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ABSTRACT

While robust measurements of network dynamics are es-
sential for the design and management of internetworks,
administrative, economic and privacy issues make it im-
practical to monitor every link in the network. Therefore it
becomes necessary to infer network and performance char-
acteristics from end-to-end measurements. One character-
istic that is frequently needed to build reliable multicast
protocols is the topology of the tree used for multicast com-
munications. Several algorithms have been proposed in the
literature for making use of correlations between packets
lost at each of the receivers to infer a multicast tree. Most
algorithms in the literature are centralized — they require
some node (e.g., the source) to gather data from all re-
ceivers in order to compute the tree. Also, most algorithms
build the tree up in a bottom-up manner, so that the entire
tree must be built even if we require few levels from the
top. In this work, we propose efficient top-down algorithms
for the multicast tree inference problem. We show that our
algorithm can be easily implemented in a distributed fash-
ion, which improves the scalability. We analyze our algo-
rithms and prove upper bounds on the sample complexity
or the number of samples required to infer multicast trees
with given error bounds and sensitivity. We prove that these
bounds are tight by proving matching lower bounds on the
sample complexity for some trees. Our results quantify the
tradeoff between the number of samples and the probability
of computing the tree correctly, and provide lower bounds
on the number of samples needed to compute the tree with
a given error probability.

1 Introduction

Several modern applications, including software updates,
anti-virus patches, shared whiteboards, video conferences
and streaming multimedia applications are built using IP
multicast. They function by sending packets along a tree
rooted at the sender. All packets to a receiver follow the
unique path along the tree from the sender to it. Multicast
trees are set up in a distributed manner as receivers join the
session, and the source of the multicast has no direct knowl-
edge of the tree that is used to perform the multicast. How-
ever, many applications require reliable transfer of data,
and since IP does not provide this reliability, it must be built
in the application layer. As pointed out in [17], the choice

of the loss recovery algorithm in the design of a reliable
multicast algorithm has a huge effect on its performance,
especially scalability. Global loss recovery algorithms re-
transmit packets lost at any receiver(s) to all receivers and
are thus not scalable. Thus virtually all efficient reliable
multicast algorithms (e.g. SRM [10], SOT [13] and RMTP
[14]) use local recovery — i.e., packet retransmissions are
done locally, in the vicinity of the receiver which did not
receive the packet. Not surprisingly, much of the multicast
tree needs to be computed in order to determine the nodes
in the vicinity of a given node. However, this information
cannot be obtained by querying routers in real networks,
and has to be inferred from end-to-end measurements’.

In this paper, we study the problem of computing the mul-
ticast tree from end-to-end measurements of packet losses.
Specifically, we assume that a number of probe packets are
multicast and the receivers record the list of probe packets
they receive. This information is used (e.g., by the source)
to infer the multicast tree — i.e., both the topology of the
logical multicast tree as well as the edge weights (in our
model the weight of an edge is the probability that a packet
does not get dropped while traversing the edge — our model
will be defined precisely in Section 2). We note that since
we use loss measurements to estimate the tree, it follows
that we can only hope to compute the logical tree. The log-
ical tree differs from the physical tree in that each edge in
the logical tree could correspond to a path in the physical
tree.

1.1 Previous work

We make no attempt to provide an exhaustive survey of
the literature, and refer the interested reader to a sur-
vey [6] and to the webpage of the MINC project (http:
//www—net.cs.umass.edu/minc/). In this subsec-
tion, we mention papers that are relevant to this work.

In [17] the authors propose an algorithm for the bottom-up
construction of the multicast tree.They do not provide any
performance analysis, and the algorithm uses parameters
which need to be hand-tuned to get good performance.

In [3] the problem is defined rigorously and the authors pro-
vide algorithms for bottom-up tree construction. They also
prove that these algorithms converge asymptotically to the

IThis area has received a lot of attention in recent years as a tool for
network tomography; see [6] for a survey.



unique logical tree corresponding to the real tree. Further
they show that these algorithms find the maximum likeli-
hood estimator trees. Our work is complementary to this
work for the following reason. Maximum likelihood es-
timators provide “optimal” estimates since they compute
the structure that has the maximum likelihood (among all
possible structures) of having produced the set of obser-
vations used to generate the estimate. However the use
of maximum likelihood estimation provides no guarantees
about the quality of the solution obtained, and it is difficult
to compute in closed-form how many samples we need to
generate a solution of a given quality. In particular, com-
puting an expression for the confidence interval and using
the expression to compute the number of samples does not
yield closed-form expressions for the sample size.

