YORK

c|c
Zz|z
<|<
m|m
2|3
L
— |-

RQM: A new rate-based active queue management algorithm

Jeff Edmonds
Suprakash Datta
Patrick Dymond

Kashif Ali

Technical Report CSE-2006-09

September 1, 2006

Department of Computer Science and Engineering

4700 Keele Street North York, Ontario M3J 1P3 Canada

RQM: A new rate-based active queue management algorithm

Jeff Edmonds, Suprakash Datta, Patrick Dymond, Kashif Ali
Computer Science and Engineering Department,
York University, Toronto, Canada

Abstract

In this paper, we investigate a new active queue man-
agement algorithm RQM based on rates of traffic
passing through a router instead of the buffer occu-
pancy inside a router. Our algorithm uses a novel
method of estimating the number of active sessions
without explicitly maintaining or using per-session
states at the routers. We prove that our algorithm
results in fair allocations of bandwidth to competing
sessions, under some simplifying assumptions. Using
simulations, we show that our algorithm is superior
to the well-known RED and REM algorithms in many
scenarios. Our algorithm performs particularly well
when the number of active sessions is very high.

1 Introduction

Active queue management (AQM) has been an im-
portant research area in networks since the early
days of the Internet. Active queue management im-
proves performance in several ways. First, it im-
proves throughput by preventing buffer overflow and
the subsequent retransmissions and window size re-
duction. Second it removes synchronization among
flows by spreading out losses over time. Desynchro-
nization of sessions has the additional advantage of
reducing the fluctuations in the bandwidths allocated
to sessions — many applications, including real-time
multimedia applications, require the bandwidth allo-
cated to them to have low variation over time. Fi-
nally, active queue management can prevent packet
losses in two ways. First, it is a proactive approach
to congestion control, unlike TCP congestion control,

which is reactive. In other words, AQM attempts to
prevent congestion from occurring, while TCP reacts
when congestion occurs. Second, it can mark packets
(e.g., by setting a specific bit in the header) when
there is an indication of possible mild congestion in-
stead of actually dropping them. The receiver can
read these marks and ask the sender to slow down
its transmission rate. Thus the sender (which runs
TCP) can react in the same way that it would when
it learns about a packet drop. In the remainder of
the paper, we use the terms “marking” and “drop-
ping” synonymously. We also use the terms “flows”
and “sessions” synonymously.

1.1 Related Work

Existing AQM algorithms fall into two broad classes.
One class consists of algorithms which infer conges-
tion by monitoring the buffer occupancy levels at
routers. These are called buffer-based or queue-based
algorithms. The second class controls the transmis-
sion rate of senders by monitoring the current traf-
fic rate at a router. Algorithms in this class are
called rate-based algorithms. From a mathematical
perspective, these two techniques are rather differ-
ent. Buffer sizes depend on the integral of rates,
since the buffer size b(t) at time ¢ is given by b(t) =
3 max{0, \(t) — pu(t)}dt, where A(t), u(t) are the ar-
rival and service rates of packets, respectively. The
primary advantage of rate-based control is that it is
more direct control on sending rates of different ses-
sions. The main advantage of queue-based AQM is
that it is typically simpler and often requires little or
no information to be stored at routers.

1.1.1 Queue-based AQM

The best known queue-based AQM algorithm is RED
(Random early detection) [8]. RED assumes that
routers do not keep per-flow state and so it adjusts
bandwidth depending on the buffer buildup. Specif-
ically, it marks each packet entering a queue with a
drop probability that is a piecewise linear function
of the number of existing packets in the buffer when
the packet enters the buffer. Low et al [13] enumerate
problems associated with RED (including setting its
parameters), and demonstrate that RED behaves in
an unstable manner in certain situations.

Many modifications of RED have been proposed
in the literature. Feng et al [3] proposed Adaptive
RED, which adjusts the packet dropping probability
based on the past history of the average queue size.
Floyd et al [7] improve this algorithm by modifying
the adaptation algorithm.

Stabilized RED (SRED) [14] maintains a flow cache
(called a zombie list) to keep track of recent flows.
The current packet is compared with a random ele-
ment in the cache. If there is a hit, the packets are
assumed to be part of the same flow and the relative
frequency of the cache entry is increased. Otherwise,
there is a cache miss, the new entry replaces the entry
it was compared to with some probability. The algo-
rithm uses the hit frequency to estimate the number
of active flows, and computes the drop probability
proportional to the square of the number of active
flows.

