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Abstract

This paper presents methods for recovering accurate binocular disparity estimates in the
vicinity of 3-D surface discontinuities. Of particular concern are methods that impact
coarse-to-fine, local block-based matching as it forms the basis of the fastest and the most
resource efficient stereo computation procedures. Several advances are put forth. First,
a novel coarse-to-fine refinement that adapts match window support across scale to ame-
liorate corruption of disparity estimates near boundaries is presented; a detailed analysis
of coarse-to-fine 3-D boundary processing is given as well. Second, a novel formulation of
half-occlusion cues within the coarse-to-fine block matching framework is described; the
relation of the proposed solution to previous methods is extensively discussed. Third,
the use of colour or intensity segmentation for better recovery of 3-D boundaries is in-
vestigated; a formulation specific to a coarse-to-fine local block-based matching is given.
Empirical results show that incorporation of these advances in the standard coarse-to-fine,
block matching framework reduces disparity errors by a factor of two, while performing
little extra computation and preserving the parallel/pipeline nature of the framework.
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Chapter 1

Introduction

1.1 Motivation

As soon as someone asks the question “How do we perceive the world visually?”, a second
question of no less importance arises. Our spatial world is three-dimensional, while images
captured by our eyes or cameras are always two-dimensional, as in Figure 1.1. So, how is
this third dimension, i.e. distance, recovered?

By looking at a painting, drawing or photograph, we perceive the rendered scene as
three-dimensional with the help of a variety of single-image depth cues such as perspective,
contour, texture, aerial perspective and shading. Successful use of these cues requires a
set of assumptions and prior experience and all of them have been replicated in computer
algorithms with various level of success – techniques known as “Shape-from-X” [45].

An alternative way to infer depth is to gather more information by taking several
images, but from different view-points. Images can be taken from different places (multiple
view stereo), different points in time (structure from motion) and even with different focal
points (depth from focus). This paper concentrates on the multiple-view approach, and on
two-views specifically. Of possible configurations, binocular imaging (i.e. two view stereo)
has been a particularly well researched situation as it provides the minimal multiview
situation.

Another reason to choose the binocular imaging out of multi-view configurations is
that it reflects biological design and there is a potential for cross fertilization between
research in artificial and natural binocular stereo. The research in human and animal
stereo is immense and useful information discovered in psychophysical labs may be used
during design of artificial binocular perception. In complement, computational analysis
can suggest potentially fruitful paths of investigation in the study of natural systems.
Also, computational realization offers evaluation of the biological models for their ability
to mechanistically extract stereoscopic measurements from visual data.
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Figure 1.1: 2-D Imaging of a 3-D World.

The ability to automatically perceive (i.e. reconstruct) a scene in 3-D is extremely
useful in practice, as many applications critically depend on it. One such application is
robotics, where robots must operate in environments that are dangerous or unreachable by
humans. Specific examples include space (autonomous planetary exploration, inspection
of aircraft on orbit), underground mining, autonomous vehicles for military operations and
aids in driving [99, 45]. Moreover, knowledge of 3-D information is required for many
consumer applications like portable scene modelers [103] and augmented reality, where
dense 3-D information is important for correct rendering of occlusions of virtual objects
by real objects [63].

To make these applications practical, the underlying recovery of 3-D measurements
must be accurate, rapid and require little in the way of special purpose hardware. No ex-
isting technology can respond to these demands. Active sensing technologies (e.g., sonar,
lidar, structured light etc.) are based on emitting energy into the environment and an-
alyzing the reflected pattern [99, 45]. They require special purpose hardware (e.g. laser,
projector) that is bulky, expensive, and power consuming. Passive sensing approaches, such
as computer multi-view stereo vision, are robust and very cheap alternatives, because only
cameras (minimum of two in case of binocular stereo) and a computer are required, and no
energy emission is involved. However, this technology is hampered by poor speed/accuracy
trade-offs and improper reconstructions near object boundaries.
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Figure 1.2: Stereo Geometry for Two Perspective Cameras. A 3-D point in space is
projected on two spatially displaced cameras.

1.2 Problem structure

1.2.1 Stereo overview

The stereo problem is very easy to state (but, unfortunately, not easy to solve) once one
considers the geometry behind it. The situation for a single 3-D point and two perspective
cameras [51] is depicted in Figure 1.2. The basis behind the process of inferring actual
depth is the search for the projection of the same 3-D point across images and calcula-
tion of disparity – a difference in image coordinates between those projections. Once the
corresponding projections are found, the absolute 3-D coordinates of the world point are
completely determined via triangulation, provided that the stereo rig is calibrated [51].
Similarly, we can reconstruct the whole scene point by point. Within this framework,
triangulation and calibration are relatively straightforward and well understood; whereas,
correspondence remains challenging.

1.2.2 Challenges of correspondence

The recovery of corresponding points across binocular views is a hard problem even when
the assumption of Lambertian surfaces [117] is in use1. More specifically, relying solely on
an intensity-based matching function is generally not enough. First, points in correspon-
dence might not look alike, because data contains noise, stereo images are hampered by
projective distortions and differences in cameras’ settings. Second, points that look alike
are not necessarily in correspondence due to repetitive texture, or homogenous regions,

1Recall that surface is Lambertian if its luminance is the same regardless of the viewing direction and
depends on the cosine of the angle between the local surface normal and the illumination direction.
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where no distinct points can be identified. Technically speaking, matching is undercon-
strained in such situations.

Other fundamentally hard regions for establishing correspondences are in the vicinity
of 3-D boundaries. This problem is typical for computer vision processing methods that
have to deal with noisy data and use low-pass filtering techniques to regularize the solution.
While such methods alleviate difficulty with high frequency noise, they also inhibit recov-
ery of high-frequency details, like exact discontinuity locations. The problem of accurate
and reliable recovery of 3-D boundaries is very important by itself, as many applications,
such as robotic manipulation and 3-D reconstruction, critically depend on accurate depth
discontinuity information. Moreover, humans are very sensitive to 3-D boundaries and are
able to recover them with precision greater than spacing of photoreceptors on the retina,
i.e. they exhibit stereo hyperacuity [57], which proves that nature has a good solution for
recovery of 3-D discontinuities, and it is yet to be discovered.

As established so far, computational stereo algorithms try to find points in correspon-
dence. However, for some points in the scene the correspondence cannot be found in
principle – those points are called half-occluded, as they are seen only in one of the views
of the stereo pair. Thus, a good stereo algorithm must not only find the points in correspon-
dence, but also explicitly say which points have no match. Interestingly, as early as Euclid,
the basic geometric relationship that gives rise to half-occlusion was documented [26]. Fur-
ther, the potential perceptual significance of binocular half-occlusion has been known at
least since the time of Leonardo Da Vinci [97]. Much more recently, the fact that humans
actually do exploit half-occlusions in making depth inferences was documented [73]. Sub-
sequently, a great number of psychophysical studies of half-occlusion have supported their
use by humans (see [57] for review); however, the enabling computations remain unclear.

Many other problems can arise during stereo matching, such as various types of noise,
specularities, aerial diffusion, transparencies etc. Some of them (noise, specularities) are
partially treated by the design of the appropriate match measures [13, 102, 21, 113]. Others
might need the extension of the stereo model to adapt to the specific situation, such as
underwater stereo [96]. Still others require a novel insight into the stereo problem from the
very beginning, e.g. transparencies [112].

1.2.3 Constraints

To deal with correspondence challenges effectively, various constraints on stereo matching
are used.

There exists a fundamental constraint for points in two-view geometry known as the
epipolar constraint. Conceptually, it means that corresponding points exist only along the
epipolar lines2, which changes the general 2-D correspondence search problem to a 1-D

2Given a point in three space and two centres of projection that define their encompassing plane P ,
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Figure 1.3: Geometry of Nonvergent Stereo. Left and right image planes lie in the same
world plane and their axes are aligned. All epipolar lines are parallel to the horizontal axis
and the vertical disparity component is always zero.

search problem – a great reduction in possibility of error and processing time. For these
reasons, stereo setups with parallel camera axes are usually used (nonvergent geometry)
with epipolar lines lying along the horizontal axis (Figure 1.3). Refer to the horizontal
axis as the x-axis and the vertical as the y-axis. Note that in case of nonvergent geometry
disparity is just the difference in the left and right image x-coordinate and is inversely
proportional to depth, while the orthogonal y-coordinate is the same in both images.
Alternatively, if the stereo setup is convergent (cameras’ optical axes are not parallel),
then images can be pre-warped by homographies to make their epipolar lines lie parallel
to the x-axis, i.e. they become rectified (Figure 1.4). Today, computational stereo heavily
relies on rectification [102, 21] (and hence, on the epipolar constraint) due to existence of
fast and robust rectification procedures [21, 51].

A fundamental technique to make the correspondence solution more stable is to assume
spatial smoothness, or cohesion, which means that points belonging to a single object tend
to reside at a certain near-constant depth. Smoothness is usually enforced by penalizing
neighbouring points that have different depths (and hence, disparities) or by assuming that
neighbouring points reside at the same depth by aggregation and matching the aggregated
regions. Actual mechanisms for application of smoothness can vary, but any contemporary
stereo algorithm includes this constraint. In fact, algorithms that only rely on intensity-
based pixel matching, epipolar geometry and smoothness are among the state-of-the-art
solutions [20, 111].

The uniqueness constraint forces points in both images to have at most one corre-

corresponding epipolar lines are defined by the intersection of P with the imaging planes.
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Figure 1.4: Binocular Rectification. Images are warped by homographies such that warped
images can be treated as coming from the parallel stereo setup, as in Figure 1.3.

spondence. This constraint comes directly from the geometry, when opaque objects are
assumed. However, uniqueness is not easy to apply correctly, because it is stated for points,
while stereo algorithms deal with pixels. Trivially, consecutive points on a slanted surface
have slightly different disparities, which can easily be quantized to the same pixel dispar-
ity value (these difference between disparities is less that 1 pixel), i.e. they will violate
uniqueness, which makes non-fronto-parallel surfaces hard to recover.

The ordering constraint states that the order of points along an epipolar line in one
view will be the same as in the other. This constraint was initially inspired by the Dispar-
ity Gradient Limit [23] formulated for biological stereo vision. The ordering assumption
considerably simplifies the matching procedure by significantly pruning the correspondence
search space; at the same time, some valid configurations, such as thin foreground struc-
tures, violate this constraint, hence will not be recovered correctly

The occlusion constraint says that half-occlusions in the left-based disparity map corre-
spond to occluded regions in the right-based disparity map and vice versa. This constraint
is derived directly from the definition of half-occlusion and has proven to be one of the
best methods for half-occlusion detection [39, 110].

The colour or intensity segmentation cue relies on the fact that 3-D object boundaries
are very likely to coincide with colour or intensity edges. This cue can be very beneficial
for stereo as it gives additional information on how to distinguish between discontinuities
and smooth 3-D surfaces [102, 21]. However, this cue cannot be strictly interpreted as
a constraint, because two objects may reside at different depths, but be of absolutely
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the same colour, i.e. no meaningful intensity edges can be found to separate them in
monocular images; alternatively, an object can have strong colour edge elements that do
not correspond to any depth changes, i.e. texture edges.

In general, application of these cues and constraints may greatly improve the quality
of the recovered stereo disparity [102, 21].

1.3 Previous correspondence methods

Here we want to overview the major stereo correspondence algorithms resulting from pre-
vious research, and discuss how each algorithm solves the challenges outlined in Section
1.2.2.

1.3.1 Matching primitives

Section 1.2.1 focused discussion of the stereo problem onto the search for corresponding
points. However, nothing was mentioned about what these points might be. Generally, the
choice of entity to match depends on the nature of the data. It could be just a plain point
in binary images [83], pixel intensities [102], corners [88], edges [9], lines [86], contours
[76], phase-based features [42], oriented bandpass filter responses [60], SIFT features [80],
colour segments [115] and many others. More complex features are easier to match, as
they bear more information and identity, i.e. they are more discriminative; they are also
sparse, which substantially reduces the computation time; but, unfortunately, they result
in a sparse depth map. Simple features, i.e. pixel intensities, are much more ambiguous,
but they do not have to be explicitly extracted and produce disparity maps of maximum
density, i.e. depth is estimated for (almost) every pixel.

The algorithms that use simple but dense attributes like pixels have been coined “area-
based stereo”, while algorithms that use more distinctive attributes, e.g. edges, corners,
etc. are known as “feature-based stereo”. A great deal of early work in stereo was accom-
plished in the field of photogrammetry, which, e.g., is interested in the automatic recon-
struction of three-dimensional terrain models from stereo fly-overs acquired by a plane.
There, researchers have extensively exploited correlation methods [70], hence, area-based
approaches, to get dense depth maps. In contrast, initial computer vision research con-
centrated mainly on feature-based algorithms, as computational power was insufficient to
perform fast dense stereo and dense stereo itself did not produce satisfying results at that
time. An early review of feature-based stereo methods can be found in [10, 36]. As time
progressed, computers became faster and the demand for dense depth maps increased,
which made people turn most attention back to area-based, or rather pixel-based stereo.
Comprehensive reviews of recent advances in pixel-based stereo can be found in [102, 21].
Scharstein and Szeliski have developed a taxonomy for modern stereo algorithms to “allow
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the dissection and comparison of individual algorithm components design decisions” [102];
moreover, the authors have organized an interactive website where anyone can evaluate
their stereo algorithm on a quite complex dataset and be ranked among other solutions [3].
As this paper is concerned with the recovery of dense depth maps, we review the major
approaches to area-based stereo below taking into account the taxonomy proposed in [102].

1.3.2 Local methods

The simplest method to do stereo matching on graylevel images would be to compare each
pixel’s intensity in the reference image with pixels in the other image along an epipolar
line using some match cost function, and then choose the match (hence, disparity) which
minimizes this function – a strategy known as Winner-Take-All (WTA). As matching based
on a single pixel is very unlikely to work (due to difficulties outlined in Section 1.2.2), we
typically define an aggregation window around each pixel and match the windows instead
[117]. The match cost function itself can be as simple as an absolute, or squared intensity
difference; it can be normalized to be robust to different camera gains. Alternatively,
rank-order statistics of intensity, instead of values themselves can be used. Further, an
arbitrary one-to-one mapping between intensity values can be derived during the matching
procedure (e.g. using a technique known as Mutual Information [123, 38]). More detailed
discussion about match metrics and their comparison can be found in [21].

The described algorithm is a basic stereo algorithm where photometric matching is
applied via a similarity cost function, smoothness is applied locally via an aggregation
window and disparity decision is made based on a trivial WTA procedure:

d = ∀p| : arg min
dp


 ∑

q∈N (p)

Edata(dq)


 (1.1)

where d is entire disparity map, p is a point on the map, N (p) is a aggregation region of
a point and Edata(dp) is a intensity-based dissimilarity measure for point p and disparity
assigned to it, dp.

While the choice of cost function and window sizes and shapes can vary widely, this kind
of algorithm is very easy to code, can be completely parallelized and forms the backbone
of today’s fastest methods. In fact, the overwhelming majority of real-time algorithms are
local area-based methods [21].

1.3.3 Cooperative methods

The result of the local area-based method outlined in Section 1.3.2 can be improved when
disparity estimates are iteratively updated by further enforcement of a smoothness con-
straint between neighbours. Such algorithms are named “cooperative” and realized by
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diffusing reliable matches to neighbours and inhibiting values along the view-directions of
the left or right eye, i.e. enforcing the uniqueness constraint.

Historically, cooperative methods were inspired by the computational models of human
stereopsis [83]. The algorithm of Zitnik and Kanade [132] is an excellent example of a
contemporary cooperative stereo method, which can be seen as an extension to [83]. Later
work mainly concentrated on improving various aspects of this algorithm, like better 3-D
boundary localization [131, 85, 92, 125].

1.3.4 Global methods

Local (and cooperative) methods employ local aggregation to get meaningful matching
results. Considering that aggregation is motivated by smoothing, stereo processing can
be essentially seen as pixel-wise intensity matching plus a penalty for neighbouring pixels
having different disparities for smoothness. Global algorithms formulate this principle
directly as an energy objective function over all pixels, using a Markov Random Field
Assumption [102, 21, 116, 122]:

E(d) =
∑

p

Edata(dp) + λ
∑

q∈N (p)

Esmooth(dp, dq) (1.2)

where d is the entire disparity map, p is a point in the map, N (p) is a neighbourhood
of a point, λ is a smoothness parameter, Edata(dp) is a photometric-based dissimilarity
measure for point p and disparity assigned to it, dp, and Esmooth(dp, dq) is a penalty for
nearby pixels having different disparity values. Many other terms like colour segmentation,
uniqueness, ordering, occlusion can be added to the objective function. In this formulation
the disparity map d can be obtained as

d = argmin(E(d)) (1.3)

The whole problem now is to minimize this function, i.e. solve (1.3). Fortunately, a
number of efficient optimization methods have been developed and applied to global stereo
such as dynamic programming [30, 58, 32, 21, 52, 122], loopy belief propagation [111, 41,
110], graph cuts [98, 14, 20, 69, 64, 77, 61, 5, 55, 35], stochastic diffusion [104, 101, 74],
PDE [108, 6], genetic algorithms [49] and others [21]. Such optimization methods give
extremely good empirical results in comparison to local methods [102, 21]; however, being
global, the algorithms are very computationally and memory-intensive and cannot be easily
parallelized.

It is worthwhile noting that it is possible to design an algorithm that combines various
aspects from each of the classes mentioned above. For example, one can initially aggregate
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matches using local support windows, and then make a final disparity assignment based on
optimization of a global function (1.2) instead of a simple WTA procedure (e.g. aggregation
windows together with dynamic programming [47, 109]). It is also possible to treat the
contribution of each point differently based on the reliability of its matching – techniques
known as Ground Control Points (GCP) [17] and Unambiguous Matching Components
[100].

1.3.5 Coarse-to-fine

In constructing a disparity map, each pixel has a whole range of possible values, and this
whole range should be tried to find the optimal assignment. Luckily, the idea of hierarchical
processing, or coarse-to-fine, can be applied to stereo.

Coarse-to-fine disparity estimation operates as follows. Initially, images are brought
into a pyramid representation where the base level captures the original image, while suc-
cessive levels capture coarser resolutions with smaller format images via spatial subsam-
pling, applied after low-pass or band-pass filtering (to avoid aliasing). The most widely
used pyramids are Quadtree [59], Gaussian and Laplacian [24]. In turn, coarse-to-fine
stereo operates by initially estimating disparity for lower resolution images (hence, images
of smaller size), then taking these disparities as an offset for refinement using higher res-
olution (ultimately the original) images. Note that search range can be smaller for low
resolution images, because images themselves are smaller. The refinement step is consider-
ably cheaper than calculation from scratch, because the local search range is smaller given
the initial disparity offset. This procedure is preformed recursively by doing progressive
matching starting from the coarsest pyramid level to the finest level.

Speed is not the only reason to employ coarse-to-fine processing. It also helps to remove
local minima in correspondence search by their reduction at the coarse level and allows for
variable support aggregation as support region of the same size (in terms of pixels) yields
greater smoothness at coarser levels. These properties are exceptionally beneficial for local
algorithms, which use fixed support and simple WTA optimization procedures.

Another interesting property of coarse-to-fine stereo is that it can be treated as an
anytime algorithm, because intermediate processing results correspond to the final depth
map but at coarser resolution. This property is very useful for certain applications, such
as hard real-time systems, where it is essential to get at least partial result as soon as the
algorithm is interrupted [99].

The coarse-to-fine approach has disadvantages as well. Mistakes made early at the
coarse resolution can be difficult to correct. Moreover, coarse-to-fine processing experi-
ences difficulties in recovering thin structures and shows inferior performance near 3-D
boundaries, because these are high-frequency details that are unavailable at coarser scales.

Coarse-to-fine stereo appeared almost simultaneously with the first computational stereo
algorithms [83, 95]. Since then it is constantly used in real-world applications and new algo-
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rithms keep appearing [118, 89, 127, 29]. Interestingly, any disparity estimation procedure
can be modified to work in a coarse-to-fine fashion and recent global approaches, mostly
the ones that use dynamic programming, even achieved real-time performance [109, 87, 44].

1.3.6 Challenges revisited

Now that the major area-based algorithms for dense stereo have been stated, it is important
to discuss how each of them solves the main challenges of the correspondence problem that
have been summarized in Section 1.2.2.

Textureless regions

In the case of textureless regions, the calculated disparity is a result of the smoothness
constraint entirely – disparity estimates are interpolated between near locations of textured
patches for which disparity estimates can be found. In such situations, the result of a
computational stereo algorithm depends on the mechanism of smoothness enforcement.
No wonder that cooperative and global methods solve this problem reasonably well, as
support can be accumulated over the whole image, if necessary.

At the same time, local area-based methods experience difficulties in such areas, because
the areas of textureless regions can always be bigger than the size of the support window,
while local methods cannot use very big windows because it heavily impacts results near
3-D boundaries (discussed below). In the past, researchers developed various heuristics
to attack this problem by explicitly detecting unambiguous regions [100], checking if the
minimum selected by WTA procedure is significantly lower than other competing values
[54, 48, 107], calculating a curvature of the correlation function [8], adaptively growing
the support region by designing more complex rules for aggregation window construction
[62, 19, 121] and others [21].

Coarse-to-fine area-based methods significantly improve on single-scale local matchers
in textureless regions, as they are able to aggregate greater support at coarse levels, but
they cannot solve this problem completely [7].

3-D boundaries

The accurate and reliable recovery of 3-D boundaries is still an outstanding problem for the
whole computational stereo community. Performance near depth discontinuities critically
depends on how the spatial smoothness is enforced or, alternatively, support is aggre-
gated. Specifically, it is essential that support for a point comes from the same object,
i.e. appropriate side of a 3-D boundary, as depicted in Figure 1.5.

Simple local methods, as described in Section 1.3.2, perform unsatisfactorily near depth
discontinuities, because the region of support is central and its size is fixed. Thus, when
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Figure 1.5: Smoothing Near 3-D Boundary (3-D Discontinuity Marked in Dark Grey).
Ideally, support aggregation for point P must come from the shaded region only.

used near a depth discontinuity, the window will cross the 3-D boundary and points at
different depths will be used to estimate the disparity of a central point – the smooth-
ness assumption within a window is violated. The results near object boundaries worsen
when window size grows, which contradicts the desired behaviour in regions with little tex-
ture, where greater support is necessary. In response, researchers have developed various
techniques for adapting windows during the matching so they are unlikely to cross object
boundaries [62, 46, 82, 54, 91, 120, 121] and these techniques prove to perform reasonably
well.