In [9], the authors study the problem of network inference
in the presence of missing data. A recent paper [16] studies
multiple source multiple destination tomography.

We observe that all the above papers, and indeed most pa-
pers in the literature, propose bottom-up algorithms (also
called agglomerative algorithms) in which a forest is main-
tained and trees in the forest merged until a single tree is
produced. However, for many applications, top-down al-
gorithms may be more useful. E.g., for most local loss re-
covery algorithms for multicast applications, the top levels
of the tree are more useful than the bottom levels; in fact
the whole tree need not be known. Another advantage of
a top-down algorithm is that the upper levels of the tree
are known before the algorithm terminates; this informa-
tion can be obtained using bottom-up algorithms only after
the algorithm has terminated.

Finally, we mention for the sake of completeness that sev-
eral authors (e.g, Rubenstein et al [18, 7]) use unicast-based
techniques to estimate network characteristics. We do not
survey this area as it is outside the scope of our work.

1.2 Our contributions

The main contributions of this paper are as follows.
Top-down tree construction: We propose a simple top-
down algorithm for constructing a multicast tree and show
that its sample complexity is optimal within constant fac-
tors. We also indicate a simple scheme to prevent the prop-
agation of errors in computing the tree.

Distributed implementation: Unlike most algorithms,
our algorithm can be implemented in a distributed man-
ner, so that data from all the receivers do not have to be
collected at a single node.

Analysis of the sample complexity: Since the multicast
tree must be estimated from a finite number of measure-
ments, it follows that any algorithm outputs an incorrect
result with non-zero probability. Intuitively, one expects
that the reliability of estimation of the multicast tree to in-
crease with the number of samples. However, this tradeoff
between the reliability and the number of samples has not
been fully characterized. We study the precise dependence
of the reliability on the sample complexity (i.e. the number

of probe packets) and the sensitivity (ability to distinguish
edges with weights 1 and 1 — €), and prove matching upper
and lower bounds on the sample complexity of our algo-
rithms. This bounds are closed-form functions of the dif-
ferent parameters of the problem, and quantify the tradeoff
between the reliability of a tree-estimation algorithm and
the sample complexity. An interesting consequence of our
analyses is that it confirms the intuitive idea that the com-
plexity estimating the tree topology alone is less than the
complexity of estimating the topology as well as the weight
of each edge of the tree.

2  Our model and problem description

The network model As mentioned before, we assume
that the multicast tree has to be determined from end-to-
end measurements, and that the tree nodes are not required
to furnish any information to the algorithm. To simplify the
exposition, we assume that the receivers are at the leaves of
the logical tree. We define a logical multicast tree to be a

() (b) (©)

Figure 1. Equivalent multicast trees

tree with arbitrary degrees which has a weight p(i, j) as-
sociated with every edge (i, j) of the tree. We define the
weight of the path from the root to any leaf as the product
of the weights of the edges in the path. Note that a tree
with arbitrary node degrees can be represented as an equiv-
alent binary tree which has the same set of receivers and the
weight of the paths to each receiver has the same weight as
the original tree (see Figure 1 for an example). The equiv-
alent binary tree is constructed by introducing some edges
with weight 1, and has at most twice the number of nodes
and twice the number of edges as the original tree.

The packet loss model We assume that a packet travers-
ing link (4, 7) at timestep ¢ is lost with probability (i, j)
(called the loss probability), and this decision is indepen-
dent of all other random decisions made by the network.
Let us denote as success probability the probability that a
packet is not dropped, i.e., p(z, j) = 1 — £(i, 7). We use the
success probability p(i, j) as the weight of edge (i.7). We
assume that for all edges (4, j) in the logical multicast tree
that our algorithm outputs, 1 — € > p(i, j) > e.

This assumption is clearly an approximate model of real
multicast networks, since we know there are temporal and
spatial correlations in networks. This assumption is usually
made in the literature [17, 3], and is a good approximation



of reality in the case where loss rates are low. Also, our ap-
proach is not well-suited to networks with very low packet
loss probabilities. In such networks delay-based topology
inference methods (see, e.g., [7]) may be more useful.