LRU-RED [15] maintains a LRU-cache at routers
to record information about high-bandwidth flows.
It uses this information to identify high-bandwidth
flows and penalize them by modifying the drop prob-
ability function used by RED for these flows.

Exponential-RED (E-RED) [12] sets the packet
marking probability as an exponential function of
the length of a virtual queue whose length is slightly
smaller than the actual buffer.

BLUE[5, 6] maintains a marking probability based
on rate information using the following intuition
(note that we have omitted several details of the algo-
rithm here). When a packet loss event happens, the
marking probability p,, is increased by a constant d;
and when a link is idle, the marking probability is re-

duced by a constant d>. The parameters d1,d2 are set
so that p,,, takes minutes to grow from 0 to 1 rather
than seconds.

1.1.2 Rate based AQM:

Several rate-based algorithms have been proposed in
the literature. Adaptive Virtual Queue (AVQ) [10]
maintains a virtual queue that is used to perform
AQM. The virtual queue has a capacity that is less
than the capacity of the link. The virtual queue is
updated when packets arrive at the real queue and
packets are marked in the real queue when the virtual
queue overflows. The virtual capacity is adapted to
ensure that each link achieves a desired utilization.

Several schemes that require routers to store and
maintain per-flow states have been proposed [2, 11].

Some recent papers attempt to perform AQM using
both rate and queue based indicators. In Random
Exponential Marking (REM) [16], the price p;(t) of
a queue is defined as a function of the current traffic
rate through it as well as the buffer occupancy. REM
uses this price to generate the marking probability of
a packet.

1.2 Owur Contributions

The main contribution of this paper is a rate-based
AQM algorithm RQM. Our algorithm differs from ex-
isting algorithms in that it uses a novel way of es-
timating of the number of sessions in progress. It
then uses this estimate to compute the probability
with which a packet entering a router is dropped or
marked.

We analyze RQM and prove that in the absence
of sessions entering or leaving, the algorithm quickly
converges to fair allocations of bandwidth to com-
peting sessions. We also simulate RQM in ns [1] and
perform extensive experiments to evaluate its perfor-
mance. Our simulations show that RQM performs
better than RED and REM in many situations. It
consistently outperforms RED and REM when the
number of competing sessions is large.

2 Our Model and Assumptions

We assume that each router runs RQM. So, each
router needs to store and update three integer vari-
ables; these will be described later. A router stores no
per-session information and is not required to main-
tain any caches.

We also assume, for simplicity, that the network
has a single bottleneck link. Such assumptions have
been made and justified in the literature. Henceforth,
we refer to the link capacity (respectively propagation
delay) of the bottleneck as the bottleneck capacity or
bandwidth (respectively bottleneck propagation de-
lay). We also refer to the capacity of the buffer as-
sociated with the bottleneck link as the bottleneck
buffer size.

For our analyses, we assume, like many other pa-
pers in the literature, that the only traffic in the net-
work is generated by TCP, i.e., there is no UDP traf-
fic. The significance of this assumption is that our
algorithm assumes all flows to be responsive. UDP
flows are unresponsive at best, and may even react
selfishly in the worst case (e.g., applications could
conceivably increase the sending rate) when some of
its packets are dropped. We show in the simulations
that RQM works well in the presence of constant-
bit-rate (i.e., benign) UDP traffic. We assume that
the TCP sources have standard parameters for doing
additive increase (o = 1) increase and multiplicative

decrease (3 = 1).

3 Our Algorithm

In this section, we describe our algorithm RQM for
active queue management. RQM, like RED, is a ran-
domized algorithm. Like SRED, we estimate the
number of sessions in progress, and use this to de-
termine the dropping probability. However, unlike
SRED, we do not use or maintain a cache to keep
track of recent sessions. Like REM, RQM computes
rate-based feedback from the buffer occupancy at dif-
ferent times and uses it to drop packets. Like most
other AQM schemes our algorithm has several objec-
tives:

e We want RQM to be proactive in controlling con-

gestion and minimizing packet loss. One simple
way of minimizing the number of packets being
dropped is to introduce a virtual queue size that
is smaller than the actual queue size.

e We want RQM to contribute towards fairness
of allocations. Like RED, we would like RQM
to drop more packets from sessions which have
higher than their fair shares of the bandwidth,
thus bringing the system to fair allocations
faster.

