Automated Model-based Verification of Object-Oriented Code

Jonathan Ostroff, Chen-wei Wang, Eric Kerfoot and Faraz Ahmadi Torshizi

Technical Report CS-2006-05

May 24, 2006

Department of Computer Science and Engineering

4700 Keele Street North York, Ontario M3J 1P3 Canada

Automated Model-based Verification of Object-Oriented Code

Jonathan Ostroff, Chen-Wei (Jackie) Wang, Eric Kerfoot and Faraz Ahmadi Torshizi *
Department of Computer Science and Engineering, York University,

4700 Keele St., Toronto, ON M3J 1P3, Canada.

Abstract

ESpec is a suite of tools that facilitates the testing and verification of Eiffel programs in an
integrated environment. The suit includes unit testing tools and Fit tables (for customer re-
quirements) that report contract failures. This paper describes ES-Verify (part of ESpec) for
automatically verifying a significant subset of Eiffel constructs written with a value semantics.
The tool includes a mathematical model library (sequences, sets, bags and maps) for writing high
level specifications, and a translator that converts the Eiffel code into the language used by the
Perfect Developer (PD) theorem prover. Preliminary experience indicates that the vast majority
of verification conditions are quickly and automatically discharged, including loop variants and
invariants. ES-Verify is the first automated Eiffel verification tool (to our knowledge) and allows
the developer to use the clean syntax and object-oriented structures of Eiffel, together with its
mature industrial strength design by contract mechanism.

1 Introduction

A software product is reliable if it is correct (performs its tasks according to specification) and
robust (reacts appropriately to abnormal conditions). How should specifications be provided and
how do we check that software behaves according to its specification? Design by Contract (DbC) is
a promising method for answering these questions. A class can be specified via expressive precon-
ditions, postconditions and class invariants [12].

A variety of OO languages have followed this contracting approach to software quality such as
Eiffel [12], Spec# [2], ESC/Java [9], JML [11] and UML/OCL [3]. A “lightweight” formal approach
to checking the correctness of code works by runtime assertion checking, i.e. as the code is executed
the contracts are checked and an exception is raised if there is a contract violation. However, we
would also like to reason formally about programs and to mechanize the process of verifying the
correctness of the code. Automated verification of object-oriented code has been pursued in Spec#,
ESC/Java and JML.

In this paper we describe automated verification for a significant subset of Eiffel for which we
have developed the following components:

e An Eiffel Model Library (ML) for specifying the abstract state without exposing implemen-
tation details. This library is similar to model-based specifications as in B [1] and Z [13],
except that it is object-oriented. ML contains classes such as ML_SEQ, ML_SET, ML._BAG
and ML_MAP. These classes are both mathematical (i.e. immutable) and effective (i.e. exe-
cutable). They are mathematical so that software properties can be specified abstractly and
effective so that when the code (specified via ML) is executed, contract violations will be
reported (if any). This mathematical library is thus useful for lightweight verification even in
the absence of a theorem prover.

*Email: {jonathan, faraz}@cs.yorku.ca. Eric.Kerfoot@comlab.ox.ac.uk. Supported by a grant from NSERC.

e A base library (ES_.BASE) of data structures (with classes such as ESV_ARRAY, ESV_LIST,
ESV_SET and ESV_TABLE) for the efficient implementation of software products. These
classes have a value semantics, but for efficiency are mutable. The classes are descendants of
the standard Eiffel base library classes. The prefix ESV stands for Eiffel Spec Value (seman-
tics). While class features are contracted via ML (which while executable are inefficient due
to their mathematical immutability), the bodies of the features are implemented via the base
classes (which are mutable and hence efficient, but not as suitable for specifications).

e A translator that will convert Eiffel code implemented via ES_BASE and specified via ML into
specifications written in the Perfect Language [7]. The advantage of this translator is that
there is a highly-productive theorem prover (Perfect Developer) for converting the specification
(written in the Perfect Language) into complete verification conditions and automatically
discharging their proofs.

The above components (which we call ES-Verify) for automated verification of Eiffel code is
under development as part of the ESpec (Eiffel Specification) toolset which is a unified environment
allowing software developers to combine Fit tables (for customer requirements and acceptance tests)
with contract and unit testing tools. This means that a single integrated tool can be used to specify,
develop, test and verify the requirements and design of a software product. Formal verification is
a substantial addition to the capabilities of the ESpec toolset, allowing for the combination of
lightweight validation as well as automated deductive verification.