Interestingly, cooperative methods also can be hampered by poor recovery of 3-D
boundaries, as the initial match estimates are obtained by local window-based methods.
Errors may not be so huge, because windows of relatively small size are sufficient for initial
disparity estimation.

In contrast, global match methods can be quite keen near 3-D boundaries, if the smooth-
ness cost function Esmooth(dp, dq) is chosen appropriately. A very good choice is a robust
non-convex cost function [15], which penalizes large and small jump discontinuities equally.
Convex cost functions may result in a very convenient energy formulation (1.2) which can
be optimized efficiently and exactly, e.g. with Graph Cuts [58, 119]. Unfortunately this
exact solution replicates the real situation quite poorly resulting in ramping of object bor-
ders (i.e. natural sharp gradients are “smoothed” by slants of smaller gradient). A simple
Pott’s model for smoothness penalty

Esmooth(dp, dq) =

{
0 if |dp − dq| = 0,
1 otherwise

(1.4)

yields particularly good solutions and is used in the majority of global algorithms today
[20, 69, 116, 16, 41, 35, 122]. Intuitively, global algorithms have a natural advantage in
that they intrinsically construct support on the fly, i.e. not committing to any predefined
window shapes. Thus, they have a natural ability to recover borders of arbitrary shape
and they have empirically proved to achieve this result [102, 21, 3].

Finally, coarse-to-fine stereo seems to be the worst performer near 3-D boundaries,
which has been empirically shown in many papers [74, 109]. Fine spatial details are lost
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at coarse scale due to low-pass filtering and coarse disparity estimates do not bear enough
information for exact localization of object boundaries during the refinement procedure.

In order to localize depth discontinuities even better, a colour segmentation cue can be
used by both local and global algorithms. The former can adapt their match window shape
and size according to colour segments [131, 85, 92, 128], while the latter can enforce higher
smoothness violation penalties for neighbouring pixels having similar colour values [111,
116, 122]. Moreover, images can be pre-segmented initially and the matching performed
directly on segments [115, 5, 35].

Half-occlusions

Early work on computational stereo ignored half-occlusion or treated it as noise in the
matching process [10]. Subsequently, a number of approaches to dealing with half-occlusions
have emerged (see [39, 21] for reviews and empirical comparison). Several more recent con-
tributions to the literature of half-occlusions can be noted. The use of adaptive spatial
support for match windows can ameliorate issues arising in attempts to match half-occluded
regions by shaping windows to avoid poorly defined matches [62, 46, 91, 54, 121]. Other
recent additions to the literature are based on the expected behavior of disparity gradient
in the vicinity of half-occlusions [58, 50, 110], e.g., the fact that occlusions in a left-based
disparity map correspond to occluded regions in the right-based disparity map and vice
versa (the occlusion constraint). The importance of disparity gradient as a constraint on
allowable stereo matches has been known for some time (e.g., [23, 94]); however, its spe-
cific interpretation in terms of half-occlusion is relatively recent. Yet another approach
rejects matches that are ambiguous (in having rival candidates of similar cost) to diag-
nose occlusion [100]. Occlusion detection also has been bolstered by constraining occlusion
boundaries to align with those of uniform colour segments [35]. Another recent addition to
the literature involves interleaved processes of layered disparity estimation and assignment
to layers, with the option of pixel assignment to no layer, so that half-occlusions are dealt
with as assignment outliers [77]. Interleaved calculation of correspondences and occlusions
also has been cast within an expectation maximization framework [34], with high cost
matches rejected as arising from occlusion [108].

In terms of empirical performance, some of the most impressive recent results have
been demonstrated in conjunction with global methods [69, 90, 16, 110, 35], as they allow
for better recovery of initial disparity. In contrast, empirical investigation of half-occlusion
detection with local processing underlines shortcomings [39]. Moreover, occlusion handling
in a coarse-to-fine framework has not been explicitly studied previously.

It is worthwhile mentioning that half-occlusions are very important in practice since
they always arise near 3-D boundaries; thus, correct processing of half-occlusions automat-
ically means better treatment for 3-D boundaries.
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1.3.7 Speed-accuracy tradeoff

The brief overview of pros and cons of major dense stereo methods reveals the vivid ten-
dency of global algorithms to be qualitatively superior to local ones. Indeed, global algo-
rithms perform better in textureless regions and near 3-D boundaries due to their ability to
construct arbitrary match support on the fly. Also, they surpass local algorithms in half-
occlusion detection. On the contrary, no global algorithm can compete with local stereo
procedures in terms of speed, storage requirements, and, finally, computational complex-
ity. That is why when it comes to practical, especially real-time, depth measurements,
researchers still rely on local and coarse-to-fine methods, as they require less processing
and are easily parallelizable [21]. Thus, a speed-accuracy tradeoff is critical to computa-
tional stereo – it is possible to get good quality disparity maps at the expense of greater
processing time, memory and amount of computation; faster and cheaper stereo gives sig-
nificantly inferior results. The overwhelming majority of today’s research is concentrated
on global algorithms [102, 21], but local and coarse-to-fine stereo still has its own niche in
computer vision as being a simple and very fast alternative. Thus, improving the quality
of the latter methods is vitally important for many practical applications.

1.4 Contributions

Strongly motivated by the practical applicability of binocular stereo, we have chosen coarse-
to-fine block matching algorithms as a cornerstone, as such procedures inherently entail
lower processing demand, map well to current hardware and software architectures and are
suitable for parallel and pipeline computation. Moreover, the results of local and coarse-
to-fine stereo demonstrate constant chronological improvement [62, 46, 54, 27, 93, 128];
some local procedures seem to even outperform many global algorithms when other cues
like colour segmentation are used [128].

In the light of previous research and the motivation of the current research, the main
contributions of this paper are as follows:

• A detailed analysis of errors near 3-D boundaries arising during coarse-to-fine block
matching procedures is given and a simple yet very effective solution to significantly
reduce these errors is proposed.

• A detailed analysis of computational half-occlusion detection is presented and a novel
method for matching in the vicinity of such regions with respect to local stereo
computation is described.

• Special attention is given to half-occlusion treatment in the coarse-to-fine framework,
which allows for cooperative disparity and occlusion estimation
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• The colour segmentation cue in area-based stereo is revisited and a novel formulation
for local coarse-to-fine methods is proposed.

• All proposed advances have been implemented in C and combined in an integrated
algorithm. The algorithm has been evaluated using standard datasets such as Mid-
dlebury College [3], CMU SRI [2], images from Brown University [1], as well as a set
of naturalistic scenes acquired by MacDonald, Dettwiler & Associates Corporation
(MDA, former MDRobotics). Qualitative and quantitative analysis show that incor-
poration of the proposed advances in coarse-to-fine block matching reduces disparity
errors by a factor of two, while performing little extra computation, in comparison
to previous local coarse-to-fine formulations. Moreover, the proposed algorithm is
comparable to state-of-the-art solutions, while being more efficient and having very
few parameters to tune.

1.5 Outline of report

This paper is subdivided into four chapters. Chapter 1 has motivated the research, pro-
vided background and stated the outstanding problems in stereo vision, some of which
are attacked in this paper. Chapter 2 describes in detail the coarse-to-fine stereo frame-
work and proposes improving modifications. It investigates half-occlusion phenomena and
proposes a novel half-occlusion detection algorithm. This chapter also describes the colour-
segmentation cue for stereo matching and formulates it for the investigated coarse-to-fine
framework. Chapter 3 documents experimental evaluation of all proposed advances sepa-
rately and as combined in a final, cumulative algorithm. Chapter 4 discusses in depth the
features of the proposed coarse-to-fine computations. Chapter 5 summarizes our research
results and outlines possible directions for future development.
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Chapter 2

Technical approach

2.1 Block matching algorithm

The choice of match measure is a central issue in designing a correspondence algorithm,
as it allows the quantitative evaluation of similarity between entities. In essence, it is
one of the most critical parts for the area-based matching method, which boils down to
comparison of two blocks of pixels.

Of the existing match metrics, in the following we will concentrate on sum of squared
differences (SSD), sum of absolute differences (SAD), normalized cross-correlation (NCC)
[21] and mutual information MI (Appendix A) for the following reasons. For formal de-
velopments in this chapter we emphasize SSD as it yields best to analysis. In empirical
evaluation we will concentrate on the closely related SAD, which yields to efficient im-
plementation and offers increased robustness to outliers. Significantly, because we will
make use of bandpass images in matching, which remove intensity bias (more generally,
DC signal component) such non-normalized match measures can perform well [7, 21]. For
the sake of empirical comparison, we also will investigate NCC (to observe the effects of
explicit normalization) and MI (to allow for matching in the presence of extreme violation
of brightness constancy).

In the light of this discussion, we are ready to summarize the local block-based stereo
algorithm that is to be used in later investigation. Mathematical encapsulation can be
given as

∀(x, y)| : disp(x, y) = arg min
di

∑

(u,v)∈w(x,y)

ρ (im1(u, v), im2(u + di, v)) (2.1)

where im1 and im2 are matching are reference images, (x, y) is the point in the reference
image, w is the aggregation window around the point, and ρ is the cost function which is
to be minimized. Specifically, ρ(a, b) = |a − b| in case of SAD, ρ(a, b) = (a − b)2 in case

17



of SSD, and ρ ∝ −costncc when the NCC match measure is used (we put a minus sign in
front, because NCC meeds to be maximized).

Formula (2.1) can be converted into a pseudo-code algorithm:

Module A

disp(x,y) - disparity for pixel (x,y)
conf(x,y) - confidence for pixel (x,y)

For each pixel (x,y) in the reference image
For each d_i from disparity search range

calculate cost(x,y,d_i) over
central square window of size w

End loop
disp(x,y) = argmin(cost(x,y,d_i))
conf(x,y) = cost(x,y,disp(x,y))

End loop
End loop
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2.2 Adaptive coarse-to-fine stereo for 3-D boundary

preservation

As this paper mainly concerns coarse-to-fine stereo correspondence procedures, the abbre-
viation CTF will be used to denote it throughout the manuscript.

2.2.1 Basic algorithm

The basic elements of CTF block binocular matching can be outlined as follows (see
[102, 21] and references therein). Initially both images are brought into image pyramid rep-
resentations [24, 59] via repeated filtering to remove higher spatial frequency components,
followed by commensurate subsampling. The disparity map is estimated for the coarsest
level k, and then upsampled and scaled (implicitly or explicitly) to the next finer pyramid
level k − 1 where it serves to provide an initial estimate for refined matching. The proce-
dure continues until the finest resolution level k = 0 is reached and is portrayed by Figure
2.1. At each level disparity is estimated using any local stereo method, such as formulated
by (2.1) and outlined as Module A. We can describe this procedure mathematically:

[
(∀(i)|1 ≤ i ≤ 2 : im0

i = imi) ,
(∀(j)|1 ≤ j ≤ lmax : imj

i =
(
g ⊗ imj−1

i

) ↓2

)]
, (2.2)[∀(x, y)| : displmax+1(x, y) = 0

]
, (2.3)[∀(k)|lmax > k > 0 :

[∀(x, y)| : dispk(x, y) = 2 · dispk+1(x, y) ↑2 + (2.4)

+ arg min
di

∑

(u,v)∈w(x,y)

ρ
(
imk

1(u, v), imk
2(u + 2 · dispk+1(x, y) ↑2 +di, v)

)






where im1 and im2 are stereo pair images, lmax is the number of pyramid levels, ρ is
the match cost function, as in (2.1), g is the smoothing kernel and ⊗ is the convolution
operation, ↓2 is the subsampling by the factor of two procedure and ↑2 is the upsampling
by the factor of two procedure. Note that term (2.2) describes the pyramid construction
procedure, (2.3) states that initial coarsest disparity offset is initialized to all zeros, and
(2.4) describes the actual CTF disparity estimation procedure.

In turn, this mathematical encapsulation can be summarized into the algorithm:

Module B

Reference and matching images are initially
brought into pyramid representation

disp(k,x,y) - disparity for pixel x, y on scale k
conf(k,x,y) - confidence for pixel x, y on scale k
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Figure 2.1: Coarse-to-Fine Disparity Estimation Procedure. Left and right images are
initially brought into pyramid representations. Next, stereo correspondence for the coarsest
level is computed. Initial coarse disparity map is zero everywhere. Using images from the
next finer level and upsampled coarse disparity map, stereo correspondence is refined. This
procedure is repeated until the base pyramid level (original image resolution) is reached.
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Figure 2.2: Coarse-to-Fine Disparity Search Space: Linear disparity search in single-scale
matching vs. tree-like search in coarse-to-fine matching. Dark ovals symbolize the local
search range of ∆x = ±1; light ovals symbolize the local search range of ∆x = ±2. Note
the greater overlap in the search space, and hence greater computation redundancy, for
greater local search range.

Initialize ref_disp(:,:) to all zeros
For each level k from level_max to 0

For each pixel (k,x,y)
Run Module A with search range
[-delta_d+ref_disp(x,y), delta_d+ref_disp(x,y)];

End loop
ref_disp = 2*upsample(disp(k,:,:))

End loop

The outlined CTF processing has many useful characteristics. It helps to remove local
minima in correspondence search by removal of small details at the coarse level. CTF
also allows for variable support aggregation as support region of the same size (in terms
of pixels) constitutes to larger smoothness at coarser levels. Large disparities in the high-
resolution images correspond to small disparities in low-resolution subsampled images;
hence large disparity search space is covered by minimal searches at higher pyramid levels,
as in Figure 2.2. The last fact makes CTF very fast because the algorithm is essentially
independent of the disparity search range. Specifically, if the complexity of the algorithm
at a single level is O(Nd), where N is the number of pixels and d is the disparity search
range, the coarse-to-fine implementation has the complexity

O(NO(1)) + O(
N

4
O(1)) + O(

N

16
O(1)) + ... <

∞∑
i=0

O(N)O(1)

4i
=

O(N)O(1)

1− 1/4
= O(N) (2.5)

Taking into account that d can be on the order of a hundred for big images, the gain of
coarse-to-fine in terms of speed may be crucial, especially when real-time performance is
needed.

Considering the pyramids with resolution that halves going from level to level and local
disparity search range ∆d ≥ 1, it is not hard to derive the relationship between ∆d, the
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number of levels lmax, and the maximum recoverable disparity dmax:

dmax = 2lmax+1∆d− 1 (2.6)

It is easy to notice from (2.6) that it is much more efficient to cover disparity search range
by introducing more levels as (i) dmax increases exponentially, while ∆d increases linearly,
(ii) ∆d can be kept small to reduce the amount of computation on each level and minimize
the unnecessary overlap of intermediate search spaces while going from coarse to fine levels,
which results in redundant computations (light and dark ovals in Figure 2.2).

Ultimately, the most computationally efficient configuration is to use a complete pyra-
mid representation for maximum coverage of possible disparity values (the highest level is
just a singe row or column of pixels) and disparity search range being ∆d = 1. In practice,
such a configuration might not yield the best results and the combination of pyramid levels
and search range should be found empirically. This has to do with the loss of distinctive
patterns at higher levels leading to poorly constrained matching in terms of image struc-
ture. In practice, loss of spatial detail at coarse levels results in heavy deterioration of 3-D
boundaries, inability to recover fine geometric structures and difficulty in recovering from
errors made at the coarse level, because the algorithm is essentially greedy.

2.2.2 Analysis of coarse-to-fine stereo: Boundary deterioration

In this section we look at the process of boundary deterioration in a CTF SSD block-based
algorithm that uses a Gaussian or Laplacian pyramid. SSD is chosen for its convenience in
mathematical analysis, while Laplacian pyramids, which consist of bandpassed images, are
generally more useful in practical stereo and motion estimation than Gaussian pyramids,
(2.2) [7, 8]. This analysis will help us understand weak points of Module B and reveal
what should be done to improve it. We start by establishing intuition. Next we give an
analytic formulation. Finally, we provide numerical simulations.

Noise-free SSD matching

Intuitively, certain errors introduced by CTF arise when operating at coarse levels and
estimating coarse disparities, i.e. when the images are low-passed and subsampled. Ap-
propriate low-pass or band-pass filtering avoids aliasing caused by subsampling procedure.
Typically the filtering is realized via a Gaussian kernel as it is causal in scale space [78]
and yields an efficient implementation. At the same time, depth discontinuities will be
blurred, which means that pixels on 3-D boundaries will be a mixture of foreground and
background surfaces. The actual proportion of the mixture will depend on the shape of
the 3-D discontinuity or, rather, the ratio of the surfaces’ areas covered by the convolution
window.
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Figure 2.3: Examples of 3-D boundary Deterioration in Conventional Coarse-to-Fine
Stereo. Boundary deterioration examples for 90◦ and 45◦ configurations, top and bot-
tom rows, respectively. In the first column, black denotes background texture, white de-
notes foreground texture. In the last three columns, sketches show the recovered disparity
(foreground-background) for three different log FBR when three pyramid levels are used,
where FBR = σ2

f/σ
2
b is a foreground-background ratio defined as the ratio of pixel values

variances for foreground and background surfaces. Aggregation window is 5 × 5 in these
examples.

For detailed illustration, we consider two particular cases: a common rectangular-shape
boundary (90◦) and a harder sharp-corner boundary (45◦)1. Both configurations are shown
in Figure 2.3, first column. For simplicity of analysis we assume that the scenes are noise-
free, fronto-parallel and textured. These assumptions make a simple SSD measure return
0 in case of correct structure alignment and some other positive numbers for incorrect
assignment (except accidental repetitive texture).

To make matters more precise, let arbitrary image texture patterns be characterized in
terms of intensity mean, µ, and variance, σ2, so that foreground and background surface
patters are parameterized by µf , σ2

f and µb, σ2
b , respectively.

The SSD score over an aggregation window can be computed by convolving the squared
difference map between reference Iref and disparity shifted match image Iother with the
kernel W , which corresponds to the shape of window (usually w×w matrix with all entries
being 1):

ssdd = W ⊗ (Iref − shiftd(Iother))
2 (2.7)

[∀(x, y)| : shiftd(I(x + d, y)) = I(x, y)] (2.8)

where I is an image.

1Intermediate angle cases are harder to analyze due to the digital nature of the images.
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Considering the necessary processing operations, the application of the same operation
on an arbitrary pyramid level k can be described similarly as

ssdd = W ⊗ [
Ik
ref − shiftd(I

k
other)

]2
(2.9)

where Ik denotes an image at pyramid level k.
Let

g =
1

16

[
1 4 6 4 1

]T
(2.10)

be the binomial approximation of a one-dimensional Gaussian with unit variance. Ik is
defined recursively in terms of

IG(k) = (ggT ⊗ IG(k−1)) ↓2 (2.11)

and
IL(k) = IG(k) − 4ggT ⊗ (IG(k+1)) ↑2 (2.12)

with IG(k) and IL(k) being kth levels of Gaussian and Laplacian pyramids (IG(0) = I), respec-
tively. Additionally, ↓2 and ↑2 denote factor of two down- and up-sampling, respectively2.

The application of the Laplacian operator will result in each pixel near a 3-D boundary
being a blend of foreground and background textures, and the mixture proportion will be
determined by the spatial position of the pixel with respect to the depth discontinuity.
For example, the proportion of the foreground for a pixel can be calculated as the sum of
the values in the Laplacian kernel which cover the foreground surface when the kernel is
positioned at the centre of the pixel. The proportion of the background is calculated anal-
ogously. Thus, if a random variable p represents some pixel’s intensity, then its intensity
value after the smoothing would be

p =
∑

i∈f

wipfi +
∑

j∈b

wjpbj (2.13)

where wi are the kernel coefficients, pfi and pbi are samples drawn from foreground and
background intensity distributions, which are assumed to be Gaussians for simplicity.

2The factor of 4 in the Laplacian pyramid specification is needed as 3/4 of the samples in the upsampled
image are newly inserted zeros, as in this formulation upsampling is accomplished by inserting new rows
and columns of zeros between all original rows and columns.
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For the subsequent discussion we introduce the following notation:

∑

i∈f

wi = f1, (2.14)

∑

j∈b

wj = b1 = −f1, (2.15)

∑

i∈f

w2
i = f2, (2.16)

∑

j∈b

w2
j = b2, (2.17)

where f and b denote the foreground and background patches, respectively. Note that
f1 + b1 = 0, because we have only two surfaces and the sum of elements in the Laplacian
kernel is always 0. Analogously, f2 + b2 = ζ, where ζ is the constant equal to the sum of
squares of the kernel values.