2.1 Tree estimation vs. edge weight estima-
tion

Intuitively, the task of estimating the topology of a multi-
cast tree should be easier than estimating the topology as
well as the edge costs. We would like prove this in this
paper. Hence we distinguish between these two estimation
problems in this work.
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Figure 2. Path weights (success probabilities along paths)

The labels «, (31,02 shown in Figure 2 represent
the weights (success probabilities) on the paths
(s,t),(t, i), (t,j) respectively.  The tree estimation
problem is to find the correct logical multicast tree and the
edge weight estimation problem is to find the logical tree
and the weights on the edges.

2.2 Reliability of topology inference

In this section we define two parameters § and ¢ which
quantify the reliability of any algorithm for our problem.
These parameters are named after the very similar parame-
ters used in PAC learning in computational learning theory
[12] (we will define e slightly differently to suit our needs).
The parameter ¢ is the probability that the algorithm fails —
i.e., it makes an error in determining the multicast tree. The
parameter € is the sensitivity parameter for the problem. We
will require our algorithm to distinguish two edges only if
their weights differ by at least e. We assume that for all
edges (4, 7) in the logical multicast tree the edge weight
p(i,7) satisfies € < p(i,7) < 1 — e. Figure 4 shows two
trees with different topologies in which all paths from the
root to leaves have the same weights. The value of a(a, b)
differs by e in the two topologies. Thus any algorithm that
must distinguish between the trees must be able to to dis-
tinguish between the () values 1 and 1 — e. The parameter
€ is an input to any algorithm for this problem, since one
expects that the sample complexity of the algorithm would
increase as e decreases, even if § does not change.

3 Topology inference of multicast trees

Several existing tree inference algorithms (e.g., [17]) com-
pute multicast trees from the weights «, 31, B2 (shown in
Figure 2) for every pair of receivers. These can be esti-
mated from the list of probe packets received (henceforth
called transcripts) at the receivers ¢, j in the following way.
Let S;; be the fraction of probes that reach (i) and (j), 5,7
the fraction that reaches (i) but not (j), S; j the fraction that
reaches (j) but not (i), and STj the fraction that reaches nei-
ther (i) nor (j). Then the probabilities «, 31, B2 can be esti-
mated using the following estimates. It can be shown easily
that the estimates converge to the probabilities in the limit;
the details are omitted.

(Sij + S3;)(Sij + Si7)

ali,j) ~ 5 (1)
ij
S
Bi(i,j4) =~ o 2
Sij-l-S;j
Sii
Ba(ij) ~ o 3
S’ij-l-Sl-;

The algorithm we present next also uses these quantities.

3.1 A centralized top-down algorithm for
multicast tree inference

The basic idea behind our top-down algorithm TD is very
simple and described below. It is somewhat similar to hier-
archical clustering (see, e.g.,[4]). For simplicity of exposi-
tion we assume that every non-leaf node has two children.
The algorithm can be easily modified to remove this restric-
tion, but we omit the details. Define f = g if |f —g| < €/2.
Let S be the set of receivers.

1. Create arootnode (corresponding to the sender s). Let
U« S.

2. Find a pair of nodes z,y that have the highest
a(x,y) = amax(U) and partition the set of receivers
U into two sets S, Sy such that for any i € S;,j €
Sy, a(i,7) = amax(U). Create tree nodes h, k cor-
responding to S, S,. The weights of the edges (s, h)
and (s, k) will be set after the next step.

3. Apply step 2 recursively on Sz, Sy, ie., set U «— S,
and repeat step 2. Set the weight of edge (s, k) to be
amax(s)/ama‘x(sm)-

Then set U « S, and repeat step 2. Set the weight of
edge (s, k) to be amax(S)/max(Sy)-

The algorithm above recursively partitions sets into two
based on the «a, (31, B2 values to produce a binary multi-
cast tree. There are two important issues that need to be
addressed. First, multicast trees need not be binary. This is
easily handled by traversing the binary tree and collapsing
edges with weight w =2 1. Second, we want an algorithm
with an optimal sample complexity. The above algorithm



accumulates errors each time the a() values are updated,
and this means that the effective e value decreases quickly,
which in turn necessitates a larger number of probes to
maintain the same value of §. We solve this problem us-
ing the following idea. Instead of computing the o, 31, B2
values for pairs of nodes, we compute similar parameters
o(i, j, k) for triples of nodes (i, j, k). Interestingly, these
parameters can be computed efficiently computed from the
the «, (1, B2 values computed for pairs of nodes. By us-
ing the ¢(3, j, k) values, we can prevent errors from accu-
mulating at each level. We omit the details due to space
constraints.

