1) a direct edge and the establishment of the edge in Sm

direct fusing. A direct edge is an independently explored edge (by robot2) in S2 but whose

two end vertices are all in Sm. Formally, a direct edge is an edge e = (v1, v2) such that

1. e ∈ S2.

2. v1 ∈ Sm and v2 ∈ Sm.

Direct edges are not only generated during the merge process, but they may also

exist before the merge starts. Direct edges that exist before the merge process starts are

51

(a) New common map for both
robots after merge phase n

(b) Results of subsequent explo-
ration phase by robot2 (before
merge phase n + 1)

Figure 3.6: Direct edge existing before merging starts.

generated in the preceding exploration phase in which robot2 augments S2 by exploring

edges connecting vertices in Sm (Figure 3.6).

Each iteration of the algorithm involves processing frontier edges (using ‘electronic

fusing’ and ‘mechanical fusing’) and direct edges (using ‘direct fusing’) from S2. The

algorithm terminates when frontier edges and direct edges are exhausted. A summary

of the evolvement of the partial maps during the merge process is present in Table 3.1.

Note that in this table St
1 ∪ St

m becomes the new common map after the merge.

3.2.3 Statement of the algorithm

This section provides a formal description of the fundamental multiple robot exploration

algorithm. Striving to be consistent with the notation of the exploration algorithm de-

scribed in [15], we denote the mapping from a local map Si that the roboti is constructing

to the real world G by φ. φi(v) and φi(e) denote the vertex and edge in the real world

G which corresponds to vertex v and edge e in Si, respectively (v and e are local identi-

fications in Si). Conversely, φ−1
i (v) and φ−1

i (e) denotes the reverse mapping from G to

Si. Note that v and e are identifications in the real world G.

Explored edges are specified by the vertices upon which the edge is incident, as well

52

Table 3.1: Evolvement of maps during merge process.

as the two indices of the edge defined by the edge ordering for each of the two ver-

tices (an unexplored edge is specified by its known vertex and the edge ordering for

the known vertex). Let edgei(v, l) indicate the edge incident on vertex v, with local in-

dex l with respect to v in Si; indexi(e, v) indicates the local index of edge e incident

on vertex v with respect to v in Si; degreei(v) indicates the degree of vertex v in Si.

otherV ertexi(edgei(v, l), v) indicates the other end of an edge that is incident on v and

has local index l in Si. labeli(e) and labeli(v) indicate the label of edge e and vertex v

in Si respectively, labeli(v/e) ∈ {UNEXPLORED,EXPLORED, COMMON}. This

labelling is with respect to the labelling maintained by robot i.

To deal with vertex and edge identification and index matching between maps, some

conversion information must be maintained for queries. To this end, denote the mapping

of vertices from local map Si to Sj by µi→j , e.g., µ1→2(v1) denotes the vertex in S2,

which corresponds to vertex v1 in S1. Again, v1 is the local identification in S1. To

match local indexes (‘door numbers’) of counterpart edges incident on counterpart ver-

tices in different maps, we maintain local index ‘correspondences’ between counterpart

vertices in different maps, which is denoted by αi→j(vi). The ‘correspondence’ specifies

the relationship between the two local edge orderings of the counterpart vertices. For

example, in a planar graph and using a clockwise enumeration of edge ordering, then the

53

correspondence αi→j would simply be the shift (rotation) between the two edge orderings.

This correspondence in turn can be used to infer (compute) the index of other counter-

part edges. Given the correspondence α between two counterpart vertices and one edge

index j1 on one vertex v1, the counterpart index j2 at the corresponding vertex v2 can

be inferred by a function, denoted β, i.e., j2 = β(j1, α1→2(v1)). For example, in planar

graph and clockwise enumeration, j2 = β(j1, α1→2(v1)) = (j1 + α1→2(v1) + degree1(v1))

mod degree1(v1), where α1→2(v1) is the local ordering shifting distance.

Algorithm 1 (MERGE(S1,S2)).

. this algorithm merges robot2’s map S2 into base robot1’s base map S1

. S1 = S1 ∪ Sm where S1 is the unmerged part of map

. S2 = S2 ∪ Sm where S2 is the unmerged part of map

. Sm is the merged, common part of the maps, but has two ‘views’ (copies)

. specification of Sm in S1 (S1 ∪ Sm) consistent with that in S1 (robot1’s view)

. specification of Sm in S2 (S2 ∪ Sm) consistent with that in S2 (robot2’s view)

. algorithm maintains set C of commonly known vertices

. C is specified in robot2’s view, initially contains the sole start vertex

. algorithm maintains set F of frontier edges, specified in robot2’s view

. algorithm maintains set D of direct edges, specified in robot2’s view

. algorithm terminates when both set F and D are empty

. upon termination, S1 ∪ Sm (augmented S1) is the merged result

marker := the (unique) marker of the executing robot
. preceding exploration may generate frontier edges and direct edges

. scan through vertices currently in common set C

for all vertices vcommon in C
for all edges f incident on vcommon

if isFrontierEdge (f)
add f to F . specification in F is in robot2’s view

elseif isDirectEdge (f)
add f to D . specification in D is in robot2’s view

end for
end for

54

. main merge loop

exit when F = {} and D = {}

. first try ‘electronic fusing’ possibility

for each e2 = (vI2, l2) in F . vI2 is the common (green) end of e2 in Sm

. infer frontier edge e2’s counterpart edge e1 in S1 ∪ Sm

. by inferring vI2’s counterpart vertex vI1, given by µ2→1(vI2), and

. e1’s index on vI1, given by β(l2, α2→1(vI2))
vI1 := µ2→1(vI2)
e1 := edge1(vI1, β(l2, α2→1(vI2)))

if e1 ∈ S1 . e1 ∈ S1 ∪ Sm, the edge was also explored by robot1

. e1 and e2 should be fused (merged)

. first retrieve other end vE

vE2 := otherV ertex2(e2, vI2) . in S2

vE1 := otherV ertex1(e1, vI1) . in S1

. fuse (merge) e1 and e2 electrioncally

. by recording matching information for vE1 and vE2

µ1→2(vE1) := vE2

µ2→1(vE2) := vE1

α1→2(vE1) := correspondence of index1(e1, vE1) and index2(e2, vE2)
α2→1(vE2) := correspondence of index2(e2, vE2) and index1(e1, vE1)

. now evolve local maps S1 and S2

. for robot1’s map (base map)

label1(e1) = COMMON . ‘paint green’, Sm (by robot1) grows

label1(vE1) := COMMON . and S1 shrinks

. for robot2’s map

remove e2 from F . no longer a frontier edge

label2(e2) := COMMON . ‘paint green’, Sm (by robot2) grows

label2(vE2) := COMMON . and S2 shrinks

55

add vE2 into C . a new common vertex

. vE2 may contribute new frontier edges and direct edges

for each edge f emanating vE2

if isFrontierEdge (f)
add f to F

elseif isDirectEdge(f)
add f to D

end for
end if

end for . finish all possible electronic fusing of frontier edges

. try validate remaining frontier edges by mechanical movement

. the algorithm is similar to the exploration algorithm in [14, 15]

. choose a frontier edge e2 from F

. with common end vI2 that is closest to vcurrent

. vcurrent is where the robot is currently in

. move the robot to vI2, then traverse along the edge

. drop the marker at the other end vE2 in S2

edge e2 := choose(F) . e2 = (vI2, l2) with common end vertex vI2

vE2 := otherV ertex2(e2, vI2)
walk(φ2(vcurrent), φ2(vI2)) . go to common end vI

followEdge(φ2(e2)) . to other end φ(vE2)
drop(marker)
followEdge(φ2(e2)) . back

. search in S1 for the dropped marker (this will change vcurrent)

search(S1,markerFound)

if not markerFound . φ2(vE2) is a new vertex to S1 ∪ Sm

walk(φ2(vcurrent), φ2(vI2)) . go to common end vI

followEdge(φ2(e2)) . to other end φ2(vE2)
pickup(marker)

56

. generate frontier edge e2’s counterpart edge e1 in S1 ∪ Sm,

. by inferring vI2’s counterpart vertex vI1, given by µ2→1(vI2), and

. e1’s index on vI1, given by β(l2, α2→1(vI2))

. also generate e1’s other end vE1

. and determine index of e1 on vE1

vI1 := µ2→1(vI2)
e1 := edge1(vI1, β(l2, α2→1(vI2)))
vE1 := new vertex whose label is the last (highest)
otherV ertex1(e1, vI1) := vE1 . set other end

index1(e1, vE1) := index2(e2, vE2) . free to set, just copy

degree1(vE1) := degree2(vE2) . copy electronically

for each other edge f leaving φ1(vE1) . f is label in real world G

index1(φ−1
1 (f), vE1) := consistent ordering with respect to e1

add φ−1
1 (f) to U . U is maintained by base robot1

end for

. fuse (merge) e1 and e2

. by recording matching information for vE1 and vE2

µ1→2(vE1) := vE2 µ2→1(vE2) := vE1

α1→2(vE1) := correspondence of index1(e1, vE1) and index2(e2, vE2)
α2→1(vE2) := correspondence of index2(e2, vE2) and index1(e1, vE1)

. now evolve local maps S1 and S2

. for robot1’s map (base map)

remove e1 from U
add e1 to S1 ∪ Sm . base map augmented

add vE1 to S1 ∪ Sm . by one edge and one node

label1(e1) := COMMON . ‘paint green’, Sm (by robot1) grows

label1(vE1) := COMMON . and S1 no change

. for robot2’s map

remove e2 from F
label2(e2) := COMMON . ‘paint green’, Sm (by robot2) grows

label2(vE2) := COMMON . and S2 shrinks

57

add vE2 into C . new common vertex

. vE2 may contribute new frontier and direct edges

for each edge f emanating vE2

if isFrontierEdge (f)
add f to F

elseif isDirectEdge(f)
add f to D

end for
end if (not markerFound)

else . marker found

. vfound = vcurrent, vfound in S1 corresponds to vE2 in S2

. call vfound as vE1

. infer the counterpart edge in S1 ∪ Sm

. and determine its index with respect to vE1

. generate frontier edge e2’s counterpart edge e1 in S1 ∪ Sm,

. by inferring vI2’s counterpart vertex vI1, given by µ2→1(vI2), and

. e1’s index on vI1, given by β(l2, α2→1(vI2))

. also determine index of e1 on vE1

vI1 := µ2→1(vI2)
e1 := edge1(vI1, β(l2, α2→1(vI2)))
otherV ertex1(e1, vI1) := vE1 . set the other end

pickup(marker)
walk(φ1(vE1), φ1(vI1)) . go to common end vI

drop(marker)
walk(φ1(vI1), φ1(vE1)) . back

for each edges f leaving vE1 .f is local label in S1

followEdge(φ1(f)) . to vunknown

if marker at vunknown then
index1(e1, vE1) := index1(f, vE1)
exit for

58

end if
end for

. fuse (merge) e1 and e2

. by recording matching information for vE1 and vE2

µ1→2(vE1) := vE2 µ2→1(vE2) := vE1

α1→2(vE1) := correspondence of index1(e1, vE1) and index2(e2, vE2)
α2→1(vE2) := correspondence of index2(e2, vE2) and index1(e1, vE1)

. evolve local maps S1 and S2

. for robot1’s map (base map)

remove e1 from U
add e1 to S1 ∪ Sm . base map augmented by one edge

label1(e1) := COMMON . ‘paint green’, Sm (by robot1) grows

label1(vE1) := COMMON . and S1 shrinks

. for robot2’s map

remove e2 from F
label(e2) := COMMON . ‘paint green’, Sm (by robot2) grows

label2(vE2) := COMMON . and S2 shrinks

add vE2 into C . new common vertex

. vE2 may contribute frontier or direct edges

for each edge f emanating vE2

if isFrontierEdge (f)
add f to F

elseif isDirectEdge(f)
add f to D

end for
pickup(marker)

end else . finish marker found case

. end mechanic fusing (of one frontier edge)

59

. lastly do direct fusing for direct edges in D

for each e2 = (vE2, l2) in D . specification in robot2’s view

. infer direct edge e2’s counterpart edge e1 in robot1’s view of Sm

. by inferring vE2’s counterpart vertex vE1, given by µ2→1(vE2), and

. e1’s index on the counterpart vE1, given by β(l2, α2→1(vE2))
vE1 := µ2→1(vE2)
e1 := edge1(vE1, β(l2, α2→1(vE2))) . index1(e1, vE1) is β(l2, α2→1(vE2))

. e1 may or may not be explored by robot1

if e1 /∈ S1 . e1 /∈ S1 ∪ Sm, edge not explored by robot1

vY 2 := otherV ertex2(e2, vE2) . common vertex, robot2’s view

vY 1 := µ2→1(vY 2) . must have this matching information

. set other end vY 1 and infer index of e1 with respect to vY 1

otherV ertex1(e1, vE1) := vY 1

index1(e1, vY 1) := β(index2(e2, vY 2), α2→1(vY 2))

. now we have all information about new edge e1 w.r.t S1 ∪ Sm

. time to augment base map!

remove e1 from U
add e1 to S1 ∪ Sm . based map augmented by one edge

label1(e1) := COMMON . ‘paint green’, Sm (by robot1) grows

else . e1 ∈ S1, also explored by robot1

label1(e1) := COMMON . ‘paint green’, Sm grows, S1 shrinks

end if else

. Sm (by robot2) and S2 evolves anyway

remove e2 from D
label2(e2) := COMMON . ‘paint green’, Sm grows, S2 shrinks

end for . finish direct fusing

end main loop

END OF MERGE ALGORITHM

60

Robot Actions:

followEdge(e)
. The robot takes edge e out of the current vertex

drop(marker)
. The robot drops the specified marker at its current location

pickup(marker)
. The robot picks up the specified marker at its current location

subroutines:

isFrontierEdge(edge2(vI2, l2))
vE2 := otherV ertex2(edge2(vI2, l2), vI2)
true if the following conditions are satisfied:
1. label2(vI2) := COMMON
2. label2(edge2(vI2, l2)) := EXPLORED . not common

3. label2(vE2) := EXPLORED . vE2 not common

isDirectEdge(edge2(vE2, l2))
vY 2 := otherV ertex2(edge2(vE2, l2), vE2)
true if the following conditions are satisfied:
1. label2(vE2) := COMMON
2. label2(edge2(vE2, l2)) := EXPLORED . not common

3. label2(vY 2) := COMMON . both ends are common

choose(F)
. choose from edge set F an edge e with common

. known incident vertex v1 that is closest to vcurrent

run shortestPath(vcurrent) with source vertex vcurrent,
finds the edge satisfying the above description

walk(vfrom, vto)
run shortestPath(vfrom) to get shortest path (e1, e2, ..., ek)
from vfrom to vto through S
for i from 1 to k

followEdge(φ(ei))
end for

61

search(S, markerFound)
. collect vertices that need to be searched

build a list l of vertices in S that satisfy:
1. the vertex has unexplored edge(s) incident on it
2. the vertex has the same signature (degree) as the vertex to be disambiguated

. search until marker is found or no where to search

markerFound := false
loop

exit when markerFound OR list l = {}
run shortestPath(vcurrent) to get shortest path from vcurrent to all in l
select vertex vpcn in l that is the closest to vcurrent, remove vpcn from l
walk(vcurrent, vpcn)
vcurrent := vpcn

if marker is sensed
markerFound := true
pickup(marker)

end if
end loop

shortestPath(source)
run Dijkstra’s algorithm to get the shortest path
from source to all other vertices in the graph.