Finally, it is useful to derive the first and the second moments for the pixel intensity
distributions p. In doing so, we assume that pfi is independent of pfk and pbi is independent
of pbk when i 6= k; as before, pfi is independent of pbk for all i and k. Under these
assumptions, the first moment evaluates as

E [p] = E

[∑

i∈f

wipfi +
∑

j∈b

wjpbj

]
(2.18)

= E

[∑

i∈f

wipfi

]
+ E

[∑

j∈b

wjpbj

]

=
∑

i∈f

wiE [pfi] +
∑

j∈b

wjE [pbj] = µf

∑

i∈f

wi + µb

∑

j∈b

wj

= f1µ1 + b1µb

Similarly, the second moment evaluates as

E
[
p2

]
= E




(∑

i∈f

wipfi +
∑

j∈b

wjpbj

)2



here, it is useful to separate terms depending on foreground/background interactions to
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yield

= E

[∑

i∈f

w2
i p

2
fi +

∑

j∈b

w2
jp

2
bj +

∑

i 6=k

wiwkpfipfk

+
∑

j 6=k

wjwkpbjpbk +
∑

i6=j

wiwjpfipbj

]

=
∑

i∈f

w2
i E

[
p2

fi

]
+

∑

j∈b

w2
jE

[
p2

bj

]
+

∑

i6=k

wiwkE [pfi] E [pfk]

+
∑

j 6=k

wjwkE [pbj] E [pbk] +
∑

i 6=j

wiwjE [pfi] E [pbj] +
∑

i6=j

wjwiE [pbj] E [pfi]

appropriate definition of the expectation operation then yields

=
∑

i∈f

w2
i (σ

2
f + µ2

f ) +
∑

j∈b

w2
j (σ

2
b + µ2

b)

+
∑

i6=k

wiwkµ
2
f +

∑

j 6=k

wjwkµ
2
b + 2

∑

i 6=j

wiwjµfµb

considering the notations (2.14)-(2.17) introduced earlier and the identities∑
i wi

∑
i wi =

∑
i w

2
i +

∑
i6=k wiwk and

∑
i,j wiw

′
j =

∑
i wi

∑
j w′

j, we get

= f2(σ
2
f + µ2

f ) + b2(σ
2
b + µ2

b) + µ2
f




(∑

i∈f

wi

)2

−
∑

i∈f

w2
i




+µ2
b




(∑

j∈b

wj

)2

−
∑

j∈b

w2
j


 + 2µfµb

∑

i∈f

wi

∑

j∈b

wj

= f2(σ
2
f + µ2

f ) + b2(σ
2
b + µ2

b) + µ2
f (f

2
1 − f2) + µ2

b(b
2
1 − b2) + 2µfµbf1b1

= f2σ
2
f + b2σ

2
b + (f1µf + b1µb)

2

Thus, the second moment is computed as

E
[
p2

]
= f2σ

2
f + b2σ

2
b + (f1µf + b1µb)

2 (2.19)

The SSD score for an individual pixel is calculated as

E
[
(p− q)2

]
= E

[
p2

]
+ E

[
q2

]− 2E [pq] (2.20)
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where p and q and pixels’ intensities in reference and other images; p is defined as in (2.13)
and q is defined analogously.

Equation (2.20) gives a closed-form expression to calculate cost for an arbitrary dis-
parity assignment, once the cross-term E[pq] is elaborated. We can distinguish 3 different
types of assignments: fixation on foreground (SSDf ), fixation on background (SSDb) and
all other assignments (SSDo).

SSDf : Foreground structure component is aligned (pf = qf , f1p = f1q, f2p = f2q,
b1p = b1q, b2p = b2q), but background structure is not; thus, pb, qb and are independent of
each other. Hence, the cross-term is elaborated as

E [pq] = E

[(∑

i∈f

wipfi +
∑

j∈b

wjpbj

)(∑

i∈f

wipfi +
∑

j∈b

wjqbj

)]
(2.21)

= E




(∑

i∈f

wipfi

)2

 + E

[∑

i∈f

wipfi

∑

j∈b

wjqbj

]

+E

[∑

i∈f

wipfi

∑

j∈b

wjpbj

]
+ E

[∑

j∈b

wjpbj

∑

j∈b

wjqbj

]

= E

[∑

i∈f

w2
i p

2
fi +

∑

i6=k∈f

wipfiwkpfk

]
+ E

[∑

i∈f

wipfi

∑

j∈b

wjqbj

]

+E

[∑

i∈f

wipfi

∑

j∈b

wjpbj

]
+ E

[∑

j∈b

wjpbj

∑

j∈b

wjqbj

]

using our independence assumptions (pb, qb and pf are independent of each other)

=
∑

i∈f

w2
i E

[
p2

fi

]
+

∑

i6=k∈f

wiE [pfi] wkE [pfk] +
∑

i∈f

wiE [pfi]
∑

j∈b

wjE [qbj]

+
∑

i∈f

wiE [pfi]
∑

j∈b

wjE [pbj] +
∑

j∈b

wjE [pbj]
∑

j∈b

wjE [qbj]

using the identity
∑

i wi

∑
i wi =

∑
i w

2
i +

∑
i6=k wiwk and the previously introduced inde-

pendence assumptions we get

= E
[
p2

f

] ∑

i∈f

w2
i + E [pf ] E [pf ]




(∑

i∈f

wi

)2

−
∑

i∈f

w2
i




+E [pf ] E [qb]
∑

i∈f

wi

∑

j∈b

wj + E [pf ] E [pb]
∑

i∈f

wi

∑

j∈b

wj

+E [pb] E [qb]
∑

j∈b

wj

∑

j∈b

wj
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application of (2.14)-(2.17) and (2.19) and definition of expectation operation yield

= f2σ
2
f + f2µ

2
f + f 2

1 µ2
f − f2µ

2
f + f1b1µfµb + f1b1µfµb + b2

1µ
2
b

= f2σ
2
f + (f1µf + b1µb)

2

For the actual SSD score we combine the results of (2.19) and (2.21) to find

SSDf = E
[
p2

]
+ E

[
q2

]− 2E [pq] (2.22)

= f2σ
2
f + b2σ

2
b + (f1µf + b1µb)

2 + f2σ
2
f + b2σ

2
b

+ (f1µf + b1µb)
2 − 2f2σ

2
f − 2(f1µf + b1µb)

2

= 2b2σ
2
b

SSDb: In this case, only the background component is aligned, i.e. pb = qb and pb, pf

and qf are mutually independent. Thus, the cross-term becomes

E [pq] = E

[(∑

i∈f

wipfi +
∑

j∈b

wjpbj

)(∑

i∈f

wiqfi +
∑

j∈b

wjpbj

)]
(2.23)

= E

[∑

i∈f

wipfi

∑

i∈f

wiqfi

]
+ E

[∑

i∈f

wipfi

∑

j∈b

wjpbj

]

+E

[∑

i∈f

wiqfi

∑

j∈b

wjpbj

]
+ E

[∑

j∈b

wpjpbj

∑

j∈b

wqjpbj

]

again, under our independence assumptions (introduced earlier)

=
∑

i∈f

wiE [pfi]
∑

i∈f

wiE [qfi] +
∑

i∈f

wiE [pfi]
∑

j∈b

wjE [pbj]

+
∑

i∈f

wiE [qfi]
∑

j∈b

wjE [pbj] + E

[∑

j∈b

wpjpbj

∑

j∈b

wqjpbj

]

considering the notations (2.14)-(2.17) and splitting the last term

= f1pf1qµ
2
f + f1pb1qµfµb + b1pf1qµbµf

+E

[∑

j∈b

wpjwqjpbjpbj +
∑

j 6=k∈b

wpjwqkpbjpbk

]

applying identity
∑

j wpj

∑
j wqj =

∑
j 6=k wpjwqk +

∑
j wpjwqj

= f1pf1qµ
2
f + f1pb1qµfµb + b1pf1qµbµf

+
∑

j∈b

wpjwqjE
[
p2

b

]
+ E [pb] E [pb]

(∑

j∈b

wpj

∑

j∈b

wqk −
∑

j∈b

wpjwqj

)
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applying (2.14)-(2.17) and
∑

j∈b wpjwqj = min (b2p, b2q) (explained further in the text be-
low)

= f1pf1qµ
2
f + f1pb1qµfµb + b1pf1qµbµf

+ min (b2p, b2q)
(
σ2

b + µ2
b

)
+ (b1pb1q −min (b2p, b2q)) µ2

b

= f1pf1qµ
2
f + f1pb1qµfµb + b1pf1qµbµf

+ min (b2p, b2q)σ
2
b + b1pb1qµ

2
b

= min (b2p, b2q)σ
2
b + (f1pµf + b1pµb) (f1qµf + b1qµb)

Special attention should be paid to the step
∑

j∈bp
wpjwqj = min (b2p, b2q). By the above

assumption for SSDb, the background surface components in two views should be identical,
which makes pb = qb and wpj = wqj. However, because foreground components are not
aligned, part of the background in either of the images will be occluded, as illustrated in
Figure 2.4. This phenomenon of so-called half-occlusion is discussed in detail in Section
2.3. Here, the implication is that some of wpj terms will not have corresponding wqj, or
vice versa.

∑

j∈b

wpjwqj =

{ ∑
j∈b wpjwpj, if p is occluded∑
j∈b wqjwqj, if q is occluded

(2.24)

=

{
b2p, if p is occluded
b2q, if q is occluded

= min (b2p, b2q)

because b2p < b2q when p is occluded (the summation b2q has more positive terms) and,
analogously, b2q < b2p when q is occluded.

Hence, the corresponding SSD score is

SSDb = E
[
p2

]
+ E

[
q2

]− 2E [pq] (2.25)

= f2pσ
2
f + b2pσ

2
b + (f1pµf + b1pµb)

2

+f2qσ
2
f + b2qσ

2
b + (f1qµf + b1qµb)

2

−2 min (b2p, b2q)σ
2
b − 2 (f1pµf + b1pµb) (f1qµf + b1qµb)

= (f2p + f2q)σ
2
f + (b2p + b2q − 2 min (b2p, b2q)) σ2

b + (f1pµf + b1pµb)
2

+ (f1qµf + b1qµb)
2 − 2 (f1pµf + b1pµb) (f1qµf + b1qµb)

applying identity a + b− 2 min (a, b) =

{
b− a, if a < b
a− b, if a ≥ b

= |a− b|

= (f2p + f2q)σ
2
f + |b2p − b2q|σ2

b + (f1pµf + b1pµb)
2 + (f1qµf + b1qµb)

2

−2 (f1pµf + b1pµb) (f1qµf + b1qµb)

= (f2p + f2q)σ
2
f + |b2p − b2q|σ2

b + ((f1pµf + b1pµb)− (f1qµf + b1qµb))
2
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Figure 2.4: Calculating Match Score for the Background Surface: Some Points are Oc-
cluded. Low- or band-pass kernel in the reference image is applied to p which is close to
foreground region (shaded region with wi = 0, left image). The same kernel is applied to
the corresponding point q in the other image. Note that some of the background points in
the vicinity of q do not have a match (shaded region, right image), as they are occluded
by the foreground surface in the other image (shaded region, left image).

remembering that f1 + b1 = ξ, where ξ = 0 and ξ = 1 for the Laplacian and Gaussian
kernels, respectively

= (f2p + f2q)σ
2
f + |b2p − b2q|σ2

b + (f1pµf + ξµb − f1pµb − f1qµf − ξµb + f1qµb)
2

= (f2p + f2q)σ
2
f + |b2p − b2q|σ2

b + (f1p (µf − µb)− f1q (µf − µb))
2

= (f2p + f2q)σ
2
f + |b2p − b2q|σ2

b + (f1p − f1q)
2(µf − µb)

2

SSDo: All parameters are different, as nothing is in alignment; hence, pb, pf , qb and
qf are mutually independent. The cross term is simple to calculate as p and q become
independent:

E [pq] = E [p] E [q] = (f1pµf + b1pµb) (f1qµf + b1qµb) (2.26)

and the final SSD score is calculated as

SSDo = E
[
p2

]
+ E

[
q2

]− 2E [pq] (2.27)

= f2pσ
2
f + b2pσ

2
b + (f1pµf + b1pµb)

2

+f2qσ
2
f + b2qσ

2
b + (f1qµf + b1qµb)

2

−2 (f1pµf + b1pµb) (f1qµf + b1qµb)

= (f2p + f2q)σ
2
f + (b2p + b2q)σ

2
b

+ ((f1pµf + b1pµb)− (f1qµf + b1qµb))
2
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again, considering f1 + b1 = ξ, where ξ = 0 and ξ = 1 for the Laplacian and Gaussian
kernels, respectively

= (f2p + f2q)σ
2
f + (b2p + b2q)σ

2
b

+ (f1pµf + ξµb − f1pµb − f1qµf − ξµb + f1qµb)

= (f2p + f2q)σ
2
f + (b2p + b2q)σ

2
b + (f1p − f1q)

2(µf − µb)
2

In (2.25) and (2.27), observe the term (f1p−f1q)
2(µf−µb)

2, which can be called “contrast
term”, as it depends on the intensity difference between two surfaces. To simplify the
following analysis, we fix this contrast term by assuming that foreground and background
textures have the same means (i.e. µf − µb = 0), which effectively make the contrast term
zero.

Finally, we divide each of (2.22), (2.25) and (2.27) by σ2
b (under the assumption that

σ2
b > 0), and introduce a foreground to background ratio FBR = σ2

f/σ
2
b , as it captures the

necessary information about the properties of foreground and background surfaces. The
derived expected values for SSDf (2.22), SSDb (2.25) and SSDo (2.27) can be used to
evaluate the aggregated SSD match measure (2.7) in CTF disparity estimation (2.2)-(2.4)
using either Gaussian or Laplacian pyramids. The results yields an analytic formulation
that calculates the cost for any given disparity assignment at a foreground/background sur-
face discontinuity. For present concerns, the critical parameters are discontinuity geometry
(line, corner, etc.), disparity jump, which is tightly coupled to number of pyramid levels,
and ratio of foreground/background texture variance (FBR). Unfortunately, the complex-
ity of the overall formulation has prevented discovery of a closed-form solution for the
cost minimizing disparity. In response, we have studied the solution space via numerical
simulations. Prior to presenting the results, three additional points are noted, as follows.

First, it is important to note that SSDo is never less then either of SSDf or SSDb,
at least in the noise free case, because no structure covered by the aggregation window
is aligned in this case. Thus, disparity assignment for each point tends to get attached
either to the foreground or background surface. This observation has been confirmed by
our computer simulation, during which SSDo was never less than SSDf and SSDb for all
pixels under all tested configurations.

Second, considering CTF search space as in Figure 2.2, it is seen that assignment of
each fine disparity has a certain path from coarse to fine levels – from top to bottom of the
“tree” many values start with the same route and branch off at finer resolution. Hence,
there is a certain resolution level when the foreground and the background disparities
would first be distinguished (paths are split), and a pixel will get the disparity assignment
of either foreground, or background surface. The next resolution level will use either of
these assignments as an offset, but also a small search range that will not cover the other
assignment. That means that the calculations on the finer level can only get a better
SSD estimate for the already committed disparity of foreground or background surfaces,
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because all other disparities ought to have bigger SSD values. In other words, if, while
doing coarse-to-fine estimations, we keep fetching a single coarse disparity value from the
previous level as an offset, we just carry on the disparity assignment made on the crucial
coarse level, when foreground and background surfaces can be first distinguished. This
observation greatly simplifies the CTF analysis by considering the disparity decision made
at the crucial coarse level only. The subsequent refinement will just improve the SSD
estimate and finer disparity value for the committed surface.

Third, we specify how the coarse disparity offset is determined for each pixel, i.e. the
disparity upsampling procedure. Here we concentrate on the Nearest Neighbour as it is
widely used in practice and greatly simplifies our analysis. The upsampling procedure itself
is defined in the notation of (2.4) as the following:

dispk+1(x, y) ↑2= dispk+1(bx/2c, by/2c) (2.28)

Note that this procedure does not create disparity values in the upsampled disparity map,
other than foreground and background disparity values (these are the only values that
appear in the coarse disparity map, as discussed in the paragraph above).

As a set of numerical examples, Figure 2.5 shows the expected boundary recovery
statistics for horizontal 3-D boundary, vertical 3-D boundary, rectangular-corner (90◦) and
sharp-corner (45◦) cases for disparity estimated over 1, 2, 3 and 4 Laplacian pyramid
levels (disparity jumps 1, 3, 7 and 15 respectively were used) under different values of
FBR (we employ the log2 scale for FBR to capture greater range of values). As we are
investigating local block-based matching under the assumption that points can be matched
unambiguously, it will perform best near 3-D boundaries when the aggregation window is
the smallest possible, as discussed in Section 1.3.6. Hence, the solution with unit window
size, w = 1, can be treated as an upper bound on the best stereo performance when one
can perfectly recover the disparity map on each level using a single coarse disparity offset
interpolated by NN.

Based on this simulation, a number of conclusions can be highlighted.

• Boundary overreach for standard CTF block matching is a serious problem and it
spreads at a rate that is exponential in the number of pyramid levels. That is
illustrated by consistently higher overreach for coarser pyramid levels on Figure 2.5.

• Fine structures suffer the most – in general, 3-D discontinuities become smoothed
while corners become rounded. That is clearly demonstrated by foreground shrinking
statistics of the corners.

• Boundary overreach behaviour is fundamentally different for horizontal and vertical
boundaries. The reason is that vertical 3-D boundaries are complemented by half-
occluded regions in one of the images (Section 2.3 will discuss this phenomenon in
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Figure 2.5: Statistics for 3-D Boundary Deterioration in Conventional Coarse-to-Fine
Stereo: Simulation Results. Boundary deterioration statistics for corner pixel, pixel on
horizontal and pixel on vertical boundaries (as depicted in the first column of 2.3). Nega-
tive boundary overreach values (units of pixels) denote foreground shrinking and positive
values denote fattening respectively. Each curve in the sketch describes the overreach pro-
file for a certain number of pyramid levels used in the disparity estimation. Aggregation
window size is w pixels.
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depth), while horizontal 3-D boundaries are not. The error profile with respect to
foreground shrinking/fattening is symmetric for geometrically simpler horizontal 3-D
boundaries.

• One of the causes for boundary overreach is the fixed aggregation window, as win-
dows of greater size yield bigger errors. This foreground fattening/shrinking effect of
rectangular windows has been analyzed before [54, 91].

• CTF processing yields boundary degradation at a rate higher than would be caused
through use of analogous fixed size aggregation windows at a single fine level. In
single scale, SSD aggregation (2.7) is performed by kernel W only. In CTF at level k,
the extra smoothing (and subsampling) from the pyramid construction contributes,
and the aggregation with W is performed on low-passed or band-passed images, as
in (2.9). Greater implicit aggregation results in greater boundary overreach effect.

• Another cause for boundary deterioration is the use of single disparity offset in CTF
projection, i.e. the upsampling procedure. That phenomenon is distilled by “ideal
stereo” simulation, with window size w = 1, as it does not introduce any new errors
in the disparity estimation process on each pyramid level, e.g. caused by fixed square
windows. Thus, errors arise from the projection of coarse disparity estimates to finer
levels.

Noisy SSD matching

The analytic framework developed in Section 2.2.2 can be trivially extended to include
Gaussian white noise in either of the images for more realistic modeling. The introduction
of noise will allow us to highlight a principle difference between stereo matchers that use
Gaussian and Laplacian pyramids.

Assume that the reference image is corrupted by Gaussian noise with mean µn and
variance σn that is independent of foreground and background samples and independent
for all pixels in the image. Then, each pixel of the low- or band-passed image has the noise
component being equal to

n =
∑

k

wkpnk (2.29)

In turn, SSD between two pixels p and q can be described as

E
[
(p− q + n)2

]
(2.30)

= E
[
(p− q)2

]
+ E

[
n2

]
+ E [n] E [p− q]

= E
[
(p− q)2

]
+ E




(∑

k

wkpnk

)2

 + E

[∑

k

wkpnk

]
(E [p]− E [q])

34



using the identity
∑

i wi

∑
i wi =

∑
i w

2
i +

∑
i6=k wiwk, we get

= E
[
(p− q)2

]
+ E

[∑

k

w2
kp

2
nk +

∑

k 6=m

wkwmpnkpnm

]

+
∑

k

wkE [pnk] (E [p]− E [q])

= E
[
(p− q)2

]
+ E

[
p2

n

] ∑

k

w2
k + E [pn] E [pn]

∑

k 6=m

wkwm

+µn (E [p]− E [q])
∑

k

wk

applying the identity
∑

i wi

∑
i wi =

∑
i w

2
i +

∑
i 6=k wiwk again

= E
[
(p− q)2

]
+ (σ2

n + µ2
n)

∑

k

w2
k + µ2
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(∑

k
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)2

−
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k




+µn (E [p]− E [q])
∑

k

wk

= E
[
(p− q)2

]
+ σ2

n

∑

k

w2
k + µ2

n

(∑

k

wk

)2

+ µn (E [p]− E [q])
∑

k

wk

If Gaussian convolution is used (i.e. a Gaussian pyramid is used for stereo matching),
then

∑
k wk = 1, which results in

E
[
(p + n− q)2

]
= E

[
(p− q)2

]
+ σ2

n

∑

k

w2
k + µ2

n + µn (E [p]− E [q]) (2.31)

The first term is the SSD match score of the ideal case, i.e. what we want to compute. The
next two terms are just the numbers that are independent of the entities to be matched,
as they come from the noise distribution properties; thus, they will not unpredictably alter
the behaviour of SSD matching, aside from adding extra noise. The last term, however,
can cause serious trouble. If noise has a bias, i.e. µn 6= 0, then the redundant (E [p]− E [q])
will be introduced to the calculations, and the SSD score will not compute what it should.
It exemplifies the well known vulnerability of SSD measure to the camera gain difference
when performed on raw intensity images.

If Laplacian convolution is used (i.e. Laplacian pyramid is used for stereo matching),
then

∑
k wk = 0, which makes

E
[
(p + n− q)2

]
= E

[
(p− q)2

]
+ σ2

n

∑

k

w2
k (2.32)
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Figure 2.6: Snapshot of the Coarse-To-Fine (CTF) Disparity Estimation Procedure. White
cells are pixels at the fine level, black pixels are from the coarse level. Window size is 3x3.
Disparity offset for pixel x can be one of disparities at points a, b, c or d (scaled by 2).
If x belongs to the surface described by b, then the correct aggregation window would be
centered around point y (shaded in the sketch) and the correct disparity offset comes from
point b.

Here our SSD measurement is the desired quantity plus the extra uncertainty that comes
from the original noise n. Thus, SSD matching on bandpassed images can be expected to
work reliably, even when the corrupting noise is not zero-mean.

2.2.3 Improving coarse-to-fine block-based stereo

The analysis of the previous section reveals the main paths to improving CTF disparity
estimation algorithms – more elaborate disparity upsampling procedures must be used
and techniques which deal with block-based boundary overreach must be employed. The
boundary overreach flaw of block-based matchers is well-researched and a number of effi-
cient remedies were proposed, e.g. shiftable/ overlapping/ adaptive windows [62, 46, 54,
121, 92, 93, 128]. In contrast, the disparity upsampling procedure is specific to CTF refine-
ment and has not been given enough attention, especially in recent stereo research. Hence,
in the following, we primarily concentrate on improving the upsampling procedure.