3.2 Distributed implementation

Any centralized algorithm suffers from scalability prob-
lems — if a single node (e.g., the source s) has to collect all
n receiver transcripts of size T' each, the network around
the source gets congested when 7 is large. Thus it is desir-
able to compute the multicast tree in a manner that does not
require all transcripts to be gathered at a single node.

We describe now a distributed implementation of algorithm
TD. In this implementation, the traffic going to the source
is of size O(n + T') instead of O(nT1") as in the case of
the centralized algorithm. The key idea is to distribute the
tree computation steps to the receivers. Note that this also
allows parts of the tree to be constructed in parallel.

1. Source s chooses distinct receivers a, b uniformly at
random, and gets their transcripts. It multicasts those
transcripts and the addresses of a, b to all receivers.

2. Each receiver r computes «, 31, B2 parameters for the
pairs (r,a), (r,b), (a, b).

3. If a(r,a),a(r,b) > a(a,b), then WLOG assume
a(r,a) > «(r,b). Then r sends s the value of a(r, a).
Else a(r,b) < a(a,b) or a(r,a) < ala,b). WLOG
assume a(r,a) < a(r,b). Then r sends a message to
s saying that it is in a’s subtree S,.

4. If the source s only gets messages from all receivers
saying that they are in subtrees of a or b, then s multi-
casts to all receivers that they should contact the node
(i.e., a or b) whose subtree they are in. Nodes a and
b now run the same algorithm as s but only on their
respective subtrees S,, Sp.

If the source gets a message from at least one node r
containing the value a(r, a) > a(a, b) then it chooses
the ' with the largest «(r/, a) value and sets b = 1/,
and goes back to step 1.

Note that the last step ensures that a and b are chosen so
that they lie in subtrees rooted at different children of the
root. In the worst case, several rounds are needed before
the desired a, b are found. Once such a, b are found, we use
a divide-and-conquer approach.

We note that the root node does communicate with all re-
ceivers but the amount of information received from each

node is very small, since it does not receive transcripts from
every receiver. Further, this coordination seems to be nec-
essary since no node (including the source) knows all the
receivers a priori.

4 Experiments

We have simulated the model used in this paper using a
homegrown C program, and also implemented the algo-
rithm in the ns-2 network simulator [1]. This research is
work in progress, and we have not finished our experimen-
tal evaluation of the algorithms, and the results presented
here do not represent a comprehensive study.

We simulated using ns, two 4-leaf binary trees, one bal-
anced and one unbalanced. We ran 100 trials with differ-
ent random numbers and used them to compute the success
probability (1 — §)of the algorithm. We plotted the num-
ber of probe packets against log(%). The observed curve is
very nearly linear. This relationship was confirmed by our
analytical results presented later.

log 1/delta

0 ) 4-Iqaf tree ——
50 100 150 200 250 300 350 400 450 500 550

number of probe packets

Figure 3. Variation of 1/6 with m

We also simulated complete binary trees with 8 and 16
leaves. We computed the number of probe packets required
to get success probability of 0.95. The graph of the num-
ber of probe packets was also seen to be linear with log n.
We omitted this graph to make space for the analysis in the
next section.

5 Analytical Results

We now state our analytical results for our multicast tree
inference algorithms. The first result is a lower bound on
the sample complexity for estimating the weight of a single
edge.

5.1 Lower bounds for a single edge

For technical reasons, we will assume § < 0.07¢. The
bounds are in terms of a rate function I(z) that has been



used in the theory of large deviations [8] that has been
used to study different problems in communication net-
works [19]. I(z) is defined as follows.

