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Abstract

This paper presents a novel feature set for visual tracking that is derived
from “oriented energies”. More specifically, energy measures are used to
capture a target’s multiscale orientation structure across both space and
time, yielding a rich description of its spatiotemporal characteristics. To
illustrate utility with respect to a particular tracking mechanism, we show
how to instantiate oriented energy features efficiently within the mean shift
estimator. Empirical evaluations of the resulting algorithm illustrate that it
excels in certain important situations, such as tracking in clutter with mul-
tiple similarly colored objects and environments with changing illumination.
Color-based trackers often fail when presented with these types of challenging
video sequences.
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Chapter 1

Introduction

Target tracking is a critically important aspect to a wide range of computer
vision applications, including surveillance, smart rooms and human-computer
interfaces. Significant contributions have been made to the field, but no
general-purpose tracker has been found that can operate effectively in every
real-world setting (see, e.g., [1] for a general review). Common challenges
that are present in realistic sequences include large changes in illumination,
small targets and significant clutter. Accordingly, tracking is still considered
to be an open problem in computer vision.

To facilitate accurate tracking, features must be selected that distinguish
targets from the background and from one another. Further, the features
must be robust to photometric and geometric image distortions. Moreover,
because tracking applications often require rapid updates, features of inter-
est must lend themselves to efficient extraction. In response to these re-
quirements, many different proposals have been made and space prohibits
an exhaustive survey; here, representative examples are provided. Perhaps
the simplest approach is to make use of image intensity-based templates for
feature definition [2, 3, 4]. Along this line, analysis has been developed to
select template windows that will yield most accurate tracks [5]. To provide
robustness to photometric distortions, consideration has been given to dis-
cete features, e.g., edges, lines and corners [6, 7, 8, 9, 10]. To encompass
object outlines, methods have emerged that use contours and silhouettes
[11, 12, 13]. Other features are derived on a more regional basis, e.g., color,
texture and their combination [14, 15, 16, 17, 18]. Recovered motion also
has been incorporated in feature definitions on its own and in combination
with appearance [19, 20, 21]. Yet another class of approaches rely on learning



methods to discover relevant features with respect to a training set [22, 23].

Across the wide range of features considered for visual tracking, limited
attention has been given to the integrated analysis of both the spatial and
temporal domains. The potential benefits of a more integrated approach
include the ability to combine static and dynamic target information in a
natural fashion as well as simplicity of design and implementation. In re-
sponse to this observation, the present paper documents a novel feature set
for visual tracking that is based on energy measures for capturing a target’s
multiscale, spatiotemporal orientation structure. It is shown that the result-
ing representation yields rich, yet compact target descriptions that naturally
integrate both temporal and spatial characteristics in support of accurate
tracking in challenging scenarios.

A considerable body of research has emerged on the use of orientation
selective filters in the spatiotemporal domain for the purpose of analyzing
motion; a few illustrative examples follow. The general applicability of spa-
tiotemporally oriented representations to motion perception was described
some time ago, e.g., [24]. An early realized application of such ideas was
to the recovery of optical flow, e.g., [25]. More recently, it has been sug-
gested that the distribution of energy across spatiotemporal orientations is
indicative of primitive patterns in visual space-time (e.g., single vs. multiple
motions in a region) that can be used for qualitative distinctions in video
analysis [26]. With regard to visual tracking, previous work has made use of
a measure of coherent motion, as derived from oriented spatiotemporal fil-
ters, to weight image derived data in a gradient-based template tracker [27].
Also of interest is previous work that has relied on oriented, bandpass fil-
tering purely in the spatial domain to define features for tracking, e.g., [28].
Significantly, it appears that no previous research has explored the use of
multiscale, spatiotemporal oriented energies that uniformly encompass space
and time as the basis for defining features in the service of visual tracking.