RQM has three components: it defines a desired
utilization function in terms of the number of ses-
sions, uses this function to estimate the number of
active sessions n and computes the packet drop prob-
ability as a function of n. Since RQM is a rate-based
algorithm we describe it in terms of sending rates
of flows (or equivalently, the bandwidth allocated to
flows) rather than TCP window sizes. Let b; ; be the
bandwidth allocated to session ¢ at time t.
Defining a desired utilization: The desired band-
width utilization is defined by a function b(n;), where
ng is the current number of active sessions. A good
candidate is b(n) = (1 —~)(1 — e “*)B. Note that
the parameter v controls the size of the virtual band-
width. The parameter ¢ controls the tradeoff between
link utilization and accuracy of inference of number of
sessions: a lower value of ¢ would result in lower uti-
lization of the bandwidth but would allow the number
of sessions to be determined more accurately.
Estimating the number of active sessions n:
RQM estimates the number of active sessions n us-
ing the following intuition: when the network is at
steady-state, and the current total bandwidth is b,
the inverse function 7(b;) = b~ (b;) would yield the
number of active sessions. RQM uses 7(b;) as an es-
timate of n. While the system will not be in steady-
state at all times, we will show in Section 4 that it
moves towards a steady state at all times. Thus, the
estimate will almost always be fairly accurate.
Computing the drop rate: RQM uses the function

_ 2
p(by) = ap (%ﬁ‘)) , as the probability of “drop-
ping” packets. Note this rate depends only on the
total bandwidth b, =), B;; and not on rates or
numbers of individual sessions.

The intuition for the function p(b:) is as follows.
Let us assume first that the roundtrip times for all
sessions are equal. Then, if there are n active ses-
sions, the the total bandwidth increases at a rate of
an, since each session increases its bandwidth at an
fixed additive rate of . RQM attempts to main-
tain a steady-state with fair allocation of bandwidth,
i.e. that in which each of the n sessions have band-
width by = %2 for a total of b, = b(n). As-
suming that the network is in this steady-state, in-
ducing a single session to reduce its rate decreases

its bandwidth from b, = 2 to b, = B
This decreases the total bandwidth by (1 — ﬁ)L:).
There are b(n) packets per time unit and each gets
dropped with probability p(b;), hence the frequency
of rate reductions is p(b;) - b(n). Hence, these re-

ductipns decrease the total bandwidth at a rate of
p(be)b(n)(1 — B)L:) RQM maintains the current
total bandwidth by balancing this increase and this
decrease, namely an = p(b,)b(n)(1 — ﬁ)@ This
would be done by setting the drop probability to
2
p(b) = 725 (ﬁ) . Since the number of sessions
n is unknown, RQM uses 71(b;) as an estimate. Thus

the drop rate is p(b;) = = (ﬁ(bt)) when the cur-

—B) by
rent total bandwidth is b,.

We assumed for simplicity that all roundtrip times
were equal. While this is not realistic, we will show
that RQM performs well for a wide range of round-
trip times. Besides, incorporating roundtrip times in
RQM is possible but cumbersome and adds unneces-
sary load on routers.

3.1 Translation to an algorithm

Although RQM is a rate-based algorithm, we can-
not require that the routers monitor the rates of ses-
sions continuously, since that would place excessive
computational load on them. Instead, we use the
buffer occupancies at the epochs at which packets
enter the router queue and approximate the average
bandwidth as the difference of the buffer occupancies
divided by the time between the epochs. In order to
remove short-term fluctuations in the rates, we adopt
a exponential-moving average smoothing algorithm

similar to that used in RED. Thus if the (i — 1)
packet arrived at time ¢;_; and the i*" packet arrived
at time t;, and ¢;_1,q; were the queue sizes before
the arrival of the (i —1)*" and i*" packet respectively,
then the average bandwidth at time ¢; is estimated
using the expression $=={=*. There is one issue that
needs to be handled: the function p(b;) may evaluate
to more than 1. In that case, we drop p(b:) packets
on average. The algorithm is described in Figure 1.