3.2.4 Correctness proof of the merge algorithm

Suppose two robots explore a graph G and define robot1 as the base robot. After an

exploration step, we have the base robot’s partial map representation S1 (S1 = S1∪Sm),

and the other robot’s partial map representation S2 (S2 = S2 ∪ Sm). We merge S2 into

S1. The merge process keeps on augmenting S1 by adding vertices and edges from S2. We

wish to prove that after the merge, the augmented S1 is (still) isomorphic to a subgraph

62

of the world model G. In addition, all edges and vertices of S2 that corresponded to parts

of the world that were not in S1 before the merge process have been added into S1, i.e.

the other robot’s exploration efforts have been fully and correctly exploited.

As in [14, 15], we use an extended definition of graph isomorphism, i.e. graphs G and

H are said to be isomorphic if and only if they are isomorphic under the usual definition

of graph isomorphism, and, in addition, for each vertex v of G and each edge e = (v, v′)

index(e, v) = relabelling(index(φ(v), φ(v′), φ(v)))

or simply

index(e, v) = relabelling(index(φ(e), φ(v)))

where φ denotes the mapping from the map G to the other map H, i.e., φ(v) and φ(e) de-

note the vertex and edge in H which corresponds to v and e in G, respectively. relablling

is a permutation of the edge indices at vertex φ(v) that preserves the edge ordering used

by the algorithm, but ensures a common reference edge for the ordering (e.g. clockwise

in a planar graph embedding). This simply states that the edges leaving v and φ(v)

have the same labeling, but may be labeled starting from a different reference edge. This

condition is referred to as the “edge-index condition”. To facilitate the proof, we first

revisit and clarify some issues related to the edge-index condition and edge properties.

Property#1 Suppose v and v′ refer to the same vertex in the real world in the maps

of the two robots. Then each map preserves the edge-index condition with respect to

vertices in the real world. If we know the ‘correspondence’ (relations of indices) for one

pair of their counterpart edges, then for any edge incident on v, counterpart edge incident

on v′ can be inferred, and the inferred index holds the “edge-index condition”.

63

Justification Since v and v′ preserve the edge-index condition,

index(e, v) = relabelling(index(φ(e), φ(v)))

index(e′, v′) = relabelling(index(φ(e′), φ(v′)))

Since v and v′ are counterpart vertices, φ(v) = φ(v′) and φ(e) = φ(e′). This means that

the edge labelling in v and v′ are permutations of the same edge labelling (in φ(v)), so the

edge labeling of v and v′ are permutations of each other too and the edge-index condition

is also preserved between v and v′, i.e., edges leaving v and v′ have the same labelling

but start from (potentially) a different reference edge. If we know the correspondence of

one pair of edges this establishes the (universal) correspondence of all counterpart edges.

So for an edge, based on the correspondence, its counterpart edge is inferable and the

inferred index holds the “edge-index condition”.

Property#2 At any point during the merge process, in terms of the nature (in Sm or

S2) of edges and their two ends, there are four kinds of edges in S2 (S2 = S2 ∪ Sm):

1. Inner edges in Sm (‘all green’ edge ab in Figure 3.7(a)).

2. Inner edges in S2 (‘all red’ edge de in Figure 3.7(a)).

3. Frontier edges across Sm and S2 (edge ad, af in Figure 3.7(a)).

4. Direct edges (edge bc in Figure 3.7(a)).

Justification In terms of the status of an edge e = (v1,v2) and the two ends, there are

eight combinations and the resulting edges can be arranged into six groups.

1. e ∈ Sm, v1 ∈ Sm, v2 ∈ Sm (‘all green’ inner edges in Sm)

2. e ∈ S2, v1 ∈ S2, v2 ∈ S2 (‘all red’ inner edges in S2)

64

(a) The five kinds of edges ex-
isting during the process

(b) The three invalid kinds of edges

Figure 3.7: Existing and non-existing kinds of edges during the merge process.

3. e ∈ S2, v1/v2 ∈ Sm, v2/v1 ∈ S2 (frontier edges)

(a) v1 ∈ Sm, v2 ∈ S2

(b) v1 ∈ S2, v2 ∈ Sm

4. e ∈ S2, v1 ∈ Sm, v2 ∈ Sm (direct edges)

5. e ∈ Sm, v1 ∈ S2, v2 ∈ S2 (invalid edges)

6. e ∈ Sm, v1/v2 ∈ Sm, v2/v1 ∈ S2 (invalid edges)

(a) v1 ∈ Sm, v2 ∈ S2

(b) v1 ∈ S2, v2 ∈ Sm

Trivially the first four kinds of edges exist during the merge process. The latter two

kinds of edges are common (green) edges with two uncommon end vertices and common

(green) edges with one common vertex and one uncommon vertex (Figure 3.7(b)). We

show that during the merge process, the latter two kinds of edges are not generated.

During the merge process, a common (green) edge either comes from a uncommon (red)

65

frontier edge when it is disambiguated (electronic fusing or mechanical fusing), or comes

from a uncommon (red) direct edge when it is disambiguated (direct fusing). When a

frontier edge is disambiguated and fused, the algorithm always includes the frontier edge

(red) and its uncommon (red) end into the common area. So both the edge and its

uncommon end become common (green). Since the other end of the frontier edge is in

the common area (green), the inclusion of the frontier edge makes it a ‘all green’ edge.

When a direct edge is disambiguated and fused, we always include the direct edge (red)

into the common area. Since the direct edge has two common (green) ends, the inclusion

of the direct edge makes it a ‘all green’ edge. So a common (green) edge cannot have

one or two uncommon red ends and therefore the edges shown in Figure 3.7(b) are not

generated. We can therefore infer that:

1. A common (green) edge must have two common (green) ends. This is the only kind

of common (green) edge during the merge process.

2. An edge having at least one uncommon (red) end must itself is uncommon (red).

Formal proof of the merge algorithm

We prove the algorithm correct by establishing an invariant I and showing that I

is initially true, is maintained true throughout the execution, and that the algorithm

terminates. Then we show that the termination condition plus the invariant imply that

after merging, S1 (S1 = S1 ∪ Sm) is (still) isomorphic to a subgraph of G. In addition,

all edges and vertices independently explored by robot2 (edges and vertices of S0
2) have

been disambiguated and merged into S1, i.e., the other robot’s exploration efforts have

been fully exploited and utilized.

We define the loop invariant I as follows:

66

I:

1. S1 = S1 ∪ Sm is isomorphic to subgraph of G, and

2. We maintain a common vertex set C that contains all of the vertices in S2 that
have been disambiguated. We also maintain matching information for all vertices
in C.

3. We maintain a frontier edge set F that contains all frontier edges that emanate
from the vertices currently in C.

4. We maintain a direct edge set D that contains all direct edges that connects the
vertices currently in C.

We also define a bound function, t, for the loop

t = |ES2 |

where ES2 is the set of edges in S2 (specifically St
2), i.e., the (red) edges in S2 that have

not been disambiguated and merged. |ES2 | denotes the cardinality of the set ES2 .

1. I is true before the loop is entered. Before the merge loop starts, S1 = S1 ∪Sm

is the original exploration result of the base robot in the preceding exploration phase.

The correctness of the exploration algorithm guarantees that S1 ∪ Sm is isomorphic to a

subgraph H of G [14, 15], so I-1 is true. Before the first merge starts, the common vertex

set C contains initial common starting point vinitial. The algorithm also maintains the

matching information for vinitial. This is trivially possible because all robots use the same

vertex label and index information (e.g. they treat vinitial as same 0’th vertex in both

local maps and same edge ordering in vinitial). This establishes invariant I-2. If the merge

is not the first merge, the common vertices in C are vertices of the merged map from the

last merge. The algorithm maintains the matching information for the common vertices.

This is possible because all robots use the same vertex label and index information. This

also maintains the invariant I-2. Also, all edges emanating from vertices in C are checked,

67

those that satisfy the frontier edge definition are added to F . Thus F contains all frontier

edges emanating current vertices in C, maintaining invariant I-3. All edges emanating

vertices in C are checked, those who satisfy the direct edge definition are added to D,

thus D contains all direct edges emanating current vertices in C, maintaining invariant

I-4.

2. I is maintained by the loop body. Each time through the loop body, frontier

edges in F and direct edges in D are processed if they exist. The processing may add new

edges into S1 ∪ Sm. We show that in each iteration, if edges are added, each added edge

is correctly labeled (indexed) with respect to its two ends in S1∪Sm, maintaining I-1. In

addition, C, F and D are correctly updated, maintaining I-2, I-3 and I-4. The algorithm

first processes frontier edges. As elaborated before, depending on the status of the current

selected frontier edge in robot1’s map there are 3 different execution possibilities.

Case 1 First, the algorithm scans through all current frontier edges in F , seeking

electronic fusing possibilities. For each frontier edge e2, the algorithm computes e2’s

counterpart edge in S1 ∪ Sm. This computation is possible, since by the hypothesis that

I-2 is true before this iteration, the algorithm maintained in all common vertices in C

their correct matching information, and I-3 states that each (frontier) edge in F is an

edge emanating from an vertex in C. This computation is also correct, as justified in

Property#1.

If the computed edge (call it e1) exists in S1∪Sm (specifically, exists in S1), we add e2’s

other end vE2 (the exterior vertex in S2) into common area Sm, recording the matching

information for vE2 and its counterpart vertex. The matching information is computable

because e1 is a known edge in S1 ∪ Sm, by examining the maps, we know the index of e1

incident on vE1, which is the counterpart vertex of vE2. We can infer the correspondence

of the edge index between vE1 and vE2. The label conversion information (vE1 vs. vE2)

68

and the edge index correspondence between them define the full matching information

of the two counterpart vertices. Thus I-2 is maintained. Including vE2 into the common

area Sm may generate both frontier edges and direct edges, so the algorithm examines all

emanating edges incident on vE2, and updates F and D accordingly. Therefore after the

Case 1, both C, D and F are updated, maintaining I-2, I-3 and I-4. During electronic

fusing, S1 ∪ Sm is not augmented, so I-1 is trivially maintained as well.

After processing all of the current frontier edges that can be electronically fused,

the algorithm checks F again. If there is a frontier edge left, it will be processed via

mechanical moves. This is essentially an exploration by the base robot on the two maps.

The algorithm drops a marker at the uncommon (exterior) other end of the frontier edge,

say, vE2 in S2, search in S1 to see if the marker can be found. Since vE2 is a vertex in

S2, the correctness and completeness of searching in S1, rather than S1 ∪ Sm is given by

the fact that both before and during the merge process, vertices in both S1 and S2 are

distinct with that in Sm. The algorithm performs one of the following mechanical steps,

depending on the outcome of the marker search process.

Case 2a In the case that the marker is not found in S1, then both the counterpart

edge of the frontier edge and the counterpart vertex of the frontier edge’s uncommon

end are not in S1, the algorithm adds a new edge e1 = (vI1, vE1) to S1 ∪ Sm, where

vI1 is the vertex in Sm that is the counterpart vertex of the frontier edge’s common end

vI2 and vE1 is the counterpart vertex of the frontier edge’s uncommon end vE2. By I-2,

Property#1 and I-1, index(e1, vI1) is correct and satisfy the edge index condition. The

algorithm is free to set index(e1, vE1) arbitrarily, since no indices of edges leaving vE1

have yet been set. The algorithm uses the index of the frontier edge e2 with respect to

its end vE2, i.e., index(e1, vE1) = index(e2, vE2), which, by the correctness of exploration

algorithm [14, 15], as well as I-1 maintained, holds the edge-index condition. So e1 is

correctly labeled, therefore S1∪Sm is updated correctly, maintaining I-1. The algorithm

69

adds vE2 to C and records matching information for vE2 and vE1, maintaining I-2. This

information is possible and correct, by I-2 and Property#1. In addition, the algorithm

checks edges leaving vE2, for possible new frontier edges and direct edges, and updates F

and D accordingly, maintaining I-3 and I-4.

Case 2b In the case that the marker is found, say, at vE1 in S1, then vE1 is the

counterpart vertex of the frontier edge’s (uncommon) exterior end vE2. The algorithm

adds a new edge e1 = (vI1, vE1) in S1 ∪ Sm, where vI1 is the counterpart vertex of the

common end of the frontier edge. Again, by I-2 , Property#1 and I-1, index(e1, vI1)

is correct and satisfies the edge index condition. In the loop body, a search is conducted

to determine which of the edges leaving vE1 is actually e1. The search is guaranteed to

terminate successfully because both vI1 and vE1 are in S1 ∪ Sm and thus, e1 must be in

S1 ∪ Sm. Furthermore, by hypothesis I-1 that S1 ∪ Sm is isomorphic to subgraph in G,

e1 will be correctly labeled with respect to vE1 when it is determined which edge is e1,

i.e. index(e1, vE1) is correct and satisfies the edge index condition. So S1∪Sm is updated

correctly, maintaining I-1. Then the algorithm adds vE2 to C and records matching

information for vE2 and vE1. Again, this information is obtainable and correct, by I-2

and Property#1, thus maintaining I-2. Also, the algorithm checks emanating edges of

vE2 for possible new frontier edges and direct edges and updates F and D, maintaining

I-3 and I-4.

Direct fusing After performing possible mechanical fusing (for one frontier edge), the

algorithm performs direct fusing for each edge in the current D. As stated earlier, in direct

fusing, for each direct edge e2 = (vE2, vY 2) (in robot2’s view), the algorithm computes

the direct edge’s counterpart edge e1 in robot1’s view (the two counterpart vertices vE1

and vY 1 along with the counterpart edge’s index with respect to the two counterpart

ends). The computation is possible, since for the two common ends we have correctly

recorded the matching information, by the hypothesis that I-2 is true. The computation

70

is correct, as Property#1 shows. So the computed edge is correctly labeled (indexed)

with respect to its two ends in robot1’s view, being consistent with S1 ∪ Sm. So we can

check if the computed edge exists in S1 ∪ Sm (specifically, if it exists in S1). If not, we

add it to S1 ∪ Sm, using the computed vertex and index information which is consistent

with the labeling in S1 ∪ Sm. So S1 ∪ Sm is updated by a new edge that satisfies the

edge index condition. Thus I-1 is also maintained. This process does not generate new

common vertices, consequently no new frontier edges and direct edges are generated and

C, F and D are unchanged and therefore I-2, I-3 and I-4 are maintained.

