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Abstract

This paper contains a review of the characterization and recovery of motion from im-
age sequences. The main dichotomy of considered approaches is in terms of the extent
of the region of description, namely, local (infinitesimal) versus regional. The local
consideration concentrates on the recovery of optical flow, while the regional consider-
ations provide richer, potentially semantically meaningful quantitative or qualitative
descriptions of motion. The paper concludes with an outline of open problems.
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Chapter 1

Introduction

This paper contains a review of the analysis of the apparent motion from image
sequences. The apparent motion is assumed to be the result of the relative motion
between objects in the world and a camera. The relative motion may be due to camera
motion, the motion of objects in the world or both. Broadly speaking, the area of
motion analysis in computer vision encompasses methods that distill information of
the scene from the apparent motion of brightness patterns in the image sequence or
methods that remain purely in the image domain, such as image mosaicing.

1.1 In the beginning ...

The majority of the early work in motion analysis in the context of machine vision was
application driven; Nagel (Nagel, 1978; Nagel, 1981) provides an extensive catalogue
of these application-oriented investigations. Here a mere sampling of early (pre-1980)
application-oriented manifestations of motion analysis is presented.

The origins of the analysis of biological movements via image sequences can be
traced as far back as the 18th century to the work of Muybridge (Muybridge, 1887).
Video compression is an area where motion estimation received/receives significant
attention (e.g., (Mounts, 1969; Haskell, 1974; Limb & Murphy, 1975a; Limb & Mur-
phy, 1975b; Netravali & Robbins, 1979)). Closely following the advent of television,
researchers (e.g., (Kretzmer, 1952)) discovered that there was a significant amount of
temporal redundancy between television picture elements. By computing the motion
of elements (regions) significant bandwidth reductions were realized by transmitting
only those elements in subsequent frames that were insufficiently characterized by
the motion of elements in previous frames. Satellite and aerial video was used to
measure the growth of forests (Goldberg & Kourtz, 1977) and analyze meteorological
processes such as cloud movement patterns (Fujita, 1969). Applications of motion
analysis also appeared in traffic monitoring systems (Onoe et al., 1973). In the area of
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2 CHAPTER 1. INTRODUCTION

medicine, Tsotsos (Tsotsos et al., 1979) proposed a system for describing normal and
abnormal dynamics of the human left ventricle. The system was based on mapping
trajectories of markers implanted on the heart to natural-language concepts defined
by cardiologists.

By 1986, application-independent contributions addressing general issues of mo-
tion analysis had started to dominate the literature, indicating the maturity of the
field of motion analysis as a discipline of study concerned with the fundamental
problems of analysis and interpretation of image sequences shared by many of the
aforementioned applications (Nagel, 1986). However, it should be pointed out that
important application independent analyses had already appeared by this time (e.g.,
(Horn & Schunck, 1981)). Evidence of this maturity can be seen in the emergence of
workshops (e.g., Workshop on Motion first held in 1979 (Aggarwal & Badler, 1979))
and conference sessions dedicated to motion analysis such as the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) and the IEEE International
Conference on Computer Vision (ICCV).

1.2 Areas of motion analysis

For the purpose of organizing the following discussion, here a broad categorization of
motion analysis is provided, as follows: optical flow (local) analysis, regional motion
analysis, structure from motion, tracking, motion detection and segmentation and
motion understanding. This organization is not meant to imply that each of these
areas are independent of each other, in fact many of these areas are interdependent.
For example, optical flow estimation represents an important component of structure
from motion. Optical flow and regional motion analysis are the main focus of this
paper and are not considered further in this section.

Visual tracking is concerned with localizing a particular image region from frame-
to-frame. Generally, tracking approaches can be categorized as either non-predictive
or predictive. Non-predictive trackers make decisions based on motion information
extracted from the current frame. Whereas, predictive trackers process the motion
history of the tracked region for the purpose of predicting its future position. The
two types of predictive-tracking approaches prominent in the literature are Kalman
and particle filter trackers. The Kalman filter (Kalman, 1960) is a general framework
adapted from the optimal estimation theory literature. A Kalman filter in the con-
text of visual tracking is a recursive algorithm that estimates the predicted position
and uncertainty of a moving target in the next frame. The predicted position cou-
pled with the uncertainty defines the search region in the next frame. In brief, the
Kalman filter is based on two equations, the state transition model and the observa-
tion model. The state model encapsulates the relationship between position and the
hidden state parameters of the model (e.g., velocity). While the observation model
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relates the system’s state to a set of image measurements. Key assumptions of these
two equations are that they are linear and corrupted by additive Gaussian noise.
These assumptions allow for a close-form solution. Unfortunately, for many realistic
models the linear and Gaussian assumptions are too restrictive. The extended Kalman
filter (EKF) and iterated extended Kalman filter (Bar-Shalom & Li, 1993) relax the
linearity assumption by linearizing all non-linear models. A drawback of the (I)EKF
is that the linearization may lead to filter instability if the models are not sufficiently
linear within the time-step interval of consideration (Julier et al., 1995). To address
these limitations Julier and Uhlmann (Julier et al., 1995) developed the unscented
Kalman filter (UKF). The UKF replaces the linearization steps of the (I)EKF with a
deterministic sampling approach to capture the mean and covariance estimates with a
minimal set of sampling points. Particle filtering methods (also known as the CON-
DENSATION algorithm, survival of the fittest, bootstrap filter, sequential Monte
Carlo, etc.) are concerned with relaxing the Kalman filtering assumptions, namely,
admitting non-linear models and non-Gaussian noise while foregoing closed-form so-
lutions (e.g, (Isard & Blake, 1998)). Particle filtering solutions rely on stochastic
simulations to estimate the position and potentially multi-modal uncertainty.

Structure from motion is concerned with the recovery of three-dimensional struc-
ture and velocity or displacement from relationships between these variables and
image motion. Structure from motion represents one of the oldest problems consid-
ered in computer vision (e.g., (Ullman, 1979)). This is due in part to the fact that
many early researchers held the view that the ultimate goal of computer vision was
the the recovery of three-dimensional surface shape, the so-called reconstructionist
view. Much of structure from motion research can be traced back even further to the
field of photogrammetry which is concerned with measuring and processing lengths
and angles in photographs for mapping purposes (McCurdy, 1944). There are three
distinct methodologies for the computation of structure from motion: finite displace-
ment, infinitesimal and direct methods. The finite displacement approach recovers
the three-dimensional structure and displacement (in terms of rotation and transla-
tion) based on the displacement between consecutive images of a sparse set of highly
discriminative image features, such as corners and lines. The infinitesimal approach
recovers the three-dimensional structure and velocity (in terms of rotation and trans-
lation) based on optical flow estimates. Direct methods recover unknown parameters
directly from image quantities (e.g., time varying brightness) at each pixel, thus forgo-
ing flow estimates altogether. No matter which methodology is followed the estimates
have proven to be notoriously sensitive to noise (e.g., (Daniilidis & Spetsakis, 1997)).
Current research is concerned with both modeling the noise process and developing
robust algorithms (e.g., (Oliensis, 2002)). For a more detailed overview of the subject
of structure from motion the reader is referred to the following review papers (Huang
& Tsai, 1981; Aggarwal & Nandhakumar, 1988; Huang & Netravali, 1994).
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Motion detection and segmentation (also known as change detection, foreground
detection and background detection) is concerned with identifying temporal changes
in the image. The temporal changes in an image are assumed to be the result of
the motion of objects in the scene. The computationally simplest of these algorithms
computes the difference between the current image and a previous image and labels
those pixels whose difference exceeds a noise threshold (e.g., (Mounts, 1969)). A
more sophisticated approach, made possible by the significant increases in computing
power and storage capacity, adaptively model the intensity at each pixel as probabil-
ity distributions and identify motion at points where the observed intensity deviates
significantly from the underlying “learned” model (Stauffer & Grimson, 1999; Elgam-
mal et al., 2000). Another class of approaches consider “nulling out” the global scene
motion, followed by detecting the independently moving objects (e.g., (Burt et al.,
1989)).

Motion understanding consists of describing the motion of object(s) over extended
observations in terms of human recognizable concepts. These approaches connect
spatiotemporal paths of tracked feature points in an image sequence with concepts,
such as natural language (motion-related nouns and verbs). The problem of motion
understanding can be broken down into the following subproblems (Tsotsos et al.,
1980): the computer vision component that extracts features from the image, the
representation and organization of the knowledge base, and the recognition system.
Examples of motion understanding systems include: interpreting the dynamics of
the human left ventricle (Tsotsos et al., 1980) and traffic monitoring (Marburger &
Neumann, 1981; Koller et al., 1991; Kollnig et al., 1994).

1.3 From local to regional descriptors

In this review paper the focus is on local and regional descriptions of image motion.

Local descriptions considered in Chapter 3, describe motion within an infinites-
imal neighbourhood of space-time, where descriptions are in terms of optical flow.
This should not be confused with the fact that in computing a unique local de-
scription consideration of a region about a point is required. Historically, significant
focus has been placed on optical flow analysis as exemplified by the multitude of
review papers (Huang & Tsai, 1981; Aggarwal, 1986; Nagel, 1986; Hildreth & Koch,
1987; Aggarwal & Nandhakumar, 1988; Vega-Riveros & Jabbour, 1989; Barron et al.,
1994a; Beauchemin & Barron, 1995; DuFaux & Moscheni, 1995; Mitiche & Bouthemy,
1996; Haußecker & Spies, 1999; Stiller & Konrad, 1999; Fleet & Weiss, 2005) and com-
parative evaluation papers (Burt et al., 1982; Little & Verri, 1989; Willick & Yang,
1991; Barron et al., 1994b; Otte & Nagel, 1994; Liu et al., 1996; Bainbridge-Smith &
Lane, 1997; Galvin et al., 1998; McCane et al., 2001) dedicated to the topic.

Regional methods, considered in Chapter 4, relax the infinitesimal consideration
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and attempt to describe motion or the image structure within a (non-infinitesimal)
region of space-time. Both quantitative and qualitative approaches have appeared in
the literature for the purpose of describing the motion and image structure within a
region.

1.4 Outline of paper

The remainder of this paper is organized into three main chapters. Chapter 2 reviews
the fundamental principles underlying the methods of motion analysis considered in
the subsequent chapters. Chapter 3 reviews approaches for recovering optical flow
(i.e., infinitesimal region of analysis). Chapter 4 reviews literature that relaxes the
infinitesimal spatiotemporal consideration with the goals of recovering richer, poten-
tially semantically meaningful descriptions of the motion or spatiotemporal image
structure based on quantitative or qualitative means. Finally, chapter 5 concludes
this paper with an outline of open problems.
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Chapter 2

Fundamental principles of motion
analysis

In this chapter we consider the fundamental principles underlying the analysis of mo-
tion within local and regional extents of space-time, that will be discussed in Chapters
3 and 4, respectively. The fundamental principles considered are the spatiotemporal
representation of an image sequence (Section 2.1) and the relationship between the
image brightness and motion (Section 2.2).

2.1 Spatiotemporal image representation

2.1.1 Image sequence representation: The plenoptic function

In this section the representations of image sequences considered in this paper are
outlined. To bring the various representations into a common framework of under-
standing, the representations are presented as instances of the plenoptic function.

Adelson and Bergen (Adelson & Bergen, 1991) introduced the formalization of
the plenoptic function P (from plenus, complete or full, and optic) to describe the
potential information available to an observer at any point in space and time. This
information is captured by the pencil of light rays passing through the imaging device.
In its most general form, the plenoptic function is a seven-dimensional function para-
meterized by the position of the imaging sensor in three-dimensional space (Vx, Vy, Vz),
the wavelength of light λ, (θ, φ) representing the azimuth and elevation angles that in-
dex the viewable rays and t representing time (see Fig. 2.1 for an illustrative example
of the plenoptic function):

P = P (θ, φ, t, λ, Vx, Vy, Vz). (2.1)

The spherical parameterization makes it explicit that the light impinges a given point

7
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Figure 2.1. Plenoptic function. Two viewpoint samples are depicted represented by the eyes observing
pencils of light rays. The grey lines represent rays coming from behind the optical sensor. Adapted from
(Adelson & Bergen, 1991).

from all directions.
The plenoptic function is an idealized model, containing all potential information

available. In practice, machine vision implementations consider subsets and samples
of the dimensions. The representations for analysis considered in this paper and
presented below can be seen as instances of the plenoptic function distinguished by
the considered dimensions, the extent of the region of analysis (or in discrete terms
the number of samples taken) within each available dimension and the resolution
within the available dimensions.

Two specializations common among all the image representations considered in
this paper are as follows: a pinhole camera model (Horn, 1986) is assumed through-
out the paper, thus the imaging rays passing through the imaging plane (from the
front) are available at any given time instant, and a single sample of the viewpoint
is available at any given time. In this light, it is more natural to adopt the standard
Cartesian parameterization of the rays (x, y), where x and y represent the spatial
coordinates of the points in the image plane:

P = P (x, y, t, λ). (2.2)

Note although not considered here, motion analysis approaches exist that consider
simultaneously rays over a hemi-spherical field of view through the use of omni-
directional devices (e.g., (Daniilidis et al., 2002)); for a recent review article on these
class of sensors see (Yagi, 1999).

In terms of the wavelength, historically analysis has been predominately limited
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to a single sample in the form of the image brightness (formally, the image irradiance
assuming a calibrated system (Horn, 1986)), where the image brightness is recovered
by way of averaging over the wavelengths of the visible spectrum. This was due in part
to the unavailability, until fairly recently, of inexpensive colour cameras, and compu-
tational speed and storage capacity to process more than one wavelength sample (e.g.,
colour). Various recent attempts have considered multispectral samples in the form of
colour and infrared images (Ohta, 1989; Markandey & Flinchbaugh, 1990; Golland &
Bruckstein, 1997; Irani & Anandan, 1998; Barron & Klette, 2002; Andrews & Lovell,
2003; van de Weijer & Gevers, 2004). Woodham (Woodham, 1990) considered images
of scenes observed under several illumination sources. It is important to note that
the motion is implicitly assumed to be consistent across the considered spectrum. In
the sequel, the discussion will be limited to image brightness, however, each of the
approaches may be generalized to multispectral samples.

The main distinctions among approaches for motion analysis considered in this
paper are as follows:

� the set of spatiotemporal dimensions considered

� whether an image sequence is treated as a sequence of snapshots or as temporally
continuous.

Here it is important to point out that although in implementation we are dealing
with discrete image representations, continuity can be assumed in the case where
the spatiotemporal dimensions have been sampled rapidly enough, as defined by the
Nyquist frequency (Oppenheim et al., 1997), such that the representation provides a
close approximation of the underlying continuous distribution.

The parameterization of the plenoptic function representing the consideration of
both spatial (x, y) and temporal t dimension, where each dimension is assumed con-
tinuous, is given as follows,

P = P (x, y, t). (2.3)

One can think of this representation as a spatiotemporal volume formed by “stacking”
temporally consecutive images (Fahle & Poggio, 1981; Watson & Ahumada, 1985;
Adelson & Bergen, 1985; Jähne, 1990) (see Fig. 2.2 (a)). Although beyond the scope
of this paper, the spatiotemporal volume has also appeared in the context of motion
detection (e.g., (Liou & Jain, 1989)) and the recovery of scene structure (Bolles &
Baker, 1985; Bolles et al., 1987; Faugeras, 1990).

Rather than consideration of both spatial dimensions, motion analysis approaches
have been proposed (e.g., (Fennema & Thompson, 1979; Adelson & Bergen, 1985;
Adelson & Bergen, 1986; Wildes & Bergen, 2000)) that limit analysis to a single
spatial dimension, x or y, and time, t (Fig. 2.2 (b)). Although, only a single spatial
dimension is considered at a time, the results of this two-dimensional (space-time)



10 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF MOTION ANALYSIS

(a)

(c)
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t = i

t = i + 1
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t

past
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Figure 2.2. Summary of spatiotemporal representations: (a) volumetric representation of a moving gray
bar, (b) spatiotemporal slice of (a), and (c) a sequence of snapshots of (a).

analysis are intended to be integrated in subsequent stages to cover both spatial di-
mensions plus time. The plenoptic function of these two-dimensional spatiotemporal
representations are denoted as follows,

P = P (x, t) and P = P (y, t). (2.4)

The representations above model space-time as continuous or equivalently in the
discrete domain as non-aliased. Alternatively, space-time has been represented as
a coarsely time sampled set of images or “snapshots”, where significant temporal
aliasing precludes the recovery of measurements from the underlying continuous signal
over time; the spatial domain is assumed to be sampled rapidly enough such that
strong aliasing effects are not present. The plenoptic function is denoted as follows
(see Fig. 2.2 (c) for an illustrative depiction),

P = P (x, y, {t = i, i+4t, . . . , i+ n4t}) (2.5)

where the temporal samples may not necessarily adhere to the Nyquist sampling rate
(see Fig. 2.2 (c)).
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Representation
Plenoptic function
parameterization

Spatiotemporal volume P (x, y, t)

Spatiotemporal frequency volume P̂ (ωx, ωy, ωt)

Spatiotemporal slice
P (x, t)
P (y, t)

Spatiotemporal frequency slice
P̂ (ωx, ωt)

P̂ (ωy, ωt)

Temporal snapshot P (x, y, {t = i, i+4t, . . . , i+ n4t})

Temporal snapshot spatial frequency P̂ (ωx, ωy, {t = i, i+4t, . . . , i+ n4t})

Table 2.1. Summary of common image sequence representations for motion analysis and their respective
plenoptic function parameterizations. Note that P̂ denotes the plenoptic function represented in the
frequency domain.

In addition, each of these representations can be considered within the frequency
domain by replacing each of their respective spatiotemporal dimensions with their fre-
quency counterpart, P̂ (ωx, ωy, ωt), or in the case of the “snapshot” representation con-

sidering each of the frames separately in the spatial frequency domain, P̂ (ωx, ωy, {t =
i, i+ 1, . . . , i+ n}).

Table 2.1 summarizes the various spatiotemporal image representations considered
in this section.

2.1.2 Image sequence representation: Derived measurements

Rather than direct consideration of image brightness for motion analysis, local func-
tions of image brightness have been considered.

Wohn et al. (Wohn et al., 1983) considered images preprocessed by the following
local functions: the spatial gradient magnitude, curvature and moments. Several
authors (e.g., (Buxton & Buxton, 1984; Hildreth, 1984; Waxman et al., 1988; Gong,
1989; Duncan & Chou, 1992)) have analyzed motion in images preprocessed with a
spatial edge detector operator. Mitiche et al. (Mitiche et al., 1987) considered images
preprocessed by the local functions: average, contrast, entropy, median, power content
and variance.

Several authors (e.g., (Haralick & Lee, 1983; Tretiak & Pastor, 1984; Girosi et al.,
1989; Verri & Poggio, 1989; Uras et al., 1989; Simoncelli, 1993b; Tistarelli, 1994;
Tistarelli, 1995; del Bimbo et al., 1996)) analyzed images prefiltered by spatiotemporal
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first derivatives. Simoncelli points out that derivative prefilters may be extended to
higher orders (Simoncelli, 1993b). Furthermore, the derivatives may be computed over
a number of scales and orientations in space or space-time, such as in (Weber & Malik,
1995). More generally, the derivative filters are instances of linear oriented, bandpass
filters. The Gabor filter (Gabor, 1946; Daugman, 1980) represents another instance
of a linear oriented, bandpass prefilter that has been used by several authors (e.g.,
(Adelson & Bergen, 1986; Heeger, 1987; Heeger, 1988; Fleet & Jepson, 1989; Fleet
& Jepson, 1993; Spetsakis, 1994)). The output of linear prefilters provides local
information about the amplitude, phase and frequency content (Adelson & Bergen,
1986). Fleet and Jepson (Fleet & Jepson, 1989; Fleet & Jepson, 1993), consider the
local phase while omitting the amplitude information from further consideration.

Another form of preprocessing are multiresolution representations that describe
the input image at multiple spatial scales of resolution. Two prominent examples of
multiresolution representations is the Gaussian pyramid (Burt, 1981) and the Lapla-
cian pyramid (Burt & Adelson, 1983). We return to the topic of multiresolution
representations in Chapter 3.4.

2.2 Relating image brightness and motion

2.2.1 The visual motion field

The visual motion field (or motion field for short) is defined as the perspective pro-
jection on the image plane of the three-dimensional instantaneous scene velocity.

The visual motion field (u, v) was first formulated by Koenderink and van Doorn
(Koenderink & van Doorn, 1975) in spherical coordinates and later by Longuet-
Higgins and Prazdny (Longuet-Higgins & Prazdny, 1980) in Cartesian coordinates.
Less formal use was known earlier (e.g., (Gibson, 1950)). In this section a brief review
of the development of the motion field equation in Cartesian coordinates is presented.

Given a point P = (X, Y, Z)> in the three-dimensional world space, its corre-
sponding perspective projection onto the image plane with focal length f (without
loss of generality the focal length f = 1) is denoted in homogeneous coordinates by
p = (x, y, 1)> and related as follows (see Fig. 2.3),

p =
P

Z
. (2.6)

The motion field is obtained by differentiating (2.6) with respect to time,

ẋ = u =
Ẋ

Z
− XŻ

Z2

ẏ = v =
Ẏ

Z
− Y Ż

Z2
,

(2.7)
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Figure 2.3. Camera coordinate system. The camera coordinate system is depicted with origin Oc.
The image plane denoted by Π with origin oi is located at Z = f where f denotes the focal length.
Perspective projection maps a point P = (X,Y, Z) to p = (x, y). The parameters tx, ty and tz
represent the translational velocities in the X, Y and Z directions respectively, ωx, ωy and ωz represent
the infinitesimal angle of rotation about X, Y and Z conducted about the camera origin. V and v
denote the world and image velocity of the point P, respectively.

where (u, v) represents the projected image velocity of points in the scene and Ẋ, Ẏ
and Ż represent the temporal derivatives of the respective spatial parameter.

The three-dimensional instantaneous velocity of the scene point P can be mod-
eled by the combination of translation T = (tx, ty, tz) and rotational velocity Ω =
(ωx, ωy, ωz), as follows,

Ṗ = −(Ω×P + T). (2.8)

Substituting (2.6) and (2.8) into (2.7), yields,

u =

(
u
v

)
=

(
1
Z
(xtz − tx) + xyωx − (x2 + 1)ωy + yωz

1
Z
(ytz − ty) + (y2 + 1)ωx − xyωy − xωz

)
(2.9)

where (x, y) represents the image coordinates and Z the depth coordinate of the
three-dimensional point. Eq. (2.9) is termed the visual motion field equation. An



14 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF MOTION ANALYSIS

important implication of the motion field equation is that the structure component
Z is non-linearly coupled only with the translational components, thus the velocity
field is invariant to the scene structure in the case where no translation is present.

So far the structural component Z(X, Y ) in the motion field equation (2.9) has
been left unspecified. Let us next consider the specialization of the structure of the
surface as a plane. The importance of considering planar structures lies in the fact
that much of the structure that we encounter in the world can be approximated locally
as smooth and by extension, locally approximated as a plane,

αX + βY + γZ = 1 (2.10)

parameterized by α, β and γ. Substituting the equation of the plane (2.10) into the
motion field equation (2.9) and some algebraic manipulation, yields (Longuet-Higgins
& Prazdny, 1980),

u(x, y, t) =

(
u
v

)
=

(
a0 + a1x+ a2y + a6x

2 + a7xy
a3 + a4x+ a5y + a6xy + a7y

2

)
(2.11)

where,

a0 = −txγ − ωy

a1 = −txα+ tzγ

a2 = −txβ + ωz

a3 = −tyγ + ωx (2.12)

a4 = −tyα− ωz

a5 = −tyβ + tzγ

a6 = −ωy + tzα

a7 = tzβ + ωx.