To illustrate the use of the proposed oriented energy feature set, we make
use of the mean shift tracking paradigm [29]. Mean shift trackers have at-
tained much interest in recent years due to the fact that they are effective,
even in the presence of clutter, partial occlusion and target deformations.
Further, our proposed oriented energy features readily map onto this para-
digm. (Although they also are applicable to alternative paradigms, e.g., those
that preserve within target spatial relationships, as the oriented energies are
calculated locally.) It appears that the mean shift algorithm was first applied
to the problem of tracking by Comaniciu et al. [30]. Subsequently, various
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extensions and improvements to mean shift tracking have been documented
(31, 18, 32, 33, 34].

In light of previous research, the main contributions of the current ap-
proach are as follows. First, a novel oriented energy feature set is defined for
visual tracking. This representation captures the spatiotemporal character-
istics of a target in an integrated, compact fashion. Second, oriented energy
features are instantiated with respect to a particular tracking mechanism,
the mean shift estimator. Oriented energies map naturally onto this tracker;
although, they have the potential to be applicable to a wide range of tracking
paradigms. Third, the performance of the resulting system is documented
both qualitatively and quantitatively. Of notable importance is the fact that
our algorithm outperforms a color-based mean shift implementation in three
situations that are common to real-world video sequences: substantial back-
ground clutter; multiple targets which have similar color characteristics; and
during changes of illumination.

This report is organized into four major chapters. This first chapter has
served to motivate the use of oriented energy-based features for tracking and
to place it in the context of related research. Chapter 2 presents the details
of the technical approach. Chapter 3 presents empirical evaluation. Finally,
Chapter 4 serves to summarize our contributions.



Chapter 2

Technical Approach

This section details the derivation of the novel, oriented energy-based fea-
ture set that is proposed for tracking. The advantages of utilizing oriented
energies in this application domain, including their robustness to illumina-
tion variation, rich description of spatiotemporal structure, and ability to
track in the presence of clutter, will be further explained. The mean shift
mode seeking algorithm is reviewed briefly because it is the particular track-
ing mechanism that was selected to illustrate the power of this feature set.
Special attention is paid to the incorporation of the oriented energy features
into the mean shift framework.

2.1 Oriented energy features

2.1.1 Oriented energy computation

Events in a video sequence will generate diverse structures in the spatiotem-
poral domain. For instance, a textured, stationary object produces a much
different signature in image space-time than if the same object were mov-
ing. One method of capturing the spatiotemporal characteristics of a video
sequence is through the use of oriented energies [24]. These energies are de-
rived using the filter responses of orientation selective bandpass filters when
they are convolved with the spatiotemporal volume produced by a video
stream. Responses of filters that are oriented parallel to the image plane are
indicative of the spatial pattern of observed surfaces and objects (e.g., spa-
tial texture); whereas, orientations that extend into the temporal dimension



capture dynamic aspects (e.g., velocity and flicker).

The basis of our approach is that energies computed at orientations which
span the space-time domain can provide an extremely rich description of a
target for visual tracking. Here, multiscale processing is also important, as
coarse scales capture gross spatial pattern and overall target motion while
finer scales capture detailed spatial pattern and motion of individual parts
(e.g., limbs). With regard to dynamic aspects, simple motion is captured
(orientation along a single spatiotemporal diagonal) as well as more com-
plex phenomena, e.g., multiple juxtaposed motions as limbs cross (multiple
orientations in a spatiotemporal region). By encompassing both spatial and
temporal target characteristics in an integrated fashion, tracking is supported
in the presence of significant clutter. Further, as detailed below, such repre-
sentations can be made invariant to local image contrast to support tracking
in the presence of substantial illumination changes.

For this work, filtering was performed using broadly tuned, steerable,
separable filters based on the second derivative of a Gaussian, Go, and their
corresponding Hilbert transforms, Hs [35], with responses pointwise rectified
(squared) and summed. Filtering was executed across 6 = (1,£) 3D orien-
tations (7, £ specifying polar angles) and o scales using a Gaussian pyramid
formulation [36]. This Gaussian pyramid approach allows for efficient analy-
sis of the space-time structure across multiple scales. Hence, a measure of
local energy, e, can be computed according to

e(x;0,0) = [Go (A, 0) % I (X)]° + [Hy (0,0) I (x)]*, (2.1)

