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Abstract

In this paper, we place the integral image-based approach for multi-scale
feature construction, popularized by Viola and Jones, into a common framework
of understanding. The integral image within this framework represents space
variant tmage filtering with the zero-order B-spline. Given this framework,
we propose efficiently computable higher-order B-spline image features based
on generalized integral images that have the potential to be more accurate, yet
efficient as compared to previous integral image-based efforts.

1 Introduction

Recently, we have witnessed a resurgence in the research of local feature detec-
tors/descriptors and their applications. Given their demonstrated potential for suc-
cessful application in various contexts, several researchers have turned their attention
to efficient computational (approximation) schemes that do not substantially sacrifice
performance (e.g., [1, 2, 3]). In this paper we show that these approaches represent a
special case (the coarsest model) of a more general theoretical framework, that allows
more accurate, yet efficiently computable multi-scale feature representations.
Concerns with fast computational techniques are also shared by the research in
multi-scale representations that embed the original image into a one parameter family
of derived images, where each derived image contains structures limited to a range
of scales. The Gaussian-based linear scale-space paradigm, for example, constructs
the derived representations with desirable multi-scale properties. Gaussian kernel
convolution is, however, too resource demanding for many visual applications. Spline



generated scale-spaces represent an alternative for fast realizations of multi-scale de-
compositions of images [4, 5]. Indeed, spline-based filtering represents a general class
of multi-scale generators that include Gaussian-based linear filtering as its limiting
case.

In this paper we explore an efficient approach based on generalized integral images
for realizing space variant image descriptors by n!* order B-spline filtering. Indeed,
the integral image representation used in recent applications represents a special case,
namely, zero-order B-spline filtered representations realized by the use of the first-
order integral image. Similarly, existing multi-scale techniques, such as cascaded
uniform filtering and the Gaussian pyramid, are but a form of B-spline filtering [5]. In
either case, our paper provides a more general framework that allows deeper insights
into these approaches rather than a radical departure from them.

In the following, Section 2 discusses the B-spline scale-space and an efficient non-
recursive realization based on the generalized integral image formulation. Section
3 concludes with a discussion of two visual applications that may profit from our
approach.

2 Analysis and Computation

2.1 B-spline functions

A continuous B-spline of order n is defined recursively using the zero-order (centred)
B-spline of width 7" as

0= {0 i 0
Bi(e) = (@) * FR(a) 2)

where * denotes the convolution operator, and 3" is the nt* order B-spline'. Thus, a
B-spline can be generated by convolving a rectangular pulse with itself n times.

The B-spline space can be seen as a more general multiresolution function space
with the Gaussian representing its limiting case. Any square integrable signal can
be represented as a weighted sum of shifted and dilated B-splines in nested spaces of
spline functions [5]. The B-spline of degree n is n times continuously differentiable
except at the knot points which are n — 1 times differentiable by construction [6].
B-spline kernels preserve the analytical properties of its Gaussian counterpart very

well due to their fast convergence, where the variance of the n'* order B-spline, 02 =

n
% [5]. The cubic B-spline provides a very close approximation of the Gaussian

137 () denotes the n'* order centred B-spline generated with a rectangular pulse of length 7' = 1.
Similar notation is also applied to the discrete version (see below).



Algorithm 1 Generalized integral image computation

1: // pre-computation

2: set initial integral image, I,(z,y), as input image
3: for each integral image order do

4 for each image point do

5: increase cumulative row sum, ¢(z)

6 L(z,y) = I(x,y — 1) + ¢(x)

7 end for
8: end for
9

10: // apply filter with a given kernel position, size and order
11: compute intersection
12: normalize

function. Furthermore, even a lower order may be sufficient for most applications.
The discrete sampled B-spline b%:(k) of order n can be generated by sampling its
continuous counterpart at the scale T'> 1 [5]:

b (k) = %ﬁ"(%) Vk € Z. (3)

These results can be easily extended to higher-dimensional signal spaces using the
tensor product splines, for example, the 2-D case is given by "(z,y) = 5™(x)3"(y).

2.2 Generalized integral images

The concept of the integral image was introduced in [7, 8] and later in [9] for the

purpose of enabling constant time filtering with axis aligned rectangular filters (i.e.,

uniform B-spline). This section focuses on the generalization of the integral image

that allows for non-recursive axis-aligned filtering with the B-spline kernel of order n.

This generalization reported by several authors [10, 11] relies on repeated integration.
The key identity for formalizing the generalized integral image is:

f *g = /f(x/)dx/ * (%) = fn * g—n, (4)

where x denotes the continuous convolution operator, subscript n denotes n-fold par-
tial integration and subscript —n denotes n-fold differentiation.