Notice that the planar function (2.10) may be considered as a local first-order Taylor
series expansion of a surface, similar representations have been derived using various
higher-order Taylor series expansions of a surface (Longuet-Higgins & Prazdny, 1980;
Waxman & Ullman, 1985; Negahdaripour, 1992). Also, due to the polynomial nature
of the motion field equation, the parameters of the flow model (2.11) directly represent
the structure of the local flow field:

u(x, y, t) =

(
u
v

)
=

(
u0

v0

)
+ J(x, y)> +

1

2
(x, y)H(x, y)> (2.13)

where (u0, v0)
> denotes the instantaneous velocity at (x0, y0)

>, J the Jacobian matrix
of the motion field,

J =

[
ux uy

vx vy

]
(2.14)
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and H the Hessian matrix,

H =

[
uxx uxy

vyx vyy

]
. (2.15)

When the distance between the surface(s) and the camera is large compared to
the distance variation within the surface, it is usually possible to approximate the
polynomial flow by a linear flow field by ignoring the second-order terms of (2.11)
(Negahdaripour & Lee, 1991; Bergen et al., 1992; Campani & Verri, 1992), leading to
the following affine model,

u(x, y, t) =

(
u
v

)
=

(
a0 + a1x+ a2y
a3 + a4x+ a5y

)
(2.16)

=

(
u0

v0

)
+ J(x, y)>. (2.17)

2.2.2 Motion analysis: The brightness constancy assumption

Optical flow, first coined by Gibson (Gibson, 1950), is a two-dimensional vector field
representing the apparent velocities of the brightness patterns in an image (Horn,
1986). Optical flow is defined by the assumptions that are imposed on both the
spatiotemporal image and image velocity field structures. Thus, there is not one
unique optical flow, rather, there potentially are many. The most common assumption
imposed on the spatiotemporal image structure, is that of brightness constancy of
points as they move from frame-to-frame.

The following discussion outlines the manifestation of motion within the various
image sequence representations discussed in Section 2.1.1. Throughout the following
discussion the brightness constancy is assumed to hold.

Local motion

Let I(x, y, t) be the volumetric (i.e., continuous) representation of the image sequence
brightness, where (x, y) represents the spatial x and y dimensions, t denotes time,
and u(x, y, t) and v(x, y, t) are the horizontal and vertical components of the optical
flow, respectively. Assume that the intensity of a point remains the same as it moves
by δx, δy for a time interval δt, given formally as,

I(x− δx, y − δy, t− δt) = I(x, y, t). (2.18)

This assumption is commonly termed the brightness constancy assumption. Assuming
that the brightness varies smoothly (i.e., is differentiable) with x, y and t, we can take
the Taylor series expansion of the left-hand side of (2.18),

I(x, y, t)− Ixδx− Iyδy − Itδt+ h.o.t. = I(x, y, t) (2.19)

Ixδx+ Iyδy + Itδt+ h.o.t. = 0 (2.20)
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Figure 2.4. The one-dimensional (i.e., motion restricted to a single dimension) geometric interpretation
of the optical flow constraint is depicted, where I(x−u, t−1) = I(x, t) and the spatiotemporal structure
is assumed linear. Adapted from (Fennema & Thompson, 1979).

where h.o.t. represents the higher order terms (i.e., second- and higher-order) in
δx, δy and δt. From (2.20) there are two standard ways to proceed. The first ap-
proach consists of dividing through by δt and taking the limit as δt → 0, while, the
second approach consists of fixing δt = 1 and neglecting h.o.t. by assuming that the
spatiotemporal structure around the point is locally linear, both approaches yield,

Ixu+ Iyv + It = 0. (2.21)

Interpreting u, v as velocity without δt→ 0 differs in that strictly speaking u, v corre-
sponds to displacement that coincides with velocity in the case where the assumption
of local spatiotemporal linearity holds (see Fig. 2.4 for a one-dimensional geometric
interpretation of this case), while in the case of allowing δt→ 0 no assumption on the
series expansion of the spatiotemporal structure is made. Eq. (2.21) relates the image
velocity to the spatiotemporal derivatives of the image at a particular location and is
commonly referred to as the optical flow constraint equation (Horn, 1986), brightness
constancy constraint equation (Jähne, 2005), gradient constraint equation (Fleet &
Weiss, 2005) and motion constraint equation (Haußecker & Spies, 1999). One can
interpret the optical flow constraint (2.21) as algebraically expressing that the (non-
normalized) directional derivative in the direction (u, v, 1)> of the spatiotemporal
image structure vanishes.

An alternative development of the optical flow constraint assumes that each point
in a given image moves along a path in which the intensity is conserved (i.e., brightness
constancy), formally,

I(x(t), y(t), t) = c. (2.22)

Taking the total derivative of both sides with respect to time, yields,

d

dt
I(x(t), y(t), t) = 0. (2.23)
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Eq. (2.23) is termed the conservation of brightness. Expanding the left-hand side of
(2.23) by the chain rule yields the optical flow constraint (2.21).

Although acceleration is not considered in the sequel, it is instructive to point out
that differentiating (2.23) once again with respect to t,

d2

dt2
I(x(t), y(t), t) = 0, (2.24)

leads to a motion constraint equation relating the image structure with optical flow
and optical acceleration, given as follows (Arnspang, 1988),

(Ixxu+ Ixyv+ Ixt)u+ Ixa+ (Iyxu+ Iyyv+ Iyt)v+ Iyb+ (Itxu+ Ityv+ Itt) = 0 (2.25)

where the optical flow is represented by (u, v) = (dx
dt
, dy

dt
) and the optical acceleration

by (a, b) = (d2x
dt2
, d2y

dt2
).

Given a single point, the optical flow constraint (2.21) is underconstrained since
it represents a single linear constraint in two unknowns. The optical flow constraint
admits a continuum of possible solutions that lie along a line in velocity space (see
Fig. 2.5). A special solution along this line is the component of motion in the direction
of the spatial gradient of the intensity function, termed the normal flow (Horn, 1986),

vn = − It
‖∇I‖

∇I
‖∇I‖

(2.26)

where It represents the partial derivative of the image brightness function with respect
to time t, ∇I represents the spatial gradient and ‖∇I‖ represents the `2-norm of the
gradient. The normal flow vector lies perpendicular to the velocity constraint line
or equivalently stated is the velocity vector with the smallest magnitude (i.e., speed)
that lies along the constraint line. The component of motion perpendicular to the
spatial gradient remains to be recovered. The underconstrained nature of the optical
flow constraint represents an instance of the aperture problem.

The aperture problem (Marr & Ullman, 1979; Ullman, 1979; Adelson & Movshon,
1982) is a common problem that all motion recovery approaches face. It occurs
within regions of analysis where the brightness pattern is only a function of one
image coordinate and not the other. In such cases, the motion in the direction of
the spatial image gradient can only be resolved while the motion in the orthogonal
direction remains ambiguous. Figure 2.6 illustrates regions afflicted by the aperture
problem and a region where unambiguous flow recovery can be made. Analytically,
the aperture problem appears in the situation where the number of unknown variables
is greater than the number of given constraints. An open problem related to the
aperture problem is in selecting the appropriate aperture size such that the aperture
problem disappears while at the same time the given assumptions hold, Jepson and
Black (Jepson & Black, 1993a) term this problem the generalized aperture problem.
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Figure 2.5. Optical flow constraint equation in velocity space. The optical flow constraint equation in
velocity space u, v is depicted. The normal velocity vn represents the component of the optical flow in
the direction of the gradient of the spatial intensity structure.

Motion as orientation in spatiotemporal images

For the case of translational motion where an initial image I0 is translated with
constant velocity over time while respecting the brightness constancy assumption
over time, formally,

I(x, y, t) = I0(x− ut, y − vt) (2.27)

the velocity can be directly linked to the orientation in the spatiotemporal vol-
ume or slice (Fahle & Poggio, 1981; Watson & Ahumada, 1985; Adelson & Bergen,
1985; Jähne, 1990). In the case of a two-dimensional space-time image (one spatial
dimension and time) the velocity u is given as (see Fig. 2.7 and Fig. 2.8 (a)),

u = −tan(θ), (2.28)

where θ represents the angle between the time axis t and the direction that the grey
values are constant. More generally, in the case of a three-dimensional space-time
volume the velocity (u, v)> is given as (see Fig. 2.8 (b)),(

u
v

)
= −

(
tan(θx)
tan(θy)

)
, (2.29)

where the angles θx and θy represent the angles between the time axis t and the
direction that the grey values are constant in terms of the the x and y axes, re-
spectively. Thus, the problem of velocity estimation can be recast as a problem of
orientation estimation. Although we have limited the motion to constant velocity, one
could generalize (2.27) to include acceleration in which case the space-time surfaces
would exhibit curvature. Thus, the problem of acceleration estimation may be cast
as problem of curvature estimation.
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Figure 2.6. Aperture problem. (a) regions (1),(3) denote where the aperture problem is present, while at
region (2) a full estimate can be made since there is distinct local structure. (b) depicts the uncertainty
in a region where the aperture problem is present. An isobrightness line is observed through an aperture
at time t. At time t+ δt the line has moved to a new position. From the information contained within
the aperture only the component perpendicular to the line can be recovered. The tangential component
to the line cannot be recovered.

Motion in the frequency domain

Assume as in the volumetric representation that an initial image I0 is translated with
constant velocity over time while respecting the brightness constancy assumption
from frame-to-frame, formally,

I(x, y, t) = I0(x− ut, y − vt). (2.30)

The three-dimensional Fourier transform of (2.30) is,

Î(ωx, ωy, ωt) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

I0(x− ut, y − vt)e−j2π(xωx+yωy+tωt)dxdydt. (2.31)
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Figure 2.7. A white noise pattern moving to the right at a pixel/frame in the spatial, spatiotemporal
and frequency domains is depicted: (a) a single frame of the sequence (the spatial domain) (b) the
spatiotemporal X-T slice of (a) delineated by the dashed line and (c) the spatiotemporal slice in the
frequency domain.

Utilizing properties of the Fourier transform in addition to some algebraic manipula-
tion one can arrive at the following,

Î(ωx, ωy, ωt) = Î0(ωx, ωy)δ(ωxu+ ωyv + ωt) (2.32)

where δ(·) represents the Dirac delta function (Oppenheim et al., 1997). This equation
algebraically expresses that the non-zero components of the Fourier transform of a
translating scene lie on a plane with normal (u, v, 1)> that passes through the origin
(see Fig. 2.9 (a)). In the case of a two-dimensional space-time image, one spatial
dimension and time, its Fourier spectrum lies along a line through the origin with
slope −1/vx (see Fig. 2.7 and Fig. 2.9 (b)). This insight forms the basis for several
motion estimation algorithms that estimate velocity by identifying the orientation of
this plane/line (Fahle & Poggio, 1981; Watson & Ahumada, 1985; Adelson & Bergen,
1985; Heeger, 1988; Jähne, 1990; Simoncelli, 1993b). If within the region of analysis
the spatial image structure is a function of only one of the spatial parameters the
planar spectra will collapse to a line passing through the origin. In such cases the full
velocity will not be recoverable, instead only the normal component of the velocity will
be recoverable, since a continuum of planes and by extension a continuum of velocities
will be consistent with this line spectra. This situation represents an instance of the
aperture problem in the frequency domain.

Lastly, let us consider two neighbouring frames at times t and t − 1 displaced
spatially with respect to each other by (u, v), formally,

I(x, y, t) = I(x− u, y − v, t− 1). (2.33)
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Figure 2.8. Motion as orientation. Adapted from (Jähne, 2005).

Utilizing the shift property of the Fourier transform (Lim, 1990), the spatial Fourier
transform of these two frames are related by a linear phase shift, as follows,

Î(ωx, ωy, t) = Î(ωx, ωy, t− 1)e−j2π(ωxu+ωyv) (2.34)

where Î(ωx, ωy, t) and Î(ωx, ωy, t−1) denote the spatial Fourier transforms of I(x, y, t)
and I(x, y, t− 1), respectively.

An important point to keep in mind about the frequency analyses presented above
is that it is global in nature (i.e., infinite spatiotemporal extents). In practice, we are
interested in analyzing local spatiotemporal regions. This is achieved by windowing
the local region by a preferably smooth function, such as a Gaussian. This spa-
tiotemporal windowing process is equivalent to convolving the spectrum of the image
with the spectrum of the window. Hence, in the local analysis of motion, idealized
structures in the frequency domain are blurred. To reduce the blurring one could
increase the window size at the risk of violating assumptions imposed on the region.
Furthermore, increasing the window size reduces the ability to resolve the location of
the motion type. This is a consequence of the Heisenberg-Gabor uncertainty principle
that states that one can not simultaneously localize a signal in time (or in our case
in space-time) and frequency well (Gabor, 1946).
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Figure 2.9. Motion in the Fourier domain. (a) depicts the effect of motion on a 3D space-time image
(two spatial and one temporal component) in the Fourier domain. The plane outlined by the solid line
lying within the ωx − ωy plane represents the spectrum of a static scene; the open circles denote points
in the plane. The plane outlined by the dotted line represents the spectrum as the scene translates with
velocity v. Motion results in a shearing displacement (indicated by the dotted arrows) of the static plane.
As a result of the shearing displacement, the open circles are mapped to the black circles. Furthermore,
the plane intersects the origin. (b) depicts the effect of motion on a 2D space-time image (one spatial
and one temporal component) in the Fourier domain. The open circles represent a single frequency
subtending a line spectrum representing a static scene. The solid black circles represent the locations of
the open circles as the image translates with speed s. Each open circle undergoes a shearing displacement
(indicated by the dotted arrows) with the line spectrum crossing the origin.

2.2.3 Motion field versus optical flow

In the ideal case the optical flow would correspond to the motion field (see Chapter
2.2.1) which represents the projection of the three-dimensional velocity of objects in
a scene onto the image plane. In such a case, the quantitative measurements of the
three-dimensional scene structure may be recovered. In general, the optical flow does
not equal the motion field. The reason for the lack of strict equivalence between the
two flow fields lies in the fact that the motion field is a purely geometric construct,
whereas optical flow depends on assumptions placed on the structure of the brightness
and velocity of the image sequence. Examples for which the definition of optical flow
based on the brightness constancy assumption does not coincide with the motion field
are well known (Horn, 1986). Consider a moving blank wall, the motion field is non-
zero, while the optical flow is zero everywhere since the image brightness does not
change (Horn, 1986). Figure 2.10 illustrates an additional example where equivalence
between the motion field and optical flow does not hold. A stationary textureless
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Figure 2.10. Example of the optical flow field not always equal to the motion field. A stationary
textureless sphere illuminated by a moving light source is depicted. Although, the resulting shading in
the image changes leading to a non-zero optical flow, the motion field is zero. Adapted from (Horn,
1986).

sphere illuminated by a moving light source is depicted, where the image brightness
changes as the illumination source moves. In this case, the shading changes resulting
in a non-zero optical flow, while the motion field is zero everywhere (Horn, 1986).

Verri and Poggio (Verri & Poggio, 1987a; Verri & Poggio, 1989) demonstrate
that the optical flow under a perspective projection model and the assumption of
brightness constancy, is generally different from the motion field unless the following
special conditions are satisfied:

� the illumination is given by a distant point light source such that the direction
of the light rays are parallel

� the imaged surface is Lambertian (i.e., the surface is perfectly matte such that
the luminance is the same regardless of the viewing angle)

� the imaged surface has sufficient texture

� the imaged surface translates or rotates about an axis parallel to the direction
of illumination

These conditions ensure that the underlying surface radiance remains fixed. In reality,
these conditions rarely hold but empirically have proven to provide a good local
approximation (Barron et al., 1994b).

2.2.4 Revisiting the brightness constancy assumption

In Section 2.2.2 the assumption of brightness constancy (conservation) was imposed
on the spatiotemporal structure of the imaged scene in order to derive a constraint
on the the optical flow (2.21). As noted, the optical flow constraint has two main
deficiencies:
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1. the validity of the constraint only holds under fairly restrictive conditions (see
Section 2.2.3)

2. we are faced with an underconstrainted problem in the form of the aperture
problem (see Section 2.2.2).

This sections reviews further “optical flow” contraints to address these issues ar-
rived at by way of alternative or complimentary assumptions to brightness constancy
imposed on the spatiotemporal structure and assumptions of the structure of the ve-
locity field. The success of flow recovery approaches based on these “optical flow”
constraints hinges on the validity of the assumptions used to derive the respective
constraints.

Cornelius and Kanade (Cornelius & Kanade, 1983) relax the assumption of con-
servation of brightness (2.23) by allowing for a linearly additive change (with respect
to time) in the intensity of a surface patch as it moves relative to the camera, formally,

d

dt
I(x(t), y(t), t) = c, (2.35)

where c is a constant. In the case where c = 0, (2.35) reduces to the conservation of
brightness assumption (2.23). Evaluating the left-hand side of (2.35), yields,

Ixu+ Iyv + It = c. (2.36)

Assuming Phong’s shading model (diffuse and specular lighting effects) (Phong, 1975)
adequately represents the radiance of the scene, Mukawa (Mukawa, 1989) derived an
optical flow constraint equation identical to (2.36). Nagel (Nagel, 1989) considered
the geometry of a locally rigid scene and the radiometric effects of an optical system,
while assuming isotropic constant lighting and Lambertian surfaces and arrived at
the following constraint,

Ixu+ Iyv + It = c (2.37)

where

c = 4I

(
ẑṖ>

ẑP> −
PṖ>

PṖ>

)
, (2.38)

P is a three-dimensional scene point, Ṗ the corresponding velocity and ẑ is a unit
vector in the direction of the optical axis.

More generally, Gennert and Negahdaripour (Gennert & Negahdaripour, 1987)
and Negahdaripour and Yu (Negahdaripour & Yu, 1993) propose the following gen-
eralized brightness change model,

I(x− δx, y − δy, t− δt) = M(x, y, t)I(x, y, t) + C(x, y, t), (2.39)
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where M(x, y, t) (contrast change) and C(x, y, t) (mean intensity shift) incorporate
non-motion related brightness changes of a point through a linear transformation.
Assuming that both M and C are linear functions with respect to time t, Negah-
daripour and Yu (Negahdaripour & Yu, 1993) derive a motion constraint equation in
an analogous fashion to the derivation of the optical flow constraint (2.21) by taking
a Taylor series expansion of the left-hand side of (2.39) followed by taking the limit
as δt→ 0, yielding,

Ixu+ Iyv + It = mtI(x, y, t) + ct, (2.40)

where mt and ct are the temporal changes of M and C, respectively. Lai and Fang
(Lai & Fang, 1999) generalize the two illumination factors M and C by assuming
that they are slowly varying functions of the spatial parameters (x, y) modeled by a
low-order polynomial expansion.

Haußecker and Fleet (Haußecker & Fleet, 2000; Haußecker & Fleet, 2001) propose
a generalization of the brightness constancy assumption by defining a path x(t) where
the brightness changes according to a parametric function h that models a time-
dependent physical process, formally,

dI

dt
I(x(t), y(t), t) =

d

dt
h(I(x(0), y(0), 0), t, a), (2.41)

where a contains the parameters of the model. Expanding the total derivative on the
left-hand side of (2.41), yields,

Ixu+ Iyv + It =
d

dt
h(I(x(0), y(0), 0), t, a). (2.42)

Haußecker and Fleet term (2.42) the generalized brightness change constraint equation.
Note that when h is constant with respect to time, (2.42) reduces to the optical flow
constraint (2.21). This model represents a more general formulation of constraints
(2.36) and (2.39) in that it allows for the modeling of higher-order brightness changes
over a region of time (i.e., sequence of images) as opposed to the linear brightness
change model assumed locally in (2.39). Physical models encapsulated by h consid-
ered by Haußecker and Fleet include: changing surface orientation with respect to
a directional illuminant, a moving illuminant, and physical models of heat transport
(diffusion and decay) in infrared images.

Next we turn our attention to a set of motion constraints based on the assumption
of the conservation of analytical quantities of the image brightness for elementary
deformations of the image. These elementary deformations consist of translation,
curl (rate of rotation), divergence (rate of expansion/constraction) and shear (area
preserving deformation). Excluding translation, the remaining deformations are en-
capsulated in the first-order spatial derivatives of the flow field (u, v), given in matrix
form by the Jacobian matrix, J,

J =

[
ux uy

vx vy

]
. (2.43)
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To bring the following set of constraints into a common framework of understanding,
the constraints are driven by assumptions and specializations imposed on the identity:

∇dI
dt

=
d

dt
∇I + J>∇I. (2.44)

where ∇ represents the gradient operator ∇ = (∂/∂x, ∂/∂y). Note that no assump-
tions are present in (2.44) (other than differentiability), such as brightness constancy.
This common framework is adapted from (Verri et al., 1990). The first assumption
imposed on (2.44) and assumed throughout the following constraints is the conserva-
tion of brightness (i.e., dI/dt = 0), (2.44) becomes,

d

dt
∇I + J>∇I = 0. (2.45)

Though not considered here (and in any paper for that matter), one could relax the
brightness constancy assumption imposed in (2.44) and instead assume that bright-
ness changes according to some parameterized function, such as in (2.41). The next
set of constraints are based on restricting the motion of the flow through special-
izations of the Jacobian. Assuming that the Jacobian, J, in (2.45) represents only
diverging flow and with some algebraic manipulation, (2.45) can be written as (Verri
et al., 1990),

d

dt

(
Iy
Ix

)
= 0, if Ix 6= 0, (2.46)

which algebraically expresses that the direction of the spatial gradient is conserved.
This constraint holds true for textured planar patterns that are parallel to the image
plane and move parallel to the optical axis (Verri et al., 1990). Assuming that the
Jacobian J in (2.45) represents only a rotating flow, (2.45) can be written as (Verri
et al., 1990),

d

dt
(I2

x + I2
y ) = 0, (2.47)

which algebraically expresses that the magnitude of the spatial gradient is conserved.
Assuming that the Jacobian, J, in (2.45) represents only a shearing flow, (2.45) can
be written as (Verri et al., 1990),

d

dt
(IxIy) = 0, (2.48)

or
d

dt
(I2

x − I2
y ) = 0. (2.49)

Assuming that “enough” image structure is present, each of the constraints (2.46)-
(2.49) can be combined with the optical flow constraint (2.21) to yield a fully con-
strained solution of the flow (u, v), thus resolving the aperture problem. So far each



2.2. RELATING IMAGE BRIGHTNESS AND MOTION 27

of the assumptions resulted in J 6= 0. Assuming that J = 0 (i.e., only translational
motion is assumed), which is the case for a planar patch that is parallel to the image
plane and translating parallel to the image plane, (2.45) reduces to,

d

dt
∇I(x, y, t) = 0, (2.50)

which states that the gradient is conserved. Further expansion of the total derivative
on the left-hand side of (2.50) yields the following constraints,

Ixxu+ Iyxv + Itx = 0 (2.51)

Ixyu+ Iyyv + Ity = 0 (2.52)

or more compactly,
Hu = −∇It (2.53)

where H represents the spatial Hessian matrix,

H =

[
Ixx Iyx

Ixy Iyy

]
. (2.54)

This system can be solved whenever the Hessian matrix (2.54) is invertible (i.e.,
detH 6= 0). Note that the determinant of the Hessian, H, represents the Gaussian
curvature of the intensity surface of the image, thus good candidate points are those
that exhibit large intensity curvature in two principle directions. In addition, one
can estimate the optical flow by coupling (2.51) and (2.52) with the optical flow
constraint (2.21) which results in an over-determined system of equations in the flow
components (u, v). Constraints (2.51) and (2.52) have repeatedly appeared in the
literature through various diverse constructions in an attempt to resolve the aperture
problem through local means (see (Haralick & Lee, 1983; Tretiak & Pastor, 1984;
Nagel, 1987; Girosi et al., 1989; Verri & Poggio, 1989; Uras et al., 1989; Sobey &
Srinivasan, 1991; Simoncelli, 1993b; Tistarelli, 1994; Tistarelli, 1995; del Bimbo et al.,
1996)). These constraints can be seen as the application of “brightness” constancy
on derived measurements of the image in the form of first derivative output images
(as discussed in Section 2.1.2). A drawback of these higher-order approaches is that
reliable estimates of second- and higher-order derivatives from images is problematic
due to the high-pass nature of the operators.