where x = (z,y,t) corresponds to spatiotemporal image coordinates, I is
the image sequence, and * denotes convolution. This initial measure of local
energy is dependent on image contrast. To attain a purer measure of the
relative contribution of different orientations irrespective of local contrast,
e (x;0,0) is normalized as

e(x;0,0)
Yo ge(x:0,6) +¢€

é(x;0,0) = (2.2)

where € is a bias term to avoid instabilities when the energy content is small
and the summations in the denominator cover all scale and orientation combi-
nations. (In this paper, our notational convention is to superscript variables
of summation with~)
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Figure 2.1: Frame 29 of the MERL traffic video sequence with select corre-
sponding energy channels. Finer and coarser scales are shown in rows two
and three, resp. From left to right, the energy channels roughly correspond
to horizontal structure, vertical structure, and leftward motion.

For illustrative purposes, Fig. 2.1 displays a subset of the energies that
are computed for a single frame of a MERL traffic sequence [37]. Here,
there is a white car moving to the left near the center of the frame. Notice
how the energy channel that is tuned for leftward motion is very effective at
distinguishing this car from the static background. Consideration of the
channel tuned for horizontal structure shows how it captures the overall
orientation structure of the white car. In contrast, while the channel tuned
for vertical textures captures the outline of the crosswalks, it shows little
response to the car, as it is largely devoid of vertical structure at the scales
considered. Finally, note how the energies become more diffuse and capture
more gross structure at the coarser scale.

Given that the tracking problem is being considered, the goal is to lo-
cate the target’s position as precisely as possible. However, as seen in Fig.
2.1, the energies computed at coarser scales are diffuse due to the downsam-



pling/upsampling that is employed in pyramid processing. Coarse energies
are important because they provide information regarding the target’s gross
shape and motion, but a method is required to improve their localization for
accurate tracking. To that end, a set of weights are applied to the normalized
energies of Equ. (2.2) according to

A

E(x;0,0)=é(x;0,0)b(x;0) (2.3)

where b are pixel-wise weighting factors for a particular orientation channel,
0. The weighting factors for a specific orientation are computed by inte-
grating the energies across all scales and applying a threshold, Ty, according
to

b(x;0) = Zé (x;0,6) > Tp. (2.4)

g

When computing the weights, summing across scales allows the better local-
ized fine scales to sharpen the coarse scales, while the coarse scales help to
smooth the responses of the fine scales. Furthermore, by calculating weights
separately for each orientation, we avoid being prejudiced toward any par-
ticular type of oriented structure (e.g., static vs. dynamic).

Two significant advantages of the proposed oriented energy feature set
must be further highlighted. First, normalized energy, as defined by Eqns.
(2.1) and (2.2), captures local spatiotemporal structure at a particular orien-
tation and scale with a degree of robustness to scene illumination: By virtue
of the bandpass filtering, (2.1), invariance will be had to changes that are
manifest in the image as additive offsets to image brightness; by virtue of
the normalization, (2.2), invariance will be had to changes that are manifest
in the image as multiplicative offsets. Second, the calculation of the de-
fined normalized oriented energies requires nothing more than 3D separable
convolution and pointwise nonlinear operations, and is thereby amenable to
compact, efficient implementation [38].

2.1.2 Histogram representation

As defined, oriented energies provide local characterization of image struc-
ture. Therefore, the energy measurements could be used to provide pointwise
descriptors for target tracking (e.g., in conjunction with spatial template-
based matching). Alternatively, the pointwise measurements can be aggre-



gated over target support to provide region-based descriptors (e.g., in con-
junction with mean shift tracking). Here, we pursue the second option and
explore the efficacy of the features as regional descriptors.