So, in each iteration of the loop body, I-1 is maintained by updating S1 ∪ Sm with

correctly labeled edge(s) (consistent with S1∪Sm); I-2 is maintained by updating C with

new common vertices and recording conversion information at the new common member

vertices. I-3 is maintained by adding to F all frontier edges emanating vertices in C, I-4

is maintained by updating D with all direct edges emanating vertices in C.

3 The loop terminates. The loop continues while frontier edges or direct edges re-

main. By definition, frontier edges and direct edges are edges of S2, which is the unmerged

part of map S2. If frontier edges exist, then in each loop iteration, the algorithm chooses

and processes at least one frontier edge from F and then depending on the status of the

frontier edge’s counterpart edge in S1 ∪Sm, the frontier edge may be electronically fused

or mechanically fused. At the end of execution the current frontier edge is always included

in Sm, becoming a new common (green) edge in Sm. Since frontier edges are edges of S2,

we are actually decreasing at least one edge from S2, i.e., decreasing one element in ES2 .

Similarly, if direct edges exist, the (red) direct edge will be turned into common (green)

edges, also decreasing at least one element in ES2 . So in each iteration (pass) of the loop

body, the bound function t is decreased. The bound function t is non-negative. So the

loop must terminate eventually, since t can only remain non-negative for a finite number

71

(a) S2 before merge (b) S2 after merge

Figure 3.8: Change of S2 and Sm in S2 before and after merge.

of iterations (passes) through the loop.

4 When the loop terminates, S1∪Sm is (still) isomorphic to subgraph of G, and

all independently explored edges and vertices in S2 have been disambiguated

and merged. By maintaining I-1 and I-2, when a frontier edge and its other end is

visited, if it does not exist in S1 ∪ Sm, S1 ∪ Sm will be updated correctly, so when the

loop terminates, S1 ∪ Sm will be updated with correctly labeled edges. When a direct

edge is visited, if it does not exist in S1 ∪ Sm then S1 ∪ Sm will be updated correctly.

Hence S1 ∪ Sm is (still) isomorphic to a subgraph of G.

We also show that when the loop terminates, all independently explored edges and

vertices in the original S2 have been disambiguated and merged (integrated into the

common area Sm), i.e., upon termination, S2 = {}, S2 = S2 ∪ Sm = Sm (unmerged part

S2 disappears – S2 becomes ‘all green’ as shown in Figure 3.8). Assume, to the contrary,

that when the loop terminates (F = {} and D = {}) there are some unmerged (red)

edges in S2, i.e., S2 6= {}. Then from Property#2, we can see that an unmerged (red)

edge can be a frontier edge, a direct edge and inner edge in S2 (with both two red ends).

72

Since F and D are empty, it can only be inner edges in S2, i.e., red edge with both two

red ends. Now assume vred is one of the (red) ends. Then since S2 ∪ Sm is connected,

there must be a path from vinitial (green) to vred. This requires that there be an edge on

this path with one green end, and one red end. Property#2 infers that this can only

be a red edge, which, by the definition and property of frontier edge, is a good frontier

edge. By I-3, this edge must be in F , contradicting the terminating condition that F =

{}. So there can be no unmerged (uncommon) edges in S2 = S2 ∪ Sm, i.e., all edges are

common (green). Property#2 also infers that common green edges must have green

ends. Therefore, we conclude that there are no unmerged (red) edges and unmerged (red)

vertices in S2 = S2∪Sm, i.e., all edges and vertices in S2 = S2∪Sm have been processed.

I-1 guarantees that once processed, the edge or vertex is correctly handled.

By the loop invariant I and the termination condition, we thus conclude that the

algorithm terminates with the base map S1 = S1 ∪ Sm being (still) isomorphic to a

subgraph of G and all efforts of the other robot have been fully exploited (Figure 3.8(a)).

3.3 Evaluation Mechanism

To compare different solutions presented in this report a performance metric for generic

multiple robot exploration is required. Our main performance concern is the mechanical

cost of completing the exploration task.

Measuring work in a parallel system In a parallel system, there may exist both

parallel and sequential work, due to possible synchronization mechanisms. For example,

in a parallel system, the working agents may stop after a certain amount of independent

parallel work, when all agents have finished the work and stopped, the agents start

working in parallel again (Figure 3.9). For such situations, if we want to measure the

resource cost (e.g., time spent, distance traveled) in the parallel system, we need to divide

73

Figure 3.9: A parallel phase divided into two subphases.

the system into subphases according to the synchronization mechanisms used so that work

in each subphase is completely parallel. Then for each parallel subphase, we can take the

maximum cost (e.g., the effort involved) by the parallel work as the cost of this subphase.

Subphases are sequential, so we take the sum of cost of them as the cost of the whole

phase. So for the example shown in Figure 3.9, the total cost of the whole phase is the

sum of the maximum cost in subphase1 and the maximum cost in subphase2.

Parallelism in multiple robot exploration In real life multiple robots can explore

independently and concurrently. In evaluating the multiple robot exploration algorithm

we depart slightly from the earlier model and assume that robots can operate in complete

parallel. So in multiple robot exploration, there exists both parallel work and sequential

work. This is illustrated in Figure 3.10, which shows that the exploration algorithm can

be decomposed into multiple (parallel) phases (E11, E12, ...,Mnm). During each phase,

each robot is completely independent and operate in complete parallel. The parallel

phases are separated by periods in which the robots are completely synchronized.

Task cost Here we formally define the cost for the generic multiple robot exploration

algorithm. Suppose that each exploration and merge phase is divided into one or more

subphases in such a way that work in each subphase is completely parallel. Let Ei denote

74

Figure 3.10: Alternating phases of exploration and merge.

exploration phase i and let Mi denote merge phase i; For an exploration phase Ei that

has m (m ≥ 1) subphases, denote subphase j (1 ≤ j ≤ m) in Ei as Eij . Similarly, for

a merge phase Mi that has m (m ≥ 1) subphases, denote subphase j (1 ≤ j ≤ m) in

Mi as Mij . Let rl(Eij) denote the mechanical cost (number of edge traversals) taken by

robot l in subphase Eij ; Let rl(Mij) denote the mechanical cost taken by robot l in merge

phase Mij . Denote the cost for exploration phase Ei and its subphase Eij as cost(Ei)

and cost(Eij) respectively. Denote the cost for merge phase Mi and its subphase Mij as

cost(Mi) and cost(Mij).

We start from the complete parallel work in each subphase. For each subphase Eij ,

the cost of the subphase is the maximum mechanical cost among all robots, i.e.,

cost(Eij) =
k

max
l=1

{rl(Eij)}.

Subphases in Ei are sequentially separated, so the cost of the exploration phase Ei is the

75

sum of the cost of all its m subphases, i.e.,

cost(Ei) =
m∑

j=1

cost(Eij)

=
m∑

j=1

k
max
l=1

{rl(Eij)}.

Similarly, for a merge phase Mi having m subphases, the cost in each subphase Mij is

given by

cost(Mij) =
k

max
l=1

{rl(Mij)}.

and the cost of phase Mi is given by

cost(Mi) =
m∑

j=1

cost(Mij)

=
m∑

j=1

k
max
l=1

{rl(Mij)}.

The alternating phases of exploration and merge in the overall exploration process occur

sequentially, so the total cost required to complete the task, denoted TaskCost, is then

given by

TaskCost =
n∑

i=1

(cost(Ei) + cost(Mi)). (3.1)

Task cost in the basic algorithms We assume that in the basic multiple robot

exploration algorithm described above, the work in each exploration phase is conducted

in complete parallel and there is no coordination among the robots. Therefore the cost

for a exploration phase is the maximum mechanical work among the robots in the whole

phase. Formally, each exploration phase Ei has m = 1 subphase (the phase itself), the

76

cost of phase Ei for the collection of k robots is given by

cost(Ei) =
m∑

j=1

k
max
l=1

{rl(Eij)}

=
k

max
l=1

{rl(Ei)}.

In the basic multiple robot exploration algorithm, the work in each merge phase is con-

ducted by the base robot. Trivially, there is one subphase for each Mi. Moreover, since

only the base robot performs the merge task, the cost of each merge phase is the cost of

the base robot in the whole merge phase, i.e.,

cost(Mi) =
m∑

j=1

k
max
l=1

{rl(Mij)}

=
k

max
l=1

{rl(Mi)}

= rbase(Mi).

The task cost for the basic multiple robot exploration algorithm, is therefore given by

TaskCost =
n∑

i=1

(cost(Ei) + cost(Mi))

=
n∑

i=1

(
k

max
l=1

{rl(Ei)}+ rbase(Mi)). (3.2)

Note that the task cost for the single robot exploration algorithm ([14, 15]) is trivially

the mechanical cost of the (sole) robot during the (sole) exploration phase.

3.4 Sample operations

In this section we present sample solutions to the graph mapping problem for two robots.

We first demonstrate the algorithm on a simple graph, then we show its operation on a

77

graph simulating a real environment – the Beijing subway system. Finally we evaluate

the performance of the algorithm on different graphs, and compare the performance with

the single robot exploration algorithm on the same graphs.

Operation on a lattice-like graph

First we demonstrate the algorithm on the lattice-like graph. The algorithm proceeds

with alternating phases of independent exploration and coordinated merging of the inde-

pendently acquired partial representations. In this example both of the two robots start

at the upper left corner vertex (vertex 0). This is the initial common map shared by

the robots. The rendezvous schedule is 160 mechanical steps and rendezvous occurs at

vertex 0, i.e., each of the robots explores for 160 mechanical steps and then returns to

vertex 0 to merge their world representations. We designate robot1 as the base robot,

whose partial map is augmented. The merged map then becomes the new common map

and the unknown portions of the new common map are partitioned. The partitioning

is performed on unknown edges of the new common map, and the unknown edges are

assigned to the two robots evenly but in an arbitrary fashion. After the merging and

partitioning, a new phase of independent exploration starts, in which the new common

maps are augmented independently by the robots. This example involves three phases of

independent exploration and three phases of coordinated merging, with the last (third)

merge phase generating the full map of the world. Exploration and merge results of each

of the phases are shown in Figures 3.11. As in earlier illustrations the common part of

the map (the merge result of the last merge phase) is colored green, the independently

explored part of robot1’s map is colored blue and the independently explored part of

robot2’s map is colored red. For the merged maps, vertices and edges from robot1’s map

(the original base map) are colored blue, and edges and vertices newly augmented (from

robot2’s map) are colored red.

78

Exploration phase 1 (160 exploration steps) and merge phase 1

(a) Robot1’s map (b) Robot2’s map (c) Merged map

Exploration phase 2 (320 exploration steps) and merge phase 2

(d) Robot1’s map (e) Robot2’s map (f) Merged map

Exploration phase 3 (480 exploration steps) and merge phase 3
The full map is generated and the algorithm terminates

(g) Robot1’s map (h) Robot2’s map (i) Merged map

Figure 3.11: Multiple robot exploration on lattice-like graph, starting at vertex 0.

79

Figure 3.12: Graph simulating Beijing subway system.

Operation on a graph simulating a real system

Here we demonstrate the algorithm on the Beijing subway system. Vertices in the graph

simulating the system represent subway stations and edges in the graph represent tunnels

connecting the stations (Figure 3.12). In this example both of the two robots start at

an interchange station (‘DongDan Station’), which is the initial common map shared by

the robots. This is represented by vertex 16 (colored red) in the graph. The rendezvous

schedule is 700 mechanical steps and vertex 16 is the rendezvous location. Robot1 is

designated as the base robot. The partition strategy used here is the same as that used

in the previous example. This example involves five phases of independent exploration and

five phases of coordinated merging. Exploration and merge results from the alternating

phases are shown in Figures 3.13–3.14.

80

Exploration phase 1 (700 exploration steps) and merge phase 1

(a) Robot1’s map (b) Robot2’s map (c) Merged map

Exploration phase 2 (700×2 exploration steps) and merge phase 2

(d) Robot1’s map (e) Robot2’s map (f) Merged map

Exploration phase 3 (700×3 exploration steps) and merge phase 3

(g) Robot1’s map (h) Robot2’s map (i) Merged map

Figure 3.13: Multiple robot exploration on real system, phase 1–3.

81

Exploration phase 4 (700×4 exploration steps) and merge phase 4

(a) Robot1’s map (b) Robot2’s map (c) Merged map

Exploration phase 5 (700×5 exploration steps) and merge phase 5
The full map is generated and the algorithm terminates

(d) Robot1’s map (e) Robot2’s map (f) Merged map

Figure 3.14: Multiple robot exploration on real system, phase 4–5.

82

(a) 7×7 lattice with 10% vertices removed (b) 9×9 lattice with 10% vertices removed

Figure 3.15: Lattice graph with holes.

Performance on lattice graphs

Finally we examine the performance of the algorithm on two-dimensional square lattices

with holes, and compare the performance of the multiple robot exploration algorithm

against the single robot exploration algorithm. Two-dimensional square lattices with

holes represent an environment that is often encountered in the interior of modern build-

ings. Figure 3.15 shows two sample lattices with 10% of their vertices randomly removed.

The performance of the algorithm is measured by TaskCost defined in Equation 3.2.

The experiments were performed on lattices of various sizes. For each size lattice,

measured by the number of vertices n in the lattice, the test was repeated 10 times, each

using both the multiple (two robots) and the single robot exploration algorithm with the

robot(s) starting at a randomly chosen starting place in the lattice of the same size n. For

lattices (with holes) of the same size n, the number of holes are the same but the location

of holes of the graph are generated randomly. (Due to the random distribution of holes,

83

Figure 3.16: Single and multiple robot exploration on lattices with various sizes.

the number of edges of the same size graphs differs slightly from one to another.) The

same random hole graphs are used in both the single and multiple robot explorations.

Throughout the experiments, the rendezvous schedule is 100 mechanical steps and the

starting point is the rendezvous place. The average TaskCost of both the algorithms is

shown in Figure 3.16, along with the standard errors. For both the single and multiple

robot exploration, the best-fit quadratic functions of their average task cost over the

lattice size n (number of vertices in the lattice) are generated as well. Figure 3.16 shows

that even with the distribution of noise due to random effects, exploration with two

robots consistently outperforms the exploration using single robot. For graphs of over

170 vertices, the multiple robot exploration presents more than half the reduction of the

cost (y2robots ≤ 1
2y1robot when n ≥ 170), meaning that the exploration with two robots

performs better than performing the single robot exploration twice. Moreover, when the

graph size n is sufficiently large, the multiple robot exploration algorithm gives nearly 9

84

times improvement in performance over the single robot exploration algorithm, i.e., two

robots complete the exploration task 9 times faster than one robot exploration.