Assume for a moment that we can precisely recover the disparity map at current level
k and wish to refine this estimate for level k − 1. Hence, consider “ideal stereo” case
(w = 1), where the only place the errors in CTF processing are introduced is the upsam-
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pling procedure of coarsely estimated disparities. This procedure is not uniquely defined
and various alternative exist – Nearest Neighbour, Linear, Gaussian interpolations and
others [59]. Logically, it should depend on the pyramid construction procedure – Nearest
Neighbour is the most suitable for Quadtree pyramids, while Gaussian upsampling is the
best of the Gaussian and Laplacian pyramid [24, 59]. The problem is that this reasoning
does not quite work for pyramids of (discontinuous) disparity maps.

The snapshot of CTF estimation in Figure 2.6 makes matters more precise. If some
point x belongs to a uniform disparity surface, then it makes no difference which upsam-
pling procedure is used, as all coarse level disparity points a, b, c and d would have the
same disparity. In contrast, initialization via any of the standard upsamplings of the dis-
parity map recovered at the coarse level leads to difficulties in the vicinity of disparity
discontinuities. In this case, disparities for a, b, c and d could be different and, depending
on specifics of the situation, upsampled disparities near discontinuities can be incorrectly
initialized from the wrong side of the discontinuity (in case of NN interpolation) or come
as an average across the discontinuity (in case of Linear or Gaussian interpolation). In
either case, subsequent refinement often cannot correct for the poor initialization and re-
covered surface geometry is compromised near 3-D boundaries. A simple reason for this
phenomenon occuring is that high-frequency information, which provides exact disconti-
nuity position, is unavailable at the coarser levels, and hence accurate reconstruction of
depth discontinuities is not possible based solely on the standard upsampling procedure.

A reasonable solution to overcome such problems would be to use multiple disparity
offsets for each fine level pixel, rather than a single offset proposed by standard upsampling
procedures. Then, in notation of Figure 2.6, if x belongs to a constant disparity region,
then disparity values at neighbouring black points would be the same, which results in a
single offset. In contrast, if x is near a 3D boundary (i.e. boundary between regions with
distinct disparities), then it is appropriate to search for finer disparities at x using each
possible initialization separately, as obtained from a, b, c, d (or even broader areas, if larger
windows are used).

Brute-force realization of the above observations entails additional correspondence
search at each finer level (one search for each initialization), with final disparity assignment
taken as that yielding the best score under the block-matching metric. A closer look sug-
gests a more efficient approach and one that also selects for the best shifted match window
about each point. After all, we need to deal with the foreground fattening/shrinking effect
as well, and shiftable windows are one of the most efficient and effective remedies. In Figure
2.6, if initialization from b gives the best match for finer level refinement at x, then x and b
derive from the same surface; whereas, a, c and d derive from elsewhere. Correspondingly,
the best (e.g. 3x3 in Figure 2.6) shifted match window for x would be as shaded. Signifi-
cantly, the selected window is centered about point y and y gets correct initialization from
b via nearest-neighbor upsampling. Analogous conclusions are drawn assuming the best
initialization for x derives from a, c or d. In general, the best initialization, match window
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Figure 2.7: Shiftable Window: The effect of trying all 3 × 3 shifted windows around the
black pixel is the same as taking the minimum matching score across all centered windows
in the same neighbourhood. Adapted from [102].

and refinement for x are achieved via nearest neighbor (NN) upsampling of the coarser
disparity map and subsequent selection of the best disparity estimate derived across all
shifted windows that cover x at the finer level. Importantly, it is not necessary to try all
window shifts for all initializations: Consideration of possible window shifts with coarse
disparity offset taken for central pixel implicitly encompasses possible initializations! Es-
sentially, we extend the observation of [46] to CTF refinement: “The disparity profile itself
drives the selection of an appropriate window and disparity offset”.

In practice, the desired shiftable window+offset computations for each pyramid level
can be realized efficiently in two steps: i) obtain an initial disparity map via central window
block matching using Nearest Neighbour upsampled coarse disparity as offset; ii) finalize
the disparity map at each pixel by choosing the disparity of the neighboring pixel that has
best match score; here, the neighbourhood is that covered by the match window. The latter
step is similar to morphological operation on the match score map (erosion for the SAD and
SSD match measures) using the aggregation window as a structural element to simulate
shiftable windows in the single-scale matching [102]. Note that the proposed approach
is not identical to estimating disparity estimates at each level via shiftable windows, as
proposed in [46, 17, 91] (shown in Figure 2.7) applied at each pyramid level, because,
for each pixel, each shifted window should correspond to a different disparity offset. In
the following, we refer to this technique as CTF shiftable windows. Mathematical
formulation capturing the essential notions is as follows:
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im0

1 = im1 , im0
2 = im2 ,

(∀(j)|1 ≤ j ≤ lmax : imj
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i
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)]
, (2.33)[∀(x, y)| : displmax+1(x, y) = 0

]
, (2.34)[∀(k)|lmax > k > 0 :

[∀(x, y)| : dispk
0(x, y) = 2 · dispk+1(x, y) ↑2 + (2.35)
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di

∑
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∑

(u,v)∈w(x,y)

ρ(imk
1(u, v), imk

2(u + dispk
0(x, y), v)) , (2.36)

dispk(x, y) = dispk
0

(
arg min

(u,v)∈w(x,y)
confk

0 (u, v)

)]]
(2.37)

where dispk
0 is the initial disparity at level k, confk

0 is associated with its match score map,
and dispk is the finalized disparity at level k, as consistent with the two-step procedure
described in the paragraph above. All other notation is consistent with mathematical
definition of Module B (2.2), (2.3), and (2.4). Note that the upsampling procedure ↑2 in
this case is Nearest Neighbour, which is defined in (2.28).

The corresponding pseudocode is outlined in Module C below:

Module C

Reference and matching images are initially
brought into pyramid representation

disp(k,x,y) - disparity for pixel x, y on scale k
conf(k,x,y) - confidence for pixel x, y on scale k
Initialize ref_disp(:,:) to all zeros
For each level k from level_max to 0

For each pixel (k,x,y)
Run Module A with search range
[-delta_d+ref_disp(x,y), delta_d+ref_disp(x,y)];

End loop
For each pixel (k,x,y)

In the neighbourhood w of point (x,y)
find (x_0,y_0) such that conf(k,x_0,y_0) is the best
and assign disp(k,x,y) = disp(k,x_0,y_0);

End loop
ref_disp = 2*upsampleNN(disp(k,:,:)) /* nearest-neighbour interpolation*/

End loop

Carrying on the simulation of Section 2.2.2, we add the simulation of the shiftable
window+offset step summarized above. The results of applying CTF shiftable windows
are shown in Figure 2.8, from which several conclusions can be drawn:
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Figure 2.8: Adaptive CTF simulation. Boundary deterioration statistics for corner pixel,
pixel on the horizontal and pixel on the vertical boundaries. Negative boundary overreach
values (units of pixels) denote shrinking and positive values denote fattening respectively.
Each curve in the sketch describes the overreach profile for a certain number of pyramid
levels used in the disparity estimation. Aggregation window size is w pixels.
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• The strategy of searching for the best offset implemented via CTF shiftable windows
pays off well, while the artifacts of rectangular-shaped fixed size windows persist –
they cannot reliably recover sharp-shaped boundaries, e.g. in case of 45◦.

• The CTF shiftable windows take care of both window shape (in this case, position)
and the disparity offset. This is demonstrated by the superior results of w = 3 and
w = 5 adaptive window-and-offset method over w = 1 “ideal stereo”.

• Window size w = 5 has certain advantages over smaller w = 3. Clearly, the former
allows greater aggregation and a more stable solution. Moreover, w = 5 has somewhat
greater ability to recover precise (non-acute) boundaries. The reason is that a 5× 5
Gaussian kernel (2.10) is used for pyramid construction, which means that support
aggregation should be at least as big as 5× 5 in order to have comparable ability to
recover from blur to be caused by low-pass filtering.

• Some things remain unrecovered. Specifically, the hardest spots are small objects
with large disparity jump between foreground and background. This observation
also suggests that CTF advantages might be limited for large baseline stereo with
large depth discontinuities. In this case, large disparities should be recovered by
using more pyramid levels, and it puts an upper bound on the resolution of details.
The general coarse-to-fine tradeoff is to reduce pyramid levels and increase search
range in order to get potentially better details at the expense of slower speed and
increased match ambiguity.

To complete the discussion, we briefly overview previous work regarding adaptive win-
dows and explain our choice of square shiftable windows similar to [46].

In general, it is well known that CTF disparity estimation corrupts 3-D boundaries.
In non-CTF block matching, use of shiftable or otherwise adaptive windows to conform
to disparity discontinuities is well established [62, 46, 54, 121, 128]; however, the link to
improving CTF disparity refinement seems not to have been stated previously.

One of the first introductions of adaptive aggregation windows for dense stereo can be
attributed to Kanade and Okutomi [62], where the authors developed a model of local
variations in intensity and disparity and chose the support window in such a way that
the produced estimate of disparity had the least uncertainty for each pixel of an image.
However, this algorithm was iterative and rather slow.

A few years later, Fusiello et al. [46] developed extremely simple shiftable windows which
were fixed in shape but locally shifted in such a way that match score would be maximized.
The simplicity and speed of this technique made it widely-used in window-based stereo
[102]; moreover it has shown superior performance to earlier work [46]. Shiftable windows
somewhat similar to [46] appeared in [79, 47, 17].
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Recently, Hirschmuller et al. [54] have analyzed the source of errors near 3-D bound-
aries and proposed their extension of shiftable windows, which can be called overlapping
windows. The idea is to choose the best k small windows for each pixel and construct
the final aggregation window by taking the union of chosen small windows. While the
developed formulation is slightly more computation-intensive than the previous [46], the
latter has the advantage of not restricting the windows to the squared shape, which tends
to better adapt to various 3-D boundary outlines and yields even better performance. This
advantages has been reflected in experiments [54].

Another recent advance with respect to adaptive windows is Veksler’s variable windows
[121]. She makes use of square windows of adaptive size and position. The window cost is
composed of the average intensity matching error in the window, biased to larger windows,
and biased to smaller match error variance within the window. The final algorithm is
computationally intensive and author makes use of dynamic programming and integral
images (i.e. sliding window computation) for speed.

Finally, many other approaches to shiftable and otherwise adaptive windows exist, such
as model-based windows [82], minimum-ratio cycle windows [19] etc. Additional discussion
can be found in [21].

In our formulation, we can use quite small windows for better resolution of 3-D bound-
ary structure, as larger aggregation is made intrinsically available by CTF. This allows
us to achieve the 3-D boundary fitting robustness of overlapping windows [54], and avoid
complicated construction of variable-sized windows [121]. Interestingly, the modification
of shiftable windows used in [102] (referred there as Min Filter, an efficient implementa-
tion of [46]) is a special case of CTF shiftable windows Module C when the pyramid is
degraded to a single level – in this case, each point has the same zero offset and shiftable
window+offset simply becomes shiftable windows.

It is also of interest to note that recent work that exploits CTF processing for disparity
estimation beyond block matching, e.g. with global methods [74, 49, 87, 109, 6, 44, 41], has
yielded strong results; however, the importance of considering multiple offsets in projecting
CTF has not been addressed clearly. Ideally, these methods should explicitly try multiple
offsets; whereas, the proposed method is naturally more efficient – window placement and
disparity offset are tied to eliminate extra search.

Finally, it is interesting to note that use of multiple offsets has been noted in the earlier
optical flow literature. A vivid example is Anandan’s framework for computation of visual
motion [7], where he used block-based matching and multiple offsets while calculating
optical flow in a CTF manner. Nevertheless, he did not use shiftable windows, as they
were developed after his work.
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Figure 2.9: The Overlapped Pyramid Projection Scheme. Adapted from [7].

Figure 2.10: Covering Multiple Offsets. An example of extending local search range to
cover all possible offsets. ∆d is the local search range. Two of four offsets are equal in the
example shown here.

2.2.4 Coarse-to-fine non-block-based stereo

As has been established, consideration of multiple offsets is essential for robust performance
of CTF block matchers near 3-D boundaries. Global methods are not an exception to this
observation. Based on the analysis of Section 2.2.2, Figure 2.5 shows the simulated errors
for windows size w = 1, which can be treated as running an “ideal stereo” matcher on each
resolution level. Note that even in the case of an ideal matcher, but with single disparity
offset, errors occur. Unlike block matchers where multiple offsets can be tied to the window
configuration, pixel matchers (e.g. global algorithms) require explicit consideration of each
possible offset.

The idea of using multiple offsets is not a new one and is reflected in Burt’s overlapped-
pyramid projection strategy [25], where it is used to overcome problems of nearest-neighbour
interpolation. In Anandan’s words [7], “...disparity of a pixel at the coarse level is trans-
mitted to all the pixels in a 4×4 area at the next finer level; thus, each pixel at the fine level
obtains information from four pixels at the coarse level”. Schematically, this approach is
depicted in Figure 2.9. Note that in many cases (regions of near-constant disparity) some
or all these four different offsets will be identical. Similar to [7], the overlapping pyramid
can be directly applied to any CTF stereo algorithm.

A slight twist to the previous solution would be to extend the local search range to
include all four possible offsets, as depicted in Figure 2.10. The new offset and search
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range for each pixel could be calculated using (2.38), where there could be up to four
different coarse disparity offsets.

offset =

⌊
offsetmax + offsetmin

2

⌋
(2.38)

SearchRange =

⌈
offsetmax − offsetmin + 2∆d

2

⌉

Interestingly, this kind of calculation has appeared in application of CTF to dynamic pro-
gramming [75], where minimum and maximum search range maps are eroded and dilated,
respectively, at each CTF level for improved 3D boundaries. The use of single, longer
search ranges instead of multiple discontinuous short ones is easier to handle in the dy-
namic programming framework, albeit with increased processing requirements. However,
[75] does not discuss multiple offsets, does not explicitly motivate their solution and does
not relate their approach to standard upsampling.
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(a) wide region (b) narrow region (c) narrow hole

Figure 2.11: Various Cases of Half-Occlusion Geometry. (a) The simplest case occurs when
all points on the back surface that are within the “forbidden zone” of the boundaries of the
front surface are half-occluded, e.g., A is the right boundary point of the front surface. (b)
More complicated situations occur when narrower front surfaces allow portions of the back
surface within the forbidden zone of the front surface boundaries to be binocularly visible.
Further interposed surfaces in the red (dark grey) region allow for half-occlusion relations
to occur recursively. (c) Half-occlusions also occur in viewing back surfaces through a
narrow hole in a front surface; the back surface is binocularly invisible.

2.3 Half-Occlusions

Points which are visible in only one of the binocular images are called half-occluded. All
monocular information, e.g. colour and texture, is available for them, but correspondence
cannot be established in principle. That is why such points should be explicitly classified
by a stereo algorithm as having depth measurement undefined.

2.3.1 Geometry of half-occlusions

The operative geometric model of image formation is expressed in terms of Figure 2.11a,
which shows a top down view of parallel axis (or otherwise rectified) binocular images
formed under perspective projection with, e.g., left and right Euclidean coordinate systems
defined at the centers of projection, Ol and Or, respectively, and separated by baseline,
b. The Z-axes are taken parallel to the optical axes and increasing toward the orthogonal
image planes, located at distance f = 1 along these axes. X-axes are parallel to the stereo
baseline, increasing to the right and Y -axes are mutually orthogonal to the X and Z axes
to yield right handed systems. Let world points be given as A = (X, Y, Z) and subscripts l
and r used to reference points to the left and right coordinates systems, respectively, e.g.,
Al references A to the left system. Image coordinates are similarly denoted using lower case
letters; further, since ensuing developments concentrate on relationships along horizontal
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scan lines, image coordinates will be restricted correspondingly, so that perspective yields,
e.g., al = Xl

Zl
as the left image coordinate of A. Given the binocular imaging model, the

right image coordinate for A is given as ar = Xr

Zr
= Xl−b

Zl
. Correspondingly, disparity

(right-based) is given as

dr(A) = al − ar =
b

Z
. (2.39)

Notice that for surfaces of constant Z (fronto-parallel surfaces), disparity is constant.
Half-occlusions always arise near 3-D boundaries when a foreground surface occludes

a background surface. Three different configurations are outlined and sketched in Figure
2.11. A typical configuration when foreground surfaces partially occludes the background
surface (Figure 2.11a) results in two single half-occluded regions on the left and right sides
of the foreground object for right and left cameras respectively (shaded in the sketch). The
case with narrow foreground object may give rise to quite complex half-occlusion geometry
(Figure 2.11b). In this case, a single foreground object creates multiple disjoint half-
occluded regions for both eyes. Note that putting an object in the dark shaded region may
give rise to recursive half-occlusion formation. The last case is when a hole in the foreground
surface is so small, that the background surface becomes completely binocular invisible
(Figure 2.11c). This case is exceptionally hard for computational stereo, as disparity for the
entire background object cannot be determined in principle, hence any occluder-occluded
interrelationships can not be stated in terms of disparities per se.

It is essential to note that half-occlusions arise only in the “forbidden zones”, i.e. regions
where points will appear as violations of the ordering constraint [72], of the foreground
point near the occluding boundary. Thus, the relationship between points in terms of
corresponding forbidden zones is essential to detection of half-occluded points. In Figure
2.11, angles EAB and OLAOR encompass the forbidden zone for point A.

For present purposes, a useful constraint for half-occlusion processing comes by con-
sidering the difference in disparity on either side of the occlusion region and region width.
Consider the shaded region on the right side of Figure 2.11a. Let world point A be the left-
most point that is binocularly visible, while world point B is the right-most half-occluded
point (visible only to the right image); let their right image coordinates along a scanline
be ar and br, respectively. The width of the half-occluded region projected to the right
image is

Ωw
r (B,A) = br − ar. (2.40)

The disparity values for points A and B are

dr(A) = al − ar

dr(B) = bl − br = al − br, (2.41)

with bl = al because A and B lie along the same line through Ol, the left optical center,
by construction. Correspondingly, the change in disparity across the half-occluded region

46



is given as

∆dr(B,A) = dr(B)− dr(A)

= al − br − (al − ar)

= ar − br (2.42)

Now, taking the ratio of disparity change (2.42) to occlusion width (2.40) it is found that

∆dr(B,A)

Ωw
r (B,A)

=
ar − br

br − ar

= −1. (2.43)

It is seen that this ratio is equal to the disparity gradient limit [23]. Further consideration
of the geometry illustrated in Figure 2.11 shows that relationship (2.43) between disparity
change and occlusion width also holds for regions visible only to the left view of a binocular
pair. In this form, the derived constraint will be referred to as the disparity-change/width
constraint in the following. Note that “occlusion width” refers to the region where occlusion
can appear. Depending on the situation, the whole area can be occluded (Figure 2.11a),
or it can have gaps of binocular visibility (Figure 2.11b).3

The loci of points that yield the value of -1 for the disparity gradient limit lie along
a boundary of the forbidden zone [129], e.g. the line through A,Ol (and hence B) in
Figure 2.11a. The disparity-change/width constraint captures a subset of a foreground
point’s (e.g. A’s) forbidden zone as delimited by a background point (e.g. B) that lies
along the forbidden zone boundary. In Figure 2.11a, the constraint captures the portion
of the forbidden zone relevant to labeling the segment AB as potentially half-occluded.

Disparity-change/width can be related to the “uniqueness constraint”, i.e. that each
point in one image should match to only one in the other: Rearrangement of the terms in
(2.43) with substitution from (2.40) and (2.42) yields

dr(A) + ar = dr(B) + br, (2.44)

where, it is seen that the disparity-change/width constraint constitutes a violation of the
uniqueness constraint, as both ar and br map to the same location in the left image.

In theory, either of the derived formulae, (2.43) or (2.44), can be used to detect half-
occlusions. If the constraint equations for a set of points are satisfied, then there must
be one point which is visible (i.e. it is unique) and all the rest are half-occluded (i.e. they
fall into the forbidden zone boundary of the visible point). In the following, we emphasis
(2.44) as it yields a convenient algorithm (Module D, see below).

3While definition of the disparity-change/width constraint appeals to the disparity of a half-occluded
point, e.g., B, this should not pose a problem in practice: Let subscript + applied to a point refer to a
point immediately to the right, e.g., B+ refers to the point immediately to the right of B. If the surface
about B is taken as locally fronto-parallel, then its disparity is constant in that local region and can be
estimated from, e.g., B+, which by definition is binocularly visible.
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To arbitrate further between visibility and occlusion a second cue to half-occlusion is
employed. Since matches in occluded areas have no physically defined match (correspond-
ing points are not imaged to the other view), any attempted match is expected to have
a poor match score, at least for areas having distinctive texture. So, given two or more
points satisfying (2.44) or, alternatively (2.43), the point with the best match score is taken
as binocularly visible, and the others as half-occluded. We refer to this cue as as the poor
match score cue. Interestingly, the application of this cue does not require the commit-
ment to a certain match measure, as a visible pixel must have relatively the best match
score in comparison with pixels that violate (2.44). Nevertheless, it is worth mentioning
that even such a general approach might be ambiguous when some sample-insensitive or
robust match measures are used: The former, e.g. Interval Difference as in [113], tends to
return strictly zero for good intensity matches; the latter may return a fixed cost value
when the match is bad. Both of these cases should not pose a problem in practice, as
cases when rivalrous matches are equally good or equally bad correspond to ambiguous
situations anyway.

The proposed approach to half-occlusion processing is able to deal appropriately with
Figure 2.11a and 2.11b, but not always with 2.11c. When disparity of some point between
C and A place it in the region shaded with red (dark grey), then the point is not in the
forbidden zone of A or C and the disparity-change/width constraint is never violated4.
The hole in the disparity map would be smoothed. Any algorithm that relies on visibility
constraints will suffer here, as the only peculiarity the region might have is a poor match
score.

In our previous work [106] we have applied the disparity-change/width constraint and
poor match score cue in a different fashion by combining them in a Bayesian framework,
which allowed us to obtain the probability of a pixel being half-occluded, rather than a
binary occlusion map. It was even able to solve hard cases like one in Figure 2.11c, although
it required an offline learning procedure. We prefer the present formulation to the Bayesian
instantiation, as the present formulation is much more efficient and experimentally exhibits
greater precision in delineating foreground and background objects.