As stated, ES-Verify uses the Perfect langauge and a theorem prover. Although we are impressed
with the expressiveness and power of the Perfect tools (see sequel) we have not used the Perfect
specification language and theorem prover in the intended fashion. The intended use of Perfect is
that developers write their specifications in the Perfect Language which is then used to automatically
generate code (e.g. Java or C++). In this respect, Perfect is akin to model-driven development
(MDD) methods. Perfect has a notion of refinement that can be used to improve the efficiency of
the generated code.

We have examined the Java code and found that the generated code is much longer and more
complex than the original contract-based specification. The MDD approach is useful if there is never
a need to deal with the generated code. However, Perfect specifications are not directly executable
nor there is a debugger at the model level. Thus our preference is to write code in Eiffel. Eiffel has
a mature industrial strength contracting mechanism with the full set of tools such as debuggers,
profilers, documentation and browsing capabilities. The language is admired for its clear syntax
and expressive use of full range of object-oriented constructs such as multiple inheritance.

Our approach is to write the code in Eiffel and thus retaining the simple but expressive use
of the language constructs. The Eiffel code is then translated to Perfect using (a) the refinement
constructs of Perfect for the feature implementations and (b) the Perfect contracting mechanism
for Eiffel contracts. The Eiffel model library (ML) was designed in order to avoid impedance
mismatches between itself and the Perfect data structures. Theorem proving program involving
genericity, loops (and loop invariants) is a non-trivial task and this work shows that model libraries
(such as ML) must be designed with the target theorem prover in mind. In the sequel we will use
the abbreviation PD both for the Perfect specification language and for the Perfect theorem prover.

2 Models via ML

As explained in [13] with reference to Z, formal specifications use mathematical notation to describe,
in a precise way, the properties which a software product must have, without unduly constraining the
way in which these properties are achieved. We may call the mathematical description an abstract
model of the system under development. The model describes what the system must do without

/ STACK[G] \ class STACK][G] feature

item: G pUt (X: G) is
require count >0 do
ensure Result = model.last imp.force (x, imp.count)
put(x: G) ensure
ensure model = old model » x em;nodel |=| old model |> x
remove
require count> () end
ensure old model = (model » old item)
MODEL (b) put feature of STACK
count: INTEGER
model: ML_SEQI[G] class STACK_PROPERTIES|G] feature
ensure Result = <i: INTEGER |0 <i <imp.count e impl[i] > lifo (s: STACK[G] ; x: G) is
NONE require
imp: ARRAY[G] s /= void
Invariant do
count = #model s.put (x)
s.remove

0 < count < imp.count
ensure

s.model |=| old s.model
end

(a) BON Diagram of STACK
end

(c) Stack LIFO property

Figure 1: STACK[G] modelled by ML_SEQ[G]

saying how it is to be done. Models allow questions about what the system does to be answered
confidently, without the need to disentangle the information from a mass of detailed program code,
or to speculate about the meaning of phrases in an imprecisely-worded prose description.

In Z, the mathematical models are based on predicate logic and the set theory and thus obey a
rich collection of mathematical laws which makes it possible to reason effectively about the way a
specified system will behave, but these models are not oriented towards computer representation.

The model library (ML) described in this paper encode predicate logic acting on sets, sequences,
bags and maps (as in Z), but the mathematical theories are structured as classes (producing im-
mutable objects needed for mathematical specification) whose features (e.g. V, 3, €, set comprehen-
sion etc.) are pure functions executable in the object-oriented style!.

The classes of ML are shown in Fig. 2. Contracts may be specified using ML and these contracts
are executable. When runtime assertion checking is turned on, contract violations (if any) are
signalled via exceptions, thus indicating an inconsistency between the implementation and the
specification. The complete specification of a system and its implementation can be provided in the
same compilable and executable Eiffel text (e.g. see class STACK[G] in Fig. 4). The immutable ML
classes will be inefficient by comparison to the mutable classes in the Eiffel base library (such as
ARRAY and LIST), but this is acceptable as contract checking may be turned off in the final delivered
code which will use the efficient base library for implementation.

As a simple example, consider the BON [15] contract view of a stack as shown in Fig. la. The
model of the stack consists of an ML_SEQ[G] (i.e. a sequence of items of type G, where G is a generic
parameter) and count (the number of items in the stack). The contracts of all the other features
of the stack can be described in terms of the sequence and count. In the absence of a sequence
to model the stack (i.e. with just the model attribute count), the best postcondition for the stack
push operation put is

!The Eiffel agent mechanism for iteratively applying a supplied expression to a collection is much used.