With an eye to mean shift tracking, we collapse the spatial information
in our initial energy measurements and represent the target as a histogram.
The target histogram is constructed using the energies of Eqn. (2.3). Each
histogram bin corresponds to the weighted energy content of the target at
a particular scale and orientation. Hence, the entire histogram displays the
weighted energy of the target across all scales and orientations. The energy
histograms are created in a different fashion than the color histograms seen in
many mean shift algorithms. For example, in [30], each pixel on the target
contributes to just a single histogram bin, depending on its color. When
computing our energy-based histograms, each target pixel affects every bin
in the histogram. Specifically, in our tracker the template histogram which
defines the target in the first frame of the video sequence is given by

Gu=CY_k(IX1°) E (x}: 6u) (2.5)
=1

where k is the profile of the tracking kernel, C' is a normalization constant
to ensure the histogram sums to unity, 2} = (z*, y*) is a single target pixel
at some temporal instant, ¢ ranges so that x’ covers the template support,
and ¢, is the scale and orientation combination which corresponds to bin
u of the histogram. (Under our notational convention, when referring to
kernels, uppercase indicates the kernel itself while lowercase refers to the
kernel profile.)

When tracking a target between frames, it may be necessary to evaluate
several target candidates before a final, optimal target position is found for
the current frame. The histograms for the target candidates are evaluated
using

R el — X
pu<y>chzk<Hy .
=1

where y is the center of the target candidate’s tracking window, h is the
bandwidth of the tracking kernel and ¢ ranges so that x} covers the candi-
date support. The kernel bandwidth allows for scale changes of the target
throughout the video sequence.

A sample energy histogram for the target region shown in Fig. 2.1 (rep-
resented by the white box) is shown in Fig. 2.2. The bin corresponding most

) o) 2.0
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Figure 2.2: Oriented energy histogram for the target region in Fig. 2.1.

closely to leftward motion at finest scale (bin 5) has by far the most energy.
The next two high energy counts are found in bins 2 and 9 which are tuned
to combinations of dynamic and static structure, with an emphasis on left-
ward motion and spatial orientation similar to that of the target. The overall
horizontal structure of the car is captured by the energy in bins 1 and 4. In
contrast, bins 3 and 6, which roughly represent static, vertical structure, do
not have strong responses, given the nature of the car target. The histogram
also shows that the oriented energies for the highest frequency structures
have the strongest response, as the target is fairly small and dominated by
relatively finer scale structure.

2.2 Oriented energy features in the mean shift
framework

2.2.1 Target position estimation

Under the mean shift framework, tracking an object essentially involves locat-
ing the candidate position in the current frame that produces the histogram
that is most similar to the template histogram. Thus, a measure of similarity
between two histograms is required. We utilize the Bhattacharyya coefficient
for histogram comparisons. The sample estimate of the Bhattacharyya coef-
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ficient can be computed according to

p[p (), d = i VP () d @)

where p (y) and q histogram bins of cardinality m. Due to the definition of

the Bhattacharyya coefficient, in order to minimize the distance between two

histograms, Eqn. (2.7) must be maximized with respect to target position y.

The Bhattacharyya coefficient can be maximized via mean shift iterations

(39, 29]. The specific mean shift vector that can be used to perform the
desired maximization is

Z::l X w;g (‘ YO;Xz' ‘)
yi = — (2.8)
it wig (‘ inxi )

where

~

=§j (xt; 6a) | 2 (2.9)

Pu (}’0)

g (z) = K (x) is the derivative with respect to x of tracking kernel profile,
k, and yo is the current position of the target. Here, the Epanechnikov
kernel has been shown to be effective [34, 30, 32] and appears to be the most
commonly used kernel in application of mean shift to computer vision.

Thus, the position of the target in the current frame is estimated as
follows. Starting from the target’s position in the previous frame, iterations
are performed whereby the mean shift vector is computed and the target
candidate is moved to the position indicated by the mean shift vector. These
steps are repeated until convergence has been reached or a fixed number of
iterations have been executed.

2.2.2 Template and scale updates

When tracking an object through a long video sequence, it is common that
its characteristics will change. For example, with color features, if there is a
change in illumination, it may be desired to update the target template to
accurately reflect the target’s appearance under the new lighting conditions.
Similarly, when using oriented energy-based features, the template may need
to be updated if the target’s energy distribution changes. Such changes may
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be caused by alterations in velocity or rotations. To combat the changes
a target may incur over time, our tracker incorporates a simple template
update mechanism defined as

gt =arq'+(1-a)(1 —m)p(yi), (2.10)

where a is a weighting factor to control the speed of template updates, ¢ is
the template at frame i, and 7 = p [P (y;) , §'] is the Bhattacharyya coefficient
between the current template and the optimal candidate found in the 7"
frame. Empirically, a was set to 0.85. Also, following each application
of (2.10), the resulting template distribution is renormalized and thereby
remains consistent with our overall formulation. Owing to dependence on
the Bhattacharyya coefficient, the template update rule indicates that if the
template and the optimal candidate are well-matched, the update to the
template will be minimal. As the difference between the two histograms
becomes greater, the template will be modified so that it is more similar to
the optimal candidate.

