YORK

Il VERSITE
UNIUERSITY

ESpec — a Tool for Agile Development via Early Testable

Specifications

Faraz Ahmadi Torshizi and Jonathan S. Ostroff

Technical Report CS-2006-04

May 24, 2006

Department of Computer Science and Engineering

4700 Keele Street North York, Ontario M3J 1P3 Canada

ESpec — a Tool for Agile Development via Early Testable Specifications

Faraz Ahmadi Torshizi
Department of Computer Science and
Engineering, York University, Canada

faraz@cs.yorku.ca

Abstract

The ESpec (Eiffel Specification Tool) is a unified
environment that allows software developers to com-
bine Fit tables (for customer acceptance tests) with
Early Testable Specifications (Contracts and Unit
Tests). This means that a single integrated tool can be
used to develop and test the requirements, design and
implementation of a software product. Since Fit tables,
contracts and Unit Tests accumulate, we get regres-
sion testing every time the tool is invoked. The regres-
sion testing makes it easier to refactor a design, as all
the properties are checked for every design change.
ESpec includes a fully automated formal verification
tool that uses a theorem prover to demonstrate that the
code satisfies its specification. These tools, either
individually or in concert, allow the developer to
certify the quality of the product in a variety of ways.

1. Introduction

It is generally recognized that the production of a
quality software product requires suitable Validation
and Verification [1]. Informally, in Validation we ask
the question: Am I building the right product? In Veri-
fication we ask the question: Am I building the product
right? The combination of Validation and Verification
allows us to certify the quality of the product.

There are many qualities of interest such as effi-
ciency, portability and understandability. The quality
of interest in this paper is software reliability. A prod-
uct is reliable if it is correct (performs its tasks ac-
cording to specification) and robust (reacts appropri-
ately to abnormal conditions).

This paper builds on the contributions of agile
methods, especially the Fit framework for customer
acceptance tests [12] and Test Driven Development
(TDD) via Unit Testing [3].

Jonathan S. Ostroff
Department of Computer Science and
Engineering, York University, Canada

Jjonathan@cs.yorku.ca

Bad software is often due to misunderstood re-
quirements, vague specifications, and late development
of the code. By contrast, TDD and the Fit framework
are built on the recognition that automated tests are
"relentlessly concrete" [12]. Requirements must be
clarified and precisely expressed (in the form of a
Test) early in the development process in such way
that they can be automatically checked right from the
start and throughout the process. Early clarification of
the requirements (in a Test) also drives the develop-
ment process and provides feedback when the goals
have not been reached.

In this paper, we take these agile methods one step
further. We add a lightweight formal method compo-
nent, combining classical ideas of formal specification
and verification with these new automatic checking
technologies. This is done by adopting Design by
Contract [10]. Contracts are used to express specifica-
tions, and contract violations are signaled in both Fit
Tables (for Validation) and Unit Tests (for Verifica-
tion). We also discuss a formal integrated verification
module using a fully automated theorem prover (called
Perfect Developer).

We illustrate the method using the Eiffel language
which has a mature contracting mechanism, but the
conceptual ideas could be used in any of the emerging
contracting languages such as Spec# [11] and
ESC/Java [14]. To illustrate the concepts we provide a
tool called ESpec' that allows the developer to
combine a variety of tests in one test suite. ESpec
consists of ES-Fit for Validation, ES-Test (for
lightweight Verification) and ES-Perfect (for full
Verification). The checks for Validation and
Verification can be run on their own or together with a
unified report under a single green/red bar. If all the
checks succeed, then we have certified the quality to
the level asserted by the various tests and
specifications.

! ESpec website: www.cs.yorku.ca/~sel/espec. This is the first
implementation of Fit in Eiffel.

We have also extended the Fit framework to add
more flexibility to customer acceptance tests. We il-
lustrate the concepts and the tool with a small example,
chosen to describe a complete cycle of development
from informal requirements to certified code. How-
ever, the tool has been used on larger problems such as
testing the code of students developing games and
game frameworks. This paper will also act as an over-
view of ESpec tool.

2. Requirements and Specifications

In this section we provide a brief formal schema for
thinking about Requirements and Specifications, where
these terms have the meaning described in [7, 8, 13].
The phenomena of the real-world (W) determine the
customer's Requirements (R). For example, to evaluate
if a client pays reliably, we may need to examine
phenomena such as invoices and delinquency charges
in W. Requirements are normally stated informally or
expressed as Stories or Use Cases, and should refer
only to a subset of the phenomena in .