Several authors have derived “optical flow” constraints based on the analogy of
optical flow as a fluid flow, as studied in fluid mechanics, where the image brightness is
considered as density. The optical flow constraint (2.21) is equivalent to the continuity
equation for an incompressible fluid (i.e., conservation of density). A drawback of the
optical flow constraint (2.21) is that it is valid for a restricted class of scene motions.
For instance, the optical flow constraint is invalid for scene motion consisting of
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rotation out of the plane of the imaging surface. To address this issue, Schunck
(Schunck, 1984; Schunck, 1985) proposed that the image adhered to the conservation
of mass1 (i.e., total brightness), resulting in a more general constraint equation,

Ixu+ Iyv + It + Idiv(u, v)> = 0 (2.56)

where div(u, v)> represents the divergence of the flow field. Eq. (2.56) is termed
the extended optical flow constraint (cf., the continuity of mass equation). From a
structural point of view, the extended optical flow constraint (2.56) differs from the
optical flow constraint (2.21) by the addition of the divergence term. Note that both
constraints are brought into agreement if the motion is parallel to the image plane
in which case the term containing the divergence vanishes. The validity of Schunck’s
analogy is questionable given the lack of an analytical or experimental justification. In
the context of measuring fluid flow from image sequences, Wildes et al. (Wildes et al.,
1997; Wildes et al., 2000) demonstrate that the two-dimensional image of a three-
dimensional fluid flow that conforms to the conservation of mass in three-dimensions
results in a two-dimensional flow that conforms to the conservation of mass in two-
dimensions and in turn to (2.56), provided that the there is no material loss due to
normal flow across the boundaries of the fluid. Keeping with the analogy of optical
flow as a fluid, a logical next step would be the introduction of the conservation of
momentum assumption (Aris, 1989). To this author’s knowledge no such work has
been reported.

In the problem of image tracking, the recovery of optical flow or displacement rep-
resents an intermediate step for frame-to-frame registration. In this context, several
constancy assumptions have been introduced. Black and Jepson (Black & Jepson,
1998), propose the subspace constancy assumption which formalizes the notion of ap-
pearance constancy with respect to a “learned” eigenspace representation (Oja, 1983),
formally,

I(x + u(x, a), y + v(x, a)) = (Uc)(x), ∀x within the tracked region (2.57)

where (u(x, a), v(x, a)) represents an image transformation (or motion) parameterized
by a, U is a matrix that encapsulates the eigenspace (subspace) basis, c is a vector
of basis coefficients and (Uc)(x) is defined as the value of (Uc) at pixel position

1The conservation of mass requires that the rate of accumulation of mass within the volume plus
the net rate of outflow of mass from the delimiting surface be zero (Aris, 1989), formally,∫

V

∂I

dt
dV

︸ ︷︷ ︸
rate of accumulation of mass

+
∫
V

div(Iu)dV

︸ ︷︷ ︸
net rate of outflow of mass

= 0 (2.55)
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x = (x, y). Expanding, the left-hand side of (2.57) using a first-order Taylor series
expansion and reorganizing terms leads to the following differential constraint,

Ixu(x, a) + Iyv(x, a) + (I(x)− (Uc)(x)) = 0. (2.58)

Notice the similarity of (2.58) with the optical flow constraint (2.21), (I(x)−(Uc)(x))
takes the place of the temporal derivative It. Hager and Belhumeur (Hager & Bel-
humeur, 1996; Hager & Belhumeur, 1998) relax the brightness constancy assumption
(2.18) by allowing an additive deviation that models explicitly illumination changes
such as shadows and changing lighting. Illumination changes are modeled as a linear
combination of basis vectors bi, i = 1, . . . , N . The basis vectors bi are “learnt” offline
using principle components analysis (Oja, 1983) on a set of training examplars of the
target region taken under varying illumination conditions. Hager and Belhumeur’s
conservation assumption is given as follows,

I(x+u(x, a), y+v(x, a), t+1) = I(x, y, t = 0)+(Bc)(x), ∀x within the tracked region
(2.59)

where (u(x, a), v(x, a)) represents an image transformation (or motion) parameterized
by a, I(x, y, t = 0) denotes the reference template, B = [b1|b2| · · · |bN ] is a matrix
of basis vectors and c = (c1, c2, . . . , cN)> a vector of basis coefficients. Expanding
the left-hand side of (2.2.4) via a first-order Taylor series expansion and reorganizing
terms leads to the following differential constraint,

Ixu(x, a) + Iyv(x, a) + (I(x, t+ 1)− I(0, t0)) = (Bc)(x). (2.60)

Notice the similarity of (2.60) with Cornelius and Kanade’s linear brightness change
differential constraint (2.36), (I(x, t+1)−I(0, t0)) has replaced the temporal derivative
and the model of brightness change (Bc)(x) has replaced the linear brightness term
c. A drawback of these tracking approaches is the requirement of training prior to
tracking in order to learn the appearance basis.

Table 2.2 provides a summary of the conservation assumptions outlined in this
section and their corresponding differential constraints. To reiterate, the success of
flow recovery approaches based on any of these constraints depends on the validity
of their respective underlying assumptions highlighted in this section.
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Conservation Assumption Differential “Optical flow” constraint

Brightness (cf., density): Ixu+ Iyv + It = 0
d
dtI = 0

Generalized brightness change: Ixu+ Iyv + It = mtI(x, y, t) + ct
I(x− δx, t− δt) = M(x, t)I(x, t) + C(x, t)

Total brightness (cf., mass): Ixu+ Iyv + It + Idiv(u, v)> = 0∫
V

∂I
dt dV +

∫
V

div(Iu)dV = 0

Gradient direction: (IyIxx − IxIxy)u+ (IyIxy − IxIyy)v
d
dt(Ix/Iy) = 0 +IyIxt − IxIyt = 0

Gradient magnitude: (IxIxx + IyIxy)u+ (IxIxy + IyIyy)v
d
dt(I

2
x + I2

y ) = 0 +IxIxt + IyIyt = 0

Product of gradient components: (IxIxy − IyIxx)u+ (IxIyy − IyIxy)v
d
dt(IxIy) = 0 +IxIyt − IyIxt = 0

Difference of squared (IxIxx − IyIxy)u+ (IxIxy − IyIyy)v
gradient components: +IxIxt − IyIyt = 0

d
dt(I

2
x − I2

y ) = 0

Gradient: Ixxu+ Ixyv + Ixt = 0
d
dt∇I = 0 Ixxu+ Ixyv + Ixt = 0

Subspace: Ixu(x,a) + Iyv(x,a) + (I(x)− (Uc)(x)) = 0
I(x + u(x,a), y + v(x,a)) = (Uc)(x)

Subspace brightness change: Ixu(x,a) + Iyv(x,a) + (I(x, t+ 1)− I(0, t0))
I(x + u(x,a), t+ 1) = I(x, t = 0) + (Bc)(x) = (Bc)(x)

Table 2.2. Summary of conservation assumptions and their corresponding differential “optical flow”
constraints.
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2.2.5 Multiple motion representations

This section focuses on spatiotemporal and frequency representations of multiple
motions at a point or within a region. The multiple motion cases considered below are
as follows: transparency (i.e., additive transparency), translucency (i.e., multiplicative
transparency), occlusion and optical snow. Note we limit the discussion to constant
velocity motion, accelerated motion is beyond the scope of this discussion but may
be found in (Balanza & Cortelazzo, 1989). Also, we consider two spatial dimensions
and time, similar results may be developed for the case of one spatial dimension and
time.

In Section 2.1.1 the description of the constant velocity model that observes bright-
ness constancy was given in the spatiotemporal domain as,

I(x, t) = I(x− vt), (2.61)

and in the frequency domain, as,

Î(ω, ωt) = Î(ω)δ(ω · v + ωt), (2.62)

where x = (x, y)> represents the spatial variables, ω = (ωx, ωy)
> the spatial frequency

variables and v = (u, v) the velocity of the moving surface. Eq. (2.62) may be
geometrically interpreted as an impulse plane passing through the origin with normal
(u, v, 1). These two representations of the constant velocity model play fundamental
roles in the development of the multiple motion cases to follow. More specifically, the
spatiotemporal representation of the multiple motion cases are based on compositions
of multiple layers, each of which is considered as a constant velocity model. The key
differentiating aspects among the model descriptions involve the combination rule and
the spatial description of the layers (i.e., compact versus global in extent). A common
assumption among the multiple motion cases detailed below is that the constituent
layers observe brightness constancy, dIi(x, y, t)/dt = 0 for i = 1, 2, . . . , n.

In the case where the imaged surfaces are transparent, more than one motion may
be present at a single image point. For two image sequences that have been additively
combined2, the spatiotemporal structure may be modeled, as follows,

I(x, t) = αI(x− v1t) + (1− α)I(x− v2t), (2.63)

where α ∈ (0, 1). Taking the Fourier transform of (2.63), yields,

Î(ω, ωt) = αÎ(ω, ωt)δ(ω · v1 + ωt) + (1− α)Î(ω)δ(ω · v2 + ωt) (2.64)

2In the case where the transparency is multiplicative, one can simply take the logarithm of
the image sequence which results in an additive transparency of the logarithm of the individual
image sequences. However, the application of the logarithm has numerical implications due to the
compression of the dynamic range.
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Geometrically, the frequency spectrum corresponds to the superposition of the ori-
ented planes from the respective layers. Shizawa and Mase (Shizawa & Mase, 1990;
Shizawa & Mase, 1991a; Shizawa & Mase, 1991b) introduce the chaining of the linear
operators used in the optical flow constraint3 (2.21), to form the following constraint,(

2∏
i=1

(vi, 1)> · ∇)

)
I(x, y, t) = 0 (2.67)

where I(x, y, t) =
∑2

i=1 Ii(x, y, t) represents the superposition of the two images

Ii(x, y, t), vi = (ui, vi) denotes the image velocity in the ith layer and∇ =
(

∂
∂x
, ∂

∂y
, ∂

∂t

)>
.

This constraint may be generalized to N layers by simply extending the limit of the
product of operators to N . Langley et al. (Langley et al., 1992) apply this same
model to the phase-based representation of the image sequence. Interestingly, Mul-
ligan (Mulligan, 1992) has reported that human observers can easily perceive two
coherently moving patterns (layers) of white noise that have been combined addi-
tively. However, beyond two layers, humans are no longer able to perceive all layers
simultaneously.

Translucency motion considers the multiplicative combination of moving layers,
formally,

I(x, y, t) = I1(x− v1t)I2(x− v2t). (2.68)

In the frequency domain translucency manifests as,

Î(ω, ωt) = Î1(ω)δ(ω · v1 + ωt) ∗ Î2(ωx)δ(ω · v2 + ωt), (2.69)

where ∗ denotes the convolution operator. The geometric interpretation of the spec-
trum is dependent on the spectral content of the constituent layers. As a simple
example, assume that a translating impulse (layer 1) is modulated by a moving sinu-
soid (layer 2), the resulting spectrum consists of the spectrum of the impulse (oriented
line) but translated such that it does not contain the origin. As mentioned above,
translucency motion may be converted to transparency motion if the image is pre-
processed by taking the logarithm of the image sequence.

3The optical flow constraint (2.21) using operator notation is defined as follows,

D(v)I(x, y, t) = 0 (2.65)

where D(v) is a linear operator defined as follows,

D(v) =

vx

vy

1

 · ∇. (2.66)
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The spectral analysis of occlusion was first analyzed by Fleet and Langley (Fleet
& Langley, 1994) and later by Beauchemin and Barron (Beauchemin & Barron, 1994;
Beauchemin & Barron, 2000a; Beauchemin & Barron, 2000b) and Yu et al. (Yu
et al., 1999; Yu et al., 2002; Yu et al., 2003). The spatial domain description consists
of three layers, the occluder I1(x) moving with velocity v1 = (u1, v1), a function
delineating the spatial support (window) of the occluder w(x) (e.g., two-dimensional
Heaviside unit step function as considered in (Yu et al., 1999; Yu et al., 2002; Yu
et al., 2003)) moving with velocity v1 and the occluded layer I2(x) moving with
velocity v2 = (u2, v2), combined as follows,

I(x, y, t) = w(x− v1t)I1(x− v1t) + (1− w(x− v1t))I1(x− v2t). (2.70)

Notice that replacing the window function w(x) with a real constant α ∈ (0, 1) yields
the transparency motion case detailed above. The spectral domain description of
occlusion is given as follows,

Î(ω, ωt) =ŵ(ω)δ(ω · v1 + ωt) ∗ Î1(ω)δ(ω · v1 + ωt)

+ Î2(ω)δ(ω · v2 + ωt) (2.71)

− ŵ(ω)δ(ω · v1 + ωt) ∗ Î2(ω)δ(ω · v2 + ωt).

The first two terms of (2.71) are the superposition of the spectral planes of the occluder
and occluded layers. The occluder’s spectral plane is additionally subjected to a
distortion within its plane. The third term accounts for a distortion plane emanating
from the occluded’s spectral plane and parallel to the occluder’s spectra. Furthermore,
the distortion decreases rapidly in a hyperbolic fashion and is in most cases negligible
or only comparable to the noise present (Yu et al., 1999; Yu et al., 2002; Yu et al.,
2003). This insight led Yu et. al (Yu et al., 1999; Yu et al., 2002; Yu et al., 2003)
to conclude that the spectrum of the occlusion is dominated by the two spectral
planes of the constituent layers and that making the use of the distortion to assign
the dominant planes to the occluder and occluded layers unreliable. Furthermore, an
analysis limited to the frequency domain would not allow one to distinguish between
the cases of transparency and occlusion motion. Furthermore, if the background layer
has very little power or the power is concentrated at the origin, then (2.71) becomes
indistinguishable from a translating pattern.

Recently, Langer and Mann (Langer & Mann, 2001; Langer & Mann, 2003; Mann
& Langer, 2005) reported a new class of multiple motions, termed optical snow. An
example where optical snow arises is when an observer moves laterally in a static
three-dimensional scene containing many surfaces at different depths. They extend
the constant velocity model by assuming that within a local image region of analysis
there is a one parameter family of velocities of the form,

v = (ux, vx) = (ux + ατx, uy + ατy), (2.72)
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xω yω

tω

b

Figure 2.11. Optical snow. The “bowtie” spectrum of optical snow is depicted. The family of planes
intersect a common line denoted by b through the origin.

where ux, vy, τx and τy are constants and α is a free parameter. Substituting (2.72)
into the constant velocity model (2.62) produces a one-parameter family of planes in
the frequency domain,

(ux + ατx)ωx + (uy + ατy)ωy + ωt = 0 (2.73)

where each plane intersects a common line through the origin. They liken this family
of planes to a “bowtie” signature (see Fig. 2.11). It should be noted that the bowtie
signature represents an abstraction from the true spectrum of optical snow since the
distortions introduced by the occlusions (see discussion above) of the surfaces are not
explicitly modeled.

Table 2.3 provides a summary of the spatiotemporal and frequency domain defi-
nitions of each of the multiple motion cases detailed above and Fig. 2.12 provides an
illustrative depiction of the composition of each case.
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translucency ×

+

+

transparency =

=

occlusion =

=constant velocity

x

y

Figure 2.12. Layer decomposition of motion. The layer decomposition is depicted for: constant velocity,
transparency, translucency and occlusion. In the case of occlusion, the occluder layer is modulated by
a local windowing function (e.g., two-dimensional Heaviside unit step function) moving with the same
velocity of the occluder and the occluded layer is modulated by the inverse windowing function of the
occluder moving with the same velocity of the occluder. The case of optical snow (not depicted) is
formed by a series of layers combined sequentially by depth order with occlusion (furthest to closest from
the camera).
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Î
1 (ω

)δ(ω
·v

1
+
ω

t )∗
Î
2 (ω

x )δ(ω
·v

2
+
ω

t )

O
cclusion

I(x
,y
,t)

=
w

(x
−

v
1 t)I

1 (x
−

v
1 t)

+
(1
−
w

(x
−

v
1 t))I

1 (x
−

v
2 t)
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Chapter 3

Recovering optical flow

Given a definition of optical flow, how does one estimate the flow from image
data? The estimation relies on pooling information within a region (i.e., aperture) or
at a point (by way of introducing further constraints) in order to avoid the aperture
problem. Further considerations include: robustness to noise and outliers (deviations
from assumptions), and computational complexity. Optical flow estimation methods
can be classified into three main groups:

1. Matching methods: compute image displacements by matching image fea-
tures or image regions across two or more images. These methods are also re-
ferred to as correspondence, block-based, area-based and correlation-based meth-
ods in the literature.

2. Differential methods: compute optical flow using spatiotemporal derivatives.
These methods are also termed gradient-based methods.

3. Frequency-based methods: compute optical flow using local energy or phase
information.

Though motivated differently, it will be demonstrated in Section 3.5 that these
three groups of approaches are broadly analytically equivalent (Adelson & Bergen,
1985; Adelson & Bergen, 1986). In practice, the differences in their respective imple-
mentations can result in dramatic differences in performance (Barron et al., 1994a).

The organization of the rest of this chapter is as follows. In Sections 3.1-3.4
approaches for estimating the optical flow are reviewed. Sections 3.1-3.3 review
matching, differential and frequency-based optical flow estimation methods, respec-
tively. Section 3.4 reviews coarse-to-fine processing of motion within image pyramid
structures. In Section 3.5 the analytical equivalence between certain versions of the
matching-based, differential and frequency-based approaches is outlined. Finally, Sec-
tion 3.6 provides a discussion.

37
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3.1 Matching methods

Matching methods are conceptually the simplest out of the three motion estimation
methods. These methods also appear in the context of stereo vision (Brown et al.,
2003). Generally, matching methods consider the problem of matching image mea-
surements in one image across a sequence of image “snapshots” (see Chapter 2.1.1)
or put another way matching methods attempt to resolve the so-called correspon-
dence problem (Ullman, 1979). Matching methods are broadly classified as either
feature-based or region-based approaches. An advantage of these methods over the
differential- and frequency-based approaches discussed later is that they do not rely on
measurements of the underlying temporal continuous signal which may be potentially
poor due to significant temporal aliasing or lack of sufficient temporal support.

Feature-based approaches consist of extracting highly discriminable points in one
image and seeking their match in another. The selection of features is motivated by
the desire for features to exhibit a high degree of invariance under local image defor-
mations, in particular, photometric distortions (brightness variations) and geometric
distortions brought on by change in viewpoint. Examples of simple features that have
appeared in the literature include lines and corners (e.g., (Moravec, 1977; Beaudet,
1978; Barnard & Thompson, 1980; Kitchen & Rosenfeld, 1982; Förstner & Gülich,
1987; Harris & Stephens, 1988)). A recent trend in the literature considers defin-
ing features based on local image descriptors constructed at points identified by an
interest operator (Schmid & Mohr, 1997; Lowe, 1999; Schmid et al., 2000; Lowe,
2004; Carneiro & Jepson, 2003; Carneiro & Jepson, 2005; Mikolajczyk & Schmid,
2005). The interest operator is selected on the basis of its invariance to photomet-
ric and geometric distortions, while image descriptors are selected on the basis of
discriminibility as well as invariance to photometric and geometric distortions. A
drawback of these approaches is that they yield highly sparse flow fields, requiring
an interpolation post-processing step for the recovery of dense flows. Furthermore,
defining what constitutes a “good” feature is non-trivial (Schmid et al., 2000).

Region-based methods can generally be described as follows. Given a local patch
I1(x, y) in one image frame and the displaced patch in the following frame I2(x, y),
search for the displacement (u, v) (discrete values) that optimizes some similarity
measure M(I1, I2) over a search region (see Fig. 3.1). The local patch must be de-
fined such that it has adequate spatial structure to avoid the aperture problem. Note
that matching can be applied to various derived local image measurements; for a dis-
cussion on potential derived (local) measurements the reader is referred to Chapter
2.1.2. The search region is usually limited to the range bounded by the expected max-
imum displacement. Due to the quantized nature of the search, matching methods
do not yield subpixel precision. To recover subpixel precision several authors (e.g.,
(Anandan, 1989)) have proposed interpolation strategies on the matching surface.

The sum of squared differences (SSD) is a computationally simple matching cri-
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frame i+1

S

frame i

Figure 3.1. Region-based matching. The delineated region in frame i is compared to several regions in
frame i+ 1 within the search space S.

teria that measures the total squared difference among pixels in two regions. The
implicit assumption is that the brightness at each point within the patch is con-
served. There is also a normalized version that makes SSD invariant to additive and
multiplicative illumination changes. Sum of absolute differences (SAD) measures the
total absolute difference among pixels in two regions. Cross-correlation measures the
similarity between two image regions by multiplying pixel-wise and summing the re-
sults; by viewing the regions as vectors this procedure can be seen as a sliding dot
product. Zabih and Woodfill (Zabih & Woodfill, 1994) introduce methods based on
non-parametric local transforms of the images, namely the rank and census transform,
prior to matching. Non-parametric local transforms are local transformations that
rely on the relative order of intensities within a region as opposed to the intensity
values themselves. The rank transform of a pixel is defined as the number of pixels
within the region where the intensity is less than the intensity at the centre pixel.
After applying the rank transform, region-based matching is executed using the sum
of absolute differences. This transform is invariant to additive and multiplicative
brightness changes. In addition, Zabih and Woodfill propose a variation of the rank
transform, termed the census transform, that preserves the spatial distribution of
ranks by encoding them in a bit string for each pixel. Matching is performed by
using the Hamming distance (the number of bits that differ between two bit strings)
between bit strings encoded for each pixel. Table 3.1 provides a listing of common
match measures in the motion and stereo literature; for a comparison of these mea-
sures and their variants see (Burt et al., 1982; Aschwanden & Guggenbuhl, 1993).