-
-P
Lemma 1 The number of probes, m, required by any algo-

rithm to distinguish between two edges with weights p and
D + € with failure probability at most 6 > 0 satisfies

21 (p+ ) &]
m(e,8) > m

Proof: We assume that the a priori probabilities of the two
edges are equal. We classify an edge by comparing the
observed probability (fraction) of received probes with the
threshold p+¢/2. Thus, an edge is classified correctly when
its weight is estimated to within €/2 of its correct value.
We need the probability of misclassifying the edge to be no
more than §. Since the a priori probabilities are equal, each
edge must be classified with this error probability. Without
loss of generality, assume that the edge being classified has
weight p. In order to find a lower bound on the number of
probes required to ensure an error probability of at most 4,
we can set the lower bound on the probability Prob(S/n >
p+€/2) to be at most §. From Theorem 12 in the Appendix,
ifn > ﬁ, then

H(x):mln%—{-(l—x)lni “4)

Prob(S/n>p+e¢€/2) = Prob(S > (p+¢€/2)n)
> % exp(—nl(p + €/2)).
Therefore,
o (-n (p+3)) <. (5)
where ¢ = 945p0—2) _ 0.15p(1-p=c/2) o0 4 e
Val=p)¥2 ot §)(A-p)*/2 2
Thus, we have
2
< exp (—QnH (p + E)) < &
n 2

2
n exp (QnH (p+ %)) > (05_2
2

2nl (p + %) exp (QnH (p + %)) 21 (p + %) §—2

Using Lemma 14 and Lemma 15, it follows that

2nl (p + %) >In (ﬁ)

where A = 21 (p+ g) g—z. So,

ln(lfA)

20(p+5)
InA

A (p+5)

In[2l (p + %) &]
AL (p+ £)

by Lemma 13

Corollary 2 When p = 1 — ¢, the number of probes, m,
required by any algorithm to distinguish between two edges
with weights p and p + € with failure probability at most

R ()

Proof: Substituting p = 1 — € in Lemma 1, we have

" Ty
_ mpr(i-$)]  Infg]
Ar(1-5) " 4ar(-s)
. 4]
A(1-3)
. <1fe>1n[g—21
> —1In

Lo 0225(1 — €)2e
2¢ 2€3(1 — 0.5¢)62

o (20D)

It can be shown that the lower bound m (e, §) on the number
of probes is maximized when p = 0.5.

Corollary 3 When p = %, the number of probes, m, re-
quired by any algorithm to distinguish between two edges
with weights p and p + € with failure probability at most
0 > 0 satisfies

m(e,8) = 0 (}2 (m %))

Proof: Substituting p = % in Lemma 1, we have m >
n[21(14¢) %5 14+ 5
Tié)&. From Lemma 17, I (£££) < €. Therefore,

m>%hs Forp— cZ:W—O()since

2 < 0.045 and 2> 0.0075, using 0 < € < 0.5. ]

NOTE: It is worth pointing out that this simple algorithm
is exactly the Bayesian classifier for the problem of clas-
sifying end-to-end observations to one of the two trees (i)
and (ii), given that their a priori probabilities are equal. It
is known that the Bayesian classifier is optimal in the sense
that it minimizes the probability of error (see, e.g., [11]).

5.2 Lower bounds for general trees

Consider the topologies in Figure 4 (i) and (ii). A distin-
guishing feature between the two trees that is observable
from end-to-end measurements is the shared loss rate be-
tween nodes (a) and (b), i.e., the «(a, b) values are 1—e and
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Figure 4. Topologies used in the lower bound proof — in (iii) each of the n/3 subtrees are identical to tree (i) or tree (ii)

1 for the trees (i) and (ii) respectively. In order to infer the
topology of these trees, an algorithm has to estimate «/(a, b)
with enough precision to classify it correctly (as either 1 or
1 — €). This is the same problem as the one in Lemma 1 in
Section 5.1. So by Corollary 2, m = Q (% (In £)) probe
packets are required to solve this problem. If all the edge
weights are to be estimated as well, then by Corollary 3,
m =) (6% (ln g)) probe packets are required

The same argument can be extended for the more general
tree shown in figure 4 (iii). Here, instead of distinguish-
ing between 2 possible trees, an algorithm has to classify
correctly each of 7 trees. Thus, there are 7 pairs of nodes
(a, b) for which a(a, b) must be determined. Also, each of
the % trees are disjoint and therefore the problem of classi-
fying each is probabilistically independent of the others.
For the maximum failure probability of the algorithm to be
9, the maximum failure probability for any of these % pairs
must be at most 30/n. So by substituting 36/n for § in
Lemma 1 and Corollaries 2 and 3, we get the following.