ML_MODEL[GJ*

count, infix “#”: INTEGER
is_empty: BOOLEAN

infix “|=|”: BOOLEAN
is_value_equal*, infix “|I==|": BOOLEAN

object_comparison: BOOLEAN
@npare,objects * compare_references*

-- equality of items determined by “object_comparsion
-- deep value equality

hold_count™ (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): INTEGER

for_all (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): BOOLEAN

there_exists (condition: FUNCTION[ANY, TUPLE[G], BOOLEAN]): BOOLEAN

/\

-

ML_COLLECTION|GJ*

~

extended_by* (x: G): like Current
has (x: G): BOOLEAN

comprehension (c: FUNCTION[ANY, TUPLE[G], BOOLEAN]): like Current

from_array (a: ESV_ARRAY[G]): like Current
from_list (I: ESV_LIST[G]): like Current

from_set (s: ESV_SET[G]): like Current
to_seq: ML_SEQ[G]

to_set: ML_SET[G]
to_bag: ML_BAG[G]

/

?

e

ML_SEQ[G]

N[

ML _MAP[G, H]

appended_by, infix “I>”: ML_SEQ[G]
{"ML_COLLECTION.extended_by}

prepended_by, infix “I<”: ML_SEQ[G]

remove (i: INTEGER): ML_SEQ[G]

item alias "[]" (i: INTEGER): G

domain: ML_SET[INTEGER]

head, last: G

front, tail: ML_SEQ[G]
override (i: INTEGER; x: G): ML_SEQ[G]
\is_subseq_of, infix “I<<=l" (other: ML_SEQ[G]): BOOLEAD

- N

extended_by, infix “*” (x: G): ML_SET[G]

remove (x: G): ML_SET[G]

union, infix “+” (other: ML_SET[G]): ML_SET[G]

intersection, infix “*” (other: ML_SET[G]): ML_SET[G]

difference, infix “-” (other: ML_SET[G]): ML_SET|[G]

is_subset_of, infix “l<<=|" (other: ML_SET[G]): BOOLEAN

is_disjoint_from, infix “HHH” (other: ML_SET[G]): BOOLEAN

override (x, y: G): ML_SET[G]
\@mﬁanﬁitem (x: G): ML_SET[G] /

-- head = Current[0], tail = Current[count-1]

-- tail is everything except “head”

ML_SET|G]

\

has_key (k: G): BOOLEAN
extended_by_pair, infix “*” (p: ML_PAIR[G,H]): ML_MAP[G, H]
extended_by (k: G; v: H): ML_MAP/[G, H]
remove (k: G): ML_MAP[G, H]
item alias "[]" (k: G): H
domain: ML_SET[G]
range_bag: ML_BAG[H]
union, infix “+” (other: ML_MAP[G, H]): ML_MAP|[G, H]
intersection, infix “*” (other: ML_MAP[G, H]): ML_MAP|G, H]
difference, infix “-” (other: ML_MAP|[G, H]): ML_MAP|G, H]
is_disjoint_from, infix “[##” (other: ML_MAP|[G, H]): BOOLEAN
override (x: G; y: H): ML_MAP|[G, H]
from_two_arrays

(k: ESV_ARRAY[G]; v: ESV_ARRAY[H]): ML_MAP[G, H]
from_two_lists

(k: ESV_LIST[G]; v: ESV_LIST[H]): ML_MAP[G, H]
from_table (t: ESV_TABLE[G, H]): ML_MAP[G, H]
to_seq: ML_SEQ[ML_PAIR[G, H]]
to_set: ML_SET[ML_PAIR[G, H]]
to_bag: ML_BAG[ML_PAIR[G, H]]

-

@mﬁhash,mble (t: HASH_TABLE[H, G]): like Current

ML_HASH_MAP|G, H->HASHABLE]

Figure 2: Core Classes in the Mathematical Library (ML) for Model-based Specification

4

count = old count + 1 A item =z (1)

This abstract specification violates Einstein’s maxim to “make everything as simple as possible,
but not simpler” because the specification is incomplete. For example, an implementor can satisfy
the above specification yet change old values of the stack that are not at the top (we need a frame
condition that says the old part of the stack remains unchanged). However, by adding a sequence
to the model we can now express the complete contract as

model = old model » « (2)

where » is the appended by (pure) function of a mathematical sequence which returns a new
sequence the same as the old one, but with the argument appended to the end. Since (2) = (1),
there is also no need to write the abstract postcondition as it is entailed by the model postcondition.
In addition, with the full model we can provide the complete contract for the query item that returns
the top of the stack.