2.3.2 Occlusions and slanted surfaces

In practice, straightforward use of uniqueness, (2.44), is not robust to slanted surfaces
[69] and continuous disparity: Integer quantized disparity values, as recovered by standard
block matching, can cause multiple pixels in one image to map to a single pixel in the other.
In the current context, the noted problem with uniqueness can be dealt with efficiently as
follows. Integer disparity values are interpolated to subpixel precision ([105] used in re-

4More generally, points in the dark shaded region of Figure 2.11c will not fall on the forbidden zone
boundary of any of the binocularly visible points.
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Figure 2.12: Between-Pixel Interpolation. Solid lines indicates that pixels are not in the
forbidden zone of one-another; dashed arrows point to the surface ID, being left-most pixel
of the surface.

Figure 2.13: Finding Occlusions of Interpolated Surfaces. Uniqueness constraint warps
points into the same bin, while interpolation links are preserved.
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ported experiments, Chapter 3). Subsequently, disparity relations between adjacent pixels
on a scanline are used to group pixels into equivalence classes according to whether or not
they are consistent with a single continuous surface. Given this grouping: Pixels consistent
with a single surface cannot engage in half-occlusion relationships (violation of uniqueness
credited to disparity quantization issues); in contrast, pixels that violate uniqueness and
are not consistent with a single surface are considered for half-occlusion.

The disparity relations that yield the desired pixel groupings derive from the widely
used occlusion and ordering constraints [39, 21]. Following the notation style used to derive
(2.43) in conjunction with Figure 2.11, consider two scene points F and C that project
to adjacent right image pixels with coordinates fr and cr, i.e. cr − fr = 1. The condition
∆dr(C,F) = dr(C) − dr(D) ≥ 1 captures the occlusion constraint [39], i.e. there is a
half-occluded region between the points in the other image; hence, points fr and cr arise
from distinct surfaces. Alternatively, for adjacent image points where one arises from the
forbidden zone of the other, ordering along scanlines will be violated in the left vs. right
images. In particular, for any point, P in the forbidden zone of A, ∆dr(P,A) ≤ −1
[129], with equality when points lie along a forbidden zone boundary (2.43). In any case,
∆dr ≤ −1 indicates that the involved points arise from different surfaces; although, they
might both be visible as in Figure 2.11b.

Combining the given disparity relations, it is seen that: ‖∆dr‖ ≥ 1 implies the presence
of a discontinuity between adjacent pixels; otherwise, the pixels are consistent with a single
continuous surface. Consideration of ‖∆dr‖ between adjacent pixels allows all pixels along
a scanline to be grouped into the desired equivalence classes (each class consistent with a
single continuous surface). The grouping process is visualized in Figure 2.12 and can be
easily implemented by carrying an extra pointer to the head of the chain with each pixel
(shown in Figure 2.12 with dotted arrows), while detecting half-occlusions.

Subsequently, in determining half-occlusion relationships based on uniqueness and match
score, pixels in the same class cannot compete for visibility: They are consistent with a
single underlying surface, even if they map to identical integer disparities. As schemat-
ically illustrated in Figure 2.13, although points belonging to the same slanted surface
fall in one bin, the enforcement of equivalence class relationships will prevent them from
being marked as occluded. A linked list could be a good implementation for bins, as they
will have few occupants, most often only one pixel. Note that bins with no pixels corre-
spond to half-occlusions for the other view, and are essentially described by the “occlusion
constraint” [39, 110].

2.3.3 Cues to half-occlusion detection

Prior to converting the analysis of Sections 2.3.1 and 2.3.2 into a working algorithm, it is
essential to relate the introduced disparity-change/width constraint and poor match score
cue to previous approaches for half-occlusion detection.
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The proposed approach to half-occlusion is most similar to others that also explicitly
consider disparity of occluded and occluding surfaces. The “occlusion constraint” says a
discontinuity in right-based disparity corresponds to a half-occluded region in left-based
disparity and vice versa, e.g., [39, 58, 50, 110]. An advantage of the current approach is
that it is defined with respect to a single view, making it more natural to use without
two-way matching. Moreover, we showed that our method can yield the half-occlusions for
the other view as a byproduct.

The “ordering constraint” also considers disparity of occluder and occluded, as it im-
poses strict ordering of matched points in left and right images [129, 58, 102, 61] (essential
to many dynamic programming-based matchers, e.g., [47, 30, 17, 32]) and as a result can
disallow matching in half-occlusion regions [39, 21]. However, ordering can be violated in
physically realizable view conditions that do not involve half-occlusion, like thin foreground
objects [71], e.g. Figure 2.11b. In contrast, disparity-change/width is just a limiting case
of ordering (i.e. it corresponds to a boundary of the forbidden zone, as discussed above)
and more specific to half-occlusion than ordering.

Disparity-change/width can be recast to match uniqueness (2.44), widely used in binoc-
ular matching for detection of half-occlusions [69, 21] and more consistent disparity maps
in general [132, 107]. Match uniqueness explicitly enforces a one-to-one mapping between
points in the images. To deal with uniqueness violations from physically realizable situa-
tions subject to discretization (e.g. slanted surfaces), recent approaches use a “generalized
visibility constraint”, enforcing one-to-one mapping between continuous intervals by affine
parameterized matching on segments, rather than individual pixels [90, 16, 35]. While
these methods are robust to slanted surfaces, they are expensive and usually rely on prior
segmentation. In contrast, the emphasis of the proposed approach is on methods that can
directly impact local block-matching.

Other approaches that explicitly consider both surfaces involved in half-occlusion are
“bimodality tests” [39], which rely on the observation that histogrammed disparity in the
vicinity of half-occlusions can show bimodal distributions as both foreground and back-
ground surfaces are captured. Again, the disparity-change/width constraint is tighter,
explicitly stating the relationship between disparity values of the surfaces which are cov-
ered by the aggregation window; moreover, it is faster and easier to apply as no arbitrary
intrinsic parameters are to be chosen. A potential shortcoming of all bimodality test ap-
proaches arises when noise in matching or local surface geometry yields disparity patterns
that mimic those of half-occlusion, e.g. steep surfaces with respect to the views.

The current approach also makes use of match scores in deciding which points are
binocularly visible vs. half-occluded. Previously, match scores have been used in diagnosing
half-occlusion in two ways. First, unidirectional match scores are examined for patterns
indicative of match failure; in some cases patterns of interest involve rapid change in
match score [39]. More straightforwardly, poor match quality is used by many dynamic
programming and graph cut implementations, where the occlusion cost term depends on
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match quality [102, 21]. A recent cooperative matcher [132] also uses poor matches to
filter out half-occlusions (as well as other matching errors). Poor matches defined by
colour differences at aligned image locations also have been used to diagnose half-occlusion
[108]. In summary, the poor match constraint used in this paper is an instance of this type
of approach as it simply looks for locally bad matches. Second, inconsistencies between
bidirectional matches are detected, i.e. “left- right checking” [39, 48, 54, 52], a method that
requires disparity maps for both views. While such approaches can detect half-occlusions,
they are not specific to this situation; rather, they more generally diagnose problems in
matching, e.g. from various noise sources.

Significantly, the two broad classes of approach to half-occlusion detection discussed in
the previous paragraphs are complementary: methods based on analysis of half-occlusion
geometry predict the relationship between disparities that arise on either side of a half-
occluded region; whereas, methods based on considerations of match quality predict what
is expected within a region of half-occlusion. From this perspective, the present work
encompasses a wide range of approaches (including all methods outlined and compared
in [39]), even as it yields a method that is more specific to half-occlusion than other
approaches, which often are more generally aimed at diagnosing errors in matching.

2.3.4 Occlusions in coarse-to-fine stereo

As outlined in Section 2.2, CTF stereo is based on refining initial coarse disparity estimates
using images of higher resolution – coarse disparity value is taken as an offset and new
values within a small search range are tried. But what is to be done when more com-
plete information is available, i.e. coarse disparities and half-occlusions are supplied? More
specifically, how should one refine half-occlusions in CTF? Significantly, the answer to this
question will allow for a cooperative occlusion-disparity estimation procedure in local block
matchers – a very useful characteristic that only cooperative and global algorithms truly
possess. Indeed, cooperative estimation of disparity and half-occlusions is essential as dis-
parity information is needed for reasoning about half-occlusions and occlusion information
is needed to construct support and define the disparity search space correctly. In this light,
it is surprising that the problem of half-occlusion detection in a coarse-to-fine framework
has not been clearly addressed before.

Several solutions can be considered:

1. Detect possible half-occlusions only at the finest pyramid level. This means that
we refuse the ability for cooperative disparity and occlusion estimation, i.e. do not
address this specific the problem. Our previous work [106] pursued this line of attack
in preparation for the more complete solution now considered.
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2. Consider coarse half-occlusion as a special offset and declare finer resolution pixels
as half-occluded, if their coarse resolution parents are. This kind of approach might
have the significant drawback that half-occlusion boundaries will be poorly recovered
(by analogy with disparities, see Section 2.2.2). A more serious problem might be
the inability to recover from coarse error, as occluded pixels at coarser levels may
turn out to be a thin structure or a slanted surface at a finer level.

3. Complete the coarser disparity map by extrapolating neighboring background surface
disparity values into the occluded regions, i.e. explicitly incorporate half-occlusion
information in the disparity map5. Following extrapolation, upsample the resulting
disparity map and repeat the entire process at each finer level.

We pursue the last approach: We extrapolate the background surface disparity into
half-occlusions by constant disparity propagation under a constant depth assumption. This
yields better ability to initialize disparity estimation at finer levels, especially in the vicin-
ity of half-occlusions, and the actual CTF estimation procedure can be left essentially
unchanged. Moreover, extrapolation forces occluded pixels to have disparity values of
neighbouring surfaces, which will make pixels converge to a correct estimate if they really
come from this surface, or will worsen their match score if the disparity assignment is
incorrect, i.e. pixels are really half-occluded – this will allow for truly half-occluded pixels
to be re-detected at the finer level.

In conclusion, even if a slanted surface has not been recovered correctly at the coarser
level, i.e. half-occlusion is falsely detected, that should not pose a problem in practice.
In this case, the slanted surface is approximated by piecewise frontoparallel patches in a
staircase fashion, i.e. the disparity differences between neighbouring patches is at most
1; hence, the extrapolation procedure will modify the disparity in the falsely-detected
occluded region by at most 1, which means that reliable refinement is still possible.

2.3.5 Final half-occlusion detection algorithm

Overall, the proposed approach to detecting half-occlusions at any given pyramid level that
employs disparity gradient/occlusion width and poor match score cues can be encapsulated

5It is worth mentioning that any extrapolation procedure (be it assuming constant disparity, or constant
disparity gradient of the background surface, or any other) is just an ad-hoc solution, as actual depth of
occluded points could be arbitrary. Refer to [57] for specific examples.
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as follows.

[∀y| : sId(1, y) = 1 , (2.45)

(∀x | x > 1 ∧ |disp(x− 1, y)− disp(x, y)| < 1 : sId(x, y) = sId(x− 1, y)) , (2.46)

(∀x | x > 1 ∧ |disp(x− 1, y)− disp(x, y)| ≥ 1 : sId(x, y) = x) , (2.47)

[∀x| : [∃x′| : sId(x, y) 6= sId(x′, y) ∧ disp(x′, y) + x′ = disp(x, y) + x∧ (2.48)

conf(x, y) < conf(x′, y)] ≡ occl(x, y)]

where disp is a (subpixel) disparity map, conf is a match score map (higher score signals
better match) for the calculated disparity map, sId(x, y) is the surface equivalence class
identifier for each point x, y (as described in Section 2.3.2), and occl is a binary half-
occlusion map (false, or 0, denotes visible and true, or 1, denotes half-occluded). Note that
(2.45)-(2.47) specify the construction of surface equivalence classes, while (2.48) describes
the half-occlusion inference procedure itself.

The corresponding pseudocode for operating at a single pyramid level is outlined below.

Module D

For each scanline
Define pixel equivalence classes via interpixel

disparity differences |d(x+1)-d(x)|
Map each point x to cell x+d(x) in a 1D array
/* points in a single cell violate uniqueness */
For each cell in the array

Find the point with highest match score
Mark it and all other points in the cell coming

from the same surface as visible
Mark all other points as occluded

end loop
end loop

It is essential to note that Module D has no free parameters and the procedure is
local (subject to match window) at each pyramid level. More attention can be given to the
computational complexity of the implementation. The algorithm is fast and runs in O(N)
time, where N is the number of pixels, but the current instantiation in the form of Module
D can be parallelized only up to a scanline. The reason is that pixel equivalent classes must
be formed by traversing the pixels in each scanline sequentially. At the same time, the case
of several consecutive pixels belonging to the same surface and, hence, falling into the same
bin, corresponds to highly inclined surfaces with the disparity gradient being very close to
the forbidden zone boundary. Taking into account the facts that such configurations are not
very common and block matching stereo has troubles in recovering highly-slanted surfaces
anyway (due to local fronto-parallel surface assumption in the aggregation window), we
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can consider the equivalence surface relationship only between consecutive pixels along the
scanline. This modified algorithm is formulated below:

Module D-modified

For each scanline
Map each point x to cell x+d(x) in a 1D array
/* points in a single cell violate uniqueness */
For each cell in the array

Find the point with highest match score
and mark it as visible /* vis */

For each other point /* cur */
If |d(x_vis)-d(x_cur)| >= 1

Mark current point as occluded
Else

Mark current point as visible
End if

End loop
End loop

End loop

Module D-modified requires only adjacent pixel comparisons and hence yields to
greater parallelization that the original Module D.
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2.4 Colour and intensity segmentation in computa-

tional stereo

As established in Chapter 1, 3-D boundaries delineating different objects are essential for
practical applicability of stereo. At the same time, 3-D boundaries usually coincide with
colour and intensity dicontinuities. This natural phenomenon is significant in the current
context and many recent stereo algorithms have benefited by using some form of colour
segmentation. Specific examples include: Initial segmentation of the images is performed
and correspondence is established directly on the segmented patches [115, 16, 35]; disparity
and colour segmentation are performed simultaneously in a single energy minimization
framework [77]; intensity gradient is used as a line process in diffusion to get sharper
boundaries [74]; the smoothness term of the global cost function is relaxed for regions
which are different in colour and vice versa [69, 111, 116, 110]; pixels in the support window
are weighted according to their colour similarity with the central pixel [131, 92, 93, 128].
Further, there is always an option to post-process the disparity map based on edges detected
in the original images; here, virtually any stereo algorithm could be used to get the initial
disparity.

2.4.1 Segmentation-driven shiftable windows

Our strategy to introduce the colour cue in the adaptive CTF procedure Module C is
based on the following idea. We used shiftable windows of fixed square size, which is
essential to have the ability to search for the best CTF disparity offset and alleviate the
problem of boundary overreach (refer to Section 2.2.3 for details). Now, the locally best
window is chosen based not just on the match score alone, but also on some measure that
maximizes the number of pixels within the support window belonging to the same surface
based on the colour cue. By doing this, we essentially want our window to maximally cover
the correct surface patch, i.e. maximize the presence of the correct surface in the window.

For the sake of exposition, we will formulate our strategy for intensity-based segmen-
tation and describe a generalization to the full colour cue later.

Inspired by segmentation-based windows introduced by Yoon and Kweon [128], we in-
troduce the intensity similarity and proximity cues for pixels. We can outline the procedure
from the maximum likelihood (ML) point of view

P (dx,y|I(x, y)) ∝ P (I(x, y)|dx,y) = L(x, y, d) (2.49)

where P (dx,y|I(x, y)) is the probability of point (x, y) having disparity dx,y given point’s
intensity I(x, y), and P (I(x, y)|dx,y) is the likelihood of point (x, y) with disparity dx,y

to have intensity I(x, y). For brevity in subsequent calculations, let P (I(x, y)|dx,y) =
L(x, y, d) with dx,y = d.
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Consider an arbitrary point (x, y) at pyramid level k for which the best window configu-
ration is to be found, and, hence, disparity is to be determined. Specification of a likelihood
model, L(x, y, d), that combines disparity estimation, colour segmentation and proximity
requires definition of three corresponding component likelihoods, Lρ(x, y, d), LI(x, y, d)
and Lπ(x, y, d), respectively.

First, assuming independence of pixel intensities within the aggregation window6 Ω,
the likelihood of assigning disparity d to point (x, y) at level k can be modeled as an
exponential distribution for simplicity, in particular

Lρ(x, y, d) =
∏

xi,yi∈Ω

exp

(
−1

λ
ρ (Iref (k, xi, yi), Iother(k, xi + d, yi))

)
. (2.50)

Looking ahead, the minimization of the negative log-likelihood (2.50) is equivalent to min-
imizing the match measure (e.g. SAD) as in Module A.

Second, the likelihood of the intensity similarity cue also can be described by an expo-
nential. Experimentally, we have found that intensity differences between arbitrary pixels
in an image are reasonably well approximated by an exponential; moreover, previous re-
search uses this model [128]. Additional assumption of pixel intensity independence (as
used in calculation of (2.50)) results in the likelihood

LI(x, y, d) =
∏

xi,yi∈Ω

exp

(
− 1

α
|Iref (k, x, y)− Iref (k, xi, yi)|

)
. (2.51)

Third, the proximity cue is a simple heuristic that closer points are more important in
the calculation of disparity of a point (x, y). The likelihood for a proximity cue is similarly
modeled as

Lπ(x, y, d) =
∏

xi,yi∈Ω

exp

(
− 1

β

√
(x− xi)2 + (y − yi)2

)
. (2.52)

Note that λ, α and β are free parameters of the corresponding model distributions. Finally,
taking independence of goodness of match, ρ, intensity cue, I, and proximity cue, π, the
final likelihood of a point (x, y) having disparity d can be expressed as a multiplication of

6Independence of pixel intensities in the aggregation window is the most widely used assumption in
correlation-based matching. As an example, both SAD and SSD match measures are derived using this
assumption. Finally, note that independence of intensities is used only in calculation of match correlation
score, while disparities are definitely not independent.
From the point of signal corruption, independence can be motivated by assuming that the noise in the
image is independently and identically distributed.
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the three corresponding likelihood terms (2.50), (2.51) and (2.52) to yield

L(x, y, d) = LI(x, y, d)Lρ(x, y, d)Lπ(x, y, d) (2.53)

=
∏

xi,yi∈Ω

exp

(
−1

λ
ρ (Iref (k, x + xi, y + yi), Iother(k, x + xi + d, y + yi))

)

×
∏

xi,yi∈Ω

exp

(
− 1

α
|Iref (k, x, y)− Iref (k, xi, yi)|

)

×
∏

xi,yi∈Ω

exp

(
− 1

β

√
(x− xi)2 + (y − yi)2

)
.

In theory, maximization of the overall likelihood, L(x, y, d), yields the desired dispar-
ity. Following common practice, we instead eliminate the exponentials by minimizing the
negative log-likelihood multiplied by λ:

−λ logL(x, y, d) (2.54)

=
∑

xi,yi∈Ω

ρ (Iref (k, x + xi, y + yi), Iother(k, x + xi + d, y + yi)) +

λ

(
1

α

∑
xi,yi∈Ω

|Iref (k, x, y)− Iref (k, xi, yi)|+ 1

β

∑
xi,yi∈Ω

√
(x− xi)2 + (y − yi)2

)

The negative log-likelihood formulation (2.54) allows us to have a better understanding
of what each term of (2.54) means. The first term is the actual match score, which
motivated modeling the corresponding likelihood component (2.50) with an exponential
distribution. This term should be weighted high and play an important role in the final
calculation (i.e. λ should not be very big), as it is able to intrinsically search the right
disparity offset while going CTF. The second term is the cue of how each pixel in the
aggregation window is similar to the pixel which is to be matched – the segmentation cue.
The third term after a close examination is just a bias toward a central window – it can be
calculated offline, because it depends only on the position of the window’s centre; its value
is maximum when the matching pixel is exactly in the centre and falls off as the pixel moves
to the border of the window. Usually β > α, because this bias should not be very strong,
but some bias is beneficial to avoid the blocky artifact of shiftable windows, as exhibited
in [46, 102] and Section 3.2. Thus, the second and third terms (colour segmentation and
proximity bias) provide guidance in the choice of best window – such a window still must
yield a good match score thanks to the presence of the first term.

There are a number of ways to improve the model (2.53) even further by exploiting
distributions that suit real data better (although, it might be very hard to determine these
distributions in general) or introducing priors and upgrading the procedure to a Maximum a
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posteriori (MAP) calculation. As an example, we explored more heavy-tailed distributions
by introducing truncated absolute differences in the first and second terms in order to be
more resilient to outliers. However, initial experiments did not show any improvement,
possibly because the shifting of the window introduces adequate robustness on its own.

Finally, the same model can be used for the colour cue, where intensity likelihood (2.51)
is modified to

LI(x, y, d) =
∏

xi,yi∈Ω

exp

(
− 1

α

√
(IR

ref (k, x, y)− IR
ref (k, xi, yi))2+ (2.55)

+(IG
ref (k, x, y)− IG

ref (k, xi, yi))2 + (IB
ref (k, x, y)− IB

ref (k, xi, yi))2
)

with IR, IG, IB being red, green and blue image colour channels respectively (the use
of different channels, combination rules and different colour spaces is possible, but not
explored here).

Given (2.55), the cost function which is to be minimized while searching for best window
and disparity changes from (2.54) to

−λ logL(x, y, d) (2.56)

=
∑

xi,yi∈Ω

ρ (Iref (k, x + xi, y + yi), Iother(k, x + xi + d, y + yi))

+λ

(
1

α

∑
xi,yi∈Ω

√
(IR

ref (k, x, y)− IR
ref (k, xi, yi))2+

+(IG
ref (k, x, y)− IG

ref (k, xi, yi))2 + (IB
ref (k, x, y)− IB

ref (k, xi, yi))2

+
1

β

∑
xi,yi∈Ω

√
(x− xi)2 + (y − yi)2

)

The outlined analytic formulations for intensity (2.54) and colour (2.56) segmentation-
driven shiftable windows can be encapsulated into a final module by augmenting Adaptive
CTF, Module C, from Section 2.2.3. Mathematically, we have

[∀(i)|1 ≤ i ≤ 2 : im0
i = imi ,

(∀(j)|1 ≤ j ≤ lmax : imj
i =

(
g ⊗ imj−1

i

) ↓2

)]
, (2.57)[∀(x, y)| : displmax+1(x, y) = 0

]
, (2.58)[∀(k)|lmax > k > 0 :

[∀(x, y)| : dispk(x, y) = 2 · dispk+1(x, y) ↑2 + (2.59)

arg min
d, (u,v)∈w(x,y)

−λ logL(x, y, 2 · dispk+1(x, y) ↑2 +d)

]]
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where −λ logL(x, y, d) is defined as in (2.54) or (2.56) and all other notation is consistent
with the one for Module C. The corresponding pseudocode statement can be given as
follows.