RQM()

1 Compute current bandwidth b, = F={—
2 Compute smoothed average of bandwidth:
3 bt = abhl + (1 - a)bt

4 Compute drop rate using p(b;)

5 Drop or mark p(b;) packets on average

Figure 1: Algorithm RQM

3.2 Advantages of RQM

In addition to all the advantages and disadvantages
of rate-based algorithms, RQM has the following ad-
vantages.

1. Tt requires no per-flow state.

2. It allows the designer to control the tradeoff be-
tween link utilization and the accuracy of infer-
ence of number of sessions.

3. RQM provably goes to equilibrium.

3.3 Expected performance in different
scenarios:

RQM outperforms RED: RQM can be argued to
be better in the following scenario: buffers very
large; rates fluctuate for very short periods, just
enough to drive the buffers high.

RED outperforms RQM: RQM can be argued to
be worse than RED in the following scenario:
buffers very small; rates fluctuate by minuscule
amounts. RQM would not drop packets, but
buffer overflow would.

4 Analysis of the performance
of RQM

We present a fluid-based analysis of the performance
of RQM. The fluid assumptions allow us to regard a
session to be infinitely divisible. To simplify the anal-
ysis, we assume that during the period of time dur-
ing which the algorithm is converging to steady-state,
the set J of active sessions remains fixed. The band-
widths b; ¢, of these sessions, at the beginning of this
period, however, can be arbitrary. The fluid assump-
tions also allow us to assume that the frequency of
each job reducing its sending rate is effectively equal
to the drop rate. Although our analysis allows b(n) to
be any monotonically increasing function,our proofs
use the specific b(n) defined before.

Theorem 1 Independent of the initial bandwidths
bit, of the n sessions, these bandwidths converge in
time O(Z (In(n)+q)) to be within a factor of (1+e~9)
of the desired values b; ; = @ and the estimate n(by)
converges within a factor of (14 e~7) of n.

Proof of Theorem 1: There are two dynamics that
cause this convergence to happen. We will separate
them by considering them in separate stages.

The first dynamic is that as with TCP given in [4,
9], the session’s bandwidths converge to being equal.
Lemma 3 proves that after O(-Z (In(n) + ¢)) time,
each session’s bandwidth b;; is at most a factor of
(1+e9) away from the fair allocation % Note that
at this point we do not know the value of b;. This
completes the first stage.

The second dynamic is that when the individual
bandwidths are unbalanced, the total bandwidth b;
decreases slowly. However, Lemma 4 proves that
when the bandwidths are as close to being equal as
they are after the first stage, the approximate number
of sessions 7n(b;) and the total bandwidth b; converge
to being within a factor of (1 4+ e™7) of their desired
levels nn and b(n) within time O(42). Il
The first step is to determine how the individual
bandwidths b;; change. We will use n as a short
form for 7 (by).

Bbi!t

Lemma 1 3t

= o202 (P

This shows that session i’s bandwidth b;,; moves con-
tinuously towards %, which corresponds to RQM'’s
estimate of fair allocations; i.e. b;; increases when it
is smaller than %f and decreases when it is larger.
Proof of Lemma 1: Consider session ¢. It increases
its bandwidth at an additive rate of a. It sends b;+
packets per time unit and each gets dropped with
probability p(b;), hence the frequency of adjustments
is p(by)-b;¢. Each such adjustment decreases its band-
width by (1—)b;. In conclusion, the expected rate
of change of session i’s bandwidth b; ; is as follows.

%? = a— p(bi)bi (1 B) by
- oo [m ()] Pt = b
n 9119 by 2
= —Oé(b—t) [i,t (5)]
[|

Since sessions that have more bandwidth are
likely to have packets dropped more often (i.e. with
probability bg;t), and they release more bandwidth
when they reduce their rate, the individual band-
widths change, not linearly, but quadratically. This
quadratic rate of change is similar to the differential
equation % = —c- (y? — Y?), for some constant Y.
Despite the fact that here the “Y” keeps changing,
Lemma 2 does provide the intuition to how quickly

the bandwidths b; ; converge to %t.

Lemma 2 If% = —c-(y>=Y?), then independent of
its initial value, y converges to within a factor 1+e~ 4
of Y within time O(%).