In the presence of large velocities, the matching methods described above become
susceptible to false matches due to increases in the search space. Furthermore, the
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time complexity grows quadratically with the maximum possible displacement of a
pixel (Camus, 1995). Barnea and Silverman (Barnea & Silverman, 1972) introduced
the idea of terminating (“early jump-out”) the computation of the match measure
when the partial similarity result exceeds a predefined threshold to reduce computa-
tions. To avoid the quadratic increase in search area, Camus (Camus, 1995) proposed
a “real-time”1 algorithm that fixes the spatial search region to a small value and
searches over time. Optical flow is determined by the best-matching spatial shift di-
vided by the corresponding frame delay. For improving both computational efficiency
and match quality, approaches have been proposed that consider matching within
pyramid structures (e.g., Gaussian and Laplacian pyramid (Burt & Adelson, 1983))
which reduces the search range and enhances salient image structure (Anandan, 1989)
(see Section 3.4 for more details).

To improve match quality, especially around occlusion boundaries, Okutomi and
Kanade (Okutomi & Kanade, 1992) proposed a method to adaptively change the
window size and shape. More recent work on adaptive window matching can be
found in (Fusiello et al., 1997; Hirschmüller et al., 2002; Okutomi et al., 2002). Singh
(Singh, 1990; Singh, 1991) proposed a Kalman filter approach to integrate velocity
estimates over time for the purpose of reducing the search uncertainty (i.e., search
range).

1Liu et al. (Liu et al., 1998) reported that Camus’ optical flow algorithm (Camus, 1995) is
capable of computing the flow on 64× 64 images, with the temporal search region of 10 frames, at
up to 9 frames per second on a 80MHz HyperSparc computer. Limiting the temporal search range
to only 3 frames the algorithm is capable of running at below frame rate.
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3.2 Differential-based estimation approaches

In the following sections, differential-based approaches for the estimation of optical
flow are assumed. Unlike the matching methods discussed above, the differential-
based approaches assume that the image representation is locally continuous in both
the spatial and temporal dimensions. In practice, computations are done on a discrete
representation of the image sequence. In this case, the image sequence is assumed to
be sampled rapidly enough such that measurements in the form of derivatives of the
underlying continuous representation may be recovered (i.e., minimal spatial or tem-
poral aliasing is introduced). Throughout the following discussion, the presentation
will be limited to recovering flow with the optical flow constraint (2.21). However,
the general formulation of these estimators are not specific to the optical flow con-
straint (2.21), similar estimators can be formulated with the “relaxed” differential
constraints detailed in Chapter 2.2.4.

3.2.1 Local estimation methods: Least-squares and variants

As pointed out in Chapter 2.2.2 the full recovery of optical flow at a point using
the optical flow constraint (2.21) alone is an underconstrained problem. To arrive
at a full estimate, at least one more independent constraint is required. Additional
constraints may be realized by assuming that the velocity is locally constant (Glazer,
1981; Lucas & Kanade, 1981a; Lucas & Kanade, 1981b), thus allowing enough con-
straints to be pooled to define a unique solution. More generally a parametric model
of velocity may be assumed to describe the local motion (see Chapter 4.1). Note
that the locally constant velocity model represents a zeroth-order parametric model.
Given the optical flow constraints within a region centred about the point whose ve-
locity estimate is desired, the estimate of the velocity can be obtained by forming a
(weighted) least squares estimate that seeks the velocity that minimizes the sum of
the squared deviation from brightness constancy for each point within the region of
analysis, formally,

arg min
(u,v)

∑
(x,y,t)∈Ω

w(x, y, t)(Ixu+ Iyv + It)
2, (3.1)

where Ω defines the region of analysis and w(·, ·, ·) represents a weighting function;
for example a Gaussian that is centered at the middle of the region of analysis. Dif-
ferentiating (3.1) with respect to the velocity components and setting the derivatives
to zero yields the closed-form solution,

v =

[∑
w(x, y, t)IxIx

∑
w(x, y, t)IxIy∑

w(x, y, t)IxIy
∑
w(x, y, t)IyIy

]−1

︸ ︷︷ ︸
(A>WA)−1

(
−
∑
w(x, y, t)IxIt

−
∑
w(x, y, t)IyIt

)
︸ ︷︷ ︸

A>Wb

, (3.2)
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where

A = (∇I(x1, y1), . . . ,∇I(xn, yn))> (3.3)

b = −(It(x1, y1), . . . , It(xn, yn))> (3.4)

and W is a diagonal matrix with w(x1, y1, t1), . . . , w(xn, yn, tn) along its diagonal.
Even with two or more constraints it may be the case that the minimum number of
independent constraints has not been met (i.e., the aperture problem) and thus no
estimate of the full velocity can be obtained.

It is also instructive to view the least-squares minimization (3.1) in the Fourier
domain. Applying Parseval’s theorem2 to (3.1),

ε(u, v) =
∑

ωx,ωy ,ωt

|F{Ix(x, y, t)}u+ F{Iy(x, y, t)}v + F{It(x, y, t)}|2, (3.6)

where F{f(·)} denotes the Fourier transform of f(·). Applying the the derivative
theorem3 of the Fourier transform to (3.6), yields,

ε(u, v) =
∑

ωx,ωy ,ωt

(ωxu+ ωyv + ωt)
2|Î(ωx, ωy, ωt)|2, (3.7)

where Î(ωx, ωy, ωt) represents the Fourier transform of I(x, y, t). Recalling from
Chapter 2.1.1 that the spectrum of a translating pattern in the frequency domain
lies on a plane passing through the origin (2.32), Eq. (3.7) algebraically expresses
that the minimization problem consists of finding the parameters (u, v) of the plane
ωxu+ωyv+ωt = 0 that accounts for (“nulls out”) the energy in the Fourier spectrum.

A source of significant imprecision in the motion estimates is temporal aliasing
which corrupt the temporal derivative estimates. In this case, precision can be im-
proved by an iterative alignment procedure (Netravali & Robbins, 1979; Lucas &
Kanade, 1981a; Lucas & Kanade, 1981b). This procedure can be likened to Newton-
Raphson’s root finding method (Korn & Korn, 1968). Given the initial velocity
estimate the first image is shifted towards the second image. The motion estimation
procedure is repeated between the newly shifted image and the second image. This
procedure is iterated until convergence.

2Parseval’s theorem states that the power of a signal computed in the spatiotemporal f(x, y, t)
and the frequency F (ωx, ωt, ωt) domains are equal (Lim, 1990), formally,∑

x,y,t

f(x, y, t)2 =
∑

ωx,ωY ,ωt

|F (ωx, ωt, ωt)|2. (3.5)

3The derivative theorem states that the Fourier transform of the derivative of a function f(x, y, t)
equals the Fourier transform of f multiplied by an complex ramp function jω (Lim, 1990). For
example, the Fourier transform of fx(x, y, t) is jωxF (ωx, ωy, ωt) where F is the Fourier transform of
f .
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From a statistical point of view, the least squares solution corresponds to the
maximum likelihood solution in the case where the the temporal derivative measure-
ments of the image intensity are contaminated by additive independently identically
distributed (i.i.d.) Gaussian noise (Press et al., 1992) and the spatial derivatives are
noise-free. As an aside, though the least-squares method is commonly referred to as
the Lucas and Kanade algorithm (Lucas & Kanade, 1981a; Lucas & Kanade, 1981b),
this method had been previously known (Netravali & Robbins, 1979; Horn & Schunck,
1993).

The least-squares solution implicitly assumes that the spatial derivatives of the
image intensity are noise-free. In the estimation of motion this assumption does not
hold in practice. A consequence is that the estimate from the least-squares approach
can be show to be statistically inconsistent and biased toward zero (Van Huffel &
Vandewalle, 1991).

An alternative approach is to assume that all measurements are contaminated by
noise, where the noise is assumed to be i.i.d.. This generalization of the least-squares
solution is called total least-squares (Chu & Delp, 1989; Wang et al., 1992; Weber &
Malik, 1995) or the structure tensor approach (Jähne, 1990; Jähne et al., 1998; Mid-
dendorf & Nagel, 2001) (in the statistical literature this approach also appears under
the names error-in-variables and orthogonal regression (Van Huffel & Vandewalle,
1991)). In the case where the noise is i.i.d. having the same covariance, the total
least-squares solution represents a maximum likelihood estimator (Van Huffel & Van-
dewalle, 1991). Note that the assumption of Gaussian sensor noise is rarely verified
in practice, one appeals to the central limit theorem to justify the approximation.

The key conceptual difference between the least-squares and total least-squares
approaches can be seen by looking at the one-dimensional case of fitting a line y =
mx + b to a set of data points {(xi, yi)}, depicted in Fig. 3.2. The least-squares
solution seeks the parameterization of the line that minimizes the vertical distance
between the data points and the line, whereas in the case of total least-squares, the
solution seeks to minimize the perpendicular distance.

The formulation of the total least-squares solution in the context of optical flow
estimation begins with the following generalization of the optical flow constraint,

Ixu+ Iyv + Itw = 0 (3.8)

where w represents an additional degree of freedom; in the case of the optical flow
constraint (2.21) w = 1.

To obtain further constraints and combat the effects of noise, u = (u, v, w)> is
estimated by minimizing (3.8) locally in a least-squares sense, as follows,

E(u) = min
||u||=1

∑
(x,y,t)∈Ω

g(x, y, t)(∇I(x, t)>u)2 (3.9)
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where Ω defines the region of analysis, the constraint ||u|| = 1 is enforced in order
to avoid the trivial solution u = (0, 0, 0)> and g(x, y, t) is a local spatiotemporal
weighting term, such as a Gaussian.

Expanding (3.9) and applying several matrix manipulation steps, yields,

E(u) = min
||u||=1

u>Su (3.10)

where S, termed the structure tensor (referred to as the gradient tensor in physics),
is given by,

S =
∑
Ω

g(x, y, t)

IxIx IxIy IxIt
IyIx IyIy IyIt
ItIx ItIy ItIt

 (3.11)

=
∑
Ω

g(x, y, t)

IxIy
It

(Ix Iy It
)

(3.12)

=
∑
Ω

g(x, y, t)∇I(∇I)> (3.13)

and ∇ = (∂/∂x, ∂/∂y, ∂/∂t)>. Notice that the first two rows of the structure ten-
sor matrix are equivalent to the data matrix components used in the least-squares
approach (3.2) and the third row accommodates for the variability allowed in the
temporal direction by the introduction of w in (3.8).

One possible route to minimizing (3.10) is to form a Lagrange minimization prob-
lem. It can be shown that this minimization is equivalent to the following eigenvalue
problem,

Su = λu (3.14)

where the sought after solution corresponds to the eigenvector with the smallest
eigenvalue. If the translational model is ideally met then the rank of S is two.

To summarize, the key formulation difference between the least-squares and total
least-squares approaches is in their respective optimization procedures. The least-
squares estimator varies the two spatial components u, v of the optical flow constraint
while keeping the temporal component fixed to one. The total least-squares approach
varies both the spatial and temporal components of the optical flow constraint under
the constraint that the magnitude of the direction vector (u, v, w)> equals one. A
drawback of total least-squares is that if the assumption that the noise is i.i.d. having
the same variance does not hold, the estimate can actually be worse than the least-
squares estimate (Weber & Malik, 1995). Theoretically, the i.i.d. assumption is invalid
due to the fact that the standard methods for estimating the partial derivatives
introduce correlated noise, thus violating the independence assumption (Nagel, 1995).
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Figure 3.2. Least-squares (LS) versus total least-squares (TLS).

3.2.2 Confidence measures

Confidence measures associated with the velocities is also an important but often
neglected topic. In many situations, where the computation of optical flow represents
an input to further stages of processing, associated confidence measures can be used
to weight or discard (i.e., weight of zero) velocity measurements. In the case of
the least-squares solution (3.2), several authors have proposed using measures of the
normal matrix (A>WA)−1. For example, Simoncelli et al. (Simoncelli et al., 1991)
suggested the minimum eigenvalue which is an indicator of how close the matrix is
to being singular. Similarly, Weber and Malik (Weber & Malik, 1995) for the case
of total least-squares used the condition number (Press et al., 1992) of the normal
matrix. Waxman et al. (Waxman et al., 1988) proposed using the Gaussian curvature
associated with the spatial intensity function. Related confidence measures can also
be found in the stereo matching literature, see (Egnal et al., 2004) for an empirical
comparison of measures.

3.2.3 Global estimation methods

The problem of computing the optical flow based on the brightness constancy con-
straint alone is an ill-posed problem in the sense of Hadamard (Hadamard, 1902),
who defined an ill-posed problem as a problem whose solution does not exist or it
is not unique or it is not stable under perturbations of the data. The least-squares
approaches reviewed in Section 3.2.1 are based on the assumption that the motion
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within the local region of analysis is restricted to some compact parametric form. In
this section methods that explicitly include global constraints to restrict the solution
space, making the problem “well-posed”, are reviewed. Horn and Schunck (Horn &
Schunck, 1981) introduced a smoothness constraint based on the assumption that the
flow at neighbouring points are “similar”. The selection of this constraint was guided
by the physical consideration that the real world consists of solid objects with smooth
surface whose projected velocity field is usually smooth. The smoothness term has
the effect of restricting the class of admissible solutions. The measure of smoothness
they proposed was the square of the optical flow gradient magnitude, given by,

‖∇u‖22 and ‖∇v‖22. (3.15)

Another way to look at this constraint is in terms of regularization theory (Poggio
et al., 1984; Poggio et al., 1985; Bertero et al., 1988), where constraints of this form
are taken to stabilize the solution (Tikhonov, 1995). Horn and Schunck (Horn &
Schunck, 1981) combine the optical flow constraint (data term) (2.21) and smoothness
(smoothness term) (3.15) to form the following minimization problem,

min

∫ ∫
(∇I · v + It)

2︸ ︷︷ ︸
data term

+α2 (‖∇u‖22 + ‖∇v‖22)︸ ︷︷ ︸
smoothness term

dxdy (3.16)

where α is a weighting parameter that controls the influence of the smoothness term.
The solution to this minimization problem is a problem of the calculus of variations
(Weinstock, 1974) that yields a system of two partial differential equations to be
solved. These partial differential equations admit a family of solutions related by
arbitrary constants. To arrive at a unique solution further (boundary) conditions
must be introduced. A potential boundary condition that guarantees a unique solu-
tion consists of fixing the value of the velocity function along a simple closed curve
bounding the region of interest, for example, a zero normal derivative of the velocity
along the bounding contour (Horn & Schunck, 1981). The computational realization
of Horn and Schunck’s approach consists of discretizing (3.16), yielding a large set
of linear equations that may be solved using an iterative method (e.g., Gauss-Seidel
(Press et al., 1992)). Unlike local methods (e.g., least-squares) that cannot yield
velocity estimates in regions of constant brightness, global methods (e.g., Horn and
Schunck’s approach) yield full estimates in such regions due to their ability to prop-
agate (fill-in) information from neighbouring regions. It is important to stress that
the assumption of smoothness is based on heuristic grounds as opposed to a sound
physical justification. For instance, in regions where one object occludes another the
assumption of smoothness in the flow does not generally hold. Furthermore, since
smoothness is a vague concept, the form of the smoothness term is not unique. An
important consideration in selecting the form of the smoothness term is that it admits
a unique solution.
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velocity normal flow 
along contour

zero-crossing 
contour

Figure 3.3. Hildreth’s method (Hildreth, 1984) estimates the true velocity along the contour by mini-
mization the squared deviation of the estimated flow along the contour with the projected normal flow
of the potential solution (velocity) subject to a smoothness assumption of the flow along the contour.

Hildreth (Hildreth, 1984), proposed a similar scheme to that of Horn and Schunck,
however the analysis was limited to contours extracted from zero-crossing of the
Laplacian of Gaussian (LOG) filtered image sequence. Estimates of the true velocity
along the contour are found by minimizing the squared deviation of the estimated flow
along the contour with the projected normal flow of the potential solution (velocity)
subject to a first-order smoothness assumption of the flow along the contour (see Fig.
3.3), formally, ∮

zero-crossing contour

α(n̂>v − vn)2 + (u2
s + v2

s)ds (3.17)

where n̂ denotes the unit normal vector perpendicular to the contour at arclength s,
v the velocity at s, vn represents the estimated magnitude of the normal flow (2.26),
us and vs represent the change of the velocity components along the contour and α is
a weighting factor. The reason cited for limiting processing along contours is based
on Marr’s theory (Marr, 1982) that initial motion measurements in the human visual
system are limited to those locations exhibiting significant intensity change. Gong
(Gong, 1989) formulated a similar constraint to that of Hildreth with the addition of
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a squared difference term that accounts for the tangential component of the velocity,∮
zero-crossing contour

α(n̂>v − vn)2 + β(t̂>v − vt)
2 + (u2

s + v2
s)ds (3.18)

where n̂ and t̂ denote the perpendicular and tangential unit normal vectors to the
contour at arclength s, respectively, vn and vt represent the perpendicular and tan-
gential components of velocity, respectively, and α and β are weighting factors. The
tangential component, as shown by Gong (Gong, 1989), can be recovered in regions
where the determinant of the Hessian of the spatial structure is non-zero. A drawback
of these contour-based approaches is that by construction the methods yield sparse
velocity estimates. Furthermore, extracted contours may cross motion boundaries
resulting in incorrect motion estimates.

A prominent issue with the Horn and Schunck approach is that regions consist-
ing of occluding boundaries in motion are blurred and dislocated. To ameliorate the
smoothness across motion discontinuities, Nagel (Nagel, 1983a) and Nagel and Enkel-
mann (Nagel & Enkelmann, 1986) replace Horn and Schunck’s smoothness term in
(3.16) with an oriented-smoothness term that essentially prevents smoothing across
edges which are equated to points in the image that exhibit steep intensity gradients,
formally, ∫ ∫

(∇I · v + It)
2 + α2trace

(
J>WJ

)
dxdy (3.19)

where

J =

[
ux vx

uy vy

]
(3.20)

is the Jacobian matrix of velocity v and W is a weight matrix that encapsulates the
local spatial structure through spatial derivatives. Note, if W is replaced with a 2×2
identity matrix (3.19) becomes (3.16). Interestingly, Nagel (Nagel, 1986) points out
that Hildreth’s method (Hildreth, 1984) can be seen as a special case of the oriented-
smoothness method. A drawback of the approach is that the assumption that edges
coincide with flow discontinuities does not generally hold. For example, edges also
appear in regions of strong texture within an object.

Extensions to the Horn and Schunk (Horn & Schunck, 1981) approach include
reformulating Horn and Schunck’s data term (Weickert et al., 2003), smoothness
term (Schnörr, 1994; Guichard & Rudin, 1996; Weickert & Schnörr, 2001a) or both
terms (Black & Anandan, 1996; Roth & Black, 2005). A further extension consists
of extending the smoothness constraint in (3.16) to the temporal domain (Yachida,
1981; Nagel, 1990; Weickert & Schnörr, 2001b).

A main drawback common to global methods is their computational efficiency
which far exceed those of local methods. Also, the rendered solution is in general
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non-robust 

estimate of line

estimate of line

Figure 3.4. Robust estimator example. Two estimates of a line are depicted, one using a non-robust
formulation (e.g., least-squares) and the other robust, where one grossly outlying data point is present.

different from that of the original problem, even in the case of ideal noise-free data.
Finally, there is no principled way of setting the weighting parameters.

3.2.4 Robust methods

In the formulation of least-squares methods (Section 3.2.1), several assumptions are
made, namely, brightness constancy, and the type of motion model (e.g., translation).
For global methods, the least-squares method’s assumption of a single velocity present
is relaxed by allowing smooth variations in the flow. In cases where gross deviations
(termed outliers) in the assumptions appear, the estimates from these methods may
deviate significantly from the true flow. For example, a significant source of outliers for
the problem of optical flow estimation are at motion occluding boundaries where for
least-squares methods the optical flow constraint and single motion assumption do not
hold, and for global methods the optical flow constraint and smoothness assumption
do not hold. Figure 3.4 depicts the non-robust nature of the least-squares estimate
applied to fitting a line to a set of “noisy” data points. Notice how one outlier moves
the least-squares estimate far from the true value.

Estimators that are invariant to a “small number” of outliers present in the data
are known collectively as robust estimators. Robust estimators developed within
the computer vision community include, the Hough transform (e.g., (Hough, 1962;
Cafforio & Rocca, 1976; Fennema & Thompson, 1979; Adiv, 1983; Bober & Kittler,
1994; Nesi et al., 1995)) and constraint line clustering (Schunck, 1984; Schunck, 1988;
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Schunck, 1989). Methods adapted from the (robust) statistics literature (Huber,
1981; Hampel et al., 1986; Rousseeuw & Leroy, 2003), include, least median squares
(e.g., (Mintz & Meer, 1991; Bab-Hadiashar & Suter, 1996)) and M-estimators (e.g.,
(Black & Anandan, 1993; Odobez & Bouthemy, 1995; Black & Anandan, 1996)).

The Hough transform (Hough, 1962) is a well established method for detecting
parametric curves in an image. In the context of motion estimation, the Hough
transform can be described by the following two steps:

1. Transform the motion estimation problem into an optical flow constraint (2.21)
intersection problem. Each constraint within the region of analysis votes for
the quantized velocities that satisfy it.

2. Determine the velocity with the greatest number of votes (intersections).

Major drawbacks of the Hough transform include, its time and space complexity
which grows exponentially in processing time and memory space as a function of the
number of parameters of the model, and the quantized nature of the the recovered
parameters.

Schunck (Schunck, 1984; Schunck, 1988; Schunck, 1989) proposed the constraint
line clustering algorithm for estimating optical flow with data contaminated by out-
liers, for example, regions spanning occlusion boundaries may include data consistent
with multiple motions. Constraint line clustering uses a form of cluster analysis to
extract an estimate. About each point in the image a set of measurements in the form
of the optical flow constraint (2.21) (constraint line) is taken from a spatial neighbor-
hood about the point. The set of intersections of each of the neighboring constraint
lines is made with the centre constraint. Assuming constant velocity, all constraints
that are consistent with the centre constraint tend to form tight intersection clusters
around the true velocity. Any outlying constraints will not intersect the centre con-
straint line at a consistent point. The algorithm identifies the tightest cluster that
contains approximately half of the intersections (see Fig. 3.5) to make the velocity
estimate. A weakness of the algorithm is that it is susceptible to inaccuracies of the
centre constraint within the analysis region.

The least-median-of-squares (LMedS) method estimates the motion parameters
by solving the following non-linear minimization problem (Bab-Hadiashar & Suter,
1996; Rousseeuw & Leroy, 2003):

arg min
(u,v)

medi{(Ixu+ Iyv + It)
2
i }. (3.21)

A drawback of LMedS is that its efficiency4 is poor in the case where the data is con-
taminated by Gaussian noise (Rousseeuw & Leroy, 2003). An approach to improving

4The efficiency of a method is defined as the ratio between the lowest achievable variance for the
estimated parameters and the actual variance provided by the given method (Stewart, 1999).
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Figure 3.5. Constraint line clustering. The constraint line clustering algorithm identifies the tightest
cluster (highlighted by dashed circle) that contains roughly half of the intersections about the centre
constraint line (dashed line).

the efficiency consists of refining the motion parameters recovered by LMedS using
weighted-least squares motion estimation (3.1) (Rousseeuw & Leroy, 2003).