The Eiffel notation follows the BON notation quite closely as shown in Fig. 1b. For », we may
use the appended_by function or alternatively the infix operator |> as shown in class ML_SEQ in
Fig. 2.

Model classes such as ML_SEQ hold items that may be stored by reference or by value (Eiffel has
the expanded construct for constructing value semantics). We thus introduce the notion of model
equality (infix operator |=|) which depends on what type of comparison is requested (see ML_MODEL
in Fig. 2). The default is that two model sequences (say sl and s2) are compared via reference
equality (i.e. sl |=| s2 iff the two sequences have the same size and the items stored at each index
refer to the same object). A specifier may invoke feature compare_objects (see ML_MODEL), in which
case the items stored at each index are compared based on how the inherited feature is_equal (of
the instantiated generic type G) is defined?.

With our contracts complete, and even in the absence of implementation details, we may already
begin to validate our specification based only on the model. For example, the last-in-first-out (LIFO)
property of the stack can be specified as shown in Fig. 1c. In the abscence of implementation we
cannot execute or unit test the LIFO property. However, with the translator and theorem prover
(see sequel), the LIFO property will prove with a warning that the body of put and remove must
be refined to an implementation.

We must now refine the specification to an efficient implementation. There are two steps. First
choose an efficient representation such as an array or linked list. Then define the abstraction
relation between the concrete representation and the mathematical model. The contracts of all
features remain the same as they are all described in terms of the model.

We may use ARRAY from the Eiffel base library or the efficient (mutable) class if a value semantics
rather than a reference semantics is preferred (i.e. we would declare imp:ESV_ARRAY[G]). The prefix
“ESV” in class ESV_ARRAY stands for an “ESpec Value” array, which is part of the ESpec base library
(built on top of the Eiffel base library) for implementing code using a value semantics.

Next we need to define the relationship between the abstract space in which the abstract program
is written (model), and the space of the concrete representation (imp). This can be accomplished
by giving an abstraction function which maps the concrete variables into the abstract objects which
they represent. We may do this as follows. The body of the query model: ML_SEQLG] for the stack
in Fig. 1 could be a loop that iterates through the implementation array and returns an equivalent
sequence with the same elements as the array (i.e. we “lift” the mutable array into a mathematical
immutable sequence). The abstraction function [10] is captured by the postcondition of query model
as follows:

2is_equal in Eiffel is similar to equals in Java

Result = (i : INTEGER | 0 < i < imp.count e impli]) (3)

where the angle brackets () stand for sequence comprehension in the same way that { } stands for
set comprehension. For example, {i : INT |0 < <2e i+ 1} ={1,2,3}. Set, bag, sequence and
map comprehension present expressive notation for abstraction functions which is supported in ML.
The Eiffel ML library uses the agent construct for writing comprehension (see Fig. 2). However, for
the postcondition of model we may use one of the pre-defined functions from_array that “lifts” an
efficient mutable array into a mathematical sequence, so that the postcondition (3) writen in ML
becomes:

Result |=| Result.make.from array(imp.subarray(0,count-1)) ‘

Function from array returns a new sequence whose items refer to the same items as in the array
imp between O - - - count — 1. Thus, the above assertion says that the resulting sequence returned by
the model is model-equal to the items of the implementation array treated as a sequence.

2.1 The Birthday Book example — ML specifications and loop invariants

The author of [14] reports that a web-enabled database system, consisting of 35,799 lines of Perfect,
generated 9810 proof obligations which were proven automatically in 4.5 hours (1.6 seconds per
proof) on a modest laptop. We believe that the above performance is sustainable for reasonable
chunks of code where there is minimal refinement and PD does the code generation. However, in
our case where there is refinement from high level models to more complex constructs (e.g. loops
with loop variants and invariants), then the demands on PD are much greater. Nevertheless, by
careful matching of ML to PD facilities and tuning of the translator, we can achieve proofs of the
vast majority (if not all) verification conditions.