Module E

Reference and matching images are initially
brought into pyramid representation

disp(k,x,y) - disparity for pixel x, y on scale k
conf(k,x,y) - confidence for pixel x, y on scale k
Initialize ref_disp(k,:,:) to all zeros
Loop for level k to 0

For each pixel (k,x,y)
Run Module A with search range
[-delta_d+ref_disp(x,y), delta_d+ref_disp(x,y)]

End loop
For each pixel (k,x,y)

For each point (k,x_i,y_i) no further than aggregation
window size

Evaluate (2.56) if greylevel images or (2.58) if colour images
for each rectangular window centered at (k,x_i,y_i)

Choose the window with minimum cost
/* let it be centered at (k,x_min, y_min) */

End loop
disp(k,x,y) = disp(k, x_min, y_min)
conf(k,x,y) = conf(k, x_min, y_min)

End loop
ref_disp = 2*upsampleNN(disp(k,:,:)) /* nearest-neighb. interp.*/

End loop

2.4.2 Relation to other segmentation-based windows

We now relate our approach to other work that has used colour and intensity segmentation
cues in the context of local matching. Zhang and Kambhamettu [131] pre-segment the
images and construct windows such that they consist of pixels of the same segments only.
Park et al. [92] proposed a formulation where the neighbour pixels not similar to the centre
one are excluded when computing the local correlation value. Similarity is calculated using
the L2 norm and the decision of whether to include the pixels in the support region is based
on a pre-defined threshold. Patricio et al. [93] developed a very similar formulation, but
calculated the threshold in an adaptive manner (set as the average colour difference within
a window). Yoon and Kweon [128] communicated roughly the same idea in a more formal
way – pixels in the window were weighed based on colour similarity with the central pixel
and based on the spatial distance between the pixels – the authors claim to have encoded
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the basic Gestalt grouping principles (proximity and similarity) in a simple and straight-
forward fashion. Experimental analysis has shown that this class of methods outperforms
all previous shiftable/adaptive/overlapping window techniques when images are colour-rich
and relatively easy to segment[128], as they are able to construct windows which exactly
shapes to the 3-D boundary and can use windows of large size (which improves performance
in textureless regions).

Finally, it is important to say that none of these approaches were used in the context
of CTF processing, and their behaviour across scale has not been investigated previously.

2.4.3 Precision versus robustness

In this subsection, we further motivate our particular approach to weighting the contri-
bution of match-measure driven window shifting and colour segmentation as a solution to
CTF boundary preserving stereo. We reconsider alternative formulations such as robust
match measures, pure shiftable and pure colour segmentation windows and show that they
all compromise either precision or robustness. In this light we motivate our choice as a
solution that provides both precision and robustness.

As stated in Section 1.2.2, the major problem for good 3-D boundary recovery is the
correct aggregation of match support (recall Figure 1.5 in Section 1.3.6). In the context of
a block-based matcher, the tricky part is to find correct aggregation windows for each point
in the scene. If a point lies far from a 3-D boundary, support could be correspondingly large
(bigger size generally results in more reliable matches) and a symmetric square window
is a good choice in terms of implementation efficiency. If a point lies very close to a 3-D
boundary, then the support window should cover only the object to which the point belongs
– call these object points inliers. Points which do not belong to the same object as the
point of interest, should not be included in the disparity calculations (i.e. aggregation) as
the fundamental assumption of the uniform disparity within aggregation window does not
hold – call these points outliers.

The concept of inlier-outlier is intuitive and useful in this situation. It allows us to
cast the aggregation step in terms of robust statistics and all difficulties in matching such
as occlusions, specularities, non-Gaussian noise can be treated as outliers. In classical
stereo, aggregation is done by calculating the first moment (mean) of the similarity distri-
bution within the window, e.g. SAD, SSD, NCC etc. omitting normalization by the window
size. Every point is treated as an inlier, which results in the inevitable corruption of 3-D
boundaries, as investigated in Section 2.2.

Several strategies can be exploited in order to treat the outliers:

• Make the match metric itself robust

• Choose another support window to avoid outliers (bad match scores) – a technique
known as shiftable/overlapping/variable windows (Section 2.2.3).
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• Use some other knowledge, e.g. colour, to explicitly label the pixel as an outlier either
in terms of probabilities or simple binary labeling.

Note that for many well-known match measures the corresponding similarity distribu-
tion is unimodal and outliers are characterized by being very far from this mode. More
specifically, for SAD/SSD, outliers have very high dissimilarity values.

We give a brief overview to each method, identify their pros and cons and conclude
with a proposal to include the colour (intensity) cue in this framework in the best possible
way.

Robust match measures

Widely-used area-based match measures such as SAD, SSD, NCC, etc. [21] are intensity
based, and are optimal for Gaussian noise distributions. Meanwhile, real image matching
is usually characterized by outliers, and heavy-tailed error distributions suit the purpose
of robust estimation better. Moreover, matching can be done not directly on intensity
information, but on the rank-order statistics of the intensity values in the windows (Rank,
Census transforms [130], and other ordinal measures [12]).

cost(x, y, d)SADrobust =
∑

(u,v)∈w(x,y)

min(|im1(u, v)− im2(u + d, v)|, τ) (2.60)

Here, we discuss the benefits of robust match measures in the vicinity of 3-D bound-
aries. Consider truncated SAD (2.60) for clarity. If an aggregation window crosses a 3-D
boundary, the match score component for the points coming from different surfaces will
have high values that would be clamped to some smaller number, i.e. threshold τ . Thus,
the outliers will be forced to have smaller values and their cumulative influence will be
diminished. Note though, that outliers are not eliminated from the match score computa-
tion, which means that if their proportion is high, e.g. a pixel of interest on a 3-D corner,
the disparity estimate cannot be expected to be reliable.

Shiftable windows

Here, the window is constructed, or rather chosen, in a way that the match score would
be the best possible – low matches that characterize the outliers are avoided. The main
driving force of this method is that central-based windows yield bad estimates near the
boundaries, as the window covers two or more surfaces – alignment is never good in this
case, so the confidence of match will be poor. By choosing a window configuration which
yields a better confidence of match we essentially choose a window which results in the best
possible alignment, i.e. it covers only one surface. Such a setup is identical to minimizing
the presence of outliers and could be performed as a morphological operation (erosion in
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case of SAD, SSD and dilation in case of NCC) on the disparity search space, as discussed
in Section 2.2.3. Again, we have just described the simplest shiftable window principle
[102], which works very well in practice and possess these main characteristics:

• Windows are of the restricted shape. Usually they are rectangular, so the problem
is tractable and implementation is easy.

• Smaller windows result in higher accuracy of 3-D boundary estimation. Because
windows are rectangular, very fine structures like sharp corners will be damaged, as
aggregation with uniform window is a low-pass operation.

• Implementation is both easy and fast in the case of parallel and sequential compu-
tations, as no prior information is used in aggregation – pixelwise cost is reused by
the neighbourhoods in the aggregation step.

Overall, this type of window was originally designed to behave better near 3-D bound-
aries and it succeeds by being a robust calculation that does not rely on any extra as-
sumptions [102]. It behaves quite well in the presence of small specularities, non-Gaussian
noise and occlusions. So, these windows are not spatially precise (they have fixed shape),
but they are robust. Importantly, empirical investigations have shown that shiftable win-
dows behave better than the use of robust measures with fixed windows [102]. Hence,
we can declare that shiftable windows largely subsume the robust cost calculation for the
block-based matcher, as described above.

Segmentation-based windows

How wonderful it would be if we knew the inlier-outlier membership in advance of disparity
estimation! Here we try to predict this membership based on colour segmentation, i.e. by
introducing extra information. As overviewed in Section 2.4.2, the shape of the window
is constructed based on the assumption that pixels of similar colours come from the same
surfaces. The following outlines the main characteristics of such methods.

• Windows of arbitrary shape are constructed. This is definitely good when the scene
possesses complex boundary outlines, like sharp angles, which are destroyed by square
windows.

• Windows can be quite large. Before, square windows should have been of the small-
est possible size to recover boundaries as precisely as possible – small size, on the
contrary, is disadvantages when poorly textured surfaces are present. Segmentation-
based windows are constructed in such way that they do not cross 3-D boundaries by
definition, and hence, their window size can be made as large as possible to recover
the disparity for textureless regions unambiguously.
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It is worth saying, that such reasoning does not apply in the case of non-fronto-
parallel surfaces, as the constant depth assumption is used within the window. This
restriction does not allow support windows to be arbitrarily large, unless affine or
more sophisticated matching is used.

• Implementation is easy, but slow in the case of sequential computation – each pixel
requires unique treatment for custom window design (of potentially large size) and
cannot be sped up with sliding window techniques [102].

Theoretically, this type of window behaves perfectly in both cases (3-D boundaries and
textureless regions), but under a strong segmentation assumption. For example, this as-
sumption is not reasonable when surfaces are heavy textured (luckily, conventional stereo
methods behave well in such situations), or when there are photometric errors, unmod-
elled noise, and occlusions. Interestingly, regions near occlusions suffer the most – the
constructed local support will include the occluded regions, as they might be perfectly
consistent with monocular segmentation, and this constructed aggregation region will not
be adequate for the matching image. Another example of when the segmentation cue may
fail is when similarly coloured patches coming from different surfaces are projected closely
to each other in one of the images – the constructed aggregation window can be composed
of these two patches and, hence, will not be matched correctly, because spatial location of
these two patches is different in the other image.

Thus, if the segmentation cue fails, the matching is done over a big incorrect window,
which might have severe consequences. Hence, this type of window is spatially very precise
(as they have ability to adapt to exact shape of 3-D boundary), but not robust.

Adaptivity and segmentation in coarse-to-fine processing

The outlined tradeoff between the major classes of local matching windows is of even bigger
concern when coarse-to-fine computations are used. In CTF, robustness is very important,
as we must have an ability to recover from coarse level errors; large support is not as crucial
as in single-level matching, because it is aggregated at coarser scales; segmentation is tricky
on a coarse level, because low-passed filtering is performed to obtain coarse resolution
images, which blurs 3-D boundaries (as analyzed in Section 2.2.2).

These observations are confirmed by our experiments, which have shown the better
overall performance of the shiftable windows over segmentation-based windows within the
coarse-to-fine framework, especially near 3-D boundaries (see Section 3.4).

As a result of this analysis, we developed our approach to keep the advantages of CTF
shiftable windows (adaptive offset, substantial reduction of boundary overreach, robust
performance near occlusions) even while exploiting colour segmentation to guide shifting
(2.54, 2.56). This approach possess three main advantages. First, colour segmentation can
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guide match support, yet, is robust to situations when colour segmentation fails, e.g. highly-
textured regions, as aggregation window will not degenerate to constellations of disjoint
pixels. Second, windows can shift to define best support in the absence of the colour cue.
Third, the essential ability to handle multiple offsets is preserved.
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2.5 Recapitulation

This chapter started with the statement of basic, single scale block matching algorithm
Module A and a basic CTF extension, Module B. As a result of the analysis of how CTF
corrupts 3-D boundaries (Section 2.2), an improved version of the CTF stereo algorithm,
Adaptive CTF has been developed, as embodied in Module C. Section 2.3 has been
devoted to the investigation of half-occlusion phenomena and culminated with the half-
occlusion detection procedure Module D (or its alternative Module D-modified), which
can be used in conjunction with any of Module A, Module B, or Module C. The
particular combination of Module C and Module D is of our prime interest, as it is
expected to perform robustly near 3-D boundaries and recover half-occlusions and disparity
in a CTF cooperative manner.

Section 2.4 has introduced additional monocular cues to stereo processing and pro-
posed improvements to the Adaptive CTF Module C: Module E that handles the inten-
sity/colour information. This variation on Adaptive CTF can be combined with Module
D to gain the benefit of half-occlusion detection analysis.
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Chapter 3

Experimental evaluation

3.1 Methodology

The algorithmic instantiations of Module A, Module B, Module C, Module D and
Module E have been implemented in C. The resulting code can be compiled and executed
on any compatible environment as it does not make use of special-purpose instructions or
libraries.

To test the proposed algorithmic advances in a variety of situations, we use two classes
of data: images of lab scenes, for which the ground truth has been obtained, and images
of natural scenes.

Testing on lab scenes is very informative, because the ground truth is supplied. In this
paper we use the Middlebury College Stereo dataset [3], which consists of scenes of various
complexity. Moreover, most other stereo algorithms are tested on this data set, which gives
us an ability to compare our results to the state-of-the-art solutions. The scenes themselves
and the associated disparity and occlusion ground truth are shown in Figure 3.1.

Testing on real, naturalistic scenes is vital, as the algorithm must operate in real world
situations. Our real scene database (Figure 3.2) consists of the Flower Garden (FG) scene
from the Brown university database [1] and two scenes Stephen1 and Stephen2 provided
by an industry collaborator MacDonald, Dettwiler & Associates Corporation (MDA).

Quantitative performance evaluation is done on the Middlebury dataset with associated
ground truth. Similar to [3, 102], we calculate three kinds of error statistics: errors for
nonoccluded pixels, all pixels including occluded and pixels near discontinuities. Pixels
are considered to be near discontinuities if they are not farther than 9 pixels apart from
the 3-D boundary (disparity jump in ground truth). A pixel is considered to be erroneous
when the absolute difference between its assigned and true disparities is more than some
predefined threshold – similar to [3, 102], we use the threshold of 1.

To understand how the advances proposed in Chapter 2 impact the performance, they
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Tsukuba Venus Teddy Cones

Left

GT

GTocc

Figure 3.1: Lab scene from the Middlebury Database [3]. From top to bottom: Left image,
disparity ground truth, half-occlusion ground truth. Disparity and Occlusion Ground
Truth are given with respect to left image. In Disparity GT, brighter pixels mean larger
disparity; in occlusion GT, black pixels denote half-occlusions.
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Left image Right image

FG

Stephen1

Stephen2

Figure 3.2: Real Scenes: Flower Garden (FG) from Brown university [1]; Stephen1 and
Stephen2 obtained from MDA.

69



Tag Algorithm
A1 Single-scale 17x17 SW, SAD
A2 Single-scale, SAD
A3 Coarse-to-fine (CTF), SAD
A4 Adaptive CTF, SAD
A5 Adaptive CTF, SAD + occl
A6 A5 with colour cue
A7 [128] in CTF with 11x11 windows without multiple offsets
A8 [128] in CTF with 11x11 windows with multiple offsets, as in (2.38)
A9a A5 with SSD
A9b A5 with NCC
A9c A5 with MI
A10 A5 with 7× 7 aggregation window
A11 A5 with ∆d = ±2
A12 A9b with colour cue

Table 3.1: Summary of Algorithms Compared Empirically.

have been added incrementally to standard CTF block matching. All algorithmic instanti-
ations are outline in Table 3.1. Later, while proceeding with experimental evaluation, each
algorithm will be described in more detail.
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3.2 Adaptive coarse-to-fine processing

We evaluated the proposed adaptive CTF processing using the lab and real scenes outlined
in Section 3.1. To see the effect of conventional CTF and adaptive CTF, we evaluate the
performance of the following algorithms:

• A1 – single-scale block matcher Module A which operates on 17× 17 shiftable [46]
square windows and Laplacian-bandpassed images (level 0 of the Laplacian pyramid)
with maximum disparity range for each test case.

• A2 – single-scale block matcher Module A which operates on 5× 5 square windows
and Laplacian-bandpassed images (as above) with maximum disparity range for each
test case.

• A3 – coarse-to-fine block matcher Module B which operates on 5×5 square windows
and Laplacian pyramid over all attainable levels (i.e. coarsest level auto-selected when
one image dimension becomes unity) and search range ±1 at each level.

• A4 – adaptive coarse-to-fine block matcher Module C which operates on 5 × 5
square windows and Laplacian pyramid over all attainable levels (i.e. coarsest level
auto-selected when one image dimension becomes unity) and search range ±1 at each
level.

All algorithms use the SAD match measure.
The purpose of A1 is to exhibit the best performance of a standard single-scale block-

matching technique with shifting, an analogue of the one used in Scharstein and Szeliski
comparison [102]. The purpose of A2 is to show the effect of introducing CTF in A3. Fi-
nally, A4 embodies the CTF processing advance proposed in Section 2.2.3. Note that A1 is
a degenerate version of A4 that operates on an image pyramid with a single level, maximum
search range, but with bigger window size (the proposed adaptive CTF becomes ordinary
shiftable windows when used over a single scale, because disparity offset is implicitly zero
for each window configuration).

The qualitative and quantitative analysis with respect to Middlebury lab scenes is
shown in Figures 3.3, 3.4. Comparing A2 and A3 (that use the same support window),
CTF results in fewer errors overall (because coarser level matching is analogous to using
a larger window at finer levels), but greater boundary error, as discussed in Section 2.2.2.
When the proposed approach to adaptive CTF processing, Module C, is introduced
(A4), considerable improvement is had over single scale (A2) and standard CTF (A3). It
is expected that the adaptive approach bests standard CTF, – adaptive CTF significantly
improves both the recovery of 3-D boundaries (as it was designed for exactly that purpose)
and overall errors (as adaptive processing has some ability recover from errors made on the
coarse level and not propagate/amplify them). It also is of interest to see that adaptive
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Figure 3.3: Disparity Recovered for Middlebury scenes using algorithms A1-A4 from Table
3.1.
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Figure 3.4: Error Statistics Across Algorithms A1-A4. Triplet bars represents error statis-
tics for non-occluded (black), all (gray), and discontinuity (white) pixels, as defined in [3].
Algorithm indices are given in Table 3.1.
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CTF bests single scale shiftable windows (A1), especially near discontinuities (white bars
in Figure 3.4); this can be explained by the fact that A4 can use smaller windows (5 × 5
vs. 17× 17) to yield more precise boundary-fitting and search over small ranges (i.e. ±1 at
each resolution) for less ambiguous matches.

From error statistics and visual inspection of the recovered disparity maps, adaptive
CTF (A4) completely outperforms the standard CTF (A3) and single-scale matcher with
fixed windows of the same size (A2), especially near 3-D discontinuities. The overall per-
formance of adaptive CTF (A4) is better than adaptive single-scale matcher (A1) for more
complex scenes Cones and Teddy scenes. For Tsukuba the results near 3-D boundaries are
significantly improved; however, textureless regions are better handled by A1 as windows
of bigger size (e.g. 17×17) aggregate more information to resolve ambiguity. A1 results for
Venus are better than of A4 mainly for the same reasons – Venus has few very simple 3-D
boundaries and many textureless regions, thus large support shiftable windows are able to
reconstruct the disparity quite well. Along these lines, it is worth mentioning that out of
the four Middlebury images, Venus is the worst representation of a naturalistic scene.

The results of algorithms A1-A4 from Table 3.1 run on naturalistic scenes are shown
in Figure 3.5. While the ground truth and, hence, error statistics are not available for
these images, some conclusions can be made based on visual inspection of the recovered
disparity maps. All estimations were obtained using absolutely the same parameters as for
the Middlebury test dataset.

Qualitatively, adaptive CTF (A4) yields better disparity maps overall. While single-
scale matchers yield predominantly very noisy disparity maps (both A1 and A2), especially
for Stephen1 and Stephen2, CTF processing (A3 and A4) tends to produce smoother re-
sults; moreover, adaptive CTF (A4) produces much better 3-D boundaries as well. Note
that use of adaptive windows (A1 and A4) helps to reduce significantly the foreground
fattening/shrinkage effect, as predicted in Section 2.2.3. Moreover, adaptive CTF (A4)
demonstrates the consistent ability to recover from errors made on coarse level, unlike
standard CTF (A3). The latter can be concluded by noticing of removal of many gross dis-
parity errors: right side of the tree trunk, bottom-left corner for Flower Garden, upper-left
corner and left shoulder of Steven1, chest of Steven2.

Nevertheless, even the proposed Adaptive CTF (A4) cannot eliminate all disadvantages
of CTF processing. For example, thin structures are still hard to recover precisely, e.g. arm
lamps in Tsukuba and pencils in Cones; however, use of small windows results in better
recovery of depth discontinuities that in non-CTF A1. Another apparent weakness of the
CTF processing is the possible image border effect (disparity for the lower region on Teddy
and region above the head in Stephen1 are recovered incorrectly), when thin regions near
image boundaries do not have enough spatial support and become lost at coarser scales.
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Figure 3.5: Disparity Recovered for real scenes using algorithms A1-A4 from Table 3.1.
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3.3 Half-occlusions

Now we concentrate on the algorithm version that utilizes the half-occlusion processing
proposed in Section 2.3.5:

• A5 – an extention of A4 that uses coarse-to-fine half-occlusion detection Module D.
While doing CTF processing, A5 detects half occlusions and extrapolates disparity
values from the back surface into the half-occluded regions, as described in Section
2.3.4. As we are determining disparity for the left image, filling from the left is done,
because the background surface will be always to the left of the half-occlusion, as
shown in Figures 2.11a and Figures 2.11b.

Results of running A4 and A5 on the Middlebury dataset are given in Figure 3.6. For
comparison purposes, we have shown the case of detecting half-occlusions on the finest
level only by post-processing the results of A4.

Introduction of half-occlusion processing further reduces errors, especially in occluded
areas and near discontinuities (Figure 3.7 gray and white bars). Note that slanted surfaces
are correctly recovered without false occlusions, as in Teddy. Occlusion detection results
are isolated in Table 3.2, showing Hit Rate (HR) (percentage of pixels correctly labeled
as half-occluded) and False Positives (FP) (percentage of pixels incorrectly labeled as
half-occluded). Inspecting the qualitative results, we can conclude that the majority of
half-occlusion false positives arise in the large textureless regions, where local methods
(and CTF as well) are least robust. Note that the problem of textureless regions has not
been explicitly addressed in this paper; we have just relied on CTF estimation for implicit
improvement in such areas.