3.5 Summary

This chapter first formally defined the world and robot models used. The same envi-

ronmental representation as [14] was used but due to the deployment of multiple robots,

the definitions of the robots’ perception and operations are enriched and redefined, e.g.,

robots can sense each other, can communicate with each other. The model also made nec-

essary synchronization assumptions, in which an atomic sequence of actions is defined,

which simplifies synchronization of the robots. A detailed description of the multiple

robot exploration algorithm was then presented. Fundamental issues involved in the

merge process are presented in detail. In addition to the marker-based disambiguation

technique that is similar to that in [14, 15], strategies such as ‘electronic fusing’ and ‘di-

rect fusing’ were developed to reduce the mechanical work required by the robots. The

chapter also presents a detailed formalism of one version of the possible merge algorithm,

followed by proof of its correctness. To compare different solutions, a performance metric

for general multiple robot exploration is developed, which accommodates both parallel

and sequential work. Some sample graph explorations were presented along with a simple

comparison of the multiple robot algorithm to the algorithm of Dudek et al. [14, 15]. The

next chapter presents a number of potential improvements that can be made to both the

original solution of Dudek et al. as well as to portions of the multiple robot exploration

algorithm.

85

4 Enhancements to the basic algorithm

This chapter considers a number of potential improvements that can be made to both

the original solution of the single robot exploration algorithm ([14, 15]) as well as to

portions of the basic multiple robot exploration algorithm described in Chapter 3, e.g.,

the merging process and rendezvous scheduling. We begin by introducing two ideas that

can be used to improve both the exploration process and the merging process in the

multiple robot exploration algorithm. Enhancements to the exploration process can also

be applied to the single robot exploration algorithm described in [14, 15]. The first

enhancement is based on the use of neighbor information to disambiguate locations, the

second enhancement is based on opportunistic communication when robots encounter

each other ‘accidentally’ during exploration.

4.1 Exploiting neighbor topology information

In the original work of [14, 15] and the algorithm described earlier in this report the

signature of the vertex v is its degree d(v). Here we extend the signature to include its

immediate neighbor topology. The neighbor topology information includes the degree of

each neighbor and the label of the neighbor. Denote the extended signature of a vertex

v as sig(v). Then sig(v) for a vertex v of degree k is an ordered set of tuples

sig(v) = {(d1, l1), (d2, l2), ..., (dk, lk)}

86

Figure 4.1: Retrieving neighbor information from maps.

where (di, li) represents (neighbor) vertex down edge i (0 ≤ i < k) of vertex v: di is the

degree of vertex found down edge i and li is the label of the vertex down edge i. The

label may be either local (this is a label assigned by the individual robot) or global (this

is a label agreed to by the robots as a result of merging). If edge i is an unexplored edge,

then di and li are both null. Note that |sig(v)| = d(v). The order of the element in the

signature set is based upon the normal enumeration of edges of v, but with an arbitrary

initial orientation. For vertex B2 in Figure 4.1, following the local edge ordering at B2,

the extended signature sig(B2) = {(3, A2/C1), (3, C2), (2, D2)}. Note that C2 and D2 are

local labels (known by robot2) whereas A2/C1 represents a global (common) label.

4.1.1 Exploiting neighbor information in merging process

We first consider the exploitation of the extended signature (neighbor topology informa-

tion) in the merge phase. We explore how to retrieve the extended neighbor information

and how this neighbor information can help disambiguate potentially confusing vertices.

Aligning signatures Since the order of elements (neighbors) in a vertex signature

follows the normal enumeration of edges at the vertex, in comparing the signatures of

87

two vertices we need to align possible corresponding exits (edges) and examine if they

lead to the same vertex. In comparing two arbitrary vertices where no alignment in-

formation is available, we may need to take into consideration all permutations (e.g.,

all cyclic shifts). Due to the availability of some alignment information in the merging

process, however, not all the permutations are ‘valid’ and need to be compared. This

partial alignment information comes from the fact that for a vertex v1 in S1 to be a

potential counterpart vertex of a frontier edge’s uncommon (exterior) end vertex v2 in

S2, the edge of v1 that corresponds to the frontier edge must be an unexplored edge. For

a vertex v1 having n unexplored edges, there are at most n permutations that are ‘valid’

and need to be compared. Suppose we need to compare the signatures of vertex D1 (hav-

ing 2 unexplored edges) in S1 with the exterior vertex B2 in S2 (Figure 4.1), there are

two valid permutations in their signatures, i.e., permutation {(3, A2/C1), (3, C2), (2, D2)}

vs. {(null, null), (null, null), (3, B1)}, and permutation {(3, A2/C1), (3, C2), (2, D2)} vs.

{(null, null), (3, B1), (null, null)}. On the other hand, comparing the signature of vertex

A1 (having one unexplored edges) with that of B2 involves only one valid permutation,

i.e., {(3, A2/C1), (3, C2), (2, D2)} vs. {(null, null), (3, G2/E1), (3, B1)}. Each aligned sig-

nature permutation establishes pairs of neighbor that are ‘pointed to’ by the aligned

exits in the permutation, e.g., (3, C2) vs. (3, G2/E1). We call such two neighbors that

are pointed to by the aligned exits in the permutation as a neighbor pair. Note that in

the above neighbor pair, (3, C2) cannot match (3, G2/E1) as the label G2/E1 is known

commonly (globally) and thus both robot1 and robot2 agree to its labelling, whereas label

C2 is (locally) known by robot2 only.

Comparing signatures – radius 1 Given two extended signatures of vertex v1 (in

S1) and v2 (in S2), they are compatible if the vertices have the same degree (|sig(v1)| =

|sig(v2)|) and, among the valid permutation(s), there exists at least one permutation

88

such that all of the neighbor pairs in the permutation are compatible. A neighbor pair

represented by (di, li) ∈ sig(v1) and (dj , lj) ∈ sig(v2) is considered compatible if at least

one of the following three properties holds:

(i) One or both of the two neighbors are unknown.

di = null or dj = null

(ii) Both of the neighbors are commonly known and they have the same common label.

di 6= null and dj 6= null, li and lj are global labels, li = lj

(iii) Both of the neighbors are locally known and have equal degree.

di 6= null and dj 6= null, li and lj are local labels, di = dj

Comparing signatures – radius n In the previous approach the signature was ex-

tended by considering local signatures one edge traversal from the vertex being considered.

The signatures were compatible if there was some permutation of the orderings of the

edges such that the information known about the vertices were consistent. We can triv-

ially extend the approach to any radius ‘r’. In the radius 1 algorithm, step (iii) of the

consistency check can be replaced with a recursive call to the consistency check. Note

that this recursion must have some maximum limit in order to bound the radius of the

search.

Correctness of the enhancement Incorporating this enhancement into the merge

process of the basic multiple robot exploration algorithm does not violate the correctness

of the algorithm. The extended signature (neighbor information) ‘filters out’ (disam-

biguates) some vertices that would have to be visited in the basic algorithm. But any

vertex that is filtered out cannot be a valid match, due to the fact that the signature com-

parison process only disambiguates vertices for which there is no possible permutation of

89

edges that allows a valid matching between the two subgraphs.

Evaluation and performance Using extended signatures in the merging process does

not require coordination between robots, so as in the basic merge algorithm described

in Chapter 3, there is one subphase in each merge phase. So the cost evaluation of the

enhanced multiple robot exploration algorithm (basic multiple robot exploration algo-

rithm with this enhancement incorporated) is the same as the cost evaluation for the

basic algorithm, which is given by Equation 3.2.

Incorporating the enhancement into the basic exploration algorithm does not require

additional mechanical movements of the robots nor does it require any additional commu-

nication between them. All it does is reduce the number of potential vertices that must

be visited in the basic algorithm when disambiguating locations. Moreover, using the

extended signature does not change the order in which vertices are merged in the basic

algorithm and therefore does not change the results of each merging and exploration pro-

cess in the basic algorithm. So the operation of the enhanced algorithm under the same

conditions as the basic algorithm (e.g., same graph, same starting place and orientation,

same rendezvous scheduling and task division mechanism) will always produce better or

equal performance.

To compare the performance of the enhancement against the basic algorithm, ex-

periments were conducted using both the basic exploration algorithm and the enhanced

exploration algorithm. In the enhanced exploration algorithm an extended signature of

radius 2 is used in the merge phases. Experiments were performed on lattice graph with

holes† (10×10 lattice graph with 20% of its vertices removed) using different rendezvous

intervals. The test for each sample rendezvous interval was repeated 10 times, each with

randomly generated holes in the graph and using both the original and extended signa-

†All lattice hole graphs used in this and the following experiments are lattice graphs defined on a torus
(they are ‘boundary-less’).

90

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.2: Using extended signatures in merging (varying rendezvous intervals).

tures exploration algorithm. Results are shown in Figure 4.2, where both the average cost

of the algorithms and the average relative improvement of the enhanced algorithm over

the basic algorithm are reported, along with the corresponding standard errors. First we

see that the average cost for both algorithms increases as the rendezvous interval becomes

longer. Results show that for all rendezvous intervals, the enhanced algorithm outper-

forms the basic multiple robot exploration algorithm, and that the improvement increases

as the rendezvous interval becomes longer. To investigate the dependency of the extended

signature’s disambiguation ability on the graph topology, another set of experiments were

conducted with graphs of varying homogeneity. In the experiments 10×10 lattice graphs

with varying fraction of holes were explored using both the enhanced algorithm and the

basic algorithm (with a fixed rendezvous interval). Again each condition was repeated 10

times and both the average cost and average relative improvement are reported, along

with the standard errors (Figure 4.3). Results show that for all graphs, the enhanced

algorithm produces positive improvements.

91

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.3: Using extended signatures in merging process (varying homogeneity).

4.1.2 Exploiting neighbor information in the exploration process

The extended signature can be used for disambiguation purposes in the exploration pro-

cess as well. Since this enhancement does not require the cooperation of multiple robots,

it can be used in both the single robot exploration case [14, 15] and in exploration phases

in multiple robot exploration case. In the exploration process, the vertices to be disam-

biguated are the unknown place where the marker is dropped and the known places that

are potentially confusing, i.e., known vertices that have unexplored edge(s) and have the

same degree (local signature) as the unknown place. In comparing the signatures of the

vertices, we also have alignment information for the signatures, due to the fact that for a

potentially confusing vertex v to (potentially) be the counterpart vertex of the unknown

place, then among v’s incident edges, it must be one of its unexplored edge(s) that cor-

responds to the edge incident on the unknown place which the robot used to enter this

location. Therefore, as in the merge phase, if v has n unexplored exits (edges), there are

at most n permutations that are possible. Unlike the merge phase where signatures can

92

be retrieved from the partial maps of the individual robots, in exploration phase existing

neighbor information for an unknown vertex is not ‘rich’ enough for efficient disambigua-

tion. Under the basic exploration algorithm, for an unknown vertex where the marker

is dropped, the only neighbor information available is about the vertex where the robot

(marker) came from. Assume the robot travels from vertex vfrom to an unknown vertex

vnew to drop the marker. Also assume that the degree of vfrom is 4 and the robot senses

the degree 3 at vnew. Then the signature for vnew is {(4, vfrom), (null, null), (null, null)}.

Clearly the comparison of the signatures would always result in many compatible matches.

To obtain useful neighbor information, extra mechanical steps are required. For example,

when a robot drops a marker at vertex vnew, it could also explore all of the incident edges

(except the edge by which it entered) and sense the degree there and use this information

to construct a more powerful local signature. Note that even with these extra mechanical

moves only the degree information can be retrieved. In the example, the signature of the

unknown place will be enriched to {(4, vfrom), (d2, null), (d3, null)}.

Correctness This enhancement is trivially correct as the extended signature is only

used to filter out locations that can be rejected as they demonstrate that no subgraph

match exists.

Evaluation and performance Since there is no additional coordination between robots,

the exploration phase has only one subphase, which is the phase itself. So the evaluation

mechanism of the enhanced algorithm is the same as the basic algorithm into which the

enhancement is incorporated, i.e., when incorporated in single robot exploration algo-

rithm [14, 15], the cost of the enhanced algorithm is the mechanical cost of the single

working robot, when incorporated into the exploration phases of the basic multiple robot

exploration algorithm, the cost of the enhanced algorithm is given in Equation 3.2.

The enhancement does not change the order in which new places are explored, but it

93

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.4: Using extended signature in exploration phase (20×20 lattice).

does require extra mechanical cost to retrieve the extended signatures. Experiments were

performed to compare the performance of the single robot exploration algorithm with the

enhancement incorporated against the performance of the basic single robot exploration

algorithm [14, 15]. Experiments were conducted on both 20×20 and 28×28 lattices with

varying number of holes (0%–40%). Each condition was repeated 10 times using both the

algorithms. The results are shown in Figure 4.4–4.5, where both the average cost of the

algorithms and the average relative improvement of the enhanced algorithm over the basic

algorithm are reported, along with corresponding standard errors. We can see that in both

graphs, when there are zero holes missing, i.e., when the graph is completely homogeneous,

the performance of the enhanced exploration is worse than the basic algorithm, which is

trivially true because extra mechanical costs have been spent at each new place but the

disambiguation tasks cannot benefit from the extended signatures. Even with 1% holes,

the enhanced algorithm shows improved performance. In this example cost reductions of

up to 60% are achieved.

94

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.5: Using extended signature in exploration phase (28×28 lattice).

4.2 Exploiting communication information

During independent exploration robots may encounter each other unintentionally. The

basic model described in Chapter 3 allows a robot to sense the presence of the others

and to communicate but the communication between robots only occurs at specific, pre-

arranged rendezvous locations. As the robots move about they may encounter other

robots. How can opportunistic communication be exploited by the robots? Here com-

munication during both the exploration phase and the subsequent merge phase of the

multiple robot exploration algorithm is explored. There are many potential advantages

to communicating with other robots when they are encountered during the exploration

algorithm. Only two potential situations are considered here: communication that later

will aid in the merging process and communication that can be exploited immediately

under certain conditions.

95

4.2.1 Exploiting communication information later in the merge process

One useful piece of information that the robots can communicate when they encounter

each other in the world is where they currently are in their own maps. For example,

robot1 may claim that this is (exterior) vertex vE1 in its independently explored map S1

and robot2 claims this is (exterior) vertex vE2 in its independently explored map S2 (so vE1

and vE2 are not commonly known). Then this physical encountering implies that vE1 and

vE2 refer to the same location in real world, i.e., vE1 and vE2 are counterpart vertices. Call

this information the partial matching information between vE1 and vE2. This is partial

matching information in that unlike other commonly known vertex pairs in Sm the edge

index correspondence between vE1 and vE2 is not known. This information, however, can

be exploited in the subsequent merge phase. Suppose during the subsequent merge phase,

base robot1 selects a frontier edge that is incident on a common (interior) vertex vI2/I1

in Sm and an uncommon (exterior) end vE2 in S2. Before moving to the uncommon end

vE2 to drop the marker, the partial matching record is examined. If the exterior end vE2

in S2 partially matches some vertex vE1 in S1, then the robot ‘knows’ that vE1 and vE2

refer to the same place in the real world. In this case the exterior end is not new to the

base map and only a new edge (vI2/I1, vE1) needs to be added to the base map. Since now

vE1 and vE2 are counterpart vertices, instead of dropping the marker at vE2 and searching

for the marker, the robot can start establishing the edge ordering of the new edge at vE1

(back-link validation) immediately by dropping the marker at the common (interior) end

vI2/I1, and traveling to vE1 in S1, where it traverses unexplored edges on vE1 to perform

the back-link validation. Note that when two robots meet in a vertex, one or both of

them may be in an ‘unknown’ place in its map, e.g., two robots encounter when one or

more of them is coming to drop its marker at a new place. In such case, the encountering

information is recorded and when the unknown place is disambiguated by the exploration

therefore becomes known, the record is updated.