The final software code (or machine M) is all about
the phenomena of the program (e.g. data structures
such as linked lists, arrays or binary trees). A Specifi-
cation (S) is a bridge between the phenomena of the
real world () and the phenomena of the machine (1),
describing phenomena (inputs and outputs) at the inter-
face or intersection of W and M. A rational software
development proceeds as follows:

e Elicit and document the Requirements R of the
customer in terms of the phenomena of 7.

e From the Requirements, derive a Specification S
for the software code that must be developed.

e From the Specification, derive a machine M (the
code).

To certify that the code meets its requirements, we
must formally reason as follows:
1. Validation: W AS =R
2. Verification: M = §
3. Certification: From (1) and (2) conclude that
WAM =R

In our framework, Validation is performed by
checking Fit Tables (ES-Fit), lightweight Verification
is performed by running Unit Tests (ES-Test), and full
Verification is performed by ES-Perfect. Thus, Fit
Tables are our customer Requirements and Contracts
are the Specification of the machine. Since Specifica-
tion S occurs in both (1) and (2), any violation of the
contract is reported both in the Fit Tables and Unit
Tests. If all the checks succeed, then we can claim that
we have certified the product to the level specified by

the tests. Our formal schema provides methodological
guidance (from informal requirements, through to the
design and coding) for using the toolset which satisfies
the following desirable properties. The toolset is fully
automatic requiring only that the user take the time to
write early testable specifications and requirements —
early because they can be written up-front, long before
the code is implemented and testable because they can
be checked automatically. Early testable requirements
and specifications allow us to transform informal goals
into concrete and precise descriptions required for
Validation and Verification. The toolset can be used
on real software of any size and the green/red bar
measures our progress towards meeting the certifica-
tion criteria.

3. Credit example

Consider the following business rule [12]:
[R1] Credit is allowed, up to an amount of
81,000, for a customer who has been trading
with us for more than 12 months, has paid
reliably over that period, and has a balance

owing of less than $6,000.
Calculate Credit 1
Months |Reliable| Balance | Allow Credit* |Credit Limit*
14 e [5000 ftrue 1000
13 e (3000 ftrue 1000
24 Jmlse o false 0
18 e (6000 [false 0
12 e (5500 e 1000

Figure 1. HTML Fit Table for requirement [R1]

Our client may create the HTML Fit table shown in
Figure 1 as a concrete and testable description of the
business rule without needing to know too much about
programming. The acceptance tests in Figure 1 may be
written in any HTML editor. The first row of the table
contains the table name. The second row contains the
column headings. There are two types of column
headings. The first three headings (Months, Reliable,
and Balance) are the given inputs. The next two head-
ings (Allow Credit and Credit Limit) are the calculated
values for testing creditworthiness of a customer. The
"*" or any other string may be used to indicate that
these are outputs to be calculated based on the input
values. Each row of the table describes such a calcula-
tion. In this case, each row is an independent test case,
e.g. the third row illustrates a correct credit calculation,
i.e., the customer has been trading for more than 12

months and has paid reliably over that period with a
balance less than $6,000.

The client should be able to run the table against the
code that developers have been working on, and see
the output shown in Figure 2.

Calculate Credit 1
I[l{ont}ss ,Relm.ble 'Ba!ance 'Allow Credit* |Credit Limit*
14 e 5000 frue 11000
13 Jtue 3000 frue 1000
24 false |0 false 0
18 e 6000 |false 0
true Expected ||1000 Expected
12 e (5500
False Actual |0 Actual

Figure 2. Validating Requirements in Figure 1

The Fit framework provides the software developer
with the infrastructure to connect these tables to the
software under development via glue code called
Fixtures which we will discuss in more detail in the
sequel. ESpec’s Fit engine (ES-Fit) extracts the infor-

AR ESuze U Hoszayei) Editus

mation from the table, runs the Fixtures which execute

the tests defined in the table, and reports any errors

back to the table, allowing the customer to browse the
results (as shown in Figure 2). The tests in the table
show why the approach is helpful:

e The Fit tests help our client (and software devel-
oper) to think about and communicate the business
needs with concrete examples. The tests transform
the informal requirements (e.g. [R1]) into precise
testable descriptions.

e By continually and automatically running the Fit
tests, the client gains confidence that the code is
doing what is expected from the business per-
spective, and that the requirements continue to be
satisfied as the code grows in functionality.