For the case of n-fold convolution of the box filter, 8%(z), with the input sig-
nal, I(z), from (4) it can be shown [10, 11] that this operation reduces to weighted
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Figure 1: Weighted sampling coefficients for low order mth order integral images.
Note that the distance between samples is a function of the scale of the filter, T' (see
Eq. 5).

sampling the (precomputed) n-fold partial summed image:

1 < 4 Tn
ha = 1) #5@) = 53 (1) tle+ 57 i1 )
where T™ is the normalization factor; see Algorithm 1 for an algorithmic presentation
of (5).

The 1-D formulation extends easily to higher dimensional signals due to the sep-
arable definition of the B-spline. For 2-D, denoted b"(z1, z2) = b"(21)b"(z2), (n+ 1)?
weighted samples are required; Fig. 1 lists the weighted sampling coefficients for in-
tegral images of orders 1 to 3.

Finally, given the integral image computation we recover derivative measurements
by performing numerical differential through Taylor series expansion, e.g., the first
and second derivatives are given by,

I/

tonootn (Z) = (Lo (7) = Lo (7)) /2 (6)

Is,:nooth(x) = Is—rtlooth('r) - QIsmOOth(x) + I;nootll(x)7 (7)
resp., where I (z) = I(z + 1) and I~ (z) = I(z — 1).

2.3 Computational costs

Low computational cost is the main motivation for using integral images. Here we
show that the higher-order integral images conserve this useful feature (while pro-
viding a means for computing a better approximation to classical scale-space, see
Section 2.1) by considering the cost of integral images of various orders in com-
parison to other well-established techniques. Similar to [2], we compare the inte-
gral images of various orders with the following Gaussian filter approaches: non-
separable/separable /recursive Gaussian and global FFT-based filtering.
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Complexity
Multiplication ‘ Addition

Filter technique

Gaussian N? N? -1
Separable Gaussian 2N 2(N —1)
FFT 2log(w - h) 2log(w - h)
Recursive Gaussian 14 6

n'* Order Integral Image I1+(n+1)? |[2n+(n+1)* -1

Table 1: Comparison of various 2-D linear filtering approaches (operations per pixel),
where N, w and h correspond to kernel size (assuming square dimensions), image
width and height, resp.. Adapted from [2].

The total cost consists of four major components:
cost = wh(c,ng + CrNuy + Ny + C41y), (8)

where w and h denote the width and height of the input image, resp.; c,, ¢, ¢ and
¢; the cost of addition, multiplication, bit shift and type conversion, resp.; nq, nm, N
and n; denote the number of operations.

Assuming an integer-based input image, the integral image of order n requires
one floating-point multiplication for normalization (hence, one type conversion), 2n
integer additions for construction of the integral image, (n+ 1)? — 1 integer additions
and (n + 1)? integer multiplications for actual filter application. However, in the
case of integers, it is possible to optimize the computation further by substituting
the multiplications with bit shifts and additions. Table 1 compares the costs of all
considered filtering techniques.

Next, we consider the relative cost of processor operations measured against the
cost of integer addition and take the costs reported in [12] as a reference measure.
[12] states that integer addition and bit shift cost 1 unit each, integer multiplication
costs 4 units, and type conversion, floating-point multiplication and addition cost 20
units each. Note, however, the relative costs will vary across architectures.

Figure 2 shows the relative costs of higher-order integral images up to order four
and their alternatives. Notice that the costs for the integral image-based filtering are
consistently below the costs of the other methods, where costs increase with order.
Also, the running time of filtering via integral images does not depend on the kernel
size. Importantly, higher-order integral images are still significantly more efficient
than the recursive/separable Gaussian or FFT approaches.

Aside from their low relative cost, integral images are non-recursive, i.e., one can
directly extract scale information for any region without prior construction of the
“entire” scale space. Such a flexibility is extremely important for sparse feature com-
putation (e.g., [13]), and cascade-type object detectors (e.g., [9]) where information
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Figure 2: Comparison of total relative computational cost for various 2-D Gaussian
filtering techniques.

is extracted only when required, thus avoiding unnecessary expensive computations.
Significantly, out of all the non-integral-image filtering approaches in Table 1, only
the non-separable Gaussian possesses this feature, however, it is significantly more
expensive (especially at coarse scales).

In practice, care must be taken to avoid arithmetic overflow. For an input image of
width and height 2% and 2", resp. and image intensity resolution, b (in bits), the worst
case memory resolution required for an n!* order integral image is log,((2¥+")"2%) =
(w+ h)n + b bits per pixel. For example, a third-order integral image of a 512 x 512
input image with intensity resolution b = 8 requires 62 bits per pixel, which is within
the bounds of current 64-bit CPU architectures.

To reduce the number of bits per entry, image subdivision techniques have been
proposed (for details, see [7]). Also, the image value range can be shifted such that
the range spans both positive and negative values. This has the effect of removing
the monotonicity of the integral image and thus reduces the maximum value reached.