M-estimators represent a generalization of the least-squares estimator (3.1) in that
the quadratic error norm (·)2 is replaced with a robust error norm ρ(·), formally,

arg min
(u,v)

∑
s∈S

ρ(Ixu+ Iyv + It, σ) (3.22)

where σ is a scale parameter; (3.22) is termed an M-estimator since it corresponds to
a generalization of Maximum-Likelihood estimators (Huber, 1981). The selection of
ρ(·) results in different levels of robustness exhibited by the estimator. One way of
understanding the robustness of a particular error norm is by analyzing its influence
function which characterizes the change in an estimate caused by the inclusion of
outlying data as a function of the distance from the uncorrupted estimate. The influ-
ence function is proportional to the derivative of ρ(·), denoted ψ(·). For robustness,
the influence function should tend to zero as the distance increases. In the least-
squares case, the influence of data points increases linearly and is unbounded (see
Fig. 3.6 (a) and (b)). In Fig. 3.6 (c)-(f) several ρ(·)-functions and their corresponding
ψ(·)-functions are depicted. In practice, the various robust error norms introduced
in the statistical literature do not provide accurate models for real computer vision
applications (Meer, 2004). Thus, the choice of ρ(·) in computer vision applications is
based on empirical rather than theoretical grounds.

M-estimators do not generally admit a closed-form solution. To arrive at an esti-
mate one may apply an iterative minimization technique, such as simultaneous over-
relaxation minimization (SOR) (Press et al., 1992). Alternatively, the minimization
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process can be formulated as an iteratively reweighted least-squares (IRLS) process
(Stewart, 1999; Meer, 2004), which consists of alternating between:

1. calculating weights based on the current parameter estimates

2. estimating the parameters using using weighted least-squares based on the
weights calculated in Step 1.

Due to the non-linear nature of the minimization problem, a good starting point is
required to avoid getting trapped in local minima.

A measure of the robustness of robust estimators is their breakdown point, which
is defined as the smallest fraction of outliers in a data set that can cause the estimator
to produce arbitrarily bad results (Meer et al., 2000). The least median of squares
(Bab-Hadiashar & Suter, 1996) has a breakdown point of 50%. In contrast, the
least-squares estimator has a breakdown point of zero, since one arbitrarily bad point
can move the estimate arbitrarily far from the true value. The breakdown point of
(standard) M-estimators is zero rather that the common misconception in the vision
literature (Meer et al., 2000) of 1/(1 + p), where p is the number of parameters to
be estimated. The satisfactory reported performance of M-estimator-based vision
algorithms highlights the fact that the breakdown point is a theoretical worst-case
concept and may not be a good indicator of robustness in practice (Meer et al., 2000).

A complete treatment on the subject of robust estimators can be found in the
statistics books (Huber, 1981; Hampel et al., 1986; Rousseeuw & Leroy, 2003) and
the computer vision specific tutorial papers (Stewart, 1999; Meer, 2004).
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Figure 3.6. Common error norms ρ(·) - (a),(c) and (e), and their respective first derivatives ψ(·) -
(b),(d) and (f) (proportional to the influence function). The horizontal axis represents x and the vertical
represents ρ(x).
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3.2.5 Probabilistic methods

In this section, probabilistic methods of motion estimation are considered. In partic-
ular, the main focus of this section are Bayesian formulations. Interestingly, from a
human perception point of view a motion estimator based on a Bayesian model has
been reported to predict a wide range of psychophysical results (Weiss & Adelson,
1998).

The central idea behind Bayesian approaches, as the name implies, is Bayes’ the-
orem, formally stated as,

p(A|B) =
p(B|A)p(A)

p(B)
(3.23)

where, p(A|B) denotes the posterior density function, p(B|A) the likelihood, p(A) the
prior, and p(B) a normalization factor (hereafter omitted). Bayes’ theorem can be
thought of as a means of reversing the likelihood. The goal of Bayesian approaches for
the problem at hand is to calculate the posterior probability of velocity (u, v) given
image data I (Weiss & Fleet, 2002),

p(u, v|I) ∝ p(I|u, v)p(u, v). (3.24)

A velocity estimate is often attributed to the maximum of the posterior distribution,
commonly referred to as the the maximum a posteriori or MAP for short. Advan-
tages of casting the motion estimation problem in a Bayesian framework include, the
quantification of the uncertainty of the best estimate, where uncertainty is related to
the inevitable occurrence of the aperture problem and noise in the observation data,
and facilitating the principled combination of information from different sources. An
often cited drawback, argued by frequentists5, is that the priors are set subjectively.

The Bayesian approaches assume a parametric flow within the region of interest.
For ease of exposition the following description of Bayesian approaches will be in
terms of the constant velocity model within the region of interest. The starting point
of these approaches is the specification of the likelihood. For the case of translational
motion, the image data in the form of the gradient of the image sequence ∇I(x, y, t)
is related to image velocity by the optical flow onstraint 2.21,

∇I(x, y, t) · (u(x, y, t), v(x, y, t), 1)> = 0. (3.25)

This constraint defines a plane in the gradient space (Ix, Iy and It). Inevitably, in the
real-world noise enters our estimates of the data. A simple model (approximation)
is that our data, specifically the temporal derivative It, is contaminated by additive

5Frequentists define probability as the long-run expected frequency of occurrence P (X) = n/N ,
where n is the number of times event X is observed in a total of N observations. Whereas, Bayesian-
ists define probability as related to degree of belief. It is a measure of the plausibility of an event
given incomplete knowledge.
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zero-mean Gaussian noise N(0, σ2
n) while the spatial derivatives are assumed to be

exact,

∇I · (u, v, 1)> = N(0, σ2
n). (3.26)

Correspondingly, the likelihood function of observing data ∇I given velocity v =
(u, v) is written as follows,

p(∇I|u, v) ∝ e
−(Ixu+Iyv+It)

2

2σ2
n . (3.27)

This can be thought of as Gaussian deviations from the ideal plane (or mean plane)
in the gradient space isolated to the It dimension.

To combine multiple measurements taken over a small spatial image region it is
assumed that each measurement ∇I i, where i = 1, . . . , N , is independent and the
local velocity is constant (Simoncelli, 2003), formally,

p(∇I1, . . . ,∇IN |u, v) ∝ e
PN

i=1

−(Ii
xu+Ii

yv+Ii
t)2

2σ2
n . (3.28)

To complete the definition of the posterior, a prior must be selected. When the
prior is assumed uniform (i.e., all velocities are equally likely), the maximum of the
posterior corresponds to the least-squares solution (Lucas & Kanade, 1981b) which in
turn corresponds to the maximum likelihood estimate. Simoncelli (Simoncelli, 2003)
proposes a zero-mean Gaussian priorN(0, σ2

v) that favours slower velocities over larger
ones,

p(u, v) ∝ e
−(v2

x+v2
y)

2σ2
v (3.29)

based on the intuition that in the absence of any specific image information, for
example images taken in a dark room, one should assume that things are not moving.
Combining the likelihood (3.28) and prior (3.29) yields the following posterior,

p(u, v|∇I1, . . . ,∇IN) ∝ e
PN

i=1

−(Ii
xu+Ii

yv+Ii
t)2

2σ2
n

−
(v2

x+v2
y)

2σ2
v . (3.30)

Since the posterior (3.30) is a Gaussian, the MAP solution in this case is equivalent
to the mean of the posterior.

In practice, the assumption of attributing additive noise solely to the temporal
derivative is unrealistic. Nestares et al. (Nestares et al., 2000) counter with the
assumption that identically additive zero-mean Gaussian noise pervades all three
derivative measurements. This assumption yields the following likelihood function
(Nestares et al., 2000),

p(∇I1, . . . ,∇IN |u, v) ∝ e
PN

i=1

−(Ii
xu+Ii

yv+Ii
t)2

2σ2
n(1+v2

x+v2
y) . (3.31)
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The maximum likelihood estimate (i.e., prior set to uniform) in this case corresponds
to the total least-squares velocity estimate (Weber & Malik, 1995).

In contrast to the above approaches that attribute the noise to the measurement
process, Cremers and Yuille (Cremers & Yuille, 2003) introduce noise on the velocity
itself and assume that the noise in the measurements is relatively negligible.

Probabilistic methods that attempt to capture the global velocity field, model
the velocity at each image point as a random variable. The ensemble of random
variables has been modeled as a Markov Random Field (MRF). In the MRF model,
the value (i.e., velocity) at one location (discrete) in the image is dependent only on
the values at neighbouring locations. Approaches in the literature based on MRFs
include (Konrad & Dubois, 1992; Francois & Bouthemy, 1993).

3.3 Frequency-based approaches

In this section, frequency-based motion estimation techniques are reviewed. The rea-
son for collectively calling these approaches frequency-based, even though the process-
ing in the majority of the approaches discussed below is carried out in the spatial
domain, is due to the fact that these approaches rely on the design of velocity-tuned
filters in the Fourier domain.

The Fourier Method (Haskell, 1974; Kuglin & Hines, 1975; Arking et al., 1978;
Huang & Tsai, 1981) represents the earliest instance of these algorithms. Assuming
brightness constancy between two consecutive frames, I(x, y, t) and I(x, y, t − 1),
displaced with respect to each other by (u, v), the Fourier Method leverages the
linear phase shift relationship between the frames in the Fourier domain (developed
in Chapter 2.2.2),

Î(ωx, ωy, t) = Î(ωx, ωy, t− 1)e−j2π(ωxu+ωyv) (3.32)

where Î(ωx, ωy, t) and Î(ωx, ωy, t−1) denote the Fourier transforms of their respective
images. To compute the displacement, the Fourier Method utilizes the shift property
of the Fourier transform (Lim, 1990),

Î(ωx, ωy, t) = Î(ωx, ωy, t− 1)e−j2π(ωxu+ωyv) (3.33)

where Î(ωx, ωy, t) and Î(ωx, ωy, t−1) denote the Fourier transforms of their respective
images. To solve for (u, v), the difference between the phase angles (denoted by ∠)
of Ît and Ît−1, given by,

∠Î(ωx, ωy, t)− ∠Î(ωx, ωy, t− 1) = −2π(ωxu+ ωyv) (3.34)

is taken at two frequency pairs. This yields two linear equation in the unknowns
(u, v) which are then solved. To lessen the spectral effects introduced by the “hard”
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image borders, the images should be windowed by a smoothly tapering function,
such as a Gaussian window. This approach can be applied to local regions of the
image by limiting the region analysis via local windowing. The Fourier method has
been generalized to handle in-plane rotational motion (de Castro & Morandi, 1987),
polynomial motion (e.g., acceleration) (Chen et al., 1996) and periodic motion (e.g.,
circular) (Chen et al., 1996).

Instead of limiting the analysis to only two frames, as above, the energy and
phase-based approaches treat the image sequence as a spatiotemporal (continuous)
volume, where as discussed in Chapter 2.2.2 a translating scene obeying the brightness
constancy assumption manifests itself in the Fourier domain as a planar spectrum
(or line when considering a single spatial dimension) through the origin with its
orientation as a function of velocity, formally,

Î(ωx, ωy, ωt) = Î0(ωx, ωy)δ(ωxu+ ωyv + ωt) (3.35)

where δ(·) represents the Dirac delta function and Î0(ωx, ωy) represents the spatial
Fourier transform of the first image in the sequence I(x, y, 0). Given constraint (3.35),
both the energy and phase-based approaches are based on the use of velocity-tuned
filters.

Adelson and Bergen (Adelson & Bergen, 1985; Adelson & Bergen, 1986) propose
a filtering approach to identify the local spatiotemporal orientation, or equivalently
the orientation of the linear energy spectrum (see Chapter 2.2.2 for details); their pre-
sentation is limited to motion in one spatial dimension, Heeger (Heeger & Pentland,
1986; Heeger, 1987; Heeger, 1988) and later Simoncelli (Simoncelli, 1993b) extended
the analysis to motion in two spatial dimensions. The output from a single oriented
linear filter (e.g., Gabor filter, derivative of Gaussian) is not only a function of veloc-
ity, but also of the local phase and contrast (Adelson & Bergen, 1986). To remove
the phase information, the authors take the sum of the squared outputs of a pair of
quadrature filters (filters out of phase by 90°); this process is illustrated in Fig. 3.7.
This yields a measure of the local energy (cf. (Granlund, 1978; Knutsson & Granlund,
1983; Malik & Perona, 1990; Freeman & Adelson, 1991)). To arrive at the final ve-
locity estimate that is invariant to contrast the authors propose a ratio that takes the
output of filters selective for rightward and leftward motion in an opponent fashion
(subtraction) over the output of a filter selective for zero velocity (static), formally,

v =
R− L
S

, (3.36)

where R represents rightward energy, L leftward energy and S static energy. The
authors liken the approach to that of colour vision, where overlapping cone responses
are combined to give a measure of colour that is invariant to brightness.

Heeger (Heeger & Pentland, 1986; Heeger, 1987; Heeger, 1988) proposes an al-
gorithm based on the local energy recovered from a set of oriented filters. Heeger
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Figure 3.7. Motion energy. The energy image is formed by: (1) filtering the input image by a pair
of oriented, 90° out of phase filters (quadrature pairs) (2) individually squaring the outputs and (3)
summing.

derives the expected response for a translating white noise image using a set of 12
Gabor energy filters tuned to various spatiotemporal orientations that lie along a
cylinder in the frequency domain. To estimate the motion (u, v), Heeger formulates
a non-linear least-squares estimate that seeks the minimum difference between the
measured motion energy and the predicted energy. As with any practical non-linear
optimization, recovering the global minimum is not guaranteed.

In contrast to the above energy-based approaches that discard the phase infor-
mation, Fleet and Jepson (Fleet & Jepson, 1989; Fleet & Jepson, 1993) recover the
estimate of velocity using only the local phase component. The motivation for using
the phase component is their claim that the phase is more stable than the amplitude
component when the inevitable small deviations from purely translational motion oc-
cur (Fleet & Jepson, 1993). The initial step consists of extracting the local phase by
convolving the image sequence by a set of complex bandpass filter (e.g., Gabor filter,
nth derivative of a Gaussian) tuned to a narrow range of orientation, speed and scale.
The filter response is given by:

R(x, y, t) = ρ(x, y, t)eiφ(x,y,t) (3.37)

where ρ(x, y, t) denotes a measure of the local amplitude and φ(x, y, t) the local phase.
Assuming local constancy of the phase,

dφ(x, y, t)

dt
= 0, (3.38)

yields the phase-based analog to the optical flow constraint (2.21),

φx(x, y, t)u+ φy(x, y, t)v + φt(x, y, t) = 0. (3.39)
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Like the optical flow constraint, the aperture problem is still present when considering
the output of a single filter at a point. Possible solutions include pooling, in a (total)
least-squares sense, the phase outputs from multiple orientations and/or the phase
within a local patch. This is akin to the approach of Weber and Malik (Weber
& Malik, 1995), with the exception that Fleet and Jepson consider only the local
phase signal, whereas Weber and Malik consider the joint local amplitude and phase
signal. Advantages of the phase-based approach claimed by the authors is that it is
relatively insensitive to variations in illumination, contrast and perspective projection
deformations. The main disadvantage of the approach is its high computational cost
due to the bandpass filtering preprocessing step.

3.4 Coarse-to-fine processing

A key element shared by numerous motion estimation algorithms (e.g., (Wong &
Hall, 1977; Glazer et al., 1983; Burt et al., 1983; Rosenfeld, 1984; Glazer, 1987;
Anandan, 1989; Bergen et al., 1992; Spetsakis, 1997)) is coarse-to-fine processing
within an image pyramid data structure such as a Gaussian (Burt, 1981) or Laplacian
pyramid (Burt & Adelson, 1983; Crowley & Stern, 1984) (cf. multigrid approaches,
e.g., (Glazer, 1984; Terzopoulos, 1986; Enkelmann, 1988; Memin & Perez, 1998)).
Image pyramids consist of multiresolution (i.e., multiple frequency passbands) and
multiple pixel density (i.e., downsampled) representations of the original image. The
Gaussian pyramid represents the input image in terms of successive low-pass versions,
whereas the Laplacian pyramid consists of bandpass copies of the input image (see
Fig. 3.8 for an example Gaussian and Laplacian pyramid). The basic steps of motion
estimation between two images, denoted I(t−1) and I(t), within a pyramid structure
are as follows (see Fig. 3.9 for a diagrammatic summary of the basic steps of pyramid
processing):

1. Start at the top most level (i.e., lowest resolution) of the pyramid and find the
motion estimate.

2. Propagate the motion estimate down to the next level of the pyramid.

3. (a) Using gradient-based estimator: Warp (i.e., transform) I(t − 1) towards
I(t) using the previous motion estimate.

(b) Using region-based estimator: Update search region.

4. Estimate the residual motion as in Step 1 and combine the previous estimate
and the estimate of the residual motion.

5. Iterate between Steps 2-4 until the bottom of the pyramid is reached. The
estimate at the bottom of the pyramid is taken as the motion estimate.



3.4. COARSE-TO-FINE PROCESSING 61

0 1 2 3

Gaussian

Pyramid

0 1 2 3

Laplacian

Pyramid

Figure 3.8. Gaussian and Laplacian pyramid examples. The first four levels of the Gaussian (top) and
Laplacian (bottom) pyramids for the “Einstein” image are depicted.

Common justifications for embedding the estimation within a coarse-to-fine pyra-
mid scheme are that it allows for the estimation of significant image displacements
by reducing the number of local minima that the estimate can be potentially trapped
in and computationally efficiency. Sources of these local minima, include, temporal
aliasing caused by a displacement greater than half the period of the highest fre-
quency component and noise. Additionally, when gradient-based motion estimators
are utilized within a pyramid framework on regions containing multiple motions, they
tend to “lock-onto” a single motion as the estimator progresses down the pyramid
and report one of the motions present (Burt, 1991; Burt et al., 1991). This prop-
erty was utilized in (Burt et al., 1989; Bergen et al., 1990; Bergen et al., 1991; Burt,
1991; Burt et al., 1991; Irani et al., 1994). A drawback of the coarse-to-fine pyramid
scheme is that it often produces incorrect motion estimates when large estimation
errors in coarser scales cannot be corrected at finer scales. This may happen when
regions of low texture become flat at the coarsest level of resolution. To address the
problem propagating incorrect estimates from coarser scales, Simoncelli (Simoncelli,
1993a) includes the knowledge of the uncertainty of coarse scale estimates. This is
done using using a standard Kalman filter where the time variable is replaced by
scale.
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Figure 3.9. Hierarchical motion estimation. Given two temporally ordered images, the first step consists
of constructing Gaussian pyramids (Burt, 1981) (or Laplacian (Burt & Adelson, 1983) pyramids formed
by differences between successive Gaussian pyramid levels) of each image to level 2, denoted by I(t− 1)
and I(t) respectively. This is accomplished by a series of convolutions (asterisk symbol) by the kernel
G and downsampling by 2 (represented by the symbol with an arrow point down and the number 2).
Starting from level 2, each level i ∈ {0, 1, 2} of pyramid I(t− 1) is warped (represented by symbol W )
by the previous estimate of the motion model’s parameters (warp) pi−1 plus the residual motion estimate
4pi. This is followed by the estimation (represented by M) of the residual motion 4pi+1 between the
warped image and level i of I(t). This diagram is adapted from (Bergen et al., 1992).

3.5 Equivalences

Though motivated differently, the three main groups of optical flow methods, namely,
matching, differential and frequency-based methods are broadly equivalent. In this
section the analytic equivalence between certain versions of the matching (Reichardt
model (Reichardt, 1961) and sum of square differences), differential (Lucas and Kanade
algorithm (Lucas & Kanade, 1981a; Lucas & Kanade, 1981b)) and spatio-temporal
energy (Adelson and Bergen model (Adelson & Bergen, 1985; Adelson & Bergen,
1986)) approaches are outlined. Interestingly, these equivalences between the three
models have posed problems in declaring from psychophysical experiments any one
of these models as the model for the human motion sensor (Derrington et al., 2004).
However, physiological experimental evidence on motion-selective neurons in the cat
striate cortex exists that favours the motion energy model (Emerson et al., 1992).

First, we examine the equivalence between the differential approach (i.e., Lu-
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cas and Kanade algorithm) and the spatio-temporal energy approach6 (Adelson and
Bergen model; see Section 3.3). For ease of exposition we limit the discussion to
the one-dimensional version of the algorithms; Heeger and Simoncelli (Heeger & Si-
moncelli, 1992; Simoncelli, 1993b) demonstrates how the two-dimensional differential
approach can be interpreted as a spatio-temporal energy approach, in that the dif-
ferential solution is computed from the opponent combinations of squared oriented
filter responses.

The one-dimensional velocity estimate v using the Lucas and Kanade (Lucas &
Kanade, 1981a; Lucas & Kanade, 1981b) algorithm is given as follows,

v =

∑
x

w(x)IxIt∑
x

w(x)I2
x

(3.40)

where w(·) is a weighting function (e.g., Gaussian) and Ix, It represent the spatial
and temporal derivatives of brightness function I, respectively. A summary of the
implementation of the Lucas and Kanade algorithm used in the following sketch of
equivalence is given in Algorithm 1 on page 64.

Rather than computing the blurred spatio-temporal derivatives in the Lucas and
Kanade algorithm (Algorithm 1 - Step 2) in two steps the operations can be combined
into single filters,

Kx(x, t) =
∂G(x, t)

∂x
=

∂

∂x
∗G(x, t) (3.49)

Kt(x, t) =
∂G(x, t)

∂t
=

∂

∂t
∗G(x, t). (3.50)

Thus the numerator calculation in Algorithm 1 - Step 3 can be rewritten as

IxIt = (I ∗Kx)(I ∗Kt) (3.51)

which may be rewritten as follows,

IxIt =
(I ∗Kt + I ∗Kx)

2 − (I ∗Kt − I ∗Kx)
2

4
. (3.52)

Further manipulation yields,

IxIt = c([I ∗
(
Kt +Kx√

2

)
]2 − [I ∗

(
Kt −Kx√

2

)
]2) (3.53)

where c = 1/2. The manipulation yields two new filters,

KR =
Kt −Kx√

2
=

1√
2

(
∂G(x, t)

∂t
− ∂G(x, t)

∂x

)
(3.54)

KL =
Kt +Kx√

2
=

1√
2

(
∂G(x, t)

∂t
+
∂G(x, t)

∂x

)
. (3.55)

6This derivation is adapted from (Adelson & Bergen, 1986).
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Algorithm 1 Lucas and Kanade algorithm (one-dimensional version)
1: Convolve I(x, t) with a spatio-temporal Gaussian G(x, t) to remove the high spatiotemporal

frequencies,
IG((x, t) = I(x, y) ∗G(x, t) (3.41)

where ∗ denotes convolution.
2: Compute the spatial derivative Ix(x, t) and temporal derivative It(x, t),

Ix(x, t) =
∂IG(x, t)

∂x
=
∂I(x, t) ∗G(x, t)

∂x
=

∂

∂x
∗ (I(x, t) ∗G(x, t)) (3.42)

It(x, t) =
∂IG(x, t)

∂t
=
∂(I(x, t) ∗G(x, t))

∂t
=

∂

∂t
∗ (I(x, t) ∗G(x, t)) (3.43)

3: Compute the numerator of (3.40) (denoted In(x, t)) by multiplying the local spatial and temporal
derivatives,

In(x, t) = Ix(x, t)It(x, t) (3.44)

4: Compute denominator of (3.40) (denoted Id(x, t)) by squaring the local spatial derivative,

Id(x, t) = Ix(x, t)2 (3.45)

5: Compute the sums of the numerator and denominator by convolving (3.44) and (3.45) by a
spatial window function w(x) (e.g., a rectangular function with unit response or as in (Adelson
& Bergen, 1986) a Gaussian),

I ′n = In(x, t) ∗ w(x) (3.46)

I ′d = Id(x, t) ∗ w(x) (3.47)

6: Compute the velocity estimate vest as a ratio of the weighted ratios,

v =

∑
x
w(x)IxIt∑

x
w(x)I2

x

=
I ′n
I ′d

(3.48)

Thus simplifying (3.53) as follows,

IxIt = c[(I ∗KL)2 − (I ∗KR)2]. (3.56)

Inspection of the filters KR and KL reveals that they correspond to oriented deriv-
ative of Gaussians matched to rightward and leftward movement, respectively. Fur-
thermore, their combination corresponds to an opponent mechanism. Thus the nu-
merator corresponds to a local weighted sum over the opponent channel. Likewise,
the denominator corresponds to a local weighted sum over the static energy channel.