The birthday book example [13] nicely illustrates refinement to loops and more intensive use of
ML as shown by the BON diagram in Fig. 3a. The model for the birthday book is the combination
of the number of name-and-date pairs stored (i.e. count) together with an ML_MAP[NAME, DATE],
i.e. a set of pairs of name and date. Alternatively, this map is a function whose domain is a set of
names and whose range is a bag of dates. The features of the birthday book include the ability to
add a new pair (e.g. [Peter,(March 1)]), find a birthday given a name, and a remind function that
for a given date d returns the set of names whose birthday is on d.

The remind function returns a set of names (SET[NAME]) where SET is an efficient mutable
collection in the Eiffel base library. The birthday book is implemented as two arrays one for names
and the other for dates. The postcondition of the remind query is

{n: NAME | Result.has(n) ® n} = {n € model.domain | model[n] = d e n} (4)

Thus, in the postcondition for the provided date d, the RHS expression {n € model.domain |
model[n] = d e n} means the set of all names in the domain of the model who have birthdays on
the date d. This must be equal to the LHS which is the set of all names returned by the remind
function. The Eiffel notation is shown in Fig. 3b. The postcondition of the remind query (4) is:

model_set.from_set(Result) |=| model.comprehension(agent date_matches (7, ?, d)).domain

The agent function used in the postcondition (and loop invariant) is:

date_matches (x: NAME; y, date: DATE): BOOLEAN is
do
if y.is_equal (date) then
Result := true else Result := false
end
end

/ BIRTHDAY BOOK \ class BRITHDAY BOOK feature

add_birthday (n:NAME; d: DATE) remind (n: NAME ; d: DATE): SET[NAME] is
require — model.has_key(n) Ic.)cal
ensure count = old count + 1 and model = (old model) * [n, d] dlo: INTEGER
find_birthday (n:2NAME): DATE create Result. make
require model.has_key(n) from
ensure Result = model[n] and model = old model i := dates.lower
invariant

remind (d: DATE): SET[NAME]
ensure {n: NAME | Result.has(n) e n} = {n € model.domain | model[n]=d e n}
model = old model

pd_modify ("i, Result")
i >= 0 and then i <= names.count

MODEL i< names.count implies names.valid_index (i)
ount: INTEGER inv: -- see text
count: Variant
model: MAP[NAME, DATE] dates.count - i
ensure Result =[i: INTEGER | names.lower < i < names.upper ® [names|i], dates[i]]] until
NONE i = dates.count
loop

names: ARRAY[NAME]

dates: ARRAY[DATE] if dates.item (i).is_equal (today) then

Result.extend (namesi])
end
count = #model i=i+1

@ws.coum = dates.count and names.is_unique / end
ensure

model_set.from_set (Result) |=|

(a) BON Diagram of BIRTHDAY_BOOK model.comprehension (agent date_matches (?, ?, d)).domain
B end

Invariant

end

(b) remind feature of BIRTHDAY_BOOK

Figure 3: Birthday Book

The loop invariant can now be constructed to approximate the postcondition by defining a slice
of the model to the loop counter i as follows:

modelslice(i, names, dates) = ((j : INTEGER |0 < j < i e [names|j], dates[j]])) (5)

The loop invariant for the remind query is similar to the postcondition:

{n: NAME | Result.has(n) e n} = {n € modelslice(i, names, dates).domain (6)
model[n] = d e n}

The equivalent Eiffel loop invariant (inv in Fig. 3b) is

model_set.from set (Result) |=|
model.from two_arrays(names.subarray (0, i-1),dates.subarray(0,i-1)).
comprehension(agent date_matches (7, 7, today).domain).

3 The Eiffel to PD Translator

Underlying Theorem Prover

Our goal is to automatically verify Eiffel code specified via ML as in the stack and birthday book
examples. The question would be, which theorem prover do we use? The Perfect Developer (PD)
specification language and theorem prover [5] is a technically mature product that is aligned with
the object-orientation and design by contract paradigms. PD theorem prover has about the same
level of power and automation as Simplify [6] (used for program checking in Spec# and ESC/Java).
Simplify handles integers and booleans at the primitive level while PD has a greater repertoire (e.g.
reals, characters, and strings). PD specification language also has a library of generic sequences,
sets, bags and maps well-suited to ML [7]. A limitation of PD is that it discourages reference

semantics. It is well-known that the presence of multiple references to a common object causes
aliasing and makes sound and complete static verification problematic. Therefore PD, unlike say
Java and Eiffel, adopts value semantics by default and discourages the use of reference semantics
3. Despite these limitations, we have adopted PD for automated deduction in our ES-Verify tool,
and we are in the process of constructing a library of base Eiffel classes in value semantics (see
Introduction) using the Eiffel expanded construct. As a future goal we intend to expand our tool
to full reference semantics