Lemma 4 The number of samples, m, required by any al-
gorithm to infer the topology of a multicast tree with n
leaves with failure probability at most § > 0 satisfies

m = Q( (m?))

Lemma 5 The number of samples, m, required by any al-
gorithm to infer both the topology and the edge costs of a
multicast tree with n leaves with failure probability at most

0 > 0 satisfies
m =0 ( (1n Z))

Next we prove upper bounds on the sample complexity.

5.3 Upper bounds for a single edge

Lemma 6 The number of probes, n, required to distin-
guish between two edges with weights 0.5 and 0.5 + € with
error probability at most § > 0 satisfies

)

Proof: In order to find an upper bound on the number of
probes required to ensure an error probability of at most d,
we can set the upper bound on the probability Prob(S/n >
(1+€)/2)to be at most d. Since we know from Equation 8
in Theorem 12 that

Prob(S/n > (1+4¢€)/2) = Prob(S > (1+¢€)n/2)

< %expmﬂ((l +)/2),

where I() is defined as I[(x) = zIn £ + (1 — ) In =2 = (see
Equation 4 in the Appendix), therefore,

%exp (-m ((1‘2“))) <5, ©)

where C = 70'629;’7) L = 209 J1Ee for g = Lic
and p = % Squaring both sides of inequahty 6, we have
C exp (—2n1 (L5D)) < 62 which can b i

— exp n 3 < ¢ which can be rewritten as

2nl (@) exp <2n}1 ((1—26)>) > 21 <(1J2“6)) . Using
Lemma 15, it follows that

s (U92) <10 (24)

In 2A
< % by Lemma 17
< In2A
T e2(2—¢)
In2A
<
< 2
In 4l ((1+e)) f—j
B 4e2
1 4 2,72
< 1o (1 660 ) by Lemma 17
€



The last statement follows from the fact that (eC)? =
(0.69)21E = O(1). [ |

5.4 Upper bounds for algorithm TD

The upper bounds presented below assume that the fraction
of probe packets reaching any receiver is bounded below by
a constant. Our bounds are functions of the inverse of these
fractions, but the asymptotic notation hides these constants.
We could parameterize this dependence, but chose not to,
since any network where the number of packets reaching
the leaves is very low is not very useful in practice.

Observation 1 Any tree with n leaves has at most 2n — 2
edges.

Theorem 7 Using T = © (}2 (ln %)) probe packets, each
of the p(i, j) values are computed to within an error of §
with probability 1 — %.

Proof: We wish to estimate the logical multicast tree with
probability 1 — 4, i.e. the algorithm may fail to estimate
the correct tree with probability at most §. So it suffices to
compute the weight of every edge within an error of 5 with
probability at least 1 — % The probability of algorithm TD
failing to compute the p(i, j) value within an error of § for
any edge is at most %, and so the probability of failing on
any of the 2n — 2 edges is no more than J. So, substituting
% for € and % for 6 in Lemma 6, we have the result. [ |

5.5 Running time of TD (centralized)

The sample complexity of algorithm TD is T' = 6% In%.
Since, there are 3n? parameters (viz.
ali,3),B(i,5),7(i,4)) that the algorithm initially
computes from the 7' samples, the time complexity is
O(n*T) = O(% In 2).

The computation of the «(i, 5), 3(i, j), (i, j) parameters
from the samples can be expressed as a matrix multiplica-
tion. This leads to the following observation.

Theorem 8 Using fast matrix multiplication algorithms
one can reduce the time taken to compute the o parame-
ters to O(n*375T).

6 Discussion

In this paper, we presented a top-down algorithm for loss-
based multicast tree construction. We described a dis-
tributed version of the algorithm that can scale to very large
networks. We also analyzed the algorithms and proved
tight bounds on its sample complexity. Our bounds de-
scribe how the sample complexity scales with different pa-
rameters, including the fact that the number of probe pack-
ets required to estimate the topology is proportional to 1/e.