In addition to experiencing alterations to their energy distributions, the
size of a target may change during a video sequence as well. Although there
are more effective methods of dealing with changes in object scale in the
mean shift framework [31, 33], in the current implementation we employ a
simple approach, similar to that taken in [30]. In particular, our system
performs mean shift optimization three times per frame using three different
bandwidth values, h. Unless stated otherwise, h values of +5% are considered
in this work. We obtain the new bandwidth, h,,.,, by combining the best of
the three bandwidths evaluated at the current frame, k., with the previous
target size, hpre,, according to

hnew = Vhopt + (1 =) Ppreo- (2.11)

Empirically, we set v = 0.15
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Chapter 3

Empirical Evaluation

The proposed oriented energy features have been incorporated into a soft-
ware implementation of a mean shift tracker. The performance of the re-
sulting system has been evaluated on an illustrative set of test sequences.
For comparative purposes, a mean shift tracker based on RGB color space
was also developed and tested. Apart from the fact that the different his-
tograms were used, the two trackers were identical. The color-based tracker
was implemented in a similar manner to [30], whereby each color channel
was quantized into 16 levels (yielding a histogram with 16® bins). In our
current implementation of the energy-based tracker, energies were computed
at 3 different scales with 10 different spatiotemporal orientations per scale.
Accordingly, the energy-based histograms contained 30 bins. Note the com-
pactness of the oriented energy representation when compared against the
color-based features. For the oriented energy feature set, 10 orientations were
selected as they span the space of 3D orientation for the highest order filters
that we use (Hs) [35]; in particular, the selected orientations correspond to
the normals to the faces of an icosahedron with antipodal directions counted
once, which provides a uniform tessellation of a sphere [40]. For all results
presented in this paper, an Epanechnikov kernel, K, was used. The thresh-
olds for Eqn. 2.4 were empirically set to be 2.75x the mean energy for each
orientation channel. In the subsequent experiments, both the color and the
energy-based trackers were hand-initialized with identical target regions in
the initial frame of each video.

The first video sequence from the test set illustrates the effectiveness
of oriented energy-based features in dealing with illumination changes. In
particular, an individual starts walking in a poorly lit area; then, he travels
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into and out of the bright region as he walks across the room. Results
for both color and energy-based trackers are shown in Fig. 3.1. The room,
the background, and the individual’s clothing are all very dark and thus,
they appear very similar under a color-based representation. As Fig. 3.1
illustrates, the color-based mean shift tracker completely looses track of the
target after only a few frames. While it might be possible for color-based
tracking representations to evolve with illumination changes [16], relevant
techniques typically have not been incorporated into general-purpose mean
shift trackers. Some approaches, such as the scaling of the RGB space [15] or
using the HS components of the HSV color space [15] have been considered,
but primarily for the application of tracking skin-colored regions. To ensure
unbiased evaluation, we also ran the color-based mean shift tracker using
histograms created using normalized RG-space [29] and found that it still lost
track after approximately ten frames. In contrast to the poor performance
of the color-based tracker, our proposed feature set enabled the system to
follow the walker extremely well. The performance of the oriented energy-
based mean shift tracker qualitatively appeared to be relatively unaffected by
the changes in illumination. This robustness arises from the normalization
performed in Equation (2.2).

Figure 3.1: Video sequence (z X y X t = 360 x 240 x 60) of a man walking
through shadows. Results from the color-based tracker are on the top; images
when oriented energy histograms were used are on the bottom. From left to
right, frames 4, 18, 31, and 55 are shown. Tracked regions are highlighted
with white boxes.