Finally, the results of Figure 3.6 show that occlusion detection in a CTF, i.e. coop-
erative, manner (A5) is more beneficial compared to simple post-processing of the finest
level (A4). Qualitatively, this benefit is clear from the results of Tsukuba and Teddy, which
show less hazy outlines of major half-occluded regions. Quantitative results for A4 post-
processing and A5 are shown in Table 3.2, which exhibits consistently higher hit rate and
consistently lower false positives rate for half-occlusion detection in A5.

Similarly, the same instantiations of A4 and A5 are run on our naturalistic dataset,
the results of which are shown in Figure 3.8. As in the case with Middlebury, the ma-
jor half occlusions are detected reliably, and CTF half-occlusion detection is superior to
half-occlusion as post-processing. This is especially noticeable with images having large
disparity jump discontinuities, e.g. Stephen2.

3.3.1 Comparison to previous approaches

As a comparison with the local half-occlusion detection methods, Table 3.2 shows results
based on the often used left-right checking (LRC) [39, 54, 48] applied to A4 disparity. LRC
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Figure 3.6: Disparity Recovered for Middlebury scenes using algorithms A4-A5 from Ta-
ble 3.1 and the half-occluded regions. Black in half-occlusion maps denote half-occluded
points. Half-occlusions detected in A5 are extrapolated by taking disparity value from the
background (occluded) surface.
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Algorithm Tsukuba Venus Teddy Cones Average

A4
HR (%) 43.62 61.03 81.62 77.27 68.01
FP (%) 3.20 1.83 2.92 2.76 2.63

A5
HR (%) 46.63 63.56 81.53 77.92 69.39
FP (%) 2.31 1.27 2.27 2.21 1.99

LRC
HR (%) 59.87 70.3 87.71 82.82 76.65
FP (%) 8.74 3.76 6.64 5.07 5.75

Table 3.2: Half-Occlusion Detection Statistics. From top to bottom: Module D applied
as a postprocessing on result of A4; cooperative disparity and half-occlusion detection A5;
Left-Right-Checking procedure applied on result of A4. Hit rate (HR) and false positive
rate (FP) as percent of pixels correctly and incorrectly marked occluded.
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Figure 3.7: Error Statistics Across Algorithms A4-A5. Triplet bars represents error statis-
tics for non-occluded (black), all (gray), and discontinuity (white) pixels, as defined in [3].
Algorithm indices are given in Table 3.1.
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Figure 3.8: Disparity Recovered for real scenes using algorithms A4-A5 from Table 3.1 and
the half-occluded regions. Black in half-occlusion maps denote half-occluded points. Half-
occlusions detected in A5 are extrapolated by taking disparity value from the background
(occluded) surface.
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yields a 7% average hit rate increase and 2.5 times higher false positive rate, supporting the
claim that Module D is more specific to half-occlusions, as discussed in Section 2.3.3, and
therefore better suited when seeking to distinguish 3-D boundaries from other sources of
match error. This distinction might be useful in some specific procedures, like segmentation
of 3-D objects, as half-occlusions always arise near object boundaries.

A complimentary comparison between a half-occlusion detection method combining the
same disparity-change/width constraint and poor match score cue (Section 2.3) and a wider
variety of standard methods is presented in our earlier work [106].
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3.4 Colour and intensity segmentation cues

Now we investigate the performance of the proposed use of colour (intensity in the case of
graylevel images) segmentation in the window-based, coarse-to-fine matching procedure,
Module E, as described in Section 2.4.1. Here we have one free parameter, λ, which
controls the level of guidance for shiftable windows by colour and proximity cues. There
are also α and β parameters that represent the mixture proportions between the power of
similarity and proximity cues. We fix α = 7 and β = 36 (same parameters as in [128]),
which gave good results in our experiments. In the experiments of this section we will vary
parameter λ only, in order to demonstrate the effect of the colour cue.

In this experiment, the following algorithmic instantiations have been evaluated:

• A5 – as described in previous sections. Results are shown with background surface
disparities being interpolated into detected half-occluded regions.

• A6 – implementation of Module E together with CTF occlusion detection Module
D; essentially, an extension of A5. The value λ = 0.3 is used for best performance,
and results for the most representative three different values for λ (λ = 0.1; λ = 0.3
and λ = 0.75) are discussed.

• A7 – CTF implementation of segmentation-based windows [128] with window size
15×15. A7 uses the nearest-neighbour upsampling procedure while going CTF (refer
to Section 2.2.2 for more details).

• A8 – same as A7 but employs multiple offsets as desribed by (2.38) in Section 2.2.4.
A7 and A8 comparison to previous colour segmentation-guided stereo.

Note that the actual window-based matching is still performed on the Laplacian pyramid
constructed from grayscale images, so SAD is still “normalized”.

According to the qualitative and quantitative results on the Middlebury dataset shown
in Figures 3.9, 3.11, we are able to see the consistent behaviour of the introduced colour
segmentation cue. The best overall results are achieved when λ ≈ 0.3 (A6) – all bigger
and smaller values yield greater error. Note that A5 essentially corresponds to case when
λ = 0.

Interestingly, if we visually inspect the disparity maps, we can notice the sharper bound-
aries (lamp arms in Tsukuba, tips of the cones in Cones, teddy’s head in Teddy, upper part
of the leftmost plane in Venus) as well as occasional error introduced in some regions (up-
per part of rightmost plane in Venus, leftmost plane in Teddy), and these errors can grow
quite large and yield inferior results when λ is too big. As an example, Figure 3.10 shows
the results of CTF with colour-driven windows on Teddy for different values of λ, which
apparent artifacts introduced by large values of λ. Thus, we have shown empirically that
overreliance on the segmentation cue may be dangerous, confirming our concerns raised
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Figure 3.9: Disparity Recovered for Middlebury scenes using algorithms A1-A4 from Ta-
ble 3.1 and the half-occluded regions. Black in half-occlusion maps denote half-occluded
points. Half-occlusions detected in A5 are extrapolated by taking disparity value from the
background (occluded) surface.
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λ = 0 λ = 0.1

λ = 0.3 λ = 0.75

Figure 3.10: Disparity Recovered for Teddy using algorithm A6 from Table 3.1 with different
parameter values.
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Figure 3.11: Error Statistics Across Algorithms A6-A7. Triplet bars represents error statis-
tics for non-occluded (black), all (gray), and discontinuity (white) pixels, as defined in [3].
Algorithm indices are given in Table 3.1.
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in Section 2.4: The ability to guide the best window should not only be based on colour,
but also on match score, which provides resilience to occlusions and implicitly chooses the
correct disparity offset.

With respect to our naturalistic images it is significant to note that only Stephen1 and
Stephen2 are colour, while the others are grayscale. Results are shown in Figure 3.12.
They are quite interesting in terms of no visible gain of colour/intensity segmentation cue.
These results might be explained by the fact that the most useful information, especially
in outdoor scenes, are coming from texture, rather than drastic change in intensity profile
– colourful homogeneous objects are much more common in lab scenes, as exemplified in
the Middlebury dataset.

3.4.1 Comparison to previous colour-cue formulations

To emphasize the necessity of being both robust and precise using adaptive windows guided
by colour cue segmentation, we have implemented the coarse-to-fine version of Yoon and
Kweon Gestalt-based stereo [128]. All parameters were the same as for A5, except window
size, which was set to 15 × 15 ([128] requires big windows to operate reliably). We used
an RGB colour space, not CIELab colour space as in [128], to be on a same foot with
our colour-guided shiftable windows. Two versions are inspected – conventional CTF
implementation (A7), and implementation with multiple offsets (A8), where multiple offsets
are realized as described in Section 2.2.4.

According to quantitative and especially qualitative results depicted on Figures 3.9-
3.12, the use of Gestalt windows (A7) did not improve the 3-D boundary estimation even
in comparison to A5, which does not use any segmentation whatsoever. Importantly, use
of multiple offsets (A8) improves results near 3-D boundaries, which again supports their
necessity. However, the use of multiple offsets did not dramatically change the situation,
especially in comparison to (A6). This confirms the previous concerns about the difficulty
of precise segmentation at coarse levels. Another reason for the lack of benefit might be
the necessity to search for better disparity offsets explicitly, and extra search, especially
when performed in ambiguous cases, always has more chance to choose the wrong result.
Recall that, on the other hand, the proposed CTF shiftable windows take care of variable
offsets implicitly. Finally, it is worth mentioning that overall error for A8 is not greater
(and even smaller in case of Tsukuba) than for A5, which could be attributed to the bigger
aggregation window and, hence, better recovery of disparity in the textureless regions.
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Figure 3.12: Disparity Recovered for real scenes using algorithms A1-A4 from Table 3.1 and
the half-occluded regions. Black in half-occlusion maps denote half-occluded points. Half-
occlusions detected in A5 are extrapolated by taking disparity value from the background
(occluded) surface.
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3.5 Other variations of stereo algorithm

In previous sections of Chapter 3 we have demonstrated how the incremental addition
of the proposed enhancements has systematically improved the results of basic coarse-
to-fine stereo processing. In doing so, we have used the SAD match measure, Laplacian
pyramid with maximum number of levels, minimum disparity search range of ±1 and
window size of 5, all motivated in Chapter 2 from theoretical considerations. In this
section we investigate the change in behaviour of the proposed algorithm by varying the
underlying match measure, as well as by considering a different aggregation window and a
broader local disparity search range.

The last portion of Table 3.1 summarizes the explored algorithms:

• A9a – version of A5 using SSD.

• A9b – version of A5 using Normalized Cross Correlation (NCC) and Gaussian pyra-
mid (as match measure itself is normalized).

• A9c – version of A5 that uses Mutual Information (MI) a in coarse-to-fine fashion.
We have used only 5 pyramid levels, not the maximum attainable, as MI estimation
on very coarse images is very unreliable due to insufficient number of data points,
i.e. pixels. We used base kernel of size σ1 = 32 for Parzen window approximation. We
used a Gaussian pyramid, as the MI-based measure determines the intensity mapping
function; so, intensity values themselves are required. See Appendix A for discussion
of MI-based matching.

• A10 – version of A5 with 7× 7 windows.

• A11 – version of A5 with local disparity search range ∆d = ±2.

Figures 3.13 show the results for the Middlebury dataset, while Figures 3.15 show
results for the naturalistic dataset.

As expected, no superior results are observed with respect to which simple match
measure is use SAD or SSD – as SAD is calculated faster, it remains a better choice.
Surprisingly, NCC used in conjunction with Gaussian pyramids yielded noticeably better
results for lab scenes, especially near discontinuities. In contrast, NCC showed no visible
gain with respect to naturalistic scenes. Such behaviour could be attributed to the fact
that lab images are of better quality (hence, the brightness constancy assumption is more
reasonable) and by keeping more information of each level, i.e. using Gaussian instead of
Laplacian pyramid1, we increase the discriminatory power of our matching. In any case,

1Gaussian pyramids contain lower resolution details in all images, while Laplacian pyramids contain
the details from the restricted image frequency band.
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Figure 3.13: Disparity Recovered for Middlebury scenes using algorithms A9-A11 from
Table 3.1.
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Figure 3.14: Error Statistics Across Algorithms. Triplet bars represents error statistics
for non-occluded (black), all (gray), and discontinuity (white) pixels, as defined in [3].
Algorithm indices are given in Table 3.1.
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NCC is more computationally intensive than SAD, so improvement of lab scene results
under NCC is another example of the speed-accuracy tradeoff.

The use of bigger window size has predictable effects as well – the results for Venus
have improved, as it has many homogeneous regions, while introducing slightly more errors
near 3-D boundaries for other datasets, because the window structural element has grown
in size. Use of bigger disparity search range slightly helped in disambiguation of very
fine details, like pencils in Cones and the person’s outline in Stephen2, while introducing
more gross errors, as in the background of Tsukuba and the upper left corner of Stephen2.
Moreover, it takes almost twice more computation time. Importantly, the purpose of this
experimental setup was to demonstrate the robustness of A5 to the choice of parameters
– the initial choices guided by theoretical considerations seem to yield the best overall
results.

The algorithm exploiting Mutual Information (A9c) deserves extra attention. For bet-
ter discussion, Figure 3.16 shows the power of MI when one of the stereo images (left in
our case) is distorted by a non-trivial transformation. On this basis, A9c is able to solve
very hard cases when images are inverted in colourspace, or a non-linear transformation
is applied to their intensity values. However, when brightness constancy assumption (or
normalization) is viable, MI consistently shows inferior results (Figures 3.13-3.14). This
behaviour is consistent with previous research findings where superiority of MI in all cases
was not achieved [64, 52]. These results can be explained as examples of the overfitting
phenomenon. The recursive (or coarse-to-fine) procedure to estimate the one-to-one inten-
sity mapping function is done using non-parametric techniques with use of little a priori
information. In contrast, the brightness constancy assumption match measures (e.g. SSD)
correspond to specific forms of this function (e.g. Gaussian cylinder running across the main
diagonal in the case of SSD, as exemplified in Figure 3.16 first row, last column). Results
for SAD (run on bandpassed Laplacian images) are better in cases when normalization
works, as we force the intensity mapping function to be of a specific form.
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Figure 3.15: Disparity Recovered for real scenes using algorithms A9-A11 from Table 3.1
and the half-occluded regions. Black in half-occlusion maps denote half-occluded points.
Half-occlusions detected in A5 are extrapolated by taking disparity value from the back-
ground (occluded) surface. Note: results of A9a (SSD) are very similar to A5 (SAD) and
not shown here.
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Left Image Disparity Initial MI cost map Final MI cost map
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Figure 3.16: Demonstration of Mutual Information in Stereo Processing : Cones. Right
stereo image stays unchanged, while left image has been synthetically modified to violate
brightness constancy assumption. Third and fourth columns depict the intensity mapping
function at the coarsest (after the first estimation) and the finest level (after the last
estimation). If the brightness constancy assumption is true, then the function forms the
ridge along the dashed line. Three various pertrubations to the left image of the stereopair
are investigated (from top to bottom): first row – original image; second row – upper half
of the image is intensity inverted; third row – transformation i = 255 ∗

√
i/255 to every

pixel’s intensity.
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3.6 Final comparison

We have extensively shown the performance and benefits of the proposed improvements
to CTF stereo described in Chapter 2. According to experimental results of the previous
sections, an algorithm with special potential to provide a strong speed/accuracy trade-off
comes via adaptive coarse-to-fine stereo Module C using full Laplacian pyramid, local
disparity search range ±1, window size 5, CTF occlusion detection Module D. It corre-
sponds to A5 from Table 3.1. At increased computational cost, an NCC match measure
operating on Gaussian pyramids, i.e. A9b, can be used for modest accuracy improvement.
Finally, if we wish to get even better results at the expense of even longer processing time,
the colour segmentation cue, A6b, can be incorporated.

Speed is an important advantage of any CTF algorithm including the proposed algo-
rithm. For image and match window sizes m × n and w2, respectively, the theoretical
complexity is O(mndw2) = O(mnw2) (i.e. search range at each pyramid level, d = 1, for
A3-A10 in all reported experiments), and can be decreased to O(mn) via a running box
filter implementation for window cost aggregation [109, 75]. The advances over standard
CTF that are embodied in A5 do not degrade this complexity (e.g. implementation of
shiftable windows as in [102] via morphological operation).

As a runtime example, it takes approximately 1 second to process Teddy with A5 as
realized in unoptimized C without any special instructions (as outlined in Section 3.1) and
(relatively) expensive O(mnw2) implementation on a 3.0 GHz P4. Since the developed
approach is consistent with the CTF, block-matching framework, there is great potential
for improved software runtimes and real-time performance, when mapped to appropriate
processing architecture and/or hardware. Nevertheless, our work has been concentrated
not on the fast implementation of the coarse-to-fine algorithm, but rather on analysis and
improvement of its performance.

The implementation of segmentation-driven shiftable windows is considerably slower.
In this paper we have explored a straight implementation of Module E for colour cue,
which is very inefficient, as many redundant computations are performed. However, a very
efficient formulation using distance transform is possible to speed the computations.

As we have extensively compared all algorithmic instantiations outlined in Table 3.1
using the Middlebury dataset, we can also compare our performance in accuracy with
current state-of-the-art solutions. For this comparison we use a final variation of our work:

• A12 – the version of A9b augmented with colour segmentation cue (λ = 0.0002 being
chosen to give the best overall results).

The results of running A12 on the Middlebury dataset are shown in Figure 3.18.
The snapshot of ranking of the proposed CTF processing scheme with colour segmen-

tation, A12, on the Middlebury website [3] is depicted in Figure 3.17. A12 is currently
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Figure 3.17: Snapshot from the Middlebury Comparison Table [3]. Proposed algorithm
(A12) is labeled “YOUR METHOD”. Dated April 1, 2006
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Disparity Error map

Tsukuba

Venus

Teddy

Cones

Figure 3.18: Disparity Maps of the Algorithm A12 (Table 3.1) for Middlebury Dataset.
Disparity of the background surfaces are interpolated in the detected half-occluded regions.
Left column: disparity maps; Right column: error maps. For error maps: black pixels
denote pixels for which recovered disparity differs from ground truth disparity by more
than 1. Gray pixels denote half-occluded pixels for which disparity has been inferred
incorrectly. 95



ranked in 13th out of 21 places considering the four test sets overall and with error thresh-
old set to 1. For particular test sets relative performance is improved – ranking improves
to 7th for Teddy and Cones. The ranking for Tsukuba is 19 (but 17 near discontinuities),
which exposes the relative weakness of the proposed algorithm (like any local algorithm)
when operating in regions with little texture, as present in many areas of this data set.
Nevertheless, introduction of the colour cue halved the errors for the Tsukuba scene. An-
other apparent weakness that is revealed with respect to Tsukuba and Cones is the lack of
resolution for thin structures. Importantly, our Adaptive CTF formulation with occlusion
detection outperforms single-scale shiftable windows algorithm, basic dynamic program-
ming stereo algorithms, and is competitive to the basic graph cuts solution, which again
proves the effectiveness of the combined best window and disparity offset search procedure
and the necessity of proper half-occlusion handing.

It is important to inspect the actual error maps for the Middlebury lab scenes Tsukuba,
Venus, Teddy and Cones, which are shown in Figure 3.18 for A12. Most of the errors are
concentrated in the textureless regions, like Tsukuba and Venus, and thin structures, like
lamp arms in Tsukuba and pencils and thin background patches in between cones in Cones.
However, tips of the cones in Cones are recovered reliably, because they are extensions of
bigger structures in the scene. Finally, the general 3-D boundaries are reliably recovered,
which has been the main purpose of this paper. Moreover, the introduction of the colour
cue (A12 vs. A9b) is mostly beneficial near the 3-D boundaries.

In any case, a critical comparison is that of adaptive CTF with occlusions A5 to stan-
dard CTF A3, as a major goal of the present work is improved disparity estimates for this
style of efficient processing; such improvement is clearly demonstrated in Sections 3.2 and
3.3 on the set of lab and naturalistic images. The major gain of A5 with respect of A3 is
the improvements near 3-D boundaries, which has been accompanied by significant reduc-
tion of overall errors as well. Analyzing the qualitative results for A3 and A5 presented
in Figures 3.4 and 3.7, we observe the average reduction of errors by a factor of two. The
major improvement in the disparity estimation per se comes with introduction of A4, while
the upgrade to A5 also identifies half-occluded regions as such.
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Chapter 4

Discussion: Relations to alternative
disparity estimation frameworks

4.1 Speed-accuracy tradeoff

There are two major dimensions along which we can quantify an algorithm – its accuracy
and the amount of work it performs. In the case of stereo, the first dimension can be
the error percentage, as has already been used in most stereo evaluations [102, 114, 68],
e.g. percentage of pixels in the image where recovered disparity value differs by more than
1 from the ground truth. For the second dimension, we chose computational and memory
complexity. These complexity measures are independent of implementation details, which
is fair given that the algorithms must be optimized differently. Moreover, they are designed
and implemented by different people. Note that the complexity is not a sufficient measure
of performance, as various computations can be run in parallel, which would significantly
lower the final computational time – an issue which we will address later.

Left Image Disparity GT Disparity of [128] Disparity of A9b

Figure 4.1: From left to right: Left image of Map dataset from the old version of [3];
Disparity ground truth; Disparity recovered by the adaptive weight approach [128] (adapted
from [3]); Disparity map recovered by the proposed CTF algorithm A9b (Section 3.5).

97



While investigating the speed-accuracy tradeoff, we consider only formulations that
perform pixel-based matching. Recently, methods that perform colour segmentation-based
region matching [115, 16, 55, 125, 128, 65] became quite popular for their very good results
of the lab scenes, like Middlebury dataset. However, such lab images are characterized by
regions of highly contrasting colours; thus, strong performance of these algorithm on such
data set owes much to colour segmentation apart from stereo matching per se. Indeed it
is likely that most matches can benefit from consideration of colour segmentation. For
example, benefits to adaptive CTF were demonstrated in Chapter 2.4 of this report. On
the other hand, many natural image scenarios (e.g. outdoor terrain) may contain little in
the way of colour differences, yet will be sufficiently textured to drive stereo matching. A
laboratory example that is representative of such situation is the Map test pair that was
available in an earlier version of the Middlebury test suite [3] and shown in Figure 4.1.
Interestingly, algorithms that rely too heavily on colour segmentation perform poorly in
such situations [110, 3] even though they are fundamental to multi-image matching.

More generally, for fair comparison with adaptive CTF we primarily consider other
pixel-based (intensity, not colour) matchers. While some recent matchers employ various
additional sources of information (e.g. colour) and/or postprocessing (e.g. plane-fitting),
here we concentrate on methods that exploit similar image information to the proposed
algorithm. We take the version A9b from Section 3.5 as a representative of the adaptive
CTF stereo matcher described in Section 2.2 and abbreviate it ACTF for brevity.

4.1.1 Time complexity

Representative algorithms and their time complexities are outlined in Table 4.1. The
complexity itself is expressed in n (number of pixels), d (disparity levels), k (number of
iterations). Note that global message-passing optimization methods (DP, BP) use the Potts
model as a smoothing prior (alternatively, linear or quadratic truncated cost functions),
which allows for fast computation via a distance transform [40] and, hence, reduction of
the complexity in comparison to the original formulations. Here we give more details about
each framework:

• The proposed adaptive CTF algorithm (ACTF): Section 2.2 derived the complexity
as O(n).