Figure 3 shows a snapshot of the ESpec tool after
running some tests. A red bar (as well as a test
summary) indicates that there exists at least one test
that did not pass. The software developer may either
browse or edit the input files or browse the output files
to obtain feedback about any errors.

= [5]]

File View/Edit Tools Window Help
Messages Test Resunsl

I Status [Violation Duration Comment

Run all Specs

PASSED
PASSED
PASSED

0.000
0.000
0.000

(LI

4 *HXEAILED
S IGNORED
6 PASSED

0.687
0.000
0.531

[~

Test started at 02/21/2006 9:26:06.578 PM
ES-Test

CUSTOMER_AND_RULE_TESTS

create a single customer

Create a rule associated with a customer

test_a_bad_rule2

ES-Test

—

ES-Fit
Input html path |C:\fit_testsicredit.htm]|
Output html path |C:\fit_tests\credit_out.htm|
Calculate Credit 1 [W:2,R:8,1:0,E:0]
Reference: GlobalData1 [W:0,R:0,1: 0, E:
Calculate Credit 2 [W:0,R: 10, 1: 0,E: 0]
=========== ES-Perfect ========

ES-Fit

Parsing file: ..\..\business_logicicustomer.e...

Translating class: CUSTOMER...

Writing into file: customer.pd...

Doing verification....

o ES-Perfect
Reading the results...

Proved 12 Out of 12 Verification conditions

All verification conditions proved!

Output proved html path |C:\Documents and Settings\Faraz\Desktopitemp_outputsiall_pro...
Test finished at 02/21/2006 9:26:14.313 PM

i | E3)|

Tests Result Summary

Passed |4 Failed |1

‘ Hide passed test results SETRORP

Figure 3. snapshot of ESpec tool

ES-Test

ES-Fit

ES-Perfect

AutoTest

il

Done

4. Fixture code [ES-Fit]

As mentioned before, the developer needs to pro-
vide the Fixture code to connect HTML tables to the
underlying code.

class CREDIT_FIXTURE inherit ES_COLUMN_FIXTURE create
make
feature {NONE}
make is
do
bind ("Allow Credit*", agent allow_credit)
bind ("Credit Limit*", agent credit_limit)
end

allow_credit(m:INTEGER;r:BOOLEAN;b:REAL): TUPLE is
--"m', 'r' and "b' are 'months’, 'reliable' and 'balance’ inputs
do
Result := [m > 12 and r and b < 6000.00]
end

credit_limit(m:INTEGER;r:BOOLEAN;b:REAL): TUPLE is
do
if m> 12 and rand b < 6000.00 then
Result := [1000.00]
else
Result := [0.00]
end
end
end

Figure 4. Fixture code for the table in Figure 1
written in Eiffel

Figure 4 contains the code that a software developer
must write to run ES-Fit on credit.htm (Figure 1),
which will produce the output credit out.htm (Figure
2). For each row of credit.htm, we must perform two
calculations (4llow Credit is performed by routine
allow_credit and Credit Limit by routine credit_limit).
The make creation routine binds the customer-provided
name of the calculation in the table to the appropriate
routine. This style of Fit test is called a Column Fixture
and thus class CREDIT FIXTURE inherits from
ES COLUMN_FIXTURE (provided to the developer
by the framework).

ES-Fit runs all the standard Fit tables as specified
by the Fit framework. The table in Figure 1, however,
is not standard because the calculation headings (4llow
Credit and Credit Limif) are not actual routine or
method names. Other Fit tools such as the original Java
reference tool [6], use reflection to bind the calculation
names to the actual methods. Therefore, these tools
require that the customer refer to routine names as they
appear in the code, e.g. allowCredit(), in the table
header. Figure 5 shows the same Fixture code written
in Java.

Eiffel does not yet have full internal reflection ca-
pabilities (Although there are external libraries that
implement reflection for Eiffel [9]). The ES-Fit tool
requires the bind instructions in the make constructor

(Figure 4).

public class CalculateCreditl extends ColumnFixture {

// Inputs are captured as global variables.