Putting everything together demonstrates the mathematical equivalence7 between

7Notice that the quadrature counterparts of R, L and S do not appear. The phase is eliminated
through summation over the window

∑
x
w(x).



3.5. EQUIVALENCES 65

the gradient and energy methods for velocity estimation, formally,∑
x

w(x)(I ∗Kt)(I ∗Kx)∑
x

w(x)(I ∗Kx)2
=

c
∑
x

w(x)(R− L)∑
x

w(x)S
. (3.57)

Next we turn our attention to the equivalence between an instance of a matching
approach in the form of a modified Reichardt model, and an energy-based approach,
specifically Adelson and Bergen’s energy model (Adelson & Bergen, 1985); the presen-
tation of this equivalence is adapted from (Adelson & Bergen, 1985). The Reichardt
model is a classic matching (correlation) approach proposed to model the motion sen-
sor of flies (Reichardt, 1961) and later extended to model the human motion sensor
(e.g., (van Santen & Sperling, 1984)). A single Reichardt detector is tuned to speed
and therefore one would need many detectors tuned to different speeds to encode the
true speed of the pattern. Figure 3.10 (a) depicts a modified version of van Santen
and Sperling’s Reichardt-type model. An input signal I(x, t) is fed into two spatial
filter units f1(x) and f2(x) that represent receptive fields that are displaced in terms
of position (or equivalently in phase in cases where the displacement of the spatial
filter units units are less than the largest period). The outputs are fed into two tem-
poral filters h1(t) and h2(t) where h2(t) includes a time delay. Pairs of the output of
these units denoted by A,A′, B′ and B are then combined multiplicatively, yielding
the outputs AB′ and BA′. The final step consists of taking the difference of the
outputs yielding AB′ −BA′.

Now we consider Adelson and Bergen’s energy model depicted in Fig. 3.10 (b).
As in the initial stages of the Reichardt model (Fig. 3.10 (a)) the input signal passes
through the spatial and temporal filter units with their outputs denoted by A,A′, B′

and B. Sums and differences of the output units are combined yielding spatiotempo-
rally oriented responses selective for rightward and leftward motion as well as their
respective quadrature outputs (differing in phase by 90°). Response quadrature pairs
selective for rightward and leftward are combined by summing the squared responses
of their respective pairings which yields a measure of the oriented energy (i.e., the
phase has been removed). The final stage consists of combining the oriented right-
ward and leftward energy responses in opponent fashion leading to the final output
of 4(AB′−A′B). Importantly, though the formulations are motivated differently, the
outputs of the two models turn out to be identical up to a multiplicative factor.

Alternatively, one can establish a relationship between the differential and match-
ing techniques through the differential-based least-squares method and the matching-
based sum of square differences (SSD). Beginning with the SSD formulation,

ε(u, v) =
∑
x,y

[I(x, y, t)− I(x+ u, y + v, t+ 1)]2 (3.58)
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Fig. 18. (a) A version of the Reichardt model that is formally equivalent to a version of an energy model. The visual input I(x, t) passes through          
the two spatial impulse responses f1(x) and f2(x). Following van Santen and Sperling,6 these functions can be bandpass, differing in phase                
or in position. Each output passes through the two temporal functions h1(t) and h2(t) where h2(t) is more low passed or more delayed than                
h1(t). The four separable responses are labeled A, A', B, and B'. The products AB' and BA' are generated, and their difference constitutes                
the final output. (b) An equivalent spatiotemporal energy model. The same spatial and temporal filters are used. Sums and differences generate
directionally selective filters. Sums of squares of quadrature pairs give motion energy for each direction. The difference between the rightward        
and leftward signals gives the final output. This turns out to be identical with the output of the Reichardt model. The equivalence holds only                
for  energy  models  that  are  based  on  sums  of  separable  filter  pairs.

Distinctions between the models may then be possible only  
on the basis of physiological and psychophysical experiments
that examine motion responses in detail. For example, the
independent detection of rightward and leftward motion at
threshold36,37 is fairly easy to accommodate in a spatiotem-
poral energy model but is not readily accommodated in a
Reichardt model. Experiments of this kind exploit non-
linearities such as thresholds, causing the equivalence of the
two models to break down. The order in which things are
computed does influence the output when thresholds come    
into  play.

But it is more appropriate to stress the strong similarities
between these models rather than their differences. In most
suprathreshold situations, a spatiotemporal energy model of
the sort described here will be experimentally indistinguish-
able from a model of the sort described by van Santen and
Sperling. This is a remarkable fact: Two approaches to    
motion modeling, motivated by different philosophies, con-
verge  on models  that  are  almost  identical  from  a  functional

point of view. Thus in many situations either model can be
used, the choice being determined by conceptual and math-
ematical convenience. A Reichardt-type model is built of    
fewer stages than is an equivalent energy model of the sort  
that we have described and in this sense is simpler; it also
appeals to intuitions about matching over time. By the same
token, the spatiotemporal-energy approach, which derives its
motion selectivity through tuned linear filters, fits in directly
with the familiar mathematics of linear systems theory and
thus may be easier to apply in many situations. The energy
approach also encourages one to develop intuitions about
motion as orientation when stimuli are represented in x-y-t
space. These intuitions can be quite helpful in thinking about
motion.
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(a) Reichardt (Correlation) Model.

2

(b) Adelson and Bergen Energy Model.

Figure 3.10. Equivalence between correlation and energy model. The visual input I(x, t) is convolved
in parallel by two spatial bandpass functions f1(x) and f2(x) that differ in phase. Each output is then
convolved by temporal functions h1(t) and h2(t) that differ in phase. The operations +,−, (·)2 are taken
pointwise. Reprinted from (Adelson & Bergen, 1985) with permission from the Journal of the Optical
Society of America.

an approximation of (3.58) is its first-order Taylor series,

ε(u, v) ≈
∑
x,y

(I(x, y, t)− (I(x, y, t) + uIx(x, y, t) + vIy(x, y, t) + It(x, y, t)))
2 (3.59)

=
∑
x,y

(uIx(x, y, t) + vIy(x, y, t) + It(x, y, t)))
2 (3.60)

which yields the least-squares formulation. Therefore, both the SSD and least-squares
methods minimize approximately the same error but differ in the way the optimization
problem is solved.

By transitivity, the energy, matching and differential-based methods are broadly
equivalent (at least among certain formulations of these approaches).
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3.6 Discussion

This chapter reviewed literature directed at the estimation of optical flow. Though
many of the approaches can be shown to be similar if not equivalent, a key advantage
of having diverse formulations is that they may provide unique insights that may not
be evident in a particular formulation. In practice, the differences in their respec-
tive implementations can result in dramatic differences in performance as measured
by accuracy (Barron et al., 1994a), density of estimates (Barron et al., 1994a) and
computational efficiency (Liu et al., 1998).

The quantitative comparison of flow algorithms is an important issue that has
been given limited attention due to the difficulty in obtaining ground truth from
real image sequences. Most comparisons rely on synthetic data sets where ground
truth is available by construction. The Yosemite sequence has emerged as the de
facto standard synthetic test sequence for the quantitative comparison of optical flow
algorithms (see Fig. 3.11 for an example frame and its corresponding motion field).
The sequence was generated by a fly through of the Yosemite valley texture mapped
onto a depth map of the valley. In the upper right the flow is mainly divergent, the
clouds translate to the right at 1 pixel/frame, while the velocities in the lower left are
about 4 pixels/frame. The challenging aspects of this sequence include: the range of
velocities, the violation of brightness constancy in the clouds, and the severe spatial
aliasing in the lower portion of the images. Table 3.2 summarizes the quantitative
performance of several motion estimators based on the Yosemite sequence as test
data. The error between the ground truth velocity vg = (ug, vg, 1)> and the estimate
ve = (ue, ve, 1)> is given by the angular error (Fleet & Jepson, 1990; Fleet, 1992),

ε = arccos

(
v>g ve

‖vg‖‖ve‖

)
. (3.61)

This error metric simultaneously measures error in the direction and magnitude. A
problem with this measure (or a feature, if you prefer) is that symmetric deviations
from the true value result in different angular errors (Otte & Nagel, 1994). Also, when
comparing large velocities the differences correspond to relatively small angular errors
(Otte & Nagel, 1994). Density is associated with the percentage of estimates that are
deemed reliable. For local estimation algorithms, corresponding confidence measures
are available for each flow estimate; if the confidence is below a certain threshold, the
flow estimate is discarded. There are two main observations that can be made: (1) the
average error has generally decreased (see Fig. 3.12) and (2) the global formulation
of Bruhn et al. (Bruhn et al., 2005) achieves the least average angular error. The
trade-off for accuracy in Bruhn et al.’s formulation is computational speed, requiring
on the order of seconds to compute the flow in a single greyscale image. Thus, Bruhn
et al.’s formulation, and more generally global methods, are precluded from usage in
current real-time applications. The comparative results should be taken with a degree
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of skepticism since most reported results for this sequence rely on tuning parameters
so that one obtains the best results on a particular frame pair (Roth & Black, 2005).

Given the difficulty with obtaining ground truth for real-world images, Lin and
Barron (Lin & Barron, 1994) examine the suitability of using reconstructed real-
images from optical flow estimates as an error metric. Beginning with an image and
its optical flow, the next image in the sequence is generated by forward (or backward)
image reconstruction. The error metric proposed is the root mean square (RMS) error
between the actual images and their reconstructed companions. The authors report
that the RMS reconstruction error is well correlated to the angular error 3.61.

Kearney et al. (Kearney et al., 1987) presented an error analysis of local gradient-
based approaches. They concluded that large errors are made in highly textured
regions with significant flow; where highly textured regions are defined as regions
where the second-order spatial derivative is significant. This has led many to falsely
conclude (e.g., (Heeger, 1987)) that local gradient-based approaches are unreliable.
The confusion is resolved by realizing that the source of Kearney et al.’s estimation
error is directly related to their poor choice of differential operator in their analysis
(Jähne, 2005), namely forward differences. Accurate optical flow estimates require
care in the estimation of the derivatives; the design of optimized derivative filters for
optical flow estimation and more generally multi-dimensional data represents an ac-
tive area of research (see (Simoncelli, 1994; Scharr, 2005) for example contributions).

For many applications it has been traditionally assumed that the full optical flow
estimate should represent an input for further stages of processing. This begs the
question, does this really have to be the case? For the problem of structure from
motion, the recovered optical flow is ill-suited due the extreme sensitivity of the
solution to the inevitable imperfections in the flow (e.g., (Daniilidis & Spetsakis,
1997)). Fermüller (Fermüller, 1993) demonstrates that forgoing the full optical flow
estimate and instead using partial information in the form of the normal flow in
a qualitative manner can yield a reliable estimate of the three-dimensional motion
relative to the scene. Others, such as Horn and Weldon (Horn & Weldon, 1988),
have proposed direct methods that forgo flow estimates altogether by relating scene
parameters directly to image structure.

As can be seen in this chapter, a tremendous amount of research in the study of
image motion has been based on a very local view of coherence both spatially and
temporally. An interesting open problem put forth recently by Nagel (Nagel, 2000)
is “what is assumed to remain constant becomes inexorably intertwined with the
question over which extent in space and time one assumes the expected constancy
to hold”. As pointed out by Nagel (Nagel, 2000) a theoretical foundation is required
for this extended view. In the next chapter, approaches that extend the spatial and
temporal dimensions for the purpose of making richer regional descriptions of motion
are considered.
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Technique Global Average Standard Density
Error Deviation

Horn & Schunck (Horn & Schunck, 1981)
√

32.43° 30.28° 100%
Lucas & Kanade (Lucas & Kanade, 1981b) 4.10° 9.58° 35.10%
Nagel (Nagel, 1983b)

√
11.71° 10.59° 100%

Heeger (Heeger, 1987) 10.51° 12.11° 15.2%
Anandan (Anandan, 1989)

√
15.84° 13.46° 100%

Fleet & Jepson (Fleet & Jepson, 1989) 4.29° 11.24° 34.10%
Weber & Malik (Weber & Malik, 1995) 4.31° 8.66° 64.2%
Black & Anandan (Black & Anandan, 1996)

√
4.46° 4.21° 100%

Farneback (Farneback, 2001) 1.14° 2.14° 100%
Bruhn et al. (Bruhn et al., 2005)

√
1.02 N/A 100%

Roth & Black (Roth & Black, 2005)
√

1.47° 1.54° 100%

Table 3.2. Summary of Yosemite (Fig. 3.11) velocity results. The sky region is excluded for all results.
The Average Error measures the average of (3.61) in the image (excluding velocities categorized as
unreliable). Standard Deviation measures the standard deviation of (3.61) in the image (excluding
velocities categorized as unreliable). Density summarizes the percentage of flow measurements in the
image that were considered reliable based on the formulations confidence measure. Global indicates
whether the corresponding estimator is based on a global regularization or a local formulation. N/A
≡ not available. The results are compiled from (Barron et al., 1994b; Farneback, 2001; Bruhn et al.,
2005; Roth & Black, 2005). Note that the results of Roth and Black (Roth & Black, 2005) report results
on a version of the Yosemite sequence without the presence of the clouds.
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226 Bruhn, Weickert and Schnörr

Figure 5. From left to right, and from top to bottom: (a) Frame 8 of the Yosemite sequence without clouds. (b) Corresponding frame of
the sequence with clouds. (c) Ground truth between frame 8 and 9 for the sequence without clouds. (d) Ditto for the sequence with clouds.
(e) Computed flow field by our 2-D CLG multiresolution approach for the sequence without clouds. (f) Ditto for the sequence with clouds.
(g) Computed flow field by our 3-D CLG multiresolution approach for the sequence without clouds. (h) Ditto for the sequence with clouds.

A quantitative evaluation of our confidence measure
is given in Table 8. Here we have used the energy-
based confidence measure to sparsify the dense flow
field such that the reduced density coincides with den-
sities of well-known optic flow methods. Most of them
have been evaluated by Barron et al. (1994). We ob-
serve that the sparsified 3-D CLG method performs
very favourably: It has a far lower angular error than
all corresponding methods with the same density. In

several cases there is an order of magnitude between
these approaches. At a flow density of 2.4%, an aver-
age angular error of 0.76◦ is reached. To our knowl-
edge, these are the best values that have been obtained
for this sequence in the entire literature. It should be
noted that these results have been computed from an
image sequence that suffers from quantisation errors
since its grey values have been stored in 8-bit precision
only.
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Figure 3.11. Yosemite sequence. (a) depicts a single frame from the Yosemite sequence and (b) the
correct velocity field for this frame. The sequence was synthetically generated by Lynn Quam at SRI.
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Figure 3.12. Yosemite sequence performance. Chronological performance results of optical flow ap-
proaches (summarized in Table 3.2) on the Yosemite sequence as measured by the average angular error
(3.61) in the image. Results to the left of the vertical dotted line are those reported by Barron et al.
(Barron et al., 1994a) based on their own independent implementations. A general chronological trend
in the reduction of the angular error is evident.
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Chapter 4

Beyond Infinitesimal Descriptors:
Regional Descriptors of Motion

Recently, there has been a surge in the general use of video due to increases in
computational power and storage, the low-cost of image capturing devices and the
interconnected world that facilitates rapid exchange of data. With this availability
there is a growing need for the automatic organization (interpretation) of this data
into semantically meaningful categories. Image motion is a key element of video that
can provide such an organization. This chapter reviews approaches that relax the
consideration of infinitesimal region-based descriptors, as considered in Chapter 3,
in favour of regional descriptors of motion that have the potential to provide this
organization.

Approaches for regional descriptors of motion considered in this chapter are broadly
categorized as: parametric motion models (Section 4.1) for describing the motion
within a given image region, layered motion representations (Section 4.2) that at-
tempt to recover the coherent regions (layers) in the imaged scene, temporal textures
(Section 4.3) that characterize a restricted class of naturally occurring motions based
on statistical considerations, analytic considerations of a given optical flow field (Sec-
tion 4.4) and methods that use qualitative means to characterize the spatiotemporal
structure of the image sequence (Section 4.5).

4.1 Parametric motion models

In Chapter 3, the description of motion was limited to the analysis of infinitesimal
regions of spatiotemporal extent. By relaxing the infinitesimal restriction to regional
considerations, the main focus of this chapter, we can now move to describing the
structure of a flow field within a region, as well as the velocity at points. This section
is concerned with reviewing parametric motion models that describe the structure of
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flow fields within a non-infinitesimal region of space and an infinitesimal region of
time. The problem of estimating the model parameters can be solved by assuming
brightness constancy and using the local regression methods (e.g., (Bergen et al.,
1992)) considered in Chapter 3.2.1 and is not considered further.

Numerous parametric models have been proposed in the literature for the purpose
of describing motion. Many of these models may be brought within the following
common framework of understanding: an nth-order (Taylor) series expansion of the
velocity field v at a point (x0, y0),

v(x, y, t) =

p∑
j=0

q∑
k=0

∂j+kv(x, y, t)

∂xjyk

xjyk

j!k!
where p+ q = n, (4.1)

with specialization of the coefficients.
The translational model represents the zeroth-order expansion of the flow field,

u(x, y, t) = a0 (4.2)

v(x, y, t) = a3 (4.3)

where a0 = u0 and a3 = v0 represent the instantaneous flow (i.e., velocity) at the
point (x0, y0, t0)

>. Note the purpose for the non-sequential labeling of the zeroth-
order terms a0 and a3 is for consistency in exposition with the higher-order expansions
to follow. This model was assumed throughout the presentation of the least-squares
regression approaches in Chapter 3.2.1. It is important to make a distinction between
the use of zeroth-order models in the context of local methods (the topic of Chapter
3) and regional approaches which are the focus of this chapter. In the local context
we sought a small region about a pixel for the purpose of stabilizing the flow estimate
at a point, in contrast in this section we seek the description of a region with extended
support.

Considering a first-order spatial expansion of the velocity field, yields,

u(x, y, t) = a0 + a1x+ a2y

v(x, y, t) = a3 + a4x+ a5y

where a1 = ux, a2 = uy, a4 = vx and a5 = vy. This model is commonly termed
the affine flow model. A great deal of work has been devoted to the affine model
(e.g., (Fuh & Maragos, 1991; Bergen et al., 1992; Campani & Verri, 1992; Irani et al.,
1994; Tomasi & Shi, 1994; Derpanis et al., 2004)) since it provides a reasonable
approximation of the motion of planar and smooth surfaces within a small region
of interest (see Chapter 2.2.1 for details). Equivalently, the affine model may be
reexpressed as the sum of the following kinematic quantities (Koenderink & van
Doorn, 1975; Koenderink & van Doorn, 1976), translation, a rotational component
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(a) (b)

(c) (d)

(a) translation(a) (b)

(c) (d)

(b) curl

(a) (b)

(c) (d)(c) divergence

(a) (b)

(c) (d)(d) deformation

Figure 4.1. Kinematic motion. Transformations of a square element by the kinematic motions are
depicted.

termed curl, an isotropic expansion/contraction termed divergence (div) and an area
conserving oriented shear, termed deformation (def), formally,

v = T +
1

2

(
curl

[
0 −1
1 0

]
+ div

[
1 0
0 1

]
+ defS

)
x (4.4)

where

translation := T = (a0, a3)
> (4.5)

curl := a4 − a2 (4.6)

div := a1 + a5 (4.7)

def := ([a1 − a5]
2 + [a2 + a4)

2])1/2 (4.8)

and

S = Q−1

[
1 0
0 −1

]
Q (4.9)

describes an expansion in a certain direction and a contraction in the orthogonal
direction; the direction is encoded in the rotation matrix Q. Fig. 4.1 illustrates
representative transformations of an image by the kinematic quantities. An impor-
tant feature of this representation is that the curl, divergence and deformation, are
invariant to rigid transformations of the image coordinate frame. Owing to the kine-
matic quantities’ semantic description, several authors have reported mappings of the
kinematic quantities to semantically meaningful human movements, such as facial ex-
pressions (Black & Yacoob, 1997) and hand gestures (Derpanis et al., 2004). From
a biological perspective, there is experimental evidence that such a decomposition
may be utilized in the primate visual system for processing motion (Graziano et al.,
1994; Martinez-Trujillo et al., 2005). Specializations of first-order motion models
can be found by restricting consideration to single or combinations of the kinematic
quantities in (4.4).
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c1 + c2 + c3 + c5+ c4 + c6

u(x;c) =

Figure 4.2. Affine motion basis. The representation of an arbitrary affine velocity field as expressed as
a sum of basis flows, where ci, i = 1, . . . , 6 represent scalar coefficients.

The final expansion considered here is the second-order spatial expansion of u(x, y, t),
yields,

u(x, y, t) = a0 + a1x+ a2y + a6x
2 + a7xy (4.10)

v(x, y, t) = a3 + a4x+ a5y + a8xy + a9y
2 (4.11)

where a6 = 1
2
uxx, a7 = 1

2
uxy, a8 = 1

2
vyx and a9 = 1

2
vyy. Assuming that a6 = a8 and

a7 = a9,

u(x, y, t) = a0 + a1x+ a2y + a6x
2 + a7xy (4.12)

v(x, y, t) = a3 + a4x+ a5y + a6xy + a7y
2 (4.13)

the resulting flow field description corresponds exactly to that of a moving planar
surface (for details see Chapter 2.2.1). This model is usually termed the quadratic
flow model (e.g., (Horn, 1986; Bergen et al., 1992; Irani et al., 1994; Black & Yacoob,
1997)). In relatively small regions of analysis, the affine model is preferred over the
quadratic model since the second order coefficients, being small in magnitude, are
unreliable to estimate due to image noise (Negahdaripour & Lee, 1991). From a
kinematic perspective, Black and Yacoob (Black & Yacoob, 1997) extend the affine-
based kinematic description by attributing the parameters a6 and a7 approximately
to the motions of “yaw” and “pitch”.

Alternatively, the polynomial-based motion models detailed above can be consid-
ered as a linear combination of basis flows (Fleet et al., 2000),

u(x, y, t; c) =
n∑

i=1

cibi(x, y) (4.14)

where {bi(x, y)} is the basis set and {ci} are scalar coefficients, i = 1, . . . , n. Fig. 4.2
depicts the affine model as expressed by a linear combination of basis flows. With
this linear basis-set interpretation in mind one can now ask: what other basis flows
are useful?