• Conventional block-matching with shiftable windows (Block-SW) as in [102]: Its
complexity is trivially O(nd), because it makes a single pass over the whole disparity
image space (DSI).

• Dynamic programming (DP) as in [102]: The naive implementation of DP is O(nd2)
but only O(nd) when the distance transform is used. Originally DP was organized
along scanlines only and the ordering constraint was employed, while the recent
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advance termed Semi-Global matching uses DP in numerous directions without as-
suming ordering [52, 53].

• Belief Propagation (BP) as in [116]: The original BP for stereo is O(nd2k) [111], but
is reducible to O(ndk) by application of a distance transform. We used the version of
[116] since the typical performer as its energy formulation is the most closely related
to widespread GC and DP.

• Graph Cuts (GC) as in [20]: The worst-case complexity of GC is quite bad, and de-
pending on the algorithm can be, for example, O(V ertex×Edges2) = O(nd(nd)2) =
O(n3d3) if push-relabel maximum flow algorithm is adopted [18]. In turn, the average
complexity is rather hard to predict, so we take the only reported in the computer
vision literature average complexity of the Roy and Cox GC formulation [98] as
O(n1.2d1.3) [21]. Nevertheless, it is worth saying that GC developed by [20] and fur-
ther enhanced and tested in [18, 114] (more specifically, expansion-move and swap-
move algorithms) are quite fast in practice, and significantly more efficient than
non-hierarchical versions of BP [114].

• Graph Cuts with occlusions (GCocc) as in [69]: We explicitly consider the version
with occlusions as this formulation is more appropriate for binocular stereo and con-
siders more highly-connected graphs [68]. The complexity of GCocc is slightly higher
than of GC as a graph with more connections has to be solved. More specifically, we
consider the worst-case complexity as O(V ertex×Edges2) = O(nd(nd2)2) = O(n3d5)

and expected as O(n1.2d1.3 5
3 ) = O(n1.2d2.2). However, note that the same graph can

be solved by message-passing optimization techniques, like BP, in only O(ndk) com-
plexity, not O(nd2k) as can be implied by construction, though yielding inferior
results [68].

Currently, we do not include the newly-proposed tree-reweighted message passing scheme
[66] here as it is not yet widely used, its performance is rather similar to GC and imple-
mentations are slower.

In order to be able to rank the algorithms based on complexity, it is desirable to express
the complexity measurement in terms of a single variable, horizontal image size N . To do
it, we have to recast O(n), O(d) and O(k) in terms of O(N).

First, we assume that our images have a standard height/width ratio, and the width
should be of the same order N as the height, which would make the number of image pixels
n = O(N2).

The number of possible disparity values d is smaller than the horizontal image size, but
it is clear that it is proportional to the size of the image and we assume that it depends
linearly on N . Thus, d = O(N).
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Algorithm Complexity (reported) Complexity (adapted)
ACTF O(n) O(N2)
Block-SW O(nd) [102] O(N3)
DP O(nd) [53] O(N3)
BP O(ndk) [41] O(N3) : O(N4)
GC O(n1.2d1.3) : O(n3d3) [21] O(N3.7) : O(N9)
GCocc O(n1.2d2.2) : O(n3d5) O(N4.6) : O(N11)

Table 4.1: Major Stereo Algorithms and Their Complexity. Note that complexity for
belief propagation, and dynamic programming are taking under assumption that a distance
transform is used in the computations.

Finally, belief propagation is an iterative algorithm1 and the number of iterations k
depend on the nature of the scene. It can be few iterations when the environment is highly
textured, or on the order of O(N), if there are large textureless regions and the information
from a structure regions has to be propagated over large image areas. Moreover, the
iteration component is highly dependent on the message update schedule. For example,
the efficient hierarchical belief propagation presented in [41] can be considered as constant
overhead, independent on image size. Thus, the number of iterations k ∈ [O(1), O(N)],
i.e. it may introduce a constant overhead or require a lot of computations to converge to a
reasonable estimate.

The adapted complexity functions C in terms of argument N are shown in the third col-
umn of Table 4.1. Figure 4.2 shows the plot of complexity versus performance for the major
computational algorithms. The performance is measured in terms of error percentage, and
we have used the numbers reported by authors directly either in the corresponding papers
or in the benchmark website [3]. Note that abscissa has the logarithmic scale. Algorithms
which are closer to the origin are desirable as they provide accurate results at a reasonable
time (low error rates with low computational complexity).

Analyzing Figure 4.2, all standard algorithms (marked with blue squares) exhibit a
consistent tendency of better performance (lower error rates) at the expense of higher
computational complexity. The proposed ACTF (marked with green asterisk) lies to the
lower left side of the cloud of standard algorithms, which signals its good combination of
low error rate and very low complexity. For completeness, we also show one of the best
stereo solutions that are based on DP [52] and BP [110] (marked with red squares). While
their error rates are significantly lower than of original formulations, complexity is still at

1Graph cuts for stereo is iterative too, but the number of iterations is few (only two or three iterations is
enough [20, 69]). The variable complexity of the algorithm is attributed to the Maximum-Flow algorithm
itself, as its execution time highly depends on data.
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(a) Nonoccluded pixels (b) All pixels (c) Near discontinuities

Figure 4.2: Complexity-Accuracy Tradeoff of Major Dense Stereo Algorithm. Plot shows
the order of complexity (log C) on abscissa versus percentage of erroneous pixels on the
ordinate for three classes of errors: (a) Nonoccluded pixels (b) All, including occluded
(c) Pixels near discontinuities. The proposed algorithm (ACTF) is marked with green
asterisks and lies to the lower left side of the region formed by other basic algorithms (blue
squares), which signals a very good speed-accuracy tradeoff characteristics of ACTF. The
performance of the best stereo algorithm that are based on DP and BP are shown in red.

least as high and running times are slower, because more computation is to be performed.

4.1.2 Memory Complexity

In addition to computational complexity, a few words should be said about memory com-
plexity. All single-scale algorithms, including the ones shown in the plot of Figure 4.2,
require the construction of the whole disparity image space (DSI) [102], which means that
they must have at least O(nd) = O(N3) memory complexity to store the DSI and operate
on it2. On the contrary, the pyramid-based CTF approach, as the one presented here, re-
quires only O(n) = O(N2) space, which results from the fact that CTF does not construct
the complete DSI. Recently, some interest has been expressed in non-CTF methods that do
not explicitly estimate the whole DSI, because the exact determination of disparities per
se might not be so important for some applications as opposed to efficiently segmenting
the scene into coarse depth layers [67, 31, 4].

4.2 Parallelization

A question of computational complexity and performance is usually complemented by the
ability of computations to run in parallel. This property results in much more efficient

2Note that the naive implementation of the block-based matching algorithm can be only O(n) in space,
though at the expense of numerous redundant computations.
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utilization of hardware capabilities and ultimately allows faster and, in many cases, real-
time processing.

Parallelization is always useful in the realm of special purpose hardware, where a custom
processing chip can be designed for cameras of certain resolution and guarantee real-time
processing. Recently, a research effort has been directed toward performing stereo process-
ing on commodity graphics hardware [127, 29, 124, 126] and FPGA [33, 84].

The ability to make the algorithm run efficiently in parallel depends on the nature of
computations. Ideally, the computations require only local access to data so that they
can be correspondingly parallel to individual processors. For stereo, block-based matching
is readily parallelized as it is truly local, and the presented CTF block-based matching
naturally possess this property too. The complication of the coarse-to-fine scheme is that
it is sequential in scale processing. Nevertheless, the parallelization is very efficient because
number of scales is logarithmic with respect to the image size. Additionally, the pipeline
architectures [118] are more plausible for CTF processing, and existing systems already
provide real-time performance.

In contrast, the DP approaches, though possing the same theoretical complexity as
block matchers, are parallelizable up to a scanline (or corresponding assumed Markov
Chain). As an example for BP approaches, the messages in a single iteration can be
computed in parallel (the message computation is a local operation), but they depend on
the previous iteration. Nevertheless, authors of [124, 126] demonstrated that both DP and
BP can yield real-time performance using graphics hardware (together with CPU processing
in parallel), albeit on rather small images and coarsely quantized disparity (320x256 with
16 disparity levels).

4.3 Anytime computation

Coarse-to-fine processing uses lower resolution disparity obtained in the previous iteration
to compute the final result via refinement. Interestingly, if the refinement step is dropped,
the lower resolution result is directly available. That simple fact makes the coarse-to-fine
algorithm an anytime algorithm. This property is critically important in hard real-time
systems, when some solution must be available in the middle of computation [99]. In the
case of stereo, which typical uses factor of two pyramids, the time required to obtain a low
resolution solution is four times less than to refine it, which means that an initial coarse
approximation to the disparity map can be obtained very fast.

All iterative algorithms, including GC, BP, PDE can also be perceived as anytime
algorithms to some extent, because they can be stopped during the processing and solution
can be extracted; moreover, the solution is getting progressively better with time. Note,
however, that in most cases the quality of the intermediate solution is hard to assess
meaningfully – instead of smaller resolution when all points have stable results, as in CTF
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computation, intermediate iterative solutions usually consist of regions of correctly and
incorrectly inferred measurements, with no certain indicator which is which. Luckily, any
of these algorithms can be brought into CTF to exemplify the anytime property, and there
already exist multiresolution implementations of BP, DP, anisotropic diffusion and others
[74, 49, 87, 109, 6, 44, 41].

4.4 Additional considerations for practical stereo vi-

sion

Scharstein and Szeliski [102] made a substantial contribution in organizing a test bed for
stereo algorithms and their evaluation. Their comparative study gives a clear idea about
accuracy and performance of major stereo frameworks. Nevertheless, several questions
with respect to utilization of the algorithm in real situations require further investigation.

4.4.1 Parameter tuning

Most recent algorithms employ rather complex models of disparity maps with occlusions,
colour segmentation, plane fitting etc. All these require the introduction of various param-
eters the majority of which are arbitrary and hand-tuned3. Even basic global formulations
require certain vital parameters to be specified: smoothness cost for prior, parameter value
for robust datacost (e.g. threshold for truncated basic match measures) and occlusion cost,
if there are occlusions in the formulation. Moreover, the same parameter values typically
are incapable of producing uniformly superior solutions for all datasets. The sensitivity
to choice of parameter values can become a significant obstacle to bringing the algorithm
from the lab to the real world.

In contrast, the proposed ACTF has virtually no parameters to tune. Window size,
which is typically the major and critical choice for stereo algorithms, is kept small (5x5) to
allow precise boundary localization, while greater support aggregation is available by using
coarser resolutions. Moreover, this configuration was able to produce the best results both
for lab and real scenes, datasets which are very different in nature.

4.4.2 Sensitivity to noise

Interestingly, this issue has been more rigorously addressed in the optical flow litera-
ture (e.g. [11, 22]). The overall conclusion was that local aggregation methods like Lu-
cas/Kanade [81] are more noise-resilient than purely-global formulation like Horn/Schunk

3As an example, one of the state-of-the-art stere systems by Sun et al. [110] has 5 free parameters
without colour segmentation + 1 when segmentation is used, not including the free parameters needed to
obtain the segmentation itself.
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[56]. Thus, in addition to global regularization, local aggregation is desirable for more
robust performance. Additionally, the use of normalized match measures also requires
some support region around a point. Finally, the local aggregation introduces errors in
discontinuity localization; for this reason it is tried to be avoided in the global formulation
on the first place.

From this perspective, the proposed adaptive CTF computation is completely justified,
as it allows for accurate computation of disparity information near discontinuities while
employing local aggregation. Global regularization very desirable to be added on top,
but without removing adaptive local aggregation step, which has an additional important
feature of correctly treating coarse disparity offset, i.e. removing upsampling uncertainty
near 3D discontinuities.
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Chapter 5

Conclusion

5.1 Adaptive coarse-to-fine stereo

This paper has presented extensive analysis of CTF stereo processing with specific emphasis
on block based matching. As the result of this analysis, the main sources of error are
identified – a well known foreground fattening/shrinking artifact of block-based matching
[54, 105], and the necessity of multiple offsets that has not been given enough attention by
the stereo community. A simple combination of adaptive windows and adaptive offset is
put forth, which has empirically shown significant improvement over standard CTF block
matching stereo and single-scale stereo matching with shiftable windows [102]. Moreover,
we summarize various alternatives of how to introduce multiple offsets in non-block-based
stereo algorithms. While the proposed CTF shiftable-windows approach is simple and
straightforward, no previous explicit mentioning of such an algorithm has appeared in the
literature. Moreover, the analysis, explanation and comprehensive evaluation of adaptive
CTF has not been been presented previously. The results document significant advantage
in using the proposed methods for improved CTF disparity estimation in the vicinity of
3-D boundaries.

The disparity produced by the algorithm can be exploited directly, or can be used as
a reliable initial estimate for any global optimization procedure to improve results even
further. Also, the algorithm is directly extendible to the computation of optical flow (it
would extend [7] in this case), where disparity is a two-dimensional vector.

Our thorough investigation of CTF stereo processing fills a gap in recent stereo re-
search. Recently, much effort has been applied to improve local and global algorithms,
especially near 3-D boundaries, [54, 121, 21, 110, 35], but CTF stereo, while widely-used
is practice, receives relatively little attention. This paper helps to fill the gap in stereo
research by providing a better understanding of CTF stereo processing power and showing
its competitiveness in accuracy to many state-of-the-art solutions, together with its com-
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putational and storage requirements superiority. The idea of CTF refinement will always
be among the most useful tools of computer vision algorithm designers, because even as
computer processing power increases, the volume of data and search space increases as
well. Therefore, CTF processing is likely to remain one of the best alternatives to get at
least some solution, when computational abilities are limited. A better understanding of
limitations as well as fundamental improvements of CTF stereo will only make this tool
more useful.

5.2 Binocular half-occlusions

As the half-occlusion phenomenon is one of the toughest source of errors for computational
stereo, we thoroughly investigate it and complement the knowledge gained from previous
computational investigations [39, 90, 110, 35, 106]. We explicitly formulate the basics of
half-occlusion formation in relation to the binocular forbidden zone [71], which has not
been done before. Further, we distill the geometry and match cues, which have been
used by previous algorithms [39], reveal their complementarity, and combine them in an
efficient algorithm for half-occlusion detection. Importantly, the proposed half-occlusion
processing is formulated for CTF block matching algorithms to yield cooperative coarse-to-
fine processing of disparity and half-occlusions. The benefit of this approach is documented
extensively.

5.3 Colour and intensity cues

Monocular colour and intensity cues are quite heavily used by recent state-of-the-art com-
putational stereo formulations [16, 110, 35, 128]. We discuss the application of intensity
segmentation in local block matching stereo from the robust statistics point of view. We
came to the conclusion that both robustness and precision must be retained during CTF
processing and augment the adaptive stereo processing of Section 2.2 with an intensity sim-
ilarity cue. Experimental results in Section 3.4 show that our approach is more appropriate
for CTF local stereo processing, than the ones suggested previously, e.g. [128].
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Appendix A

Mutual Information (MI) for stereo
correspondence

In the realm of stereo matching, the normalized match measures are robust to overall
intensity difference in both images (bias) and local difference in luminance variance (gain).
But what can be done when the settings are totally obscured, or, even worse, data to match
comes from different modalities?

Historically, the ability to match images obtained from different modalities is motivated
by the registration of the medical images that depict different data, e.g. PET and fMRI.
Viola and Wells III [123] and Collignon et al. [28] independently proposed solutions that
used mutual information (MI) for registration. Their results far surpassed the correlation-
based registration of multimodal images and, in fact, very closely approached the ground
truth.

In stereo, MI matching can become useful when data quality is bad, camera settings
are very different, or in exceptional stereo situations when the robot head is equipped with
usual and infrared cameras; then an extra-verification step can be performed by calculating
the depth using the usual and infrared cameras. Recently, a number of stereo algorithms
which use mutual information appeared [38, 43, 64, 52].

The aim of MI approaches is to reconstruct a general one-to-one mapping function of
intensity values in one image to the intensity values in the other using non-parametric
technique like histograms, or, more generally, Parzen windows [37].

Mutual information is defined from the entropy of two images and their joint entropy.

MIim1,im2 = Him1 + Him2 −Him1,im2 , where (A.1)

Him = −
∫ 1

0

Pim(i) log Pim(i)di (A.2)

Him1,im2 = −
∫ 1

0

∫ 1

0

Pim1,im2(i1, i2) log Pim1,im2(i1, i2)di1di2 (A.3)

107



Assuming pixel independence, the joint entropy of two images can be calculated as a sum
of joint entropies between pixels in correspondence.

Him1,im2 =
∑

p

him1,im2(Iim1p, Iim2p) (A.4)

Kim et al. [64] transformed the calculation of joint entropy (A.4) into the sum of two
data terms using a Taylor series expansion. Algorithmically, (A.4) is calculated directly
from the probability distribution of intensities Pim1,im2 that has been obtained by Parzen
windows with a Gaussian kernel:

him1,im2(i, k) = − 1

n
log (Pim1,im2(i, k)⊗ g(i, k))⊗ g(i, k) (A.5)

where g(i, k) is a Gaussian kernel used by Parzen windows and n is the number of non-
occluded pixels. Note that only non-occluded pixels must be used here, as occluded pixels
have no match and cannot contribute to the estimation of the matching function.

Once the distribution for Pim1,im2(i, k) has been obtained (and stored in the non-
parametric Parzen window form), single entropies Him1 and Him2 can be calculated by
marginalization, i.e. Pim1 =

∑
k Pim1,im2(i, k), and manipulations similar to (A.4) and

(A.5).
The resulting working definition of Mutual Information is

miim1,im2(i, k) = him1(i) + him2(k)− him1,im2(i, k) (A.6)

and its negative can be directly treated as a cost function for matching individual pixels,
i.e. we want to minimize cost by maximizing the mutual information:

costMI(i, k) = −miim1,im2(i, k) (A.7)

Once the calculation framework is ready, we can start the actual search of this function,
which maximizes the mutual information. The first step is to obtain the distribution for
Pim1,im2(i, k), which can be stored as a simple 256×256 histogram smoothed by a Gaussian
kernel to simulate the Parzen window. However, some initial disparity assignment is needed
to obtain the data points. In practice, it suffices to start with random disparity assignment
to construct the miim1im2 function by the described-above procedure, and re-calculate the
stereo disparity using this cost function. Doing these steps iteratively, we approach better
estimates of disparity and the intensity mapping function with each iteration.

A more detailed derivation and explanation of MI in stereo matching can be found in
[64] and [52].

We formulate the MI match measure for the local algorithm as recursive calculation of
disparity based on a single global intensity mapping function – the cost is aggregated by
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trivial summation of MI terms for individual pixels and disparity is assigned based on a
WTA decision. Note that this is different from the local stereo method with MI pioneered
by Egnal [38], where the author estimated the mapping function for each window separately,
which is both inefficient, as gradient descent search is performed in each window, and error-
prone as the number of samples taken from the local window is insufficient to estimate the
mapping function reliably. Later, Fookes et al. [43] augmented the local MI calculation by
introducing the prior which came from MI calculated for the whole image, while Kim et
al. [64] showed that it is enough to use the global intensity mapping only calculated for
the whole image.

Following the examples of [43, 52], we calculate MI using coarse-to-fine instead of
iteratively. Interestingly, such an approach organically fits into coarse-to-fine stereo with
pyramids, where the intensity mapping function will converge to its correct distribution
with increasing resolution. As before, we use zero disparity map as the initial coarsest
disparity map1. Note, that matching with MI involves relatively little processing overhead
– only filling and smoothing the histogram for Parzen windows on each resolution level, as
described earlier.

The outlined procedure has one vital parameter – the width σ of the Gaussian kernel
g(i, k) used for Parzen windows. Unfortunately, no golden number exists, and its choice is
very case-dependent [37]. In general, the choice of σ is governed by the amount of sample
points that describe the distribution. When there are many points, σ can be rather small
as the data itself is able to define a quite sharp and dense distribution; when the number of
points is too few, greater smoothing is essential to get a more reasonable approximation to
the original distribution. In coarse-to-fine stereo with MI, these considerations imply that
σ cannot be fixed and should change with pyramid level, because the size of the images
(hence, the number of datapoints) changes from level to level – the kernel variance σ should
be quite high at coarse levels and shrink gradually while proceeding to finer levels.

From theoretical considerations, the volume cell (a d-dimensional unit of space over
which the distribution is defined), should decrease at a rate slower than the increase of
data size [37]. Considering that our intensity-mapping function is two-dimensional, a
reasonable choice for the relationship between kernel window size for a single point, σ1

(to be initially defined manually), number of data points, n, and the corresponding kernel
width for Parzen window σn is given as

σ2
n =

σ2
1√
n

, (A.8)

1Recall that some initial disparity assignment is required to obtain an initial MI matching cost function.
While a random disparity map is usually used in this case, in the current implementation, zero initial
disparity map yields the same performance as the random disparity map.

109



[37]. Thus, by choosing some specific value for σ1, the Parzen window Gaussian kernel for
an image with n pixels can be deterministically derived as

σn =
σ1

4
√

n
(A.9)

In conclusion, in the following pseudocode we summarize the augmentation of adaptive
coarse-to-fine stereo algorithm Module C (as outlined in Section 2.2.3) to use Mutual
Information as a match measure:

Module C-MI

Reference and matching images are initially
brought into pyramid representation

disp(k,x,y) - disparity for pixel x, y on scale k
conf(k,x,y) - confidence for pixel x, y on scale k
Initialize ref_disp(:,:) to all zeros
For each level k from level_max to 0

Create 256x256 MI cost function between intensity values
of reference and matching image, using ref_disp as warping disparity
For each pixel (k,x,y)

Run Module A with search range
[-delta_d+ref_disp(x,y), delta_d+ref_disp(x,y)]
using the obtained MI cost function as a match measure

End loop
For each pixel (k,x,y)

In the neighbourhood w of point (x,y)
find (x_0,y_0) such that conf(k,x_0,y_0) is the best
and assign disp(k,x,y) = disp(k,x_0,y_0);

End loop
ref_disp = upsampleNN(disp(k,:,:)) /* nearest-neighbour interpolation*/

End loop
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