96

Correctness Since robot1 and robot2 have physically met, vE1 and vE2 refer to the

same place in the real world, i.e., vE1 and vE2 are counterpart vertices. Therefore during

the merge phase, if the robot drops its marker at vE2 in S2, it must find it when it visits

vE1 in S1. The process of establishing this property during the subsequent merge phase

can thus be avoided. These steps include dropping the marker (at vE2), searching the

marker, finding the marker (at vE1) and picking up the marker, and coming back to

common (interior) place vI2/I1 (to drop marker).

Evaluation and performance Although robots meet and communicate, there is no

extra coordination and synchronization required, so the exploration phase still has one

subphase, which is the whole phase. Using this communication information in the follow-

ing merge phase does not change the evaluation process for the merge phase either. So

the cost evaluation mechanism for the enhanced multiple robot exploration algorithm is

the same as that for the basic multiple robot exploration algorithm (Equation 3.2).

Incorporating the enhancement into the basic multiple robot exploration algorithm

does not introduce any extra mechanical cost. It also does not affect the portion of the

basic algorithm that defines the order in which the vertices are explored in the exploration

phase, nor does it affect the order in which vertices are merged in the merging process.

So it does not change the result of each exploration and merging process. All it does

is reduce the potential searching steps required by the base robot when disambiguating

locations in the merging process. So for the operation of algorithms with exactly the

same condition (e.g., same graph, same starting place and orientation, same rendezvous

scheduling) the performance of the enhanced exploration algorithm will be better or equal

to the basic multiple robot exploration algorithm.

Experiments were conducted using both the basic exploration algorithm and the en-

hanced exploration algorithm. Experiments were first performed on a 10×10 lattice graph

97

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.6: Exploiting communication information in merge phase (varying rendezvous
interval).

with 20% of its vertices removed, using different rendezvous intervals. Each condition was

repeated 10 times using both the basic and the enhanced algorithm. The average cost and

relative improvement along with standard errors are reported in Figure 4.6. We can see

that for all rendezvous intervals, the enhanced algorithm performs at least as well as the

basic multiple robot exploration algorithm. To further examine the effects of the oppor-

tunistic encountering on the performance, further experiments were conducted on lattice

hole graphs of varying sizes. Each condition was repeated 10 times using both the basic

and the enhanced algorithm. The average cost and relative improvement are reported in

Figure 4.7 along with standard errors. We can see from the results that the enhanced

algorithm produces positive improvements. Moreover, as the graph size increases, the

improvement decreases, due to the fact that the chance of robots encountering each other

becomes less likely in larger graphs.

98

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.7: Exploiting communication information in merge phase (varying graph size).

4.2.2 Exploiting communication information in the exploration phase

Accidental meeting of the robots can also lead to opportunistic information that can

be exploited (immediately) during exploration. Consider the following scenario during

independent exploration. Robot1 follows one unexplored edge of its vertex vE1 to an

unknown place (to drop its marker) where it encounters robot2 and they communicate.

Robot2 ‘tells’ robot1 that this place is the commonly known place globally labeled vertex

vI2/I1 in both maps (as a result of previous merging). Then robot1 knows that this

unknown place is actually the common vertex vI2/I1 in its map, so this ‘unknown’ place is

not new to its map and only a new edge (vE1, vI2/I1) should be added to its map. Robot1

can now start establishing the edge ordering of the new edge at vI2/I1. If robot1 drops its

marker at the ‘unknown’ place as planned, it will find it at vI2/I1 in its map. So instead of

dropping the marker at the ‘unknown’ place and searching the marker, robot1 can start

the back-link validation process, i.e., go back to vE1 and drop its marker there. Then go

to vI2/I1 in its map and explore all unexplored edges until it senses the marker at vE1.

99

Correctness Similar to the above enhancement in the merge phase, the physical en-

countering of the two robots at a commonly known place vI2/I1 means that the ‘unknown’

place is actually vI2/I1 in robot1’s map. So if the marker is dropped at the ‘unknown’ place,

it will be found at vI2/I1. The process of establishing this property during the current

exploration phase can thus be avoided. This includes the exploration steps of dropping

the marker (at the ‘unknown’ place), searching for the marker, finding the marker (at

vI2/I1) and picking it up.

Evaluation and performance Incorporated into the basic algorithm, this enhance-

ment reduces the potential steps required in the basic algorithm in exploring new locations

during exploration. In general, this potential reduction of steps in the exploration process

is expected to produce a reduction of the overall task cost by enabling robots to explore

more within each pre-defined rendezvous interval. However, in contrast with the previous

enhancement where each reduction (by the base robot in the merge phase) contributes

to the overall cost reduction, the reduction of steps due to this enhancement does not

necessarily lead to an overall cost reduction. Assuming complete parallel work in the ex-

ploration phase, the cost of each exploration phase is bounded by the cost of the ‘busier’

robot in that phase. So the reduction of an individual robot’s cost may not necessarily

affect the overall cost. For example, one robot may benefit from the enhancement so as to

finish its exploration with fewer steps than needed in the basic algorithm but it may have

to wait at the rendezvous place for the other robot to finish, or, the earlier robot may be

able to explore more than in the basic algorithm but produces work that duplicates that

of the other robot. Moreover, by changing the exploration result of an exploration pro-

cess, the enhancement might change the order in which vertices are merged and explored

in subsequent processes, resulting in different performance.

Similar to the earlier enhancement, experiments were conducted both on a lattice hole

100

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.8: Exploiting communication in exploration phase (varying rendezvous interval).

graph using different rendezvous intervals, and with a fixed interval on graphs of varying

sizes. Results are shown in Figures 4.8–4.9. First we can see that the two algorithms

produce similar performance. Results show that this enhancement can introduce both

positive and negative improvement over the basic algorithm, and in the cases explored

here very limited effect was found.

4.3 Using multiple robots in the merge phase

In the merge phase we have two robots and we can exploit the existence of both robots

and both markers in several ways. One such potential exploitation occurs in the back-

link validation stage after the marker is found. Recall that in the basic merge algorithm,

when a marker that is dropped from vertex vI2/I1 (the interior vertex of the frontier edge)

is found at vertex vE1 in the base map, the robot needs to establish edge ordering of

the new edge (vI2/I1, vE1) at vE1 using its sole marker. Establishing such a local edge

ordering of the new edge requires that the base robot picks up the marker and transits

to vI2/I1, drops the marker at vI2/I1 and goes back to vE1. At vE1 the robot tries to go

101

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.9: Exploiting communication in exploration phase (varying graph size).

out of each unexplored edge incident on vE1, until it senses the marker. To facilitate

the validation task, we can let another robot (robot2) act as a second marker to reduce

the effort required to merge the maps. For example, robot2 could move with robot1 (in

the basic merge algorithm robot2 is immobile during the merging process). When robot1

moves to disambiguate a node, robot2 can remain at the other end of the edge. Then

when back-link validation is being performed the second robot can be used to generate a

unique signature of the vertex at the other end of the link.

Note that significant communication and synchronization efforts are needed to re-

alize cooperation between the robots. Initially, the robots are at the same vertex (the

rendezvous place) after their independent explorations. When the base robot chooses a

common (interior) vertex vI2/I1 that has frontier edge(s) incident on, it communicates

with robot2 so that robot2 can also move to vI2/I1. To ensure the presence of robot2 at

vI2/I1 when back-link validation is needed, robot1 must meet robot2 again before it can

start its search for the marker. Robot2’s presence at vI2/I1 can now be used to provide

a unique signature at vI2/I1 and therefore can be used to avoid much of the back-link

102

validation effort (mechanical moves). We show below that the need for both robot1 and

robot2 to meet to resynchronize is ‘free’ in terms of the algorithmic cost as robot1 always

moves back to vI2/I1 after dropping its marker, and will move back to vI2/I1 (again) in

marker-searching stages of the merge algorithm.

Correctness Robot1 will not start its searching motion away from vI2/I1 until robot2

is also present at vI2/I1. This ensures the presence of robot2 at the other end of the link

for back-link validation. The enhancement replaces the back-link validation process in

the basic merge algorithm, the rest of the steps are the same as that in the basic merge

algorithm.

Evaluation and Performance Since two robots have to meet again in vI2/I1 before

robot1 starts its search, there are now both parallel and sequential work in the merge

phase. Again we assume that robots can operate in complete parallel (this can be the

case in real life situation). As described above in order to determine the mechanical

complexity of the enhanced algorithm the merge phase of the algorithm must now be

divided into subphases so that work in each subphase is completely parallel. Since this

process repeats for each round of marker-based disambiguation, we divide each iteration

of the merge phase into two subphases. In subphase1 robot1 selects a common vertex

vI2/I1 that has frontier edge(s) and informs robot2. Then robot1 goes to v1, traverses a

frontier edge at v1, drops its marker at the other (exterior) end and comes back to v1. At

the same time the robot2 transits to vI2/I1 and remains there. Subphase1 ends when the

two robots meet in vI2/I1. Subphase2 is the search and validation phase by robot1 and

ends when robot1 finishes its work and moves back and meets robot2 again at vI2/I1. This

is shown in Figure 4.10. Suppose the merge phase Mi has l iterations. Then the number

of subphases in Mi is 2l. The enhancement algorithm can be evaluated using the task

cost defined for the generic multiple robot exploration algorithm (Equation 3.1), where

103

Figure 4.10: An iteration of the merge phase divided into subphases.

the cost for exploration phase Ei has m = 1 (one subphase), cost for merge phase Mi has

m = 2l.

While the enhancement does not change the order in which vertices are merged and

explored in the basic algorithm, the comparison of the performance of the enhanced algo-

rithm against the basic algorithm entails detailed analysis of the ‘behavior’ of the robots

in both algorithms, due to the extra synchronization efforts involved in the enhance-

ment. In subphase1, both robots start from the same place and come to the same place

(vI2/I1). They can follow the same shortest path to vI2/I1, so if the path length (number

of edges) is d, then in this subphase robot2 makes d mechanical moves whereas robot1

(the base robot) makes d + 2 mechanical moves. (The two more mechanical steps are

spent on the traversal of the frontier edge incident on vI2/I1 to drop its marker and move

back.) Assuming completely parallel work of the robots, the cost for the parallel work in

subphase1 (the maximum cost of the robots) is bounded by the cost associated with the

base robot. The cost of subphase2 is simply the cost associated with the base robot. For

comparison purposes, we divide each iteration of the merge phase in the basic multiple

robot exploration algorithm (without the enhancement) into two subphases according

to the mechanical movement of the base robot. As for the enhancement, subphase2 is

104

Figure 4.11: An iteration of basic merge phase divided into sub-phases.

search and validation phase, and the work before the search and validation belongs to

subphase1. Specifically, subphase1 starts when the base robot chooses a place vI2/I1 hav-

ing frontier edge(s), and ends when the base robot finishes dropping its marker and moves

back to vI2/I1. Subphase2 starts as the base robot starts its search and ends when the

base robot finishes validating the unknown place (Figure 4.11). Since the enhancement

does not change the order in which vertices are selected for merging, in subphase1 of the

basic merge algorithm the base robot also makes d + 2 mechanical moves, i.e., in terms

of mechanical moves, robot1’s behavior in subphase1 of the enhancement is the same as

that in subphase1 of the basic algorithm, and the task cost of subphase1 of the two algo-

rithm is the same. In subphase2, the marker is either found or not. Designed to facilitate

back-link validation when the marker is found, the enhancement uses exactly the same

process as in basic algorithm if the marker is not found. So when the marker is not found,

the cost of subphase2 is same as in basic algorithm. When the marker is found, the base

robot will have made fewer validation traversals, and there are no other additional costs.

So, in subphase2, the cost for the enhancement algorithm is equal to or lower than the

cost of subphase2 of the basic algorithm. So the cost for each merge phase (sum of the

two subphases) will be equal or lower than that in the basic algorithm. (As mentioned,

the need for the synchronization is ‘free’ in terms of the algorithmic cost.) Exploration

phases are not affected, therefore the task cost of the enhanced multiple robot exploration

105

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.12: Using multiple robots in the merge phase (varying rendezvous interval).

algorithm is equal to or lower than the basic multiple robot exploration algorithm.

Experiments were conducted using both the enhanced algorithm and the basic mul-

tiple robot exploration algorithm. Similar to that for previous enhancements, one set

of the experiments operates on the lattice with 20% holes using varying rendezvous in-

tervals, another set of experiments operates on lattices of varying number of holes with

fixed rendezvous interval. Each condition was repeated 10 times and results (average

cost and fraction of improvement) are shown in Figure 4.12–4.13, along with standard

errors. We can see that for all the experiments, the enhanced algorithm outperforms the

basic algorithm. The results also show that the enhancement is not very sensitive to the

homogeneity of the graphs.

4.4 Breadth-first exploration

This section and the next present two enhancements that address the exploration process.

Since these two enhancements do not deal with the coordination of multiple robots, they

can be used in both the single robot exploration case and the exploration phase of the

106

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.13: Using multiple robots in the merge phase (varying homogeneity).

multiple robot exploration.

In the basic exploration algorithm, the robot always chooses the closest place to

explore. (It uses a greedy heuristic based on depth-first search to define its route.)

Consider the example in Figure 4.14(a) where a lattice graph is explored. Suppose the

robot starts at vertex 1 and chooses the unexplored edge leading to vertex 2. According

to the basic algorithm, it will be at vertex 2 when it finishes exploring vertex 2. Then

it chooses an unexplored edge on vertex 2 leading to vertex 3. When finished with

processing vertex 3, it chooses the unexplored edge at vertex 3 leading to vertex 4, and

so on. The labels in Figure 4.14(a) illustrate the order of exploring new vertices in the

basic algorithm. In this example, in disambiguating the unknown place later labelled

vertex 4, vertices 1, 2 and 3 are potentially confusing vertices (they have unexplored

edge(s) with the same degree as the new vertex). As a consequence, the robot has to

go back to visit vertex 3, vertex 2, and all the way back to the furthest vertex 1. In

this example, as the exploration proceeds, the depth-first selection of the closest new

place to explore generates repeated traversals to the same vertices. To avoid the repeated

107

(a) Depth-first exploration on lattice (b) Breadth-first exploration on lattice

Figure 4.14: Two different exploration strategies.

traversals, a natural alternative to the depth-first exploration would be to use breadth-first

exploration, i.e., explore all unknown edges of vertex 1 first, then explore all unexplored

edges of neighbors of vertex 1, and so on, as shown in Figure 4.14(b), where the labels

and colors of the vertices illustrate the order and ‘breadth’ of the exploration. Using this

approach, the traversal of repeated search for the same vertices in this example can be

reduced. Note that this is not true in general as there exist examples for which a depth-

first exploration is more efficient than breadth-first exploration. Empirically, however, it

appears to be more efficient as will be demonstrated for lattice graphs.