Experiments were also completed on video sequences where multiple in-
dividuals with similar colored clothing walk in the vicinity of one another.
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Fig. 3.2 displays a video sequence where two individuals are walking in op-
posite directions in a room. The clothing of both individuals is very similar
in color, but the patterns on their shirts’ are different. The results of the
color-based algorithm are shown in Fig. 3.2 when the individual who starts
walking on the right side of the video is being tracked. Just prior to the oc-
clusion event, the color-based tracker was successfully following the correct
individual. However, during the occlusion of the true target, the color-based
tracker becomes distracted by the other walker. This confusion occurs be-
cause the two individuals in the video are almost identical under a color-based
representation. The strength of the energy-based features becomes apparent
when one considers the second set of results in the bottom row of Fig. 3.2.
The oriented energy features representing the target span the spatiotemporal
domain; thus both the target’s appearance and its motion are described by
the proposed energy-based histograms. In the video of Fig. 3.2, it can be
seen that despite the full occlusion that occurs for several frames, the tracker
using energy features is capable of following the true target walker until the
end of the video. The different texture patterns and velocities of the walkers
were sufficient cues for the oriented energy-based tracker to achieve success.

Figure 3.2: Video sequence (z X y x t = 360 x 240 x 50) of people walking
through a room with similar colored clothing. Results from the color-based
tracker are on the top; images when oriented energy histograms were used
are on the bottom. From left to right, frames 6, 18, 32, and 50 are shown.
Tracked regions are highlighted with white boxes.

In addition to comparing favorably against a color-based mean shift tracker
in the videos of Fig. 3.1 and 3.2, our proposed feature set has shown to be ca-
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pable of tracking objects when applied to a wide array of additional videos.
Fig. 3.3 shows a real-life, grayscale video sequence of a traffic intersection
that was obtained from MERL [37]. This video sequence exhibits clutter
in the form of traffic lights, lampposts, and several moving vehicles at the
intersection. As the figure shows, our proposed system experiences some
slight difficulty when tracking the vehicle as it passes over the crosswalk (e.g.
notice off-centered tracking in frames 13 and 24). This decreased level of
performance occurs because as the car traverses the crosswalk, the lack of
contrast (essentially uniform white on white) between foreground and back-
ground yields little energy for the involved portions of the car. Accordingly,
the tracker searches elsewhere for a better match. Nevertheless, the tracker
never loses the target; indeed, the frames shown are representative of the
worst case performance in this video. It also should be noted that a color-
based tracker would be challenged by the presence of the crosswalk since it
has a similar color distribution to the car.
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Figure 3.3: MERL traffic video sequence (z X y X t = 368 x 240 x 64) where
a white car is tracked as it travels through an intersection. From left to right
frames 13, 24, 38, and 58 are shown. Tracked regions are highlighted with
white boxes.

Our feature set was also successfully used when tracking people and ve-
hicles in videos obtained from the PETS2001 dataset [41]. Fig. 3.4 shows an
example of our results on this dataset where a cyclist is tracked. The tracker
that utilizes oriented energy features is successful despite the fact that the
cyclist is partially occluded by another individual near the beginning of the
sequence. It also should be noted that the cars in the scene add clutter
to the background and that some of these cars have similar color distribu-
tions to that of the cyclist. The results on this data sequence are impressive
given that the video accurately reflects real-world surveillance settings where
targets of interest are often small and of low-resolution. In contrast, our
implementation of the color-based mean shift tracker drifted off the target
after only a few frames, during the occlusion (results not shown).
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Figure 3.4: PETS2001 video sequence (z X y X t = 384 x 288 x 85) where a
cyclist is being tracked. From left to right frames 18, 32, and 73 are displayed.
Tracked regions are highlighted with white boxes.

Results from another illustrative video sequence are shown in Fig. 3.5.
Here, the individual is walking erratically, making sudden changes in di-
rection and moving at a wide variety of speeds. Since the oriented features
encompass both spatial and temporal information, tracking of the target con-
tinues throughout each change in velocity. In particular, at instances where
the target motion changes radically, the spatially-based components of the
representation keep the tracker on target. Subsequently, template update,
(2.10), incorporates changes to adapt the model for further tracking.