We will now be more formal. We will use the func-
tion M; = % to measure how far the indi-
vidual bandwidths are from being equal. This is the
reciprocal of that used in [4] for the same purpose. It
has a number of useful properties. M, is always in
the range [1,n]. It is n when the total bandwidth is
on one job and is 1 when the bandwidths are equal.
Finally, when M, is at most 14 &—

f;zl , each job’s band-
width b; ; is at most a factor of (1 + e~7) away from
the balanced level %t.

Lemma 3 Independent of the initial bandwidths b; 1,
of the n jobs, after O(L (In(n) +q)) time, each job’s
bandwidth b; ; is at m()st a factor of (1 + e 9) away
from the balanced level %t. More over, the balance
measure My, defined below, is at most 1 + e™9.

Proof of Lemma 3: The main task of the proof is
that independent of the current state of the system,
M, decreases at a rate of —% > %)‘T”(Mt - 1).
This change causes the value of M; — 1 to decrease
by a factor of e in at most time Qi’;n < %. (We are
assuming that the total bandwidth b, never exceeds

the bottleneck’s capacity B.) Because initially M, is

at most n, My — 1 becomes at most Z_Tzf in at most
O(log(n) + ¢) such half lives. The result follows.
The change in M, is computed as follows.

n (Zi b?,t) n (Zi bit)
M = 2 = 2

(>, bit) (be)
2| () o

() (3]
O
(o (e - (50))

_ 2&[SIS (Zb?’t)btn

(o) 2 (50

At this point, it is useful to observe that), b3 >
Zibi (-, b7)? for any values b; > 0. The intu-
it10n IS similar to that for the standard fact that
>, 02 = L(3,b;)% Tt is more significant to cube
the individual large values before summing than only
squaring them. It is interesting, however, that equal-
ity is achieved both when the values are either com-
pletely equal or completely unbalanced. The max-
imum difference occurs when there are two distinct
values. The proof has not been included. Using it,
our the second and the third terms in the above ex-

pression cancel.

oM, 2an 3 5
e [z
= 204_n 1+ n (Z;b?’t)
by b2
2
_ 2an (Mt — 1

|

We will now show that while the individual band-
widths are unbalanced, the total bandwidth b; and
the approximation 7(b;) both decreases slowly. How-
ever, when the bandwidths are close to each other,
they converge quickly to the desired levels b(n) and
n.

Lemma 4 When M; < 14 e ¢ (ie., the band-
widths of all sessions are nearly equal), the approxi-
mate number of jobs n(b;) and the total bandwidth b,
converge to being within a factor of (14 e~ %) of their
desired levels n and b(n) within time (’)(%).

Proof of Lemma 4:
change of b; and 7(b;) are

By Lemma 1, the rate of

on,
ot — Ot

o d7i 9,
ot Ob; Ot

This has the form % = —c- (y*> — Y?) where y = 7,
V= 7, g—zo‘/r‘ft (We will treat Y as
being constant because M; remains between 1 and

1+ e79.) Hence, according to Lemma 2, n converges

and ¢ =

to (—2=)2. When the individual bandwidths b; ; are
VM i ?
unbalanced, the measure My is large, and hence both
b, and n(b;) decrease slowly than. However, when
M; < 1+ e 7 then n converges to within a factor
1+ie 9of e (1+3e 9)n, ie. withina facto;l—l—
e~ of n, within time O(%) = (’)(?T%—a) =O0(L ;)
Since RQM approximates the number of sessions
using 7(b;) = b~'(b;) when the bandwidth is b, so
as n increases from zero to some value, b(n) can’t
increase by more than the capacity B of the buffer
and in fact squeezes closer and closer to B. Hence, it
db(#)
on
and is at most %. This gives the stated converging
. qB
time of O(L>). i
Finally, the difference, [b; — b(n)|, between the ac-
tual and the desired total bandwidth will be at most
e~ b(n), because the difference, |7(b;) — n|, between
the bottleneck’s approximation and the actual of the

is reasonable to assume that is relatively small

number of active jobs is at most (1/%) ce~9b(n) >

(T%) ceb(n) = e In. W

5 Empirical Studies

In this section, we confirm our intuitive expectation
about situations in which RED performs better than
RQM and those in which RQM outperforms RED.

Next, we investigate the performance of RQM ex-
tensively. We use three performance metrics used
commonly in the literature: the goodput, expected
delay of TCP packets and the number of TCP pack-
ets dropped. The goodput is defined as usual, i.e., as
the number of packets that reach their destinations.
The delay is the total time that elapses between the
first transmission of a packet and its reaching its des-
tination. The number of packets dropped counts all
drops of TCP packets, and multiple drops of a packet
are counted separately.