Hoey and Little (Hoey & Little, 2000) introduce the use of Zernike polynomi-
als (Zernike, 1934) to model the flow field induced by facial expressions. Zernike
polynomials are an orthogonal basis set of complex polynomials defined within the
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unit circle. The lowest order Zernike polynomials correspond to the standard affine
basis. The next order polynomials correspond approximately to yaw, pitch and roll
and following orders represent motions with higher spatial “frequency”. Hoey and
Little argue that the utility of the Zernike polynomials lies in their simplicity and
high expressiveness while providing a general basis for a broad range of motions.

Fleet et al. (Fleet et al., 1998; Fleet et al., 2000) argue that the above models have
limited applicability to the analysis of image regions from complex natural scenes.
Fleet et al. (Fleet et al., 1998; Fleet et al., 2000) extend the use of linear parameterized
models to natural complex models (e.g., mouth movements and human gait) while
forgoing geometric modeling. Instead, the basis set is “learnt” off-line using principle
components analysis (Oja, 1983) on a set of exemplar flows of specific classes of
motions.

4.2 Layered motion model representations

Layered models attempt to identify regions in an image that exhibit “coherent” mo-
tion. Introduced formally by Adelson (Adelson & Anandan, 1990; Adelson, 1991;
Adelson, 1995), layered motion representations are inspired by traditional cel anima-
tion (Solomon, 1994). In brief, cel animation consists of a series of images painted on
sheets of clear celluloid (i.e., the cels) where the depth ordering of the cels determines
the occlusion relationships amongst the cels and images in each layer are restricted to
a common motion. Given this assumed representation of a video sequence, approaches
based on layered representations attempt to invert this formation process by extract-
ing the constituent layers and their respective coherent (parametric) motions (see Fig.
4.3 for an example layered decomposition of a scene).

Probably the earliest incarnation of a layered model approach appeared in the
work of Fennema and Thompson (Fennema & Thompson, 1979). The approach uses
the Hough transform (Hough, 1962) to cluster points in the scene that exhibit coherent
translation and estimate the motion of the respective clusters.

Sequential application of dominant motion estimators have been proposed for
extracting multiple motions. In the first pass, the global dominant motion present
in the image is estimated. Once the dominant motion is estimated, the image pixels
consistent with the dominant motion are removed from further consideration and the
estimation process is iterated to identify the remaining motions. Black and Anandan
(Black & Anandan, 1993; Black & Anandan, 1996), Odobez and Bouthemy (Odobez
& Bouthemy, 1995) and Darrell and Pentland (Darrell & Pentland, 1995) incorporate
M-estimators (discussed in Chapter 3.2: Robust methods) as the dominant motion
estimator which treats the non-dominant motions as outliers. Bober and Kittler
(Bober & Kittler, 1994) combine a Hough-based approach with an M-estimator to
extract successive dominant motions. M-estimator-based approaches fail when two
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CHAPTER 1 - INTRODUCTION

10 - Estimation of Motion in Image Sequences

very high compression rates. A typical example is systems employing physical models of
human facial muscles and expressions to encode head and shoulder sequences [32]. Al-
though these approaches result in very high compression ratios, they operate on a very re-
stricted domain of image sequences, and they are therefore not applicable to general
scenes. Furthermore, it will neither be practical nor feasible to implement such systems
for a large number of scene-types in order to increase the mean compression rate for gen-
eral scenes. At the other extreme are the simple block based matching techniques that are
the foundation of current systems for encoding general image sequences. These techniques
divide the frames of a sequence into relatively small non-overlapping rectangular blocks
(typically 16x16 pixels) and generally assume that each block simply undergoes a transla-
tional motion. If this assumption holds, each block in one frame of the sequence will be a
duplicate of a block at some location in the previous frame, and the compression system
can exploit the temporal redundancy by representing the duplicate block by its 2-dimen-
sional displacement only. Since the images in a sequence are sampled at periodic time in-
tervals, these displacements can also be seen as the motion of the blocks, and thus, the
compression system is said to perform block based motion estimation.

Figure 1.1: Frames 1, 15, and 30 of the flower garden sequence.

Throughout this report, concepts and results will be presented using the MPEG1 flower
garden sequence. Frames 1, 15, and 30 are seen in Figure 1.1. The flower garden sequence
is a static scene captured with a moving camera, and motion in the scene is thus related
to the distance of objects to the camera. Closest to the camera is a tree moving fast and
almost translationally to the left. In the background, an area of houses (with some addi-
tional objects) move slowly to the left, also almost pure translation. From the bottom of the
region of houses and to the bottom of the image is a flowerbed. The flowerbed is closer to
the camera at the bottom of the image than in the junction with the region of houses, and
thus, it undergoes a shearing leftward motion.

The typical block based motion representation is illustrated with the first frame of the
flower garden sequence in Figure 1.2. Although this simple representation of motion is suf-
ficient to obtain moderate compression, it is realized that it is an extremely restricted rep-

1. Moving Pictures Experts Group, officially known as ISO-IEC/JTC1/SC29/WG11. The flower garden
sequence is available online at [41].

(a) (b)

Figure 4.3. Layered model decomposition. (a) Frame 1 of the Garden Sequence and (b) depicts a
potential layered (coherent regions highlighted in different grayscales) decomposition of (a).

regions are at the same scale. This is due to the fact that the support of the respective
regions exceeds the breakdown point of the robust estimator and thus neither region
can be considered an outlier (see Chapter 3.2.4 for details). Several contributions
(Burt et al., 1989; Bergen et al., 1990; Burt, 1991; Burt et al., 1991; Bergen et al.,
1991; Irani et al., 1994) employ pyramid-based motion estimators due to the dominant
motion “lock-on” characteristics of these estimators (see Chapter 3.4).

Wang and Adelson (Wang & Adelson, 1993; Wang & Adelson, 1994) propose an
approach consisting of two stages: (1) compute motion estimates using a least-squares
approach (Lucas & Kanade, 1981b) within non-overlapping square image patches and
(2) use K-means clustering (Bishop, 1995) to group motion estimates into regions
exhibiting consistent affine flow.

A significant amount of recent research cast the extraction of layers within a prob-
abilistic framework (Jepson & Black, 1993a; Jepson & Black, 1993b; Ayer & Sawhney,
1995; Weiss & Adelson, 1996; Weiss, 1997; Jojic & Frey, 2001; Wong et al., 2004).
The scene is modeled by a parametric mixture model consisting of latent variables
(the layer assignment of the pixels) and unknown parameters (the layer motions).
The original solution to this problem, first proposed by Jepson and Black (Jepson &
Black, 1993a; Jepson & Black, 1993b), computes the maximum likelihood estimate us-
ing the expectation maximization (EM) algorithm (Dempster et al., 1977). K-means
clustering may be considered as a special case of the EM algorithm. Specifically,
the EM algorithm and K-means approach coincide in the case where the underlying
parametric model is a Gaussian mixture model with K Gaussian components, the
covariances are equal and the means are unknown (Mitchell, 1997). The basic idea
behind EM-based approaches is to estimate both the unknown parameters of the layer
distributions and the layer assignments by iterating between the following two steps
until convergence:
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� Expectation Step (E-Step): Calculate the expected value of the layer as-
signments based on the current estimates of the parameters of the layer distri-
butions.

� Maximization Step (M-Step): Calculate the new maximum likelihood esti-
mate for the layer parameters based on the current expected values of the layer
assignments.

The procedure is iterated until a small change in the parameters is realized. This
iterative process is guaranteed to increase the log likelihood (Dempster et al., 1977),
though the solution may converge to a sub-optimal local maximum and/or conver-
gence may be slow.

A shortcoming of the approach as presented in (Jepson & Black, 1993a; Jepson &
Black, 1993b) is that the number of layers are assumed to be known. Several authors
(Ayer & Sawhney, 1995; Weiss & Adelson, 1996) have partially addressed this issue
by proposing extensions that incorporate the estimation of the number of layers (i.e.,
models) into the basic EM framework. A further drawback is that the choice of
initial parameters may lead to a suboptimal solution (i.e., local maxima) due to the
local search nature of the algorithm. To ameliorate this problem in practice, the EM
algorithm is usually run several times using random initial parameters.

4.3 Temporal textures

In this section the recognition of a restricted class of naturally occurring motions
that have garnered special attention in the literature is reviewed, these motions are
commonly referred to as temporal textures or dynamic textures. These motions are
characterized by regions in space-time that exhibit statistical regularity and have in-
determinate extents. Examples of temporal textures include (see Fig. 4.4): windblown
foliage, turbulent flow in cloud patterns, ripples on water and falling snow.

The study of temporal textures can be traced back to the seminal work of Nelson
and Polana (Nelson & Polana, 1992; Polana & Nelson, 1997). Temporal texture
analysis shares a great deal of similarity with classical gray-level texture analysis
(e.g., (Rosenfeld & Troy, 1970; Haralick, 1971; Haralick, 1979; Conners & Harlow,
1980)) in that it is concerned with identifying invariances of a region of indeterminate
extent. Given these similarities, the work of Nelson and Polana (Nelson & Polana,
1992; Polana & Nelson, 1997) as well as subsequent work (e.g. (Bouthemy & Fablet,
1998; Peh & Cheong, 2002; Rahman & Murshed, 2004; Lu et al., 2005)) centre around
adapting existing statistical techniques used for gray-level texture analysis to analyze
temporal textures.

The majority of proposed approaches to temporal texture recognition (Nelson &
Polana, 1992; Polana & Nelson, 1997; Bouthemy & Fablet, 1998; Peh & Cheong,
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Polanaand Nelson,[11, 14], introducesthe notion of
temporaltexture, relatedto fluid motions. Indeed,mo-
tions of rivers,foliages,flames,or crowds, . . . , canbe
regardedastemporaltextures.

a) b)

Figure 1. Examplesof temporal textures: a) fo-
liageb) fire (bycourtesyof MIT).

Mapsof localmotion-relatedmeasuresalongtheim-
agesequence,requiredas input of cooccurrencemea-
surements,could be provided by denseoptical flow
fields. However, first, it is really time consuming,and
second,thequality of theestimateddisplacementfields
cannotbeensuredin thecaseof temporalcontentcorre-
spondingto suchcomplex dynamicscenes.Therefore,
we preferto considerlocal motion-relatedinformation,
easilycomputedfrom the spatio-temporalgradientsof
theintensity. Contraryto [11], wherethenormalveloc-
ity is considered,we make useof a morereliableinfor-
mationasexplainedin thenext section.

3. Local motion-related measures

By assumingintensity constancy along 2D motion
trajectories,theimagemotionconstraintrelatingthe2D

apparentmotion andthe spatio-temporalderivativesof
theintensityfunctioncanbeexpressedby :���������
	����������������������� (1)
where � is the2D motionvectorin the image, ������� the
intensityfunctionatpoint � , 	�������������! "� theintensity
spatialgradient,and � � ����� theintensitypartial temporal
derivative.Then,wecaninfer thenormalvelocity #"$ :#"$ ������� % � �& 	�������� & (2)

This quantity #"$ canin fact be null whatever the mo-
tion magnitude,if themotiondirectionis perpendicular
to the spatialintensitygradient. #"$ is alsovery sensi-
tive to noiseattachedto thecomputationof theintensity
derivatives. However, if thespatialintensitygradientis
sufficiently distributedin termsof directionin thevicin-
ity of point � , anappropriatelyweightedaverageof #"$
in agivenneighbourhoodformsamorerelevantmotion-
relatedquantity:

#('�)+* �����,�.- *0/"132�4�5 & 	����768� &�9 �;: # $ �768�<:=?>"@A�CB 9 � - *D/"1�2E4!5 & 	����768� & 9 � (3)

where F ����� is a GIHJG window centeredon � . B 9 is a
predeterminedconstant,relatedto thenoiselevel in uni-
formareas,whichpreventsfromdividingby zeroor by a

verylow value.In [12], thismotion-relatedmeasure#('D)+*
hasbeensuccessfullyusedto processsequencescom-
pensatedby theestimateddominantmotionwith a view
to detectingmoving objectsin a scene,andconfidence
bounds,dependingon theintensitygradientdistribution
within F ����� , havebeenderivedto assessits reliability.

Thus, # 'D)K* providesuswith a local motionmeasure,
easily computedand reliably exploitable. The loss of
theinformationrelative to motiondirectionis not a real
shortcoming,sincewe areinterestedin interpretingthe
generaltype of dynamicsituationsobserved in a given
videoshot.

4. Extraction of global motion features

4.1. Quantifying the motion quantities

The computationof cooccurrencematricesrequires
a quantizationof the continuousvariables #('D)+* . The
simplestway would consistin applyinga linear quan-
tization within the interval L MONQPR4S#('�)+* ������T�U�VXW 4 #('D)+* �����+Y ,
which would keepthe whole structureof the distribu-
tion.

a)

b) c)

Figure 2. Motion-related information for the
videoshotMerry-go-round: (a) first image of the
sequence, (b)-(c) mapsof motionquantities # '�)+*
with a linear quantization(b) and with the intro-
ductionof a-priori bounds(c)

Nevertheless,in practice,it turnsout to beirrelevant
dueto thespreadingout of motionquantities,asshown
in Figure 2. The sequenceMerry-go-round is a static
camerashotwith, in the foreground,a merry-go-round
which undergoesa rotation, and, in the background,
walkingpersonsanda busjust leaving thesquare.

Therefore,we introduceboundswhich definean in-
terval wheremeasuresareregardedaspertinent.Since
themotionquantitiesarepositive,0 is takenasthelower
bound. Moreover, in motion estimation,it is gener-
ally consideredthat a single resolutionanalysisis un-
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simplestway would consistin applyinga linear quan-
tization within the interval L MONQPR4S#('�)+* ������T�U�VXW 4 #('D)+* �����+Y ,
which would keepthe whole structureof the distribu-
tion.

a)

b) c)

Figure 2. Motion-related information for the
videoshotMerry-go-round: (a) first image of the
sequence, (b)-(c) mapsof motionquantities # '�)+*
with a linear quantization(b) and with the intro-
ductionof a-priori bounds(c)

Nevertheless,in practice,it turnsout to beirrelevant
dueto thespreadingout of motionquantities,asshown
in Figure 2. The sequenceMerry-go-round is a static
camerashotwith, in the foreground,a merry-go-round
which undergoesa rotation, and, in the background,
walkingpersonsanda busjust leaving thesquare.

Therefore,we introduceboundswhich definean in-
terval wheremeasuresareregardedaspertinent.Since
themotionquantitiesarepositive,0 is takenasthelower
bound. Moreover, in motion estimation,it is gener-
ally consideredthat a single resolutionanalysisis un-

(b) windblown foliage

Figure 4.4. Example frames of temporal textures (Courtesy of Martin Szummer’s temporal texture
database (Szummer, 1996)).

2002; Rahman & Murshed, 2004; Lu et al., 2005), rely on the extraction of highly
discriminable features from the normal flow (2.26) that are combined together to form
signatures for each of the temporal textures under consideration. The normal flow
field is selected in favor of the optical flow field based on the following arguments
(Nelson & Polana, 1992): the extraction of optical flow is time consuming, the qual-
ity of the extracted optical flow is quite low for such complex dynamic scenes and
one should throw out as much information as possible on the grounds that limited
computational resources should be concentrated on the essential information. Nelson
and Polana (Nelson & Polana, 1992; Polana & Nelson, 1997) extract several statisti-
cal features from the normal flow field, these include: the mean magnitude, estimates
of the expansion or contraction (divergence), estimates of the rotation (curl) and di-
rectional difference statistics extracted from a cooccurrence matrix1. Cooccurrence
matrices are used to measure the spatial dependence among features. Historically,
Julesz introduced cooccurrence matrix statistics in the context of human texture dis-
crimination experiments (Julesz, 1962), while Rosenfeld and Troy (Rosenfeld & Troy,
1970) and Haralick (Haralick, 1971) introduced them for machine vision analysis of
textures. The classification of the features is based on a nearest neighbour classfier.
Nelson and Polana report 100% success in the classification of seven different texture
samples.

A shortcoming of the Nelson and Polana work is that the temporal evolution of the
textures is ignored since only spatial interactions of the normal flow computed within a
single frame are considered. To address this issue, Bouthemy and Fablet (Bouthemy
& Fablet, 1998) transfer the study of cooccurrence relationships to the temporal
domain to analyze purely temporal interactions while ignoring spatial interactions.

1A cooccurrence matrix contains the relative frequencies P (i, j) with which two neighboring
resolution cells separated by a fixed distance d (or at fixed angle θ relative to each other), one with
feature i and the other with feature j; these matrices are symmetric (Haralick, 1979).
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More recently, Peh and Cheong (Peh & Cheong, 2002) analyze joint statistics of the
spatial and temporal aspects of temporal textures.

While the studies reviewed above demonstrate impressive recognition rates, they
also share several shortcomings. A main limitation of these approaches, is that the
problem of determining the region on analysis is assumed away by using presegmented
data. The extracted normal flow is highly dependent on the appearance of the tem-
poral texture (Polana & Nelson, 1997), this limits the ability of normal flow-based
temporal texture approaches to abstract prototypical descriptors for a class of tex-
tures. For example, in the case of modeling a class of flags blowing in the wind, the
extracted temporal texture descriptors will be highly dependent on the flag’s appear-
ance. There is also the open question of selecting the discriminative features in a
principled manner; the approaches above select features based on intuition and trial
and error. Finally, the reported recognition rates are based on a small set of tem-
poral textures (typically 10). Thus, reported results shed little light on the general
applicability of these approaches.

Several recent studies (Saisan et al., 2001; Doretto et al., 2003) have presented
model-based approaches for the recognition of temporal textures. Each temporal
texture is assumed to be the result of a second-order stationary2 process that is
modeled as the output of a stochastic linear-dynamical system, formally,

x(t+ 1) = Ax(t) + v(t) ←− state model (4.15)

I(t) = Cx(t) + w(t) ←− observation model (4.16)

where x(t) ∈ Rn represents the (hidden) state of the model, I(t) ∈ Rm the observed
image (in lexicographic order), A ∈ Rn×n, C ∈ Rm×n represents the static model
parameters and the noise processes v(t) and w(t) are i.i.d. distributed as N (0,Q)
and N (0,R), respectively. The recognition of a texture consists of the following two
steps:

1. fit the model (Eqs. (4.15) and (4.16)) to the texture

2. use the “learned” model parameters as a signature to index into a database of
known temporal textures.

Notice here that we are dealing with spatiotemporal structure directly, as opposed to
building the representation on top of the recovered flow, as considered above. Saisan
et al. (Saisan et al., 2001) report that using this model they were able to achieve
approximately 90% correct recognition on a database of 200 temporal textures.

Drawbacks that limit the applicability of the approach include the need for pre-
segmented inputs, the potential failure of the assumed dynamical model to generally

2A stochastic process of order k is stationary if the joint statistics up to order k are time-
invariant. For example a process I(t) is second-order stationary if its mean E{I(t)} is constant and
its covariance E{(I(ti))(I(tj)} only depends on i− j (Papoulis & Pillai, 2002).
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characterize the class of temporal textures and the unwieldly computational require-
ments. In terms of computational requirements, Saisan et al. (Saisan et al., 2001)
report that it takes about 5 minutes to fit a model to a texture consisting of 150 color
frames at a resolution of 320× 220 coded in Matlab using a 1GHz desktop PC.

4.4 Optical flow-based reasoning

Given an extracted optical flow field we next consider methods for interpreting the
flow field based on analytic considerations.

Some of the earliest work focused on the detection of dynamic occlusion boundaries
in the optical flow field. Dynamic occlusion boundaries are defined as regions where
the flow properties (direction and/or magnitude) differ on either side of the boundary.
Knowledge of the location of dynamic occlusion boundaries play the following useful
roles:

� provide shape information that may be absent from other sources of information
(e.g., intensity edges)

� facilitate object segmentation

� improve optical flow estimates around boundaries.

Generally, these early attempts (Nakayama & Loomis, 1974; Clocksin, 1980; Thomp-
son et al., 1985) centre on the use of local edge operators to detect discontinuities
in the optical flow field. Thompson et al. (Thompson et al., 1985) extend this work
with an approach to identify the side of the occlusion boundary that corresponds to
the occluding surface. This is based on the principle that the occlusion boundary
moves with the image region of the occluding surface. Spoerri and Ullman (Spoerri
& Ullman, 1990) detect occlusion boundaries based on the local distribution of flow
vectors. These methods have proven unreliable due to their dependence on accurate
flow estimates around the discontinuities; exactly where obtaining reliable optical flow
estimates are difficult.

Other flow field analyses have relied on differentiating the flow to extract the first-
order terms ux, uy, vx and vy encompassed in the Jacobian of the series expansion of
the flow field. For instance, Subbarao (Subbarao, 1990) assuming that the local
surface structure is approximately planar and by extension the sufficiency of an affine
representation of the flow-field (see Chapter 2.2.1), demonstrated that the Jacobian of
the flow field is sufficient to determine: the maximum and minimum time-to-collision
of the observer to the object, and the maximum and minimum angular velocity of
the object along the direction of view.

Beyond the difficulty of extracting good flow estimates, there is the issue that
the optical flow extracted is generally quantitatively different from the quantity it
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is intended to measure, the motion field, unless very special conditions hold (Verri
& Poggio, 1987a; Verri & Poggio, 1987b; Verri & Poggio, 1989) (see Chapter 2.2.2
for the list of conditions). Consequently, several studies have investigated extracting
qualitative types of information from the optical flow (eg., (Verri & Poggio, 1987a;
Verri & Poggio, 1987b; Verri & Poggio, 1989; Wildes, 1993; Cohen & Herlin, 1996;
Cohen & Herlin, 1999)). Many of these studies are based on dynamical systems theory
(Hirsch & Smale, 1974) or singularity theory (Arnold, 1991).

Dynamical systems theory uses the notion of a phase portrait to represent geomet-
rically the solution of a differential equation. The basic idea behind phase portrait
methods in the context of optical flow representation (Cohen & Herlin, 1996; Cohen &
Herlin, 1999; Koenderink & van Doorn, 1975; Koenderink & van Doorn, 1976; Verri &
Poggio, 1987a; Verri & Poggio, 1987b; Verri & Poggio, 1989) is to locally approximate
the flow pattern around singular points3 by an affine model (i.e., two-dimensional lin-
ear differential equations), formally,

u(x, y, t) = a0 + a1x+ a2y

v(x, y, t) = a3 + a4x+ a5y

or written more compactly in matrix notation,

u = t + Jx (4.18)

where,

u =

(
u
v

)
, t =

(
a0

a3

)
, J =

[
a1 a2

a4 a5

]
, and x =

(
x
y

)
(4.19)

followed by qualitative classification. Notice that this locally affine consideration of
the flow field implies that this analysis is limited to the flow field induced by locally
smooth (planar-like) surface structures. Furthermore, the structure of the Jacobian
matrix J is a function of the motion and surface parameters of the surface in the
world (see Chapter 2.2.1 for details). For a non-singular (i.e., invertible) Jacobian
matrix J there are only a finite number of possible qualitatively different descriptions
of the neighbourhood of a singular point, these include (see columns 1 and 2 of Table
4.1): node, saddle, star, improper, centre and spiral. Classification into one of the
prototypical patterns is based on the eigenvalues of matrix J (summarized in Table
4.1 and pictorially in Fig. 4.5) or in terms of the kinematic decomposition of J (see
Section 4.1 Eqs. (4.4)-(4.8) for the definition of the kinematic decomposition and

3Singular points (also known as critical points, equilibrium solutions, steady state solutions and
fixed points) are defined as the solution(s) x to

u = t + Jx = 0 (4.17)
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Tr(J)

det(J)

Figure 4.5. Phase portrait classification. A geometric representation is depicted of the linear phase
portrait in the determinant (det) - trace (tr) space of J, where det(J) = λ1λ2, tr(J) = λ1 + λ2 and
λ1, λ2 are the eigenvalues of J.