Figure 3.5: Video sequence (zxyxt = 360X 240x 100) showing an individual
walking in an erratic pattern. From left to right frames 22, 74, 86, and 100
are displayed. Tracked regions are highlighted with white boxes.

Fig. 3.6 displays the tracking performance using the proposed features
for a final sequence. This video is representative of the footage that one
might obtain from overhead surveillance cameras in public areas. The ori-
ented energy-based tracker is capable of following the target of interest even
though there are multiple walking individuals that have a similar appearance.
The complexity of the sequence is further increased because the target has
little texture on his clothing. The shadows that are cast from trees outside
the field of view of the camera present yet another challenge when tracking.
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Finally, reflective and semi-transparent effects are visible in the video, par-
ticularly on the right side of the frame, because it was recorded through a
window. When tracking is performed using the oriented energy feature set,
the target is not lost, even during the partial occlusion that occurs from ap-
proximately frame 16 - 38. Indeed, the tracker does lag behind the target for
a few frames immediately following the occlusion as it decides which person
provides the best match to the template. However, frame 39 is representative
of its worst-case performance in this video. In comparison, our color-based
implementation was only able to follow the true target for approximately 30
frames before it locked on to another walker in the scene (results not shown).

Figure 3.6: Video sequence (z X y X t = 320 x 240 x 70) showing multiple
people in motion that are similar in appearance. From left to right frames
9, 31, 39, and 59 are displayed. Tracked regions are highlighted with white
boxes.

Quantitative performance analysis was performed for the video sequences
that are publicly available — MERL and PETS2001. Specifically, Fig. 3.7

1.05¢ —— MERL
——PETS

Bhattacharyya Coefficient

0 80

0 20 40 6
Frame Number

Figure 3.7: Bhattacharyya coefficients over the entire video sequence for the
MERL and PETS2001 videos.
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shows the Bhattacharyya coefficient vs. frame number for these two se-
quences. The Bhattacharyya coefficient is a measure of the system’s con-
fidence in the target found in each frame, with 1 being the largest possible
value. For the MERL video, the decreased level of performance at the cross-
walks that was qualitatively observed is also indicated quantitatively. In
particular, Fig. 3.7 shows two slight decreases in the Bhattacharyya coeffi-
cient at frames 12 and 58 — precisely the frames when the vehicle is passing
over the crosswalks. For the PETS video sequence, the significant deviation
the Bhattacharyya coefficient experiences is a result of the partial occlusion
of the cyclist by the walker (approximately frames 15 - 34). The other, less
substantial decreases are a result of the significant background clutter (e.g.,
parked cars). Also of note is that an average of 3 mean shift iterations were
required to reach convergence for these two videos. Twenty iterations, the
maximum we allow, was observed only three times.
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Chapter 4

Summary

Spatiotemporal oriented energy features provide a rich, yet compact repre-
sentation of a targets characteristic structure across both space and time. In
particular, by encompassing a range of orientations and scales, the proposed
feature set provides a natural integration of the static (e.g., spatial texture)
and dynamic (e.g., motion) aspects of a target. To illustrate their usefulness
with respect to a particular tracking mechanism, we provide an instantiation
with respect to the mean shift estimator. Significantly, oriented energies also
could provide the representational substrate for other tracking mechanisms,
e.g., spatial template-based methods by providing pointwise measurements
of template structure for matching/warping across time. In the current im-
plementation, the approach shares similarities with other mean shift-based
trackers. The primary and significant difference in our instantiation is the
use of an oriented energy-based histogram representation, rather than more
standard descriptors, e.g., color-based. Within this framework, empirical re-
sults show that oriented energy features support accurate tracking, as our
empirical evaluations over a wide range of video sequences have shown. In
our experiments, the energy-based tracker was considered to perform as well
or better than an identical algorithm that used color histograms. Of primary
interest in our work were video sequences that displayed substantial back-
ground clutter, targets which contained similar colors to other objects in the
scene, and changes in illumination. These difficulties are significant and are
often present in real-world surveillance video sequences. Tracking with the
use of oriented energy features was shown to be robust to the aforementioned
challenging conditions.
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