Another interesting aspect of our analysis is that we show
that the number of probes required to estimate the weights
of the multicast tree edges is proportional to 1/¢2. These
results confirm the intuition that higher numbers of probes
are needed for reliable tree estimation in low-error net-
works, and suggest that this technique may require unre-
alistically large numbers of probe packets in networks with
very low congestion.

Acknowledgments: We thank Micah Adler for his valu-
able suggestions.
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A Bounds for Binomial probabilities

In this section, we obtain fairly tight tail bounds for ran-
dom variables that have the Binomial distribution. While
these results are elementary and have been known before,
the only place we found them was in some online course
notes [2]. We have followed most of their notation and
have corrected some minor errors.

Let X = Bin(n,p) be a random variable with the Bino-
mial distribution. That is

Now we derive tight founds for the tail of X. The bounds
are in terms of a rate function I(z) which was defined as
follows.

T 1—=z
I(z) =2ln— + (1 —2)In
(@) =l + (1= )ln T —

We begin by stating some simple properties of factorials
and binomial coefficients.
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Proof: The second inequality can be proved as follows.
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The first inequality can be proved as follows.
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Lemma 11

it = (2 (122)

where 1(x) is defined in Equation 4.
Proof: I(z) = zlnZ 4 (1 — z)ln{=%. Therefore,

exp(-1(x)) = (2)° (22) .

Theorem 12 [If X is Binomial Bin(n, p) then for all x > p
andn >2/(1—z)

Pr(X > nx) < % exp(—nl(z)) 3)

where C = C(x,p) = W =



Moreover, for all x > p and n > ﬁ we have

c
Pr(X > > — —nl 9
r( nx) > \/ﬁexp( nl(x)) )
where ¢ = c(z,p) = %.
Thus, for all x < p and n large enough we have

C

% exp(—nl(z)) < Pr(X < nz) < N exp(—nl(z))
We note that I(z) is a convex function with the unique
minimum at © = p. Indeed, the derivatives are T'(x) =
In g% —In 125, 1"(z) = g5 > 0. This implies that
I(x) is an increasing function for = > p.
Proof: To prove the lower bound 9 let k¥ = |zn]. Since

1 1 _k : :
n > = We havep < x — <y <u In particular, since
I(x) is increasing for z > p, we have

I <5> < 1(x) (10)
n
Notice that
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The lower bound can be derived from 10, 11, the fact that
Pr(X > nz) > Pr(X = k + 1) and inequalities in
Lemma 10. Namely,

Pr(X =k) > p\"(1=r
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To prove the upper bound, we will show that Pr(X > nz)is
within a multiplicative factor of Pr(X = k + 1) for k =

|nax]. To see this notice that (as in 11) we have

Pr(X=35+1)
Pr(X = J)
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for all j > k.
Therefore for 7 > 0
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Letr = £ 2L and put k = [nz]. Since 22 > £ >

p we have r < 1. Therefore
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where 2/ = ﬁ >z wr + > 2 > p. In particular, since
T — z% =1+ = p 1s a decreasing function of z, it

follows that

Pr(X > nz) < Pr(X =k + 1)1 —p) —

Now we proceed similarly as in the proof of the lower
bound.
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where in the last bound we used the fact that I(+) in increas-
ing on (p,1), and % > z. Therefore,
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It is worth noting that the upper bound proved in the previ-
ous theorem is stronger than the bound in the well-known
Chernoff Bound [5, 15].

B Some useful Lemmas
We present some lemmas used in our proofs.

Lemma 13 Suppose A > 0. Then

A 1

Lemma 14 Suppose § < 0.07¢, and A = 21 (p + 5 ) C_2
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Lemma 15 Suppose tet = A > e. Then
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Proof: First, not that te* is a monotonically increasing

function. If t = In (25 ), then

te! _( ) (1 A) (lnAlnh;xlnA) < A
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which is true forall A > 1. [ |

Lemma 16 If0 < y < 1, then
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Proof: It suffices to prove that e ¥(1H¥)/2 < 1 — 4/2,
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and since In(1 + z) > (1 — z/2) and In(1 — y/2) >
—y(1 +y)/2, therefore
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