The theoretical foundations of PD are Floyd-Hoare logic and Dijkstra’s weakest precondition
calculus and it has the power of first-order predicate calculus, as well as a few higher-order con-
structs. The prover generates verification conditions and aims for verifying the total correctness
(termination and refinement satisfying specification) of the input code. It delivers either a proof,
upon success in discharging all verification conditions, or otherwise a list of warnings, possibly ac-
companied by useful fix suggestions. Output from the prover can be in formats such as HTML or
Tex [4]. From an academic point of view, there is a lack of information about the inner workings
of the PD theorem prover (as opposed to an interactive theorem-proving system such as Isabelle
[3]). Ideally, the logical rules used in correctness proofs, should be open for inspection so that
independent trust can be established. However, the PD theorem prover does provide the complete
proof, and thus the product is robust and suitable for engineering use [8]. Fig. 4 shows how the
FEiffel stack example is translated into a PD specification.

Outline of Class Translation

The translator assumes that all Eiffel classes to be translated have already been compiled and type
checked. On the Eiffel side (left of Fig. 4), there are three different feature declarations: the public
feature declaration?, the model feature declaration®, and the implementation feature declaration®.
And on the PD side, there are also three different sections: abstract, internal and interface.

We first consider the Eiffel public feature declaration. Each Eiffel public attribute (e.g. count)
becomes a variable (i.e. var declaration) in the PD abstract section. In order to allow client classes
to access this variable, it must also be redeclared as a function in the PD interface section (hence
the first line in the PD interface section reads function count). Each Eiffel public command (e.g.
put) becomes a schema in the PD interface section. Each Eiffel public query (e.g. item) becomes
a function in the PD interface section.

We then consider the Eiffel model feature declaration. In stack we only have the query model,
but in general we may have attributes and queries (but no commands) in this declaration. Each
Eiffel model attribute becomes a variable in the PD abstract section. Each Eiffel model query (which
is essentially the abstraction function), not only becomes a variable in the PD abstract section, but
also becomes two functions in the PD internal section. The first PD function uses the same name
as the Eiffel model query and its definition (expression following symbols *~ =, i.e. is-defined-as)
corresponds to the translated postcondition” of the that query. The second PD function is a twin
function® with a _verification name suffix. This twin function has the same definition but with a

3In PD, if reference semantics is adopted, then, roughly speaking, a heap declaration, e.g. heap MyHeap, would
be required. For a reference entity v of type T, its declaration would be v: ref T on MyHeap. And its call to an
applicable method m would be v.value.m, where value is the de-reference operator. Although we have several simple
PD examples on basic aliasing effect, we have not yet experienced much the power of the prover on handling reference
semantics. Escher Technologies Ltd. is in the process of developing a new beta intending to properly handle the issue.

4The part under the label feature{ANY}.

®The part under the label feature{ML_MODEL, ANY}.

5The part under the label feature{ML_MODEL}.

"More precisely, RHS of the first assertion clause which is a matching type with it of that query.

8This twin function is needed because future versions of PD will disallow refinement/implementations of abstraction
functions. Since we desire to verify that the model implementation satisfies its postcondition, we need this twin
function.

refinement (via. . .end segment) underneath which is the translated body of the Eiffel model query.
In stack the Eiffel query model becomes (a) a variable in the PD abstract section, and (b) a function
model and its twin refined function model _verification in the PD internal section.

Now we consider the Eiffel implementation feature declaration. All features under this dec-
laration appear in the PD internal section in the obvious way, i.e. Eiffel attributes become PD
variables, Eiffel queries become PD functions, and Eiffel commands become PD schemas. More-
over, since Eiffel agent expressions in loop invariants are private, they should be declared in this
feature declaration; however, agent expressions in pre/postconditions may be declared in either the
public or model feature declaration part. One such example is the agent function date matches
occurring in the loop invariant and postcondition of remind feature in birthday book.

Finally we consider the Eiffel class invariants: those clauses that only refer to public or model at-
tributes become equivalent invariants in the PD abstract section; otherwise, they become equivalent
invariants in the PD internal section.