Correctness This enhancement adopts a different way of exploring new places, the only

difference with the basic algorithm is the order in which the unknown places are selected.

The details of exploring each unknown place is the same as the basic algorithm, therefore

incorporated in either the single robot exploration algorithm [14, 15] or the exploration

phases of the basic multiple robot exploration algorithm described in Chapter 3, the

correctness of the algorithms is not violated.

108

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.15: Breadth-first exploration (20×20 lattice with holes).

Evaluation and performance Since there is no extra coordination between robots,

the exploration phase has only one subphase, which is the phase itself. So when incor-

porated in either the single robot exploration algorithm or the exploration phases of the

basic multiple robot exploration algorithm, the evaluation mechanism is the same as in

the corresponding basic algorithms.

Experiments were conducted to examine the performance of the breadth-first ex-

ploration in the above example. The setting of the experiments is the same as the

experiments conducted for the extended signature exploration, i.e., a single robot ex-

ploring on 20×20 and 28×28 lattice with varying number of holes. In contrast to the

extended signature enhancement, the breadth-first exploration is expected to work well

in less heterogeneous lattice graphs, where repeated traversals for disambiguation are

more likely. As before, each condition was repeated 10 times and the average cost and

relative improvement are reported in Figures 4.15–4.16. We can see that in both figures,

the breadth-first exploration gives substantial improvement over the depth-first explo-

ration approach for graphs with a low hole density. As the number of holes increases,

109

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.16: Breadth-first exploration (28×28 lattice with holes).

the breadth-first exploration still provides an improvement but the improvement becomes

smaller, and eventually when the graph is sufficiently heterogeneous (with more than 30%

holes), the improvement vanishes.

To investigate other factors that might affect the performance of the breadth-first

exploration, the operation of the algorithm on a string-like graph was examined. For

a string with no loops, the depth-first exploration will explore in one direction until it

reaches the end vertex of the string (hit the boundary) and then go back to explore the

rest of the string in opposite direction, whereas with breadth-first exploration, the robot

will keep on ‘oscillating’ between the two ends of the current known string, until one of the

ends is the end vertex of the string (hit the boundary), and then go back to explore the

rest of the string. An example of exploring a 20 node string is illustrated in Figure 4.17(a),

where node 2 is the starting place and it is assumed that for a vertex with two unexplored

edges, the robot always chooses the right-hand side edge to explore. Since after reaching

one end vertex of the string (hitting the boundary) the robot’s currently known string

is fully explored, the rest of the exploration incurs no disambiguation traversals. Clearly

110

(a) Different exploration patterns (b) Mechanical cost

Figure 4.17: Breadth-first exploration vs. Depth-first exploration on strings.

the starting place, which determines the distance to the end vertex (boundary), is one of

the factors affecting the performance of both approaches. Experiments were conducted

on exploring a 20 nodes string using both exploration strategies, with varying starting

places. The results are shown in Figure 4.17(b). We can see that the best cases for

both the strategies occur at the two ends of the string, because for both strategies the

exploration is in one direction only and there are no disambiguation traversals. The worst

case starting place for the two strategies are different. The worst case performance for

the two strategies are different too.

It is interesting to compare the single robot breadth-first exploration, extended sig-

nature exploration and the basic (depth-first) exploration algorithm, as shown in Figure

4.18. When there are few holes, i.e., the graph is relatively homogeneous, the breadth-

first exploration outperforms the extended signature algorithm. As the number of holes

increases, the improvement from the breadth-first exploration decreases whereas the im-

provement from the extended signature increases, eventually when the graph is sufficiently

111

(a) On 20×20 lattice graph with holes (b) On 28×28 lattice graph with holes

Figure 4.18: Three different exploration strategies.

heterogeneous, the extended signature exploration outperforms the breadth-first explo-

ration.

4.5 Lazy exploration

Search is a critical but costly task, both in the exploration and merge phases. How ‘hard’

a search task is (the mechanical cost needed to visit all possible locations) depends on the

number of vertices that need to be visited and where these vertices are located. In the

single robot exploration algorithm [14, 15] a brute force strategy is adopted in prioritizing

this search. Each incoming search task is performed, irrespective of how ‘hard’ it is (first

come first served). Earlier we have seen that different exploration order may generate

different task costs. This is because in a connected bidirectional graph a new vertex or

edge can be approached and eventually validated via different routes with different search

costs. One illustrative situation is shown in Figure 4.19. As the known subgraph grows

(Figure 4.19(b) vs. Figure 4.19(a)), validating the unknown edge incident on vertex 3

112

(a) Validating edge (3,2) requires long path (b) Validating edge (3,2) enjoys shorter path

Figure 4.19: Growth of known graph produces different search tour length.

(leading to vertex 2) requires a reduced search cost, i.e., the search tour to potentially

confusing vertices (vertex 10, vertex 11, vertex 12) is reduced due to the newly added

‘shortcut’ edge (4,10).

We have developed a breadth-first exploration algorithm, which explicitly changes the

exploration order adopted in Dudek et al.’s basic exploration algorithm. We present here

another strategy that ‘implicitly’ changes the order in which new places are explored. This

strategy is called ‘lazy exploration’. In the lazy approach, the order of choosing new places

is the same as that in single robot exploration algorithm (depth-first), but search tasks

are prioritized, according to the ‘difficulty’ of the tasks. In the lazy exploration approach,

a ‘difficult’ search task is put off to later steps. Here the difficulty of the search task for

an unknown place is evaluated based on the length of a search tour visiting all potentially

confusing vertices of the unknown place, measured in terms of the mechanical cost (the

number of edge traversals) required. We develop two techniques to decide the acceptance

or delay of a currently selected search task based on its difficulty. The first technique is

a deterministic approach, in which the decision is made based on the direct comparison

of the search length and a pre-defined threshold, i.e., a task that requires a search length

113

that is below the threshold is accepted and the task is rejected otherwise. The second

technique is a probabilistic approach, in which the decision is made probabilistically based

on the length of the search tour.

Correctness Similar to the breadth-first exploration, in the lazy exploration new por-

tions of the world are explored in a different order from the basic algorithm. And we show

below all of the tasks will be accepted eventually. The details of exploring each unknown

place is the same as the basic algorithm. Therefore incorporating this technique in either

the single robot exploration algorithm [14, 15] or in the exploration phases of the basic

multiple robot exploration algorithm does not violate the correctness of the algorithms.

Evaluation and performance Since no additional coordination is required between

the robots, as in the basic algorithms the exploration phase has only one subphase,

which is the phase itself. So the evaluation mechanism is the same as that for the basic

algorithms.

Experiments were conducted to evaluate the performance of both the threshold based

deterministic and the probabilistic lazy exploration approaches. In the deterministic

approach once a task is ‘delayed’, the robot tries other tasks and the delayed task will

not be considered until some other task is accepted and processed. Once some other task

is performed, all delayed tasks become ‘normal’ tasks and may be processed in next step.

When all of the tasks that remain are ‘delayed’ tasks, they are processed normally as in

the basic algorithm. This is to ensure that eventually all the tasks are processed.

For the probabilistic approach, each task is mapped into a value in the range of [0:1]

according to the function

p = ε + (1− ε)e−kl

where l is the length of the search tour (edge traversals) and k is a tuning parameter. For

114

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.20: Deterministic lazy exploration.

a certain l, the smaller the k is, the bigger the mapped number p is (when k approaches

0, p approaches 1). For a certain k, when l is large, the mapped value p is small, whereas

when l is very small (approaches 0), p is high (approaches 1). The robot selects the first

task for which a random number r in the range of [0:1] has the property r ≤ p. Assuming

the fairness of random numbers generation, the shorter the search length, the larger p is,

and the more likely that the task will be performed. Note that all the tasks are eventually

processed.

In the experiments a single robot explores a lattice graph with holes (10×10 lattice

with 20% vertices randomly removed), using both the deterministic and the probabilis-

tic approach. For the deterministic approach, tests are conducted with different length

thresholds. The test for each sample threshold was repeated 10 times and the average

cost and relative improvement are presented in Figure 4.20. Note that in the experiments

when the threshold is sufficiently large (≥80), all tasks will be accepted, turning the lazy

exploration into the basic brute force strategy (horizontal line in the curves). For the

probabilistic approach, tests were conducted with different tuning parameter k, which

115

(a) Average mechanical cost (b) Average improvement (fraction)

Figure 4.21: Probabilistic lazy exploration.

determines the evaluation of the difficulty of tasks. For each sample k the test was re-

peated 10 times and the average cost were presented in Figure 4.21. Note that when k

is sufficiently small (k ≤ 0.0005), p for all the tasks will approach 1, so all the tasks will

be accepted, again turning the lazy exploration into the brute force strategy (horizontal

line in the curves).

From the results we can see that the performance of both the approaches depends

critically on the factors that determine the acceptance or delaying of the search tasks

(threshold and k). Both approaches demonstrate conditions where the performance is

worse than the basic algorithm. How to tune the factors for the approaches so that

better performance can be achieved is an interesting direction for future research. On

average the probabilistic approach is more promising, due to the fact that the majority of

its parameter k leads to positive improvements, whereas for the deterministic approach

only half of the thresholds enable it to produce positive improvements.

116

4.6 Strategic rendezvous scheduling

The enhancements described above address the exploration and merging process of mul-

tiple robot exploration. Previous experiments show that other than the details of the

two processes themselves, the rendezvous schedule in the algorithm is another factor that

determines the performance of the multiple robot exploration algorithm. The rendezvous

schedule determines when, where and how frequently the merge process should be per-

formed. The rendezvous schedule affects the algorithm’s performance and in some cases

this influence is critical. Consider the exemplified scenario in which two robots robot1

and robot2 explore a string, starting from the middle point and exploring in opposite

direction. After a certain interval the robots return for merging. Suppose we want to

merge robot2’s map into robot1’s map. Consider two intervals k1 and k2 where k1 is short

so when the robots return for merging, robot1 has not finished exploring its assigned half

string (so there are unexplored edges at the very end of its partial representation) and

k2 is a longer interval that allows robot1 to fully explore its assigned half string (so

there is no unexplored portion in its partial representation). Clearly the performance of

the multiple robot algorithm at these two intervals will be substantially different. With

an unexplored portion at the very end of its partial representation, disambiguation of

each place in robot2’s partial representation requires the robot to move to the very end,

whereas with a fully explored partial representation, merging of the two maps can be

conducted without any disambiguation cost.

Experiments were conducted to investigate the effects of different rendezvous on ex-

ploring strings. In the first experiment two robots explore a 20 nodes string with varying

rendezvous intervals, in another experiment the rendezvous interval is fixed but robots

explore on varying sized strings. Results of both experiments are shown in Figure 4.22.

Both the results show that in this exemplified scenario, rendezvous intervals that leave

unexplored portions in the base map produce much higher cost than the intervals that al-

117

(a) Fixed string (20 nodes) with varying ren-
dezvous interval

(b) Varying sized strings with fixed rendezvous
intervals (2000 steps)

Figure 4.22: Effects of rendezvous intervals on exploring strings.

low the base map to be fully explored, and the cost is higher than single robot exploration

as well.

In the basic multiple robot exploration algorithm, robots return to the rendezvous

place to merge their partial representations at a fixed interval, e.g., after every 50 me-

chanical steps. A fixed rendezvous is not topology specific and does not reflect current

progress. The enhancement here adopts an adaptive rendezvous schedule in which the

rendezvous interval is adjusted after each rendezvous, i.e., to adaptively decide the next

rendezvous interval based on the results from previous intervals. Specifically, at a ren-

dezvous using rendezvous interval kt, robots meet and merge their partial maps, then

based on the merge result, robots reason about ‘what if we met in some k,
t (0 < k,

t ≤ kt)

steps?’ Such a question is ‘electronically’ solvable, due to the fact that the robot can

retrace its motions and perceptions at previous steps, and the fact that after doing the

merge, robots have the necessary matching information (for all edges and vertices) be-

tween the two maps. Based on defined metrics, evaluate the result for some ‘virtual’

118

interval k,
t (0 < k,

t ≤ kt). Then based on the evaluation derive the next rendezvous

interval for the robots.

Correctness This enhancement does not change the details of the exploration process

and the merging process. When incorporated into the basic algorithm, the correctness of

the algorithm is not violated.

Evaluation and performance The enhancement does not change the details of the

exploration process and merge process. The ‘adaptive reasoning’ process does not incur

extra mechanical cost. So the evaluation for the multiple robot exploration algorithm

with adaptive rendezvous scheduling is the same as that for the basic multiple robot

exploration algorithm (where fixed rendezvous scheduling is used), as given by Equation

3.2.

Experiments were conducted to evaluated the performance of a simple version of adap-

tive rendezvous scheduling approach. In this version of adaptive rendezvous approach,

the robots are given an initial rendezvous interval k0, which is used for the first ren-

dezvous. After each rendezvous using kt, the robots reason about merge results at two

‘virtual’ rendezvous interval k,
t and k,,

t , where k,
t = 1

3kt and k,,
t = 2

3k. Then the growth

of the resulting (merged) graph evaluated in terms of the edge growth rate at the virtual

interval k,
t, k,,

t and the real interval kt are compared. If k,
t or k,,

t has the highest growth

rate, then k,
t or k,,

t is used as the next rendezvous interval kt+1. If the growth of resulting

graphs shows a consistent growing pattern, i.e., growth rate at the real interval kt is the

highest and k,
t is the lowest, then a longer rendezvous interval kt+1 = αkt (α > 1) is used

as the next interval. So depending on the growth pattern of the resulting graphs, the next

interval kt+1 can be either equal to, greater than, or smaller than kt. To better study

the effectiveness of the adaptive approach, we conducted multiple robot exploration us-

ing this approach on both nearly homogeneous graph (lattice with 1% vertices removed)

119

(a) Average cost of adaptive
algorithm

(b) Average cost of stochastic
algorithm

(c) Improvements of stochas-
tic and adaptive algorithm

Figure 4.23: Adaptive and stochastic rendezvous scheduling (on lattice with 1% holes).

and less homogeneous graph (lattice with 20% vertice removed). Clearly an effective

approach is expected to perform better in homogeneous graphs than in hetergeneous

graphs. Moreover, we implemented a simple random rendezvous approach and compared

the performance of the adaptative approach against the random approach, as well as the

basic approach where a fixed interval is used. In the random scheduling approach, at each

rendezvous, a next interval within a pre-defined range is randomly generated and used.

Experiments were conducted using different intervals. For each sample interval, all three

approaches were used by two robots exploring the lattice graphs. For each given interval

k, the basic algorithm uses it as the fixed interval for all rendezvous, whereas the random

algorithm uses it to randomly generate the next rendezvous interval kt, where 0 < kt ≤ k.