5.1 Simulation of RQM

We evaluate the performance of our protocols using
the well-known ns-2 simulator [1]. We explored the
performance of our algorithms for a network with a

sources

1 Mb/s, 2 ms

1 Mb/s, 2 ms

IMb/s, 2 ms

n Q

Figure 2: The network used in our experiments

single bottleneck, as shown in Figure 2. The bottle-
neck capacity (in Mb/s) B and the propagation de-
lay (in milliseconds) d are varied in our experiments.
Also varied is the buffer size ¢ at the bottleneck link.

It is worth noting that instead of transferring files
of a given length, ns supports TCP sessions that start
and terminate at specified times. Thus the delay in
transferring a file cannot be measured in this simu-
lator; instead, we measure the number of (unique)
packets that reach their destinations and the average
delays of these packets. We also measure the number
of packets lost under each protocol.

In order to introduce fluctuations in the buffers,
we used 2 constant bit rate (CBR) UDP sessions
throughout our simulations. Each UDP session gen-
erated data at 1 Mb/s.

5.2 Parameter settings

We investigated the effect of parameters ¢, v and a in
RQM. We omit detailed results due to lack of space.
We chose the best values of each in the following sim-
ulations. These were ¢ = 1.0,y = 0.01,a = 0.5.

5.3 Scenario where RQM outperforms
RED

As pointed out in Section 3.2, we expect RQM to
outperform buffer-based algorithms like RED when
the bottleneck has a very large buffer, and rates fluc-
tuate for very short periods, just enough to drive the

buffers high. This intuition was verified in the follow-
ing experiment. We used a buffer of size 10000, buffer
capacity B = 10 Mb/s, delay d = 40 ms, and used 10
TCP sessions and 5 UDP sessions. Each UDP session
injects packets at 1Mb/s. The network was simulated
for 200 timesteps. The results are given in Table 1.

Goodput | delay | num drops
RQM | 216160 | 0.1353 131
RED 213619 0.1082 1455

Table 1: RQM outperforms RED

5.4 Scenario where RED outperforms
RQM

In Section 3.2, we argued that RED would outper-
form RQM when the bottleneck buffer is very small,
and rates fluctuate by small amounts. This intuition
was verified in the following experiment. We used a
buffer of size 10, buffer capacity B = 10 Mb/s, de-
lay d = 40 ms, and used 10 TCP sessions and 5 UDP
sessions. Each UDP session injects packets at 1Mb/s.
The network was simulated for 200 timesteps. The
results are given in Table 2.

Goodput | delay | num drops
RQM | 207894 | 0.1102 1399
RED | 209796 | 0.1104 1367

Table 2: RED outperforms RQM

5.5 Performance of RQM

We investigate thoroughly the performance of RQM
under different settings of the buffer size, bandwidth
and propagation delay of the bottleneck link. In our
experiments, we used two settings each for the band-
width and propagation delay and three settings for
the buffer size. The bandwidth values used were 10
Mb/s (high) and 1.5 Mb/s (low). The former set-
ting would leave about 8Mb/s for the TCP sessions
whereas the latter would not even have enough capac-
ity for the UDP sessions. We used three buffer sizes,

viz., 100, 1000, 10000, to correspond to low, medium
and high buffer sizes. We compared RQM to RED,
REM and DropTail. DropTail refers to queues which
do not run any AQM algorithm and drop packets
when the buffer overflows.

5.5.1 A homogeneous network

Our first set of experiments were done with a homo-
geneous network, where all sessions use paths with
identical capacities, buffer sizes and propagation de-
lays. The results are displayed in Figures 3 through
10. For lack of space we do not include results for the
number of packets dropped in this paper.

Goodput results: We present only the results
for buffer size 1000. These are shown in Figures 3
through 6. The graphs show that when the number
of sessions exceeds five, RQM outperforms RED and
REM. The only exception is the scenario when there
is little or no congestion and the bottleneck delay is
high. However, RQM does not perform as well as
REM and RED when the number of sessions is low.