3 Discussion

The framework presented in this paper not only introduces new insights into many
existing visual applications, but also opens new possibilities. In this section, we
discuss this advantage through two applications, namely, interest point detection and
steerable filters.

The difference of Gaussian (DoG) is a popular means for identifying multi-scale
key-points (e.g., [13]). It is an efficient approximation of the scale-normalized Lapla-



Figure 3: Multi-scale example. Top row: multi-scale quadratic B-spline representa-
tion at scales T'=0,2,4 and 6 (left to right). Bottom row: DoB representation.

cian of Gaussian (LoG) representation that is used to identify blob-like structures in
the image. The DoG is recovered by taking differences between adjacent levels of a
Gaussian scale-space representation. Given the DoG, key-points are identified by a
local maxima search in space and scale. To accelerate the DoG construction, Grabner
et al. [2] approximate the Gaussian filtering by box filtering using the (first order)
integral image, they term the resulting images difference of mean (DoM) images. An
advantage of the DoM over the DoG, is that it does not rely on subsampling, rather
computations are done at the spatial resolution of the input image; the resulting
localized key-points are spatially accurate within a pixel. Thus, a costly spatial inter-
polation post-processing step (e.g., [13]) is avoided. A drawback of the box filtering
approach is that it may introduce distracting spurious structures in the form of Mach
bands. In addtion, due to the pronounced non-isotropic nature of the box filter one
can expect a reduction in rotation invariance. This can be clearly seen in Grabner et
al.’s experiments where their DoM detector yields its worst result at 45°. The DoM
can be interpreted as filtering with the zero-order B-spline. Rather than limit filtering
to zero-order, the DoG may be approximated by B-splines of higher-order that may
increase accuracy while maintaining efficiency when computed with the generalized
integrals, we term this generalization the difference of B-spline (DoB) representation
(see Fig. 3). Figure 4 provides a comparison between key-points detected using Lowe’s
DoG detector [13] and our first-order DoB detector. Notice that the DoB detects the
prominent blob-like structures very well. In a future correspondence we will present
a quantitative comparison between the DoG and our DoB detectors.

Steerable filters [14] are a class of filters where a filter of arbitrary orientation is



(b) DoB (first-order B-spline)

Figure 4: Comparison of detected key-points (marked in green) found by Lowe’s DoG
detector and our DoB detector. Input image courtesy of Michael Grabner.

synthesized by a linear combination of K basis filters, denoted f;(x), formally,

f(x;0) = Z ki(0) f:(%)- (9)

Gaussian derivatives are a widely used class of steerable filters, where the size of the
basis is equal to one greater than the derivative order. For example, the first and
second derivatives of the Gaussian, GG, at an arbitrary orientation 6 are given by,

G
dy

86 26\ /eos
G(6) = (cos(f) sin(h)) <% %%@) (Sin((g;) , (11)

Oy Oy?

(10)

resp.. Villamizar et al. [3] propose to approximate the steered Gaussian derivatives
by replacing the Gaussian derivative by Haar-like filters and use the (first-order)
integral image for fast computation. The vertical Haar filter, h(z,y), can be seen as a
special case of the derivative of a B-spline, specifically, the derivative of the first-order
B-spline along the z-axis with zero-order blurring along the y-axis., formally,

dg'(z)

h(z,y) = Tﬁo(y). (12)



(a)
(b)

Figure 5: Steerable filter example. (a) first derivative of the quadratic B-spline in
the z and y directions (basis) and the steered result (7/4 rad.) (left to right). (b)
Circular disk with its basis images and the steered result (7/4 rad.) (left to right).

Given that higher-order B-splines provide better approximations of the Gaussian ker-
nel, it suggests the use of the derivative of higher-order B-splines as basis filters
(see Fig. 5 for an example). Obviously, the need for better accuracy in filter repre-
sentation ultimately depends on its application. The use of the steerable Gaussian
derivatives may provide richer yet efficiently computable features for feature selection-
based learning approaches (e.g., [9]). Levi and Weiss [15] demonstrate that the use
of richer features than the standard linear features of Viola and Jones [9] reduce
the number of training examples required. Furthermore, they provide a means for
rotation-invariant feature representations achieved by rotating responses based on a
canonical orientation (e.g., [3, 16]).

In summary, this paper develops in a principled manner a general framework
that provides new insights into several existing approaches to multi-scale image de-
scription and feature representation. This framework includes as special cases, the
first-order integral image and Gaussian multi-scale representations. Thus, not only
are the desirable properties of both techniques preserved (e.g., efficiency) but fur-
ther advantages are also acquired. Finally, we have presented two of a multitude of
potential applications of this generalized theory.
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