For the adaptive algorithm, k is used as the initial interval only and subsequent intervals

are adaptively generated according to the technique described above using α = 1.5. The

test for each interval is repeated 10 times each with random holes in the graph. Average

cost of both the algorithms and average relative improvement of the two new algorithm

over the basic algorithm are presented in Figure 4.23–4.24. From the results we can see

that the current version of adaptive scheduling approach does not produce consistent im-

provements over the basic (fixed scheduling) algorithm, both on the nearly homogeneous

120

(a) Average cost of adaptive
algorithm

(b) Average cost of stochastic
algorithm

(c) Improvements of stochas-
tic and adaptive algorithm

Figure 4.24: Adaptive and stochastic rendezvous scheduling (on lattice with 20% holes).

graph and the less homogeneous graph. Moreover, the performance of the approach is

close to the random approach. This illustrates that the current evaluation and prediction

mechanism in the adaptive approach need to be refined. This would be an interesting

direction for future work.

4.7 Merging with large groups of robots (k > 2)

Finally, we look at extending the multiple robot exploration algorithm to the case where

there are k > 2 robots. When k > 2 robots are deployed for exploration tasks, due to

the availability of more robots and their markers, there are several stages in the basic

multiple robot exploration algorithm where parallelism can be exploited to reduce the

task cost and improve the utility of the robots. One such a stage is the merging process.

In the basic algorithm the merge order is sequential, i.e., the base robot merges its map

with other robots sequentially. The order is arbitrarily determined. To further reduce the

task cost and improve the utility of the robots, parallel merge sequences can be explored.

For example, one improvement would be to adopt a binary partitioned merge, i.e., while

121

the ‘base’ robot‡ is doing a merge with one of its peers, other pairs of robots merge their

representations simultaneously. Initially all of the partial maps are partitioned in binary

fashion and pairs of robots are formed to merge their partial maps simultaneously. When

all pairs of robots have finished their parallel merge, the resulting maps are partitioned in

a binary fashion again and another subphase of parallel merge by pairs of robots starts.

The merge phase proceeds with subphases of decreasing number of parallel merges and

with the last subphase producing the overall merging result. In each pair of robots doing

the parallel merge, one of the robots is designated as the ‘local base’ robot that performs

the merge work as described in the basic merge algorithm.

Correctness This enhancement does not change the details of the exploration process

and the merge process. When incorporated into the basic algorithm, the correctness of

the algorithm is not violated.

Evaluation and performance Different from the two robots case where the merging

process involves one pair of robots doing the merge, in the case of group of robots, a

merge phase involves a number of merge processes by pairs of robots. According to the

performance metric defined in Chapter 3, for the sequential merge algorithm, the task

cost for the merge phase is the sum of the cost of all the merges that are conducted

sequentially. Suppose k robots are involved, then a merge phase Mi would have k − 1

sequential merge processes, each involves the base robot and one of its peers. Denote

the j’th (0 < j ≤ k − 1) merge process in Mi as Mij , then the cost of the merge

phase is cost(Mi) =
∑k−1

j=1 cost(Mij), where cost(Mij) is given in Equation 3.2. For the

binary merge algorithm, the cost is the sum of the cost of all parallel merge subphases

by pairs of robots. Assume that merge phase Mi has m parallel subphases, and in the

j’th (0 < j ≤ m) parallel subphase, denoted Mij , there are α(Mij) pairs of robots doing

‡The concept of ‘base robot’ becomes vague and less meaningful in the parallelized merge.

122

(a) Dense lattice with
holes

(b) Average mechanical cost (c) Improvement over sequen-
tial merge

Figure 4.25: Binary vs. sequential merge (dense lattice with holes, up to 16 robots).

parallel merge and denote the l’th (0 < l ≤ α(Mij)) parallel merge process as Mijl. Then

the cost in each subphase Mij is given by

cost(Mij) =
α(Mij)
max
l=1

{cost(Mijl)}

and the cost of merge phase Mi is given by

cost(Mi) =
m∑

j=1

cost(Mij)

=
m∑

j=1

α(Mij)
max
l=1

{cost(Mijl)}.

where cost(Mijl) is given in Equation 3.2.

Experiments were conducted to evaluate the performance of one version of the binary

merge approach. In this version of binary merge approach, the robot pairs at each merge

phase are formed randomly. We compare the algorithm against the basic algorithm, where

the merge is performed sequentially and the sequence is arbitrary too. In doing the ex-

periments our concerns include whether using more robots produces better performance,

123

(a) Average mechanical cost (b) Average improvement over sequential
merge

Figure 4.26: Binary vs. sequential merge (55 node regular graph, up to 32 robots).

and whether the binary merge algorithm produces better performance than the sequential

merge algorithm. To accommodate groups of robots, we conduct experiments on densely

connected graphs. We first run the algorithms on a densely connected lattice with holes

in which each vertex is connected to all of its eight ‘neighbors’ (Figure 4.25(a)). Exper-

iments were conducted using different number of robots, each using both the sequential

merge and the binary merge algorithm. Each condition was repeated 10 times and the

average costs of both the algorithms and the relative improvement of the binary merge

over the sequential merge (on different number of robots) are presented in Figure 4.25(b)–

(c), along with standard errors. Results show that for both algorithms, increasing the

number of robots from 2 to 4 produces substantial reduction in the cost. To operate with

larger groups of robots, we conducted experiments on more densely connected graphs –

regular graphs. Experiments were conducted using both algorithms on a 55 node regular

graph with up to 32 robots, and then on 80 node regular graph with up to 64 robots.

Each condition was repeated 10 times and the average cost and relative improvement are

shown in Figure 4.26-4.27. We can see that with regular graphs, as the number of robots

124

(a) Average mechanical cost (b) Average improvement over sequential
merge

Figure 4.27: Binary vs. sequential merge (80 node regular graph, up to 64 robots).

increases, the binary merge algorithm provides a consistent reduction of cost, and this is

not true for the sequential merge algorithm. Moreover, the binary merge algorithm starts

to produce a substantial improvement when 16 robots are deployed, and as the number

of robots increases, the improvement increases. We also conducted experiments on less

homogeneous graphs. The binary merge algorithm provides an improvement but does

not show a consistent pattern as in the regular graph case.

4.8 Summary

This chapter presented a number of potential enhancements that can be made to both the

original solution of Dudek et al. [14, 15] as well as to portions of the basic multiple robot

algorithm described in Chapter 3. Some strategies address the exploration process, such

as breadth-first exploration and lazy exploration; some strategies address the merging

process, such as using multiple robots. Some strategies can be used to improve both the

exploration and the merging process, such as exploiting extended vertex signatures and

125

Table 4.1: Enhancements and portions of the problem they address.

exploiting communication when robots encounter each other during exploration. Other

than the exploration and merging process themselves, we also investigated enhancements

that address other portions of the problems, such as strategic rendezvous scheduling

and dealing with large group of robots. Table 4.1 presents a summary of the portions

of the problem into which each of these enhancements can be incorporated. For each

enhancement, the corresponding portions of the problem they address are indicated.

126

5 Summary and future work

This report investigates the problem of exploration and mapping in an embedded graph-

like world where a collection of identical robots are deployed. This report formally extends

Dudek et al.’s single robot exploration algorithm to the case of multiple robots. By

equipping the robot with abilities to disambiguate places, Dudek et al.’s approach is a

deterministic solution to the topological SLAM problem. Building upon the multiple

robot exploration algorithm presented in [20], a multiple robot exploration algorithm has

been developed which enables a group of two or more robots to construct a topological

map isomorphic to the underlying world being explored. An evaluation metric for multiple

robot exploration is developed as well.

This report also explores a number of potential enhancements that can be made to

both the original solution of Dudek et al. as well as to portions of the multiple robot

exploration algorithm. These enhancements address core techniques required in multiple

robot exploration, such as location disambiguation, merging partial representations and

rendezvous scheduling.

Empirical evaluation of both the basic and enhanced multiple robot exploration al-

gorithms has shown that two robots can explore an environment much more efficiently

than a single robot, and that super-linear performance improvements can be encountered.

This is due to the fact that many environments have natural decompositions that enable

multiple robots to operate independently and many of the mechanically complex tasks

can be reduced through the use of multiple robots.

127

The work presented in this report suggests several extensions and variations to the

basic exploration algorithm.

5.1 Within the current model

Within the current model, issues deserving further investigation are related to both the

enhancements described in Chapter 4 and other portions of the algorithm.

Extending current enhancements

Extensions and variations to the enhancements described in Chapter 4 suggest several

possible directions for future research.

Extended signatures In this report we evaluated the extended signatures with neigh-

borhood radius r of up to 2. Further studies should be given to a broader view of

signature, i.e., signatures that includes the topology information of a larger neighbor-

hood. A broader view of node signature is expected to produce a better disambiguation

ability than the signatures considered here. Used in the merge phase, this better dis-

ambiguation ability comes at an increased computational cost, while in the exploration

phase it comes at both increased computational cost (for signature comparing) and ad-

ditional mechanical cost (for signature retrieval). It would be interesting to investigate

issues related to a broader view of signatures, e.g., what is the tradeoff of the increased

disambiguation ability and the increased computational and mechanical cost? Does the

disambiguating ability stop increasing after a certain neighborhood distance? An alter-

native to the broader view of signatures is to develop a narrower view of signature that

considers partial neighbor topology information. Signatures based on partial neighbor

topology might produce impaired disambiguation ability but require reduced computa-

tional and mechanical cost. A narrower view of node signature might be appealing in the

128

exploration phase, where the extra cost required for retrieving neighbor information of

each unknown place depends on the number of neighbors (edges) of the unknown place.

It’s worthwhile investigating the tradeoff of the decreased disambiguation results and the

decreased computational and mechanical cost.

Communication during exploration In addition to the two opportunistic encounter

scenarios described in this report, there exist other encounter situations in which commu-

nication information could be exploited. For example, when two robots encounter each

other in a common vertex and both of them are about to explore the same unexplored

edge of the common vertex, one of the robots (e.g., the one that requires a longer search

tour) can terminate this task to avoid duplicate work. Another useful communication

would be to provide updates to the partial maps. When two robots encounter each other,

they could examine their current partial maps to see if some new edges connecting the

commonly known vertices (i.e., direct edges) have been added in one map but not in the

other map. If this is the case, instead of waiting until the merge phase, these edges can

be added to the corresponding maps immediately (by direct fusing). With more edges in

the maps, both the ongoing exploration phase and subsequent merge phase are expected

to be facilitated. Since direct fusing does not require mechanical costs, the overall task

cost is expected to be reduced.

Exploiting multiple robots in the merge phase We described an enhancement

that exploits the existence of multiple robots in the back-link validation stage of the

merge phase. There are other stages in the merge process in which another robot could

be helpful. One such a stage is the search stage. As an example, one approach to

utilizing multiple robots in search stage would be to let the other robot help the base

robot by visiting some of the potentially confusing vertices in parallel. Compared with the

enhancement in the back-link validation stage, parallel search requires more sophisticated

129

coordination between the robots. There are some challenging issues that need to be

addressed, e.g., how to partition the search route so that the cost of the parallel search

is reduced, both in the case that the marker is found and the case that it is not found.

One approach to partitioning the search route would be to partition it as equally as

possible. This approach, however, may not be optimal if the marker is found (so the

partitioned search route is not fully followed). If the search routes are largely disjoint, it

would be a challenge for the robot that found the marker to inform the other robot. An

approach that tries to address this problem would be to partition the routes so that the

routes intersect as much as possible. This approach facilitates communication between

the robots but it may not be optimal if the marker is not found. An alternative approach

would be to let the robots come back to the starting location regularly so in case the

marker is found, the robots meet early (and therefore the search can terminate early).

Obviously the approach might incur significant extra traversals to the starting location.

Developing an efficient parallel search strategy is a challenging but interesting direction

for future work. An evaluation mechanism for the parallel search algorithm needs to be

carefully defined as well.

Breadth-first exploration We studied the performance of the breadth-first explo-

ration for a lattice graph with holes but performance of the algorithm on more hetero-

geneous graphs should be studied further. We studied the performance of breadth-first

exploration for single robot exploration. Integrating breadth-first exploration in the ex-

ploration phase of multiple robot exploration is worth investigating.

Lazy exploration In the current lazy exploration a delayed task is ‘released’ once

some other task is accepted and processed, i.e., delayed tasks are considered again in the

next round of selection. It would be interesting in the future to investigate the effects

of delaying a hard task for later so that when it is considered again, the explored graph

130

might have grown more.

Integrating lazy exploration into the exploration phase of multiple robot exploration

would be another interesting direction for future work. In multiple robot exploration,

there are more ‘opportunities’ to further delay a difficult task. For example, the unknown

place may be solved with fewer steps by the other robot; the unknown place may be solved

in the following merge phase, or even in later exploration and merge phases with fewer

cost, due to the growth of the explored graph.

Adaptive rendezvous scheduling As mentioned earlier, due to the unsatisfactory

performance of the current adaptive rendezvous scheduling algorithm, more sophisticated

evaluation and predication techniques should be explored to reflect the evolvement pat-

tern of the resulting graph more accurately. The current adaptive scheduling algorithm

uses virtual intervals to evaluate and predict the growth pattern of the merged graph.

Techniques based on more (or even all) possible virtual rendezvous intervals should be

developed to better reflect the growth pattern of the resulting graph. Currently the

growth of the resulting graph is evaluated in terms of its edge growth rate (over mechan-

ical steps). This edge growth rate, however, might not fully represent the growth of the

resulting graph. Earlier experiments show that the growth in the number of vertices of

the resulting graph is not always consistent with the growth of the number of edges. A

better evaluation metric should be developed.

Other adaptive rendezvous scheduling strategies should be developed. For example,

one straightforward strategy would be that robots perform their rendezvous when they

encounter each other on their way back to the rendezvous place. Extending this idea,

another strategy would be that robots perform rendezvous whenever they encounter each

other during independent exploration.

A rendezvous schedule includes both the rendezvous interval and location. The cur-

131

rent version of adaptive rendezvous scheduling algorithm does not address the issue of

rendezvous location. As in the use of a fixed rendezvous interval, a fixed location does

not reflect the progress of the exploration so it is worthwhile exploring approaches in

which rendezvous locations are adaptive as well. While reasoning about the rendezvous

intervals, the robots might also reason about rendezvous locations based on additional

virtual locations selected from the set of the commonly known locations.

Strategic merge for group of robots In the binary merge algorithm, the pairs

of robots are formed arbitrarily. How to form pairs of robots more strategically is a

challenging problem worth investigating. One heuristic is to form pairs of robots in such

a way that maps within the pair are ‘close’ so traversals during the merge might be low.

A well defined metric is required to measure the ‘distance’ of two partial maps.