36500
36000 F
35500 /'
2 35000 t »
= .
S %
S, 34500 | -
34000
RQM ——
33500 RED - 1
REM ~x
33000 1 1 1 1 L 1 1
0 5 10 15 20 25 30 35 40

number of TCP sessions

Figure 3: Low bandwidth, low delay, medium buffer.

Delay results: The delay results are shown in
Figures 7 through 10. The graphs show RQM out-
performs RED and REM whenever the number of ses-
sions exceed 5 for low bandwidth and delay. For high
bottleneck propagation delay, it outperforms REM
and RED when the number of sessions is 25 or more.

36000 t
34000 t
32000
30000 F
28000 F
26000 F
24000 t j ROM -
22000 / RED —so

/ REM -x

20000 ‘ : : :
0 5 10 15 20 25 30 35 40

number of TCP sessions

goodput

Figure 4: Low bandwidth, high delay, medium buffer.

242000
240000 T]
238000 |
_ 236000) .
% 234000 |
& 232000 t
230000 F
228000 | RQM ——
RED ———
226000 F i REM e
0 5 10 15 20 25 30 35 40

number of TCP sessions

Figure 5: High bandwidth, low delay, medium buffer.

5.5.2 Heterogeneous networks

Since we designed RQM using intuition about ho-
mogeneous networks, we need to check whether it
performs well on heterogeneous networks. In order
to test the performance of our algorithm on hetero-
geneous networks, we used the same topology but
changed the propagation delays of the links incident
on the sources as shown in Figure 11 so that the it"
link has delay 2¢ ms.

Goodput results: As shown in Figures 12
through 19, RQM performs better than RED and
REM when the number of sessions are high. The
only exception is the case when the bottleneck has

120000 p
100000 f
80000 +
=
=
S 60000 |
]
on
40000 r
L RQM ——
20000 RED
o REM -
0 5 10 15 20 25 30 35 40
number of TCP sessions
Figure 6: High bandwidth, high delay, medium
buffer.

average delay of TCP packets

0 5 10 15 20 25 30 35 40

number of TCP sessions

Figure 7: Low bandwidth, low delay, medium buffer.

1.09

_“é g 1.08 +

= g 107}

& o

E g 1.06

2 S 105

o =

—_— <

3 o 1.04 t

o

(5]

£ % 103 ¢

§ g RQM ——

z S 2 RED -
g 1 01 . mREM“ ,:

0 5 1015 20 25 30 35 40 0 5 10 15 20 25 30 35 40

number of TCP sessions number of TCP sessions

Figure 8: Low bandwidth, high delay, medium buffer. Figure 10: High bandwidth, high delay, medium

buffer.
0.5
E"; 045 + 1 sources sinks
2 04
o 1 1
& 035] | Mb/s, 2 ms O
=
5 0.3 2 Q 2
E 025) | Mb/s, 4 ms
CH 3 3
(0]
2015 ¢
0.05 : : : ‘ ‘ ‘ ‘ IMb/s, 2n ms 1 Mbr/s, 2 ms
0 5 10 15 20 25 30 35 40
number of TCP sessions " Q O n
Figure 9: High bandwidth, low delay, medium buffer. ~ Figure 11: The network used in our experiments

10

high bandwidth and high propagation delay. RQM
far outperforms its competitors when the bottleneck
delay is low.

37000

36000 -
35000 e/
34000 14

goodput

33000
32000
31000

30000

0 5 10 15 20 25 30

number of TCP sessions

35 40

Figure 12: Low bandwidth, low delay heterogeneous
network.

Delay results: Figures 16 through 19 compare
the expected delay of TCP packets for the three algo-
rithms. In this case RQM has a delay slightly higher
than it competitors when the bottleneck bandwidth
is high. However, RQM has a significantly higher
delay when the bottleneck bandwidth is low.

6 Discussion

In this paper, we have proposed a new AQM algo-
rithm, RQM, and evaluated its performance using
both analytical and experimental studies. RQM is
outperformed by RED and REM when the number
of sessions is low. This can be attributed to the na-
ture of our utilization curve. Interestingly, RQM has
a higher goodput than its competitors when the num-
ber of sessions is high. We are currently investigat-
ing ways to combine RQM with existing algorithms
to produce algorithms that always outperform RED
and REM. We are also investigating the performance
of AQM algorithms for networks with multiple bot-
tlenecks.