Outline of Routine Translation: Eiffel commands and queries become PD schemas and
functions, respectively. For a command that may modify the current object, frame constraints are
needed. In order to specify frame constraints, PD supports a change clause’. For translation into
PD, we use in Eiffel specification a pd_modify'" declaration with its string argument become a list of
attributes that the PD schema may change. For an Eiffel command or query, its require clause and
ensure clause'! appear as equivalent PD pre and satisfy clauses, respectively. For Eiffel command,
its ensure clause (with its modify declaration) appears as the equivalent PD change and satisfy
clauses under a post declaration'?. Moreover, the Eiffel old notation for the value of expressions
in a prestate is converted into the equivalent PD primed notation. Finally, the body of an Eiffel
command or querry appears as an equivalent PD via ... end refinement segment.

4 Conclusion

When the PD translator is applied to the Eiffel code for the birthday book example, the theorem
prover generates 158 verification conditions which are all automatically discharged. This includes
proof of termination via the loop variant and invariant. For the two implementation arrays we used
the value semantics class ESV_ARRAY. Preliminary experience with other examples indicates that the
vast majority of verification conditions are quickly and automatically discharged, including loop
variants and invariants, without any interaction with the user. The user may add axioms (with the
danger of introducing inconsistencies) or assertions to help the theorem prover, but this is mostly
unnecessary.

We have presented in this paper a system where we make use of the mathematical but executable
ML library and the translator to convert clean and expressive Eiffel code into PD for automated
verification of the implementations. The translation process translates each Eiffel construct into an
equivalent PD construct so that this one-to-one relation between Eiffel and PD constructs allows
us to assign the semantics of the PD language to that of Eiffel (rather than the use of traditional
semantic methods such as operational or Action Semantics.). Of course such a semantics depends
upon the soundness of PD. Future work aims to extend the verification to the full reference seman-
tics.

Acknowledgements: We deeply appreciate the help we have received from David Crocker of Es-
cher Technologies with the Perfect toolset. Likewise we would like to acknowledge helpful feedback

9The new ECMA specification for Eiffel has a somewhat equivalent only clause.

9A boolean function that takes as argument a string and always returns true, hence can always pass the run-time
contract checking. Expression pd_modify("*") is an abbreviation meaning all attributes may change.

"' pd_modify declaration in the ensure clause is replaced with true in PD.

12 An Eiffel query is translated in the same way as it for a command except there is no modify declaration in its
postcondition, and thus there exists no change list and post declaration for its translation in PD.

‘pua ynsay anjeA : [| - Junodldw = jynsay ‘ © :}NSay JeA eiA
I1se|'lopow = ynsai Aysiies Q < junoo aid
0 W8} uoouNy

‘pud
L +31Unod = {jlunod : iy
(Junoo “x ‘dwi) B J0 YIdTIH AVHHY AST @ ind =jdwi ‘ i
ssed :[]
(2. dwig ‘dun) 5 Jo HIdTIH AVHHY AST @ moib = jdw
‘[dwi = Junod] y
Al
£(0 X 'dwi) © Jo HIdTIH AVHHY AST @ 92104 = jdwi :[Aidwa dwi] y
BIA
(x)puadderjgpow = |apow ‘| + JuNOd = Junoo’ J|as
Aysnes
Junoo ‘jspow
abueyo
1sod
(9 : x)ind jewayos

‘pud 0 = jJunod ! {{(D) Jo AVHHY AST = idwi eIa
0 = JunoY" J|as B 0 = |opow# Ajsiies jJunod ‘|spow abueyo
1sod
MeW /eyg o} Judieainbas Jojoniisuogy; {} ping

‘JUN02 uonRouNy

spoylaw 2igndy/ aoeyiaul
‘pud
u_:wmm anjea
([(1+0-(1-1uno9) ‘p)adys dwi praIA (1 +0-(|-1unod) ‘0)eoNs dwi#> * 2 1.10y)
= j)nsey
“HD)1003STIN =iUNsey (D) J0 OIS N HNSdY JeA
BIA

(I0(1+0-(1-unoo) ‘0)eoys dwit praIA (1+0-(1-1unoo) ‘0)eoys dui> ~ 0 :: 1 40g) =,
(D) 40 O3S TN :uosEIYLIBA™[8POW UoROUNY

“(0(1L+0-(1-unod) ‘p)aoys dui praIA (L+0-(1-unod) ‘0)soys dwi#> = 0 & | 10§) =,
/epow uonouny