Other than the merge sequence, with group of robots the merge process itself can also

be improved. Similar to the earlier enhancement in which communication information

is exploited when robots encounter, one strategy would be to ‘dispatch’ some robots to

some of the vertices in the base map which have unexplored edges and leave the robots (or

their markers) there. As a vertex in another map (the exterior end of the current frontier)

is selected and visited by the base robot, if the vertex is in fact the counterpart vertex

of some vertex in the base map, the base robot might ‘encounter’ one of the dispatched

robots, or one of their markers. As in the earlier enhancement, subsequent search in the

base map for disambiguation is then unnecessary and back-link validation can start. This

strategy is appealing when the number of robots involved becomes a large fraction of the

number of vertices in the base map that need to be disambiguated and merged.

132

Other enhancements

In addition to extending the current approaches, there are some other portions of the

problem that suggest directions for future research.

Task division How to partition the unexplored portion of the merged graph is a crit-

ical technique that is worthy of further investigation. In this report a simple strategy

is used. This strategy partitions the unexplored edges of the merged graph between the

robots evenly. It would be interesting to fully explore the task division issue in multi-

ple robot exploration and develop strategic techniques to partition the exploration task.

We described above a possible enhancement in which encountering robots might avoid

exploring the same edge. A dynamic partition approach would be to have the robots

re-partition the currently unknown portions of the world when they encounter each other

during independent exploration.

Integration of current enhancements Most of the enhancements so far have been

evaluated independently. It would be interesting to integrate these enhancements and

investigate the performance of the resulting algorithm. Some enhancements can be inte-

grated trivially. For example, a multiple robot exploration algorithm could use adaptive

rendezvous scheduling; robots could communicate when they encounter each other dur-

ing exploration; in the merge phase, partial matching information (from communication

during exploration) and extended signatures could be used to save mechanical traversals,

and when the base robot moves to disambiguate a vertex, the other robot could remain

at the other end of the edge to generate a unique signature of the other end of the link.

It would be interesting to integrate other enhancements in a strategic way. For exam-

ple, an algorithm may integrate both depth-first exploration, breadth-first exploration,

extended signature exploration and lazy exploration strategies. Then during the explo-

133

ration these strategies are selected in a case by case manner. For example, the robot

might reason about the homogeneity of the current graph and when the graph is evalu-

ated as being relatively homogeneous, use breadth-first search. When the current area is

relatively heterogeneous, extra mechanical moves could be used to retrieve an extended

signature.

More performance concerns Throughout this report, the task cost is the main con-

cern. It would be interesting to investigate other costs involved in completing an explo-

ration task, such as the utility of the robots, total mechanical cost, and even electronic

(computational) cost. Utility of the robots measures how well the robots are utilized in

the process of completing the task. In the current model, utility can be measured in

terms of the fraction of a robot’s mechanical cost over the overall task cost of completing

the task. Developing algorithms that consider both the task cost and utility leads to

several extension and variations. For example, the adaptive rendezvous scheduling might

also consider the utilization of the robots at each virtual interval and location, and the

next rendezvous schedule chosen would be the one that produces both low task cost and

high robot utilization. Another example would be that during independent exploration,

when a working robot encounters another robot who has finished its exploration and is

waiting, the waiting robot might take up some of the unfinished work of the working

robot. More aggressively, when a robot finishes its exploration earlier, instead of waiting

at the rendezvous place, in order to help the other robot, it might traverse the graph

trying to meet the other robot.

5.2 Beyond the current model

Extensions and variations of the current model also suggest a number of directions for

future work.

134

More perception power It would be interesting to investigate how enhanced percep-

tion power improves the performance of robotic exploration. For example, a model under

which the robot can see which edge another robot entered the vertex from would pro-

vide enriched information that can be exploited. With this enhanced perception model,

when robots encounter each other during their exploration, instead of the current partial

matching information (vertex label), full matching information (both vertex label and

local edge index correspondence) might be generated, which might further facilitate the

ongoing exploration and subsequent exploration and merge phases.

More communication power Enhanced communication power also suggests several

problems worth addressing. For example, assume robots can sense each other when they

are within a distance of d edges of the vertex. How does the communication range d affect

performance?

Global clock A global clock is another powerful source of information that can be

utilized to improve exploration. With a global clock, more communication information

can be exploited. Suppose we let each robot record the global time and location of each of

its marker operation (dropping and picking up). Each robot also records the global time

and location if it sees a marker of the other robot. When the robots encounter each other,

by examining the marker related records of the robots, more partial matching information

of vertices can be generated. Suppose the records show that one robot dropped its marker

at global time 10 at local vertex v1 and picked it up at time 20, and another robot saw

the marker at global time 15 at local vertex v2. Then it can be inferred that v1 and v2

are counterpart vertices.

Marker related extensions Finally, without going into details, we see that there are

marker-related extensions to the current model that suggest directions for future work,

135

e.g., assuming each robot has multiple markers, assuming markers that can point in a

direction, or markers that can be dropped on edges etc. For example, with an directional

marker that points to the direction (exit) by which the robot came to drop the marker,

the back-link validation (when the marker is found) would be facilitated.

136

Bibliography

[1] T. Arai, E. Pagello, and L. Parker. Editorial: Advances in multi-robot systems.
IEEE Transactions on Robotics and Automation, 18(5):655–661, 2002.

[2] T. Balch and R. C. Arkin. Communication in reactive multiagent robotic systems.
Autonomous Robots, 1(1):27–52, 1994.

[3] A. Borodin, S. Cook, P. Dymond, W. Ruzzo, and M. Tompa. Two applications of
complementation via inductive counting. Technical Report no. 58972, IBM Research
Division, 1987.

[4] R. Brooks. A robust layered control system for a mobile robot. Technical Report
AIM-864, MIT AI Lab, 1985.

[5] H. Bunke. Graph matching: Theoretical foundations, algorithms, and applications.
In International Conference on Vision Interface, pages 82–88, Montreal, Quebec,
Canada, 2000.

[6] W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative multi-
robot exploration. In IEEE International Conference on Robotics and Automation
(ICRA), pages 476–481, San Francisco, CA, USA, 2000.

[7] A. Burns and G. Davies. Concurrent Programming. Addison-Wesley Publishing,
Co., USA, 1993.

[8] Y. Cao, A. Fukunaga, and A. Kahng. Cooperative mobile robotics: Antecedents and
directions. Autonomous Robots, 4(1):7–27, 1997.

[9] M. Chandy and S. Taylor. An Introduction to Parallel Programming. Jones and
Bartlett Publishers, Inc., USA, 1992.

[10] E. Davis. Representing and Acquiring Geographic Knowledge. Morgan Kaufmann
Publishers Inc., USA, 1986.

[11] G. Dudek, P. Freedman, and S. Hadjres. Using local information in a non-local
way for mapping graph-like worlds. In 13th International Conference on Artificial
Intelligence, pages 1639–1647, Chambery, France, 1993.

137

[12] G. Dudek, P. Freedman, and S. Hadjres. Mapping in unknown graph-like worlds.
Robotic Systems, 13(8):539–559, 1998.

[13] G. Dudek, M. Jenkin, and E. Milios. A taxonomy of multirobot systems. In T. Balch
and L. Parker, editors, Robot Teams: From Diversity to Polymorphism, pages 3–22.
A.K. Peters, Natick, Massachusetts, 2000.

[14] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration as graph
construction. Technical Report RBCV-TR-88-23, Research in Biological and Com-
putational Vision, Department of Computer Science, University of Toronto, 1988.

[15] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robotic exploration as graph
construction. IEEE Transactions on Robotics and Automation, 6(7):859–865, 1991.

[16] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Map validation and self-location in
a graph-like world. In 13th International Conference on Artificial Intelligence, pages
1648–1653, Chambery, France, 1993.

[17] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Robust positioning with a multi-
agent robotic system. In IJCAI-93 Workshop on Dynamically Interacting Robots,
pages 118–123, Chambery, France, 1993.

[18] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. A taxonomy for swarm robots.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 441–447, Yokohama, Japan, 1993.

[19] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. A taxonomy for multi-agent robotics.
Autonomous Robots, 3(4):375–397, 1996.

[20] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Topological exploration with multiple
robots. In 7th International Symposium on Robotics with Application (ISORA),
Anchorage, Alaska, USA, 1998.

[21] H. Durrant-Whyte. Uncertainty geometry in robotics. IEEE Journal of Robotics
and Automation, 4(1):23–31, 1988.

[22] A. Elfes. Sonar based real world mapping and navigation. IEEE Journal of Robotics
and Automation, 3(3):249–265, 1987.

[23] A. Elfes. Occupancy Grids: A Probabilistic Framework for Robot Perception and
Navigation. PhD thesis, Carnegie Mellon University, 1989.

[24] A. Farinelli, L. Iocchi, and D. Nardi. Multirobot systems: a classification focused
on coordination. IEEE Transactions on Systems, Man, and Cybernetics, Part B,
34(5):2015–2028, 2004.

138

[25] J. Fenwick, P. Newman, and J. Leonard. Cooperative concurrent mapping and
localization. In IEEE International Conference on Robotics and Automation (ICRA),
pages 1810–1817, Washington, DC, USA, 2002.

[26] J. Fitzpatrick, D. Hill, and C. Maurer. Image registration. In M. Sonka and J. Fitz-
patrick, editors, Handbook of Medical Imaging, Volume 2: Medical Image Processing
and Analysis, pages 1–35. SPIE Press, Bellingham, WA, USA, 2000.

[27] D. Fox, S. Thrun, F. Dellaert, and W. Burgard. Particle filters for mobile robot
localization. In A. Doucet, N. de Freitas, and N. Gordon, editors, Sequential Monte
Carlo Methods in Practice, pages 499–516. Springer Verlag, New York, 2001.

[28] B. P. Gerkey and M. J. Mataric. A formal analysis and taxonomy of task allocation in
multi-robot systems. The International Journal of Robotic Research, 23(9):939–954,
2004.

[29] T. Gibb. Quecreek commission says better maps are a must. Pittsburgh Post Gazette,
November, 2002.

[30] L. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and
the computation of Voronoi diagrams. ACM Transactions on Graphics, 4(2):74–123,
1985.

[31] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. A highly efficient FastSLAM algo-
rithm for generating cyclic maps of large-scale environments from raw laser range
measurements. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2121–2427, Las Vegas, Nevada, USA, 2003.

[32] A. Howard. Multi-robot simultaneous localization and mapping using particle filters.
International Journal of Robotics Research, 25(12):1243–1256, 2006.

[33] W. Huang and K. Beevers. Topological map merging. International Journal of
Robotics Research, 24(8):601–613, 2005.

[34] R. Kalman. A new approach to linear filtering and prediction problems. Journal of
Basic Engineering, 82(1):35–45, 1960.

[35] B. Kuipers. Modeling spatial knowledge. Cognitive Science, 2:129–153, 1978.

[36] B. Kuipers and Y. Byun. A qualitative approach to robot exploration and map-
learning. In Workshop on Spatial Reasoning and Multi-Sensor Fusion, pages 390–
404, St. Charles, IL, USA, 1987.

[37] B. Kuipers and T. Levitt. Navigation and mapping in large-scale space. AI Magazine,
9(2):25–43, 1988.

139

[38] L. Matthies and S. Shafer. Error modelling in stereo navigation. IEEE Journal of
Robotics and Automation, 3(3):239–248, 1987.

[39] M. Montemerlo. FastSLAM: A Factored Solution to the Simultaneous Localization
and Mapping. PhD thesis, Carnegie Mellon University, 2003.

[40] H. Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine, 9(2):61–
74, 1988.

[41] S. Norton and M. DiPasquale. Thread Time: The Multithreaded Programming Guide.
Prentice Hall PTR, USA, 1997.

[42] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, Inc.,
New York, NY, USA, 1987.

[43] E. Pagello, A. D’Angelo, F. Montesello, F. Garelli, and C. Ferrari. Cooperative
behaviors in multi-robot systems through implicit communication. Robotics and
Autonomous Systems, 29(1):65–77, 1999.

[44] L. Parker. Current state of the art in distributed autnomous mobile robotics. In In-
ternational Symposium on Distributed Autonomous Robotic Systems (DARS), pages
3–14, Knoxville, TN, USA, 2000.

[45] F. Preparata and M. Shamos. Computational Geometry - An Introduction. Springer,
1985.

[46] I. Rekleitis, G. Dudeck, and E. Milios. Multi-robot exploration of an unknown envi-
ronment, efficiently reducing the odometry error. In International Joint Conference
on Artificial Intelligence, pages 1340–1345, Nagoya, Japan, 1997.

[47] I. Rekleitis, G. Dudek, and E. Milios. Accurate mapping of an unknown world and
online landmark positioning. In Vision Interface(VI), pages 455–461, Vancouver,
Canada, 1998.

[48] I. Rekleitis, V. Dujmovi, and G. Dudek. Efficient topological exploration. In IEEE
Internation Conference on Robotics and Automation (ICRA), pages 676–681, De-
troit, MI, USA, 1999.

[49] I. Rekleitis, R. Sim, G. Dudek, and E. Milios. Collaborative exploration for the
construction of visual maps. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1269–1274, Maui, Hawaii, USA, 2001.

[50] N. Roy and G. Dudek. Collaborative robot exploration and rendezvous: Algorithms,
performance bounds and observations. Autonomous Robots, 11(2):117–136, 2001.

140

[51] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun, and
H. Younes. Coordination for multi-robot exploration and mapping. In National Con-
ference on Artificial Intelligence (AAAI/IAAI), pages 852–858, Austin, TX, USA,
2000.

[52] R. Smith, M. Self, and P. Cheeseman. A stochastic map for uncertain spatial relation-
ships. In Workshop on Spatial Reasoning and Multi-Sensor Fusion, pages 390–404,
St. Charles, IL, USA, 1987.

[53] R. C. Smith and P. Cheeseman. On the representation and estimation of spatial
uncertainty. International Journal of Robotics Research, 5(4):56–68, 1986.

[54] S. Thrun. A probabilistic online mapping algorithm for teams of mobile robots.
International Journal of Robotics Research, 20(5):335–363, 2001.

[55] S. Thrun. Robotic mapping: a survey. In G. Lakemeyer and B. Nebel, editors, Ex-
ploring Artificial Intelligence in the New Millennium, pages 1–35. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2003.

[56] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, USA, 2005.

[57] S. Thrun, D. Hähnel, D. Ferguson, M. Montemerlo, R. Triebel, W. Burgard,
C. Baker, Z. Omohundro, S. Thayer, and W. Whittaker. A system for volumetric
robotic mapping of abandoned mines. In IEEE International Conference on Robotics
and Automation (ICRA), pages 4270–4275, Taipei, Taiwan, 2003.

[58] S. Thrun and Y. Liu. Multi-robot SLAM with sparse extended information filers. In
The 11th International Symposium of Robotics Research (ISRR’03), Sienna, Italy,
2003.

[59] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-Whyte. Simul-
taneous mapping and localization with sparse extended information filters. Interna-
tional Journal of Robotics Research, 23(7-8):693–716, 2004.

[60] B. Yamauchi. Frontier-based exploration using multiple robots. In 2nd International
Conference on Autonomous Agents, pages 47–53, Minnepolis, MN, USA, 1998.

141