11

35000
30000
25000
£ 20000 f /
g /
& 15000 |
10000 F/
ROM ————
5000 f / ﬁ%D ,,,,,, .
o ~ REM
0 5 10 15 20 25 30 35 40

number of TCP sessions

Figure 13: Low bandwidth, high delay heterogeneous
network.

240000
230000 [
220000 [
210000 [
200000 [
190000
180000 [
170000
160000 |
150000

goodput

. ., . REM
0 5 10 15 20 25 30 35 40

number of TCP sessions

Figure 14: High bandwidth, low delay heterogeneous
network.

70000 4

2
60000 | 2
Q
<
o
50000 |- o,
I~
S 40000 | -
= 5
Q >
S 30000 =
o
20000 | &
)
10000 | =

0 ‘ ‘ : : : : 0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

number of TCP sessions number of TCP sessions

Figure 15: High bandwidth, high delay heterogencous Figure 17: Low bandwidth, high delay heterogeneous

network. network.
1

35 g

|72} (5]
D -~
2 37 S
2 o
o 25¢ &
H

e [
& 2 5
2 g
2 157 g
% 1F e &
o0 e &
g e RQM —— S
= 057 RED =

REM -~ — e
0 : : : : ' ' 0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40

number of TCP sessions

number of TCP sessions

Figure 18: High bandwidth, low delay heterogeneous

Figure 16: Low bandwidth, low delay. network

12

1.9
£ 18°¢
4
g 1.7 +
=7
6 1.6 -
S st
]
> 14
$ 13¢
& -
s 120 /0 RQM ——
= 11p/ RED -
e R
0 5 10 15 20 25 30 35 40
number of TCP sessions
Figure 19: High bandwidth, high delay heterogeneous
network.
References
[1] The network simulator: ns-2. Available at http://

2]

[9]

[10]

www.isi.edu/nsnam/ns/.

F. M. Anjum and L. Tassiulas. Balanced-RED: An
algorithm to achieve fairness in the internet. In Pro-
ceedings of Infocom, March 1999.

W. chang Feng, D. D. Kandlur, D. Saha, and K. G.
Shin. A self-configuring RED gateway. In IEEE
INFOCOM, 1999.

D. Chiu and R. Jain. Analysis of the increase and
decrease algorithms for congestion avoidance in com-
puter networks. Computer networks and ISDN sys-
tems, 17(1):1-14, 1989.

W. Feng, D. Kandlur, D. Saha, and K. Shin. Blue:
An alternative approach to active queue manage-
ment. In Proceedings of NOSSDAV 2001, June 2001.
W. Feng, D. Kandlur, D. Saha, and K. Shin. The
blue queue management algorithms. IEEE/ACM
Transactions on Networking, 10(4), August 2002.

S. Floyd, R. Gummadi, and S. Shenker. Adaptive
RED: An algorithm for increasing the robustness of
RED'’s active queue management, 2001.

S. Floyd and V. Jacobson. Random early detec-
tion gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397-413, 1993.

P. W. D. Jeff Edmonds, Suprakash Datta. TCP is
competitive against a limited adversary. In SPAA,
pages 174 183, 2003.

S. Kunniyur and R. Srikant. Analysis and design of
an adaptive virtual queue (avq) algorithm for active

13

[11]

[12]

[13]

[14]

[15]

[16]

queue management. In Proceedings of SIGCOMM
2001, San Diego, California, USA, 8 2001.

D. Lin and R. Morris. Dynamics of random early
detection. In Proceedings of SIGCOMM 97, 1997.
S. Liu, T. Basar, and R. Srikant. Controlling the
internet: A survey and some new results. In IEEE
Conference on Decision and Control, 2003.

S. H. Low, F. Paganini, J. Wang, S. Adlakha, and
J. C. Doyle. Dynamics of tcp/red and a scalable con-
trol. In Proceedings of IEEE INFOCOM 02, 2002.
T. J. Ott, T. V. Lakshman, and L. H. Wong. SRED:
Stabilized RED. In Proceedings of IEEE INFOCOM
’99, pages 1346—1355, March 1999.

S. A. L. N. Reddy. LRU-RED: An active queue man-
agement scheme to contain high bandwidth flows at
congested routers. In IEEE Globecom, pages 2311
2315, 2001.

S. H. L. S. Athuraliya, V. H. Li and Q. Yin. REM:
Active queue management. I[IEFEE Network, May
2001.