Table 4.2 for a summary of the kinematic-based phase portrait classification) (Shu &
Jain, 1994). In contrast to the general quantitative difference between the optical and
motion flow descriptions, the qualitative description of the singular points between
the two flows will remain the same as long as they are “close” in the topological sense
(Verri & Poggio, 1989). Besides describing image motion, this theory has been used to
analyze flow fields in diverse contexts, including, fluid flow and texture analysis (Kass
& Witkin, 1987; Rao & Jain, 1990; Helman & Hesselink, 1990; Helman & Hesselink,
1991; Rao & Jain, 1992; Shu & Jain, 1992; Shu & Jain, 1994).

Wildes (Wildes, 1993) utilizes singularity theory to qualitatively describe the visual
motion field (2.9) induced by a moving surface. Singularity theory is concerned with
the study of points and sets of singular points. Singular points are defined as image
points where the determinant of the Jacobian matrix J (encomposing the first-order
terms of the spatial structure of the velocity field ux, uy, vx and vy) vanish,

det(J) = det

[
ux uy

vx vy

]
= 0. (4.20)

Wildes’ analysis is restricted to surfaces moving with either a pure three-dimensional
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rotational or translational motion. By considering purely rotational three-dimensional
motion, the surface structure component Z which is coupled exclusively with the
translational parameters of the motion field (2.9) vanishes. In this case, Wildes’
demonstrates that singularity analysis yields: a signature indicative of the presence
of three-dimensional rotational motion, the axis of angular rotation and the relative
magnitude of the angular and radial rotations. In the case of pure translation, the
surface parameterization must be considered. Wildes’ assumes that the surface is
represented by a second-order series expansion (a Monge patch): Z(X, Y ) = 1

2
κ1X

2 +
1
2
κ2Y

2 +κ3XY +pX+ qY + r. In this case, the singularity analysis yields: signatures
of the qualitative three-dimensional surface shape, specifically, whether the shape is
locally elliptic, hyperbolic or parabolic, the major and minor axes of the surface and
constraints on the direction of the angular translation and surface gradient.

A general criticism of the approaches discussed above is that limited (if any)
empirical validation has been reported to validate their respective claims.



86 CHAPTER 4. REGIONAL DESCRIPTORS OF MOTION

Flow Phase Jordan Eigenvalue-Based
Pattern Portrait Form Classification
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Figure 1. Singular points classification based on the structure of the linear phase portrait matrix A; �(A)
�= tr2(A) − 4det(A).

leads to:

ωir = ∇φ(s + ε) = Hφ(s)ε + o(ε) (16)

and

ω⊥
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From Eq. (16), we see that the phase portrait of irrota-
tional field around singular point s is given by Hφ(s).
As this matrix is symmetric (since curl ωir = 0), it
has real eigenvalues. Around local extrema the matrix
is in addition positive or negative definite. In that case,

the eigenvalues are therefore all positive or all negative.
Following the classification of Fig. 1, the singular point
corresponding to a maximum or a minimum is thus a
node or a star node. For the solenoidal field the phase
portrait is given by

Aψ =
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− ∂2ψ
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whose trace is null: the singular point is a center. These
three configurations characterize well the flow in the
vicinity of vortices and sink/sources. The knowledge of
the two potential functions gives us therefore a practical
way to extract vortices, sinks or sources. As a matter of
fact, to estimate those peculiar singular points one has
just to identify the points corresponding to extremal
values of the potential function. Unlike to Poincaré in-
dices techniques, the other configurations—which are
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Figure 1. Singular points classification based on the structure of the linear phase portrait matrix A; �(A)
�= tr2(A) − 4det(A).
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�= tr2(A) − 4det(A).
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Table 4.1. Eigenvalue-based classification of first-order planar phase portraits.
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dices techniques, the other configurations—which are

(def(v))2 < (curl(v))2 and
div(v) 6= 0

Table 4.2. Kinematic-based classification of first-order planar phase portraits (Shu & Jain, 1994).
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Spatiotemporal gray Rank(S) Eigenvalues
value structure

homogeneous region 0 λ1 = λ2 = λ3 = 0
aperture problem 1 λ1 ≥ 0 and λ2 = λ3 = 0
coherent motion 2 λ1, λ2 ≥ 0 and λ3 = 0

incoherent motion 3 λ1, λ2, λ3 ≥ 0

Table 4.3. Regional classification by eigenvalue analysis.

4.5 Spatiotemporal structure-based reasoning

In the previous section the primary focus was on the qualitative interpretation of the
structure of a given optical flow field. In contrast, the following section is concerned
with qualitative approaches that make semantically meaningful abstractions of the
local spatiotemporal structure, while foregoing explicit computation of optical flow.

4.5.1 Structure tensor methods

Structure tensor-based methods have been demonstrated to provide precise quanti-
tative estimates of the optical flow field from image sequences (Jähne, 1990; Bigün
et al., 1991; Haußecker et al., 1998; Middendorf & Nagel, 2001; Mota et al., 2001; Spies
& Jähne, 2001; Liu et al., 2003). As noted in Chapter 3.2.1, the tensor-based ap-
proach for optical flow estimation is equivalent to the total least-square approach.
In this section, qualitative aspects of the structure tensor S (3.12) for categorizing
a spatiotemporal region are examined. Interestingly, the structure tensor and its
qualitative analysis have also appeared in the context of corner detection in the spa-
tial domain (Förstner & Gülich, 1987; Harris & Stephens, 1988) and texture-based
segmentation (Zhang & Nagel, 1994).

A qualitative description of motion may be extracted through an eigenvalue analy-
sis (or equivalently matrix rank analysis) of the structure tensor S (3.12) (Jähne,
2005). The eigenvalue analysis yields the following qualitative descriptions:

a) homogeneous: gray-level region, where no velocity estimate is possible

b) aperture problem:the normal velocity can only be estimated

c) coherent motion: both components of the velocity vector can be estimated

d) incoherent motion: the translation model fails to hold.

Table 4.3 summarizes an idealistic classification of the possible patterns. In practice
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due to the effects of local windowing and noise these ideal signatures can not be
recovered, this necessitates the introduction of user-defined thresholds to differentiate
the various classes. It is instructive to point out that equivalently the qualitative
analysis can be made by considering the energy spectrum of a local patch (Jähne,
2005). In this case, the frequency space analog of the structure tensor, the inertial
tensor (Bigün et al., 1991), is qualitatively analyzed. A drawback of the structure
tensor analysis is that only a small number of categories can be distinguished due
to the finite number of eigenvalues; the non-coherent motion category represents a
default catch-all for more complex motions, such as transparency motion.

Next, let us consider a visualization of the structure tensor and its qualitative
analysis. Recall from our discussion in Chapter 3.2.1 that the reformulated optical
flow constraint with the extra degree of freedom w used to define the structure tensor
is given as,

∇I · u = 0, (4.21)

where ∇I = (Ix, Iy, It)
>, u = (u, v, w)> and ‖u‖ = 1. Given a particular u, Eq.

(4.21) constrains the gradient in gradient space Ix-Iy-It to a plane through the origin
with normal (u, v, w)>. The structure tensor may be visualized by an ellipsoid (or
equivalently a covariance) that measures the dispersion of the points in gradient
space. The magnitudes of the (three) eigenvalues of S correspond to the length of the
principle axes of the ellipsoid. In the ideal case where the points in gradient space
lie on a plane, the smallest principle axis will be zero. Thus, a unique normal to the
plane exists to describe the solution. In the case where the points in gradient space lie
along a line, as occurs when the aperture problem is present, their is only one non-zero
principle axis in the direction of the line. Thus, rather than a unique normal there are
a family of (infinitely) many normals consistent with the linear structure. In the case
where the local image structure is homogeneous, the principle axes of the ellipsoid
vanish (point structure at origin). Figure 4.6 depicts the ellipsoidal visualization of
the structure tensor.

The qualitative analysis of the structure tensor can be considered as a measure
of the intrinsic dimensionality4 of the gradient data or the energy spectrum (Krüger
& Felsberg, 2003). Zetzsche and Barth (Zetzsche & Barth, 1991) proposed an opera-
tor that exclusively responds to intrinsically three-dimensional spatiotemporal image
structures which they suggest to be a reliable indicator of motion discontinuities. The
approach relies on regarding the spatiotemporal image as a hypersurface H(x, y, t) in
four-dimensional space, in the form of a Monge patch H(x, y, t) = (x, y, t, I(x, y, t)),
and uses the three-dimensional curvature of the hypersurface to identify the presence
of an intrinsically three-dimensional signal.

4A data set in n dimensions is said to have an intrinsic dimensionality equal to n′ if the data lies
entirely within n′-dimensional space (Bishop, 1995).
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Figure 4.6. Principle axes classification of structure tensor. (a) plot of gradient space Ix-Iy-It of a
region in space-time that exhibits a negligible amount of variation in all directions. This is indicative
a region devoid of any structure (i.e., homogeneous). (b) plot of gradient space representing a region
where significant change in only one direction, e1, is present. This is indicative of a region where the
aperture problem is present. (c) plot of gradient space representing a region where the gray values exhibit
significant variation in two orthogonal directions and are relatively constant in the remaining orthogonal
direction, e3. This is indicative of a region where a single motion is present and the full flow can be
recovered. (d) plot of gradient space representing a region where there is significant variation in all
directions. This indicative of non-coherent motion (e.g., motion discontinuity).

4.5.2 Spectral analysis-based approaches

In this section, approaches that leverage the spectral analysis for single (discussed in
Chapter 2.2.2) and multiple motions (discussed in Chapter 2.2.5) are reviewed.

Wildes and Bergen (Wildes & Bergen, 2000) propose a small set of primitive
categories that qualitatively describe the orientation (or lack thereof) of a local region
in space-time based on an oriented energy representation. The authors limit the
analysis to one spatial dimension and time, thus constant velocity ideally manifests
in the energy spectrum as a line through the origin. Note that in addition to the use
of oriented energy filters for optical flow estimation (see Chapter 3.3), oriented energy
filters have been utilized in the context of spatial texture analysis (e.g., (Knutsson
& Granlund, 1983; Bergen & Adelson, 1986; Bovik et al., 1990; Landy & Bergen,
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2 Technical approachIn this section, the proposed approach to spatiotemporal analysis is presented,accompanied by natural image examples. For the purposes of exposition, thepresentation begins by restricting consideration to one spatial dimension plustime. Subsequently, the analysis is generalized to encompass an additional spatialdimension and issues involving spatiotemporal boundaries.2.1 Analysis in one spatial dimension plus timeUnstructured Static Flicker Coherent Incoherent ScintillationMotion Motion
x

t

tf

fxjR� Lj 0 0 0 ++ 0 0R+ L 0 ++ ++ ++ ++++ ++Sx 0 ++ 0 + + +Fx 0 0 ++ + + +Fig. 1. Primitive Spatiotemporal Patterns. The top row of images depict prototypicalpatterns that comprise the proposed qualitative categorization of spatiotemporal struc-ture. For display purposes the images are shown for a single spatial dimension, x, plustime, t. The second row of plots shows the corresponding frequency domain structure,with axes fx and ft. As suggested by their individual titles, the categories have seman-tically meaningful interpretations. The lower part of the �gure shows the predicteddistribution of energy for each pattern as it is brought under the proposed orientedenergy representation. The representation consists of four energy images components,jR� Lj, jR+ Lj, Sx and Fx that are derived from an input image via application of abank of oriented �lters. For the purpose of qualitative analysis the amount of energythat is contributed by the underlying �lter responses, R, L, Sx and Fx, is taken ashaving one of three values: (approximately) zero, moderate and large, symbolized as0, + and ++, respectively.Primitive spatiotemporal patterns The local orientation (or lack thereof)of a pattern is one of its most salient characteristics. From a purely geometricpoint of view, orientation captures the local �rst-order correlation structure ofa pattern. In the realm of image analysis, local spatiotemporal orientation oftencan be interpreted in a fashion that has additional rami�cations. For example,image velocity is manifest as orientation in space-time [14]. We now explore thesigni�cance of this structure in one spatial dimension, the horizontal image axis,

Figure 4.7. Primitive spatiotemporal patterns.The top row depicts prototypical structural patterns that
comprise the qualitative categorizations proposed in (Wildes & Bergen, 2000). The bottom row depicts
the distribution of energy in the frequency domain for the corresponding categories. Reprinted from
(Wildes & Bergen, 2000) with kind permission of Springer Science and Business Media.

1991)). The motion classes considered are as follows:

Unstructured: no discernible orientation, the energy is concentrated at the origin

Static: the energy resides along the spatial axis

Flicker: the energy resides along the temporal axis

Coherent: the energy resides along a line through the origin oriented approximately
45°

Incoherent: the energy resides along several oriented lines through the origin

Scintillation: no discernible orientation but the energy is not concentrated at the
origin.

Each of these categories have distinctive prototypical patterns of distribution of ori-
ented energy in the frequency domain (see Fig. 4.7). Results, though limited, on
natural image examples demonstrate a correlation between qualitative descriptors
and spatiotemporal patches. Wildes and Bergen’s approach can be seen as alterna-
tive to the structure tensor approach for quantifying the intrinsic dimensionality of
space-time images; for a discussion of the structure tensor approach and its relation-
ship to quantifying the intrinsic dimensionality of space-time images (Section 4.5.1).
Furthermore, the approach offers finer grained distinctions of patterns of the same
intrinsic dimensionality through the consideration of absolute orientation (e.g., flicker
versus coherent) and the distribution of energy (e.g., incoherent versus scintillation).

Chomat and Crowley (Chomat & Crowley, 1999) sample the energy spectrum
using a set of multi-scale oriented energy filters (12 motion energy receptive fields,
4 orientations at 3 scales) and map the energy outputs to high-level interpretations,



92 CHAPTER 4. REGIONAL DESCRIPTORS OF MOTION

specifically, human movements. These categorizations are based on joint statistics of
the spatiotemporal filter responses “learnt” from a set of training image sequences.

Yu et al. (Yu et al., 1999; Yu et al., 2003) propose an approach for detecting (lo-
cally) the presence of occlusion and transparency motion, and estimating the velocity
of the constituent layers. The approach proceeds in three stages:

1. Determine the number of motions present.

2. Estimate the motion of the layers.

3. Classify the motion type, occlusion or transparency, and extract layers.

Assuming that there are at most two motions present, the first stage samples the local
energy spectrum uniformly in all directions (parameterized by angles θ and φ). The
presence of two motions is indicated by a signature in the distribution of the energy.
The second stage utilizes an EM-based algorithm in the local energy spectrum to
simultaneously estimate the normals of the respective dominant planes. The authors
treat the cases of transparency and occlusion in a uniform fashion by assuming that
two dominant planes are present and the additional distortion term in the case of
occlusion is negligible. In the final stage, the spatiotemporal organization of the local
image patch is considered for the purposes of classifying the patch as either occlusion
or transparency.

Langer and Mann (Langer & Mann, 2001; Langer & Mann, 2003) focus on a
special case of optical snow where the observer (camera) moves parallel to a static
scene (see Chapter 2.2.5 for details on the definition of optical snow). In this case,
the authors demonstrate, by specializing the motion field equations (2.9) to parallel
translation exclusively, the set of image velocities of the scene {vi} have a common
direction (τx, τy) and the speeds vary inversely with depth, formally,

vi = αi(τx, τy) where αi ∈ R (4.22)

Langer and Mann formulate an optimization problem within the local Fourier do-
main to measure the direction and range of speeds that parameterize the “bowtie”
structure.



Chapter 5

Open problems

This chapter concludes this paper with a discussion of a number of open problems
in motion analysis.

5.1 Modeling theory

Much of the research in motion analysis has been driven from the motion field. In con-
trast, the study of the spatiotemporal image sequence structure is still in its infancy
stages with most research centred around incremental extensions to the structure
tensor (Chapter 4.5.1). A potential starting point for future research is the work of
Wildes and Bergen (Wildes & Bergen, 2000) (Chapter 4.5.2). In their work operations
were limited to a single spatiotemporal scale. As discussed by Wildes and Bergen,
multiscale extensions to this approach may yield finer distinctions between their pro-
posed prototypical categories of structures by way of signatures that may manifest
across scales. Note that there are two potential scale extensions to be explored. The
first scale extension is concerned with the frequency tuning used for sampling the
local spectrum. The second, is concerned with varying the (spatiotemporal) region
of aggregation. More generally, little work has explored the role of scale in regional
analysis of visual space-time.

The problem of motion boundaries has received periodic attention in the literature,
however to date it still remains an open problem. Early analyses of motion boundaries
largely centered around differentiating the recovered flow field (see Chapter 4.4).
Several recent approaches have attacked this problem via learning methods. Fleet
et al. (Fleet et al., 2000) propose a model of motion boundaries based on learning a
basis of flow fields from an idealized (analytical) generative model. Apostoloff and
Fitzgibbon (Apostoloff & Fitzgibbon, 2005) learn the appearance of T-junctions from
hand-labelled data.

In Chapter 4.1, several popular representations of motion in the computer vision
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literature were outlined. Interestingly, the human visual system has the remarkable
ability to accurately recognize a wide variety of motions. An interesting unresolved
question is whether the human visual system relies on a highly general representation
of motion, such as the affine representation, while giving up some accuracy in the
process or (at least in part) on class specific representations. Models of this process
could provide direction for the development of robust machine-based solutions. More
generally, the wide variety of computational analyses given Chapters 2-4 could moti-
vate corresponding studies for biological visual systems.

There has been a great deal of work on the statistics of natural images (Ruderman,
1994; Olshausen & Field, 1996; Huang & Mumford, 1999) due to the availability of
large databases. In comparison there has been very little study of the statistics of
flow fields from natural scenes due to the unavailability of a representative database.
Recently, Roth and Black (Roth & Black, 2005) addressed this issue by introducing
a database of flow fields recovered from natural sequences. The construction of the
database relies on the combination of accurate depth data of natural scenes and
movements representative of the imaging scenario. The scene depth information is
adapted from the Brown range image database (Lee & Huang, 2000) recovered with
a laser range finder, that provides the accurate scene depth for a set of 197 complex
indoor and outdoor scenes. The camera movement data is based on the movement of
a hand-held or car-mounted video camera. Given the flow database, Roth and Black
(Roth & Black, 2005) develop an optical flow recovery algorithm based on flow field
priors recovered from the database. They report competitive flow field estimates on
the Yosemite sequence (the reader is referred to Chapter 3.6 Table 3.2 for a comparison
of results). Potential avenues for future work based on the availability of natural flow
field databases, include the development of richer priors for the purpose of regularizing
estimation problems, scene motion classification and motion boundary detection.

5.2 Estimation

It is important to continue the exploration of alternative estimation frameworks in
application to image motion. Such considerations may yield improved accuracy in
recovered motion estimates and even alter the way we think about what can be re-
covered. One potentially interesting avenue to explore are set-based estimation meth-
ods. Set-based methods (e.g., interval analysis (Moore, 1966)) combine data under
the assumption that the sensor error is bounded and focus on establishing bounds on
the maximal parameter error. Set-based methods are useful for modeling measure-
ment errors if the true underlying noise distribution cannot be faithfully modeled.
The application of set-based methods has appeared in a variety of literature, such as,
symbolic reasoning (Brooks, 1981), robot mapping (Engelson & McDermott, 1992)
and localization (Atiya & Hager, 1993; Hager et al., 1993). Interestingly, no such
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contribution has appeared in the area of motion analysis. This begs the question: is
there a role for set-based methods in the analysis of motion?

5.3 Experimental evaluation

Despite the tremendous amount of research dedicated to optical flow recovery, empir-
ical evaluation has been relegated to a small number of image sequences, such as the
Yosemite sequence (discussed in Chapter 3.6). In the case of the Yosemite sequence,
there has been a progressive improvement in reported results1 but also a recent trend
in diminishing returns (see Chapter 3.6, Table 3.2 and Fig. 3.12). A major problem
with judging performance of optical flow approaches based on the Yosemite sequence
is that it represents a relatively simple test case that contains very little occlusion,
specularities and multiple motions etc. (Barron et al., 1994b); problems that remain
to be addressed in a satisfactory manner. So although the field has nearly solved
the recovery of motion for the Yosemite sequence, the general problem of optical
flow recovery remains to be solved. In addition, the Yosemite sequence is synthetic,
which brings into question the degree in which one can extrapolate to real world
performance. An obvious solution would be the introduction of a battery of publicly
available challenging real benchmark sequences. However, the collection of real image
sequences with ground truth is non-trivial. As an example, one of the few real image
sequences with ground truth to appear in the literature is the Marbled-Block sequence
by Otte and Nagel (Otte & Nagel, 1994) (Fig. 5.1). They measured the ground truth
based on an accurate three-dimensional model of the scene, a calibrated camera, and
knowledge of the trajectory of the camera.

1It can be argued that the reported improvements with the Yosemite sequence by the most
recent methods are due in part to parameter tuning, improvements in filter design and the manner
in which results are reported (e.g., not considering the clouds and picking the frame that yields the
best results).
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376 13 Motion

a b

Figure 13.20: Yosemite sequence: a example image; and b correct flow.

a b

Figure 13.21: Otte’s block world: a example image; and b correct flow.

Real test sequences. The ultimate test for any optical flow algorithm
is its performance on real image data. However, even though there are
many test sequences available it is usually not known what the actual
motion was. Otte and Nagel [8] provided a calibrated sequence of which
Fig. 13.21 shows image number 34 together with the actual flow field.
This sequence was recorded by a camera mounted on a moving robot
arm. The camera moves towards the scene, which is stationary apart
from the lighter block which moves to the left.

Other real sequences we employed for testing are shown in Fig. 13.22.
The Bonsai sequence (Fig. 13.22a, /images/13/bonsai) was recorded
by rotating the tree around its axis in steps of one degree. Due to nu-
merous occlusions of the small leaves this test case poses a challenging
task. The rubic sequence of Fig. 13.22b (/images/13/rubic) shows a
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Real test sequences. The ultimate test for any optical flow algorithm
is its performance on real image data. However, even though there are
many test sequences available it is usually not known what the actual
motion was. Otte and Nagel [8] provided a calibrated sequence of which
Fig. 13.21 shows image number 34 together with the actual flow field.
This sequence was recorded by a camera mounted on a moving robot
arm. The camera moves towards the scene, which is stationary apart
from the lighter block which moves to the left.

Other real sequences we employed for testing are shown in Fig. 13.22.
The Bonsai sequence (Fig. 13.22a, /images/13/bonsai) was recorded
by rotating the tree around its axis in steps of one degree. Due to nu-
merous occlusions of the small leaves this test case poses a challenging
task. The rubic sequence of Fig. 13.22b (/images/13/rubic) shows a
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Figure 5.1. Otte and Nagel’s Marbled-Block sequence (Otte & Nagel, 1994). (a) depicts a frame from
Otte and Nagel’s Marbled-Block sequence and (b) the correct velocity field for this frame.
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