‘dwig => uNoo § 0 =< JUNOD JuelIeAUl

(D)o AVHYY AS3 dwi tea
juswsuyaly/ |leusajul

{[opow# => JUN0O JUBLIBAUI
Ul JUN09
(9)1003S N J8pow Jen
joeuisqge
=v (D) J0 MOVLS AN Ssep

LPA'NOILOITIOO TN, “WPd AVHHY AS3.
uoduwi

pue
|9pOW # => JUNOO UAY} pue UNoo dwi => JUNOJ UdY} pUe () =< JUNOD
JueLeAUl
pus
((1-unoo ‘Q) Aewregns dwi) Aeue” wouyynsay |=| ynsey
ainsua
((1- unoo ‘p) Aeureqgns dwi)Aelie” WOIyYNSaY =: }NSaY ‘9yewWw }Nsay djeald
op

s [D]o3s N yepow
uoljese|oap ainjesy [epouw -- {ANY “TIA0W TN} 81nyesy

[DlAvHYHY AS3 dw!
uojjesejoap ainjesy uoeuswaldwi -- {13AO 1IN} @4nleay

pue
(x <| |]opow pIo) |=| 9POW UBY} PUE | + JUNOD PJO = JUNOD
() APOW " Pd

ainsus
| +JUN0d =: JUNod
pua
(3Junod ‘x) Ind-dwi
pua

(2 » Junoo-dwi) moiB-dw
uay} Junod'dwl = Junoo 1
as|a
(0 x) 9210y dwi uayy Aidwa srdw
op
s1 (D :x)ind

pua
1SE|'|opoW = }NSaYy aINSud
[} - wnoo] dwy =: ynsay
op
0 <1unod aiinbai
S1 9 ‘Wwajl

HIODILNI Funod

pua
0 =1Un0d pue Q = |9pow #
() AtPOW " Pd
ainsud
0 =:1unoo : dwy ajealo
op
10JONJISUO0D -- S| yBW

uoljesejoap ainjesy olqnd -- {ANY} ainjea}

ayew
ajeatd [DMOVLIS AN Ssep

The Translation Layout from Eiffel into Perfect Language

STACK example

Figure 4

10

from Bertrand Meyer and Bernd Schoeller of ETH Zurich. This work was funded by a Discovery
Grant from NSERC.

References

[10]
[11]

[12]
[13]
[14]

[15]

Jean-Raymond Abrial. The B-Book: Assigning programs to meanings. Cambridge University Press, 1996. ISBN
0 521 49619 5 (hardback).

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system: An overview. In
CASSIS 2004, volume LNCS 3362. Springer Verlag, 2004.

Achim D. Brucker and Burkhart Wolff. A Proposal for a Formal Ocl Semantics in Isabelle/Hol. In Theorem
Proving in Higher Order Logics, volume LNCS 2410. Springer-Verlag, 2002.

David Crocker. Perfect Developer: A tool for Object-Oriented Formal Specification and Refinement. In Tools
Ezhibition Notes at Formal Methods Furope, 2003.

David Crocker. Safe Object-Oriented Software: The Verified Desing-By-Contract Paradigm. In F.Redmill &
T.Anderson, editor, Twelfth Safety-Critical Systems Symposium, pages 19-41. Springer-Verlag, London, 2004.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem Prover for Program Checking. Journal of
the ACM (JACM), 52(3):365—-473, 2005.

Escher Technologies. Perfect Developer Language Reference Manual, 3.0 edition, December 2004. Available from
www.eschertech.com.

Ingo Feinerer. Formal Program Verification: a Comparison of Selected Tools and Their Theoretical Foundations.
Master’s thesis, Vienna University of Technology, January 2005.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata.
Extended Static Checking for Java. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation, 2002.

C. A. R. Hoare. Proof of Correctness of Data Representations. In Acta Informatica, volume 1, pages 271-281.
Springer-Verlag, February 1972.

Gary T. Leavens, K. Rustan M. Leino, and Peter Mller. Specification and verification challenges for sequential
object-oriented programs. TR 06-14, Department of Computer Science, Iowa State University, May 2006.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997. 0-13-629155-4.
J.M. Spivey. The Z Notation: A Reference Manual (2nd edition). Prentice-Hall, Englewood Cliffs, N.J., 1992.

Brian Stevens. Implementing Object-Z with PerfectDeveloper. Journal of Object Technology, 6(2):189-202,
March-April 2006.

Kim Walden and Jean-Marc Nerson. Seamless Object Oriented Software and Architecture. Prentice Hall, 1995.
Seamless Object Oriented Software and Architecture.

11