// Input variables must be declared as public

// Names of the variables must be exactly the same as
// they appear on the table headings

public int months;

public boolean reliable;

public double balance;

// Method names must be exactly the same as appeared on the table
public boolean allowCredit() {

return (months > 12 && reliable && balance < 6000.00);
¥

public double creditLimits() {
if (months > 12 && reliable && balance < 6000.00)
{ return 1000.00;
¥

else
{ return 0.00;
¥

¥
b

Figure 5. Java Fixture code for the table in
Figure 1

An advantage of the need to manually bind the cal-
culations is that our clients have the freedom to write
whatever calculation headers they prefer without being
restricted. Also, the ES-Fit routines may be declared as
private (exported to NONE) as opposed to the Java
routines which must be public for reflection to work.

Another advantage of the ES-Fit solution is that the
input values can be arguments to the calculation rou-
tines thus keeping inputs and outputs organized in a
single method. In the Java solution, the methods may
not take arguments and thus the inputs are captured as
public attributes.

For simple projects, the code in Figure 4 suffices;
the business logic resides in the Fixture code, e.g. the
calculation to allow credit given by:

Result := [months > 12 and reliable and balance < 6000]

is contained in the Fixture code. Obviously, as the
code increases in complexity the developer will want
to develop design classes such as RULE and
CUSTOMER shown in the business logic package in
Figure 11 (The BON notation is similar to UML,
except that associations are drawn with a double arrow
and inheritance relationships with a single arrow). The
job of the Fixture code will be to call the appropriate
features of the business logic.

4.1. Reference tables

Consider the following more abstract restatement of
the requirements:
[R2] Credit is allowed, up to an amount of
38X, for a customer who has been trading with
us for more than Y months, has paid reliably
over that period, and has a balance owing of
less than $Z.

‘Reference: Global Data 1
(Credit Limit GO [1000.00
Trading Months (¥) |12
Balance Owing (Z) [6000.00

Figure 6. Reference table for requirement [R2]

The values X, Y and Z could be described via extra
columns in Figure 1. However, the intention in this
case is that X, Y and Z are global data. It would be
inconvenient to change these parameters for every row
in the table. What we need is another table that con-
tains this global data that is referenced by Figure 1.
Clients may easily change the reference table to test
that the code is working correctly. The standard Fit
framework does not accommodate such references. We
have thus extended the ES-Fit with a Reference key-
word (Figure 6). Fixture code (e.g. Figure 10) for the
table in Figure 1 may refer to the reference table
(Figure 6) for the global data. The following code is
used to refer to the balance owing constant in the

reference table:
|get_reference ("Global Data 1", <<"Balance Owing (Z)", "?">>).to_real |

The above expression searches a reference table with
heading Global Data 1 for a row that starts with
Balance Owing (Z). The question mark ("?") represents
the value in the associated table cell that we wish to
retrieve (i.e. $6000). The code for testing [R2] is pro-
vided in Figure 10.

5. Test Specifications [ES-Test]

Unit Tests and contracts provide us with the ability
to write early, testable specifications. It is obvious that
contracts are specifications that describe what the
module must do (rather than how to do it). However, a
well-written Unit Test can also be a Test Specification.
Consider, for example, a routine root that calculates
the roots of a quadratic equation. A Unit Test (that is
not a Test Specification) is shown in Figure 7.

test_root_calculation: BOOLEAN is
local
m: MATH
a, b, c: REAL
do
a:=1;b:=3;c:=2;
create m.make (a, b, c)
Result := m.root = -1 or m.root = -2
end

Figure 7. A Unit Test (not a Test Specification)

By contrast, a Test Specification would define what
it means to be a root (Figure 8). The Unit Test (Figure
7) required that we know in advance what the root is
(either -1 or -2).

test specification_for_root: BOOLEAN is
local

m: MATH
a, b, ¢, x: REAL
do

a:=1;,b:=3;c:=2

create m.make (a, b, ¢)

X 1= m.root

Result := (a*x"2 + b*x + c) =0
end

Figure 8. A Test Specification

An advantage of the Test Specification (Figure 8) is
that we can randomly generate parameters a, b and ¢
and allow the definition of a quadratic root to do the
work of testing if the roots are correctly calculated. A
Test Specification very quickly leads to the correct
contracts for the root routine as shown in Figure 9.

a, b, c: REAL

root: REAL is
-- root of a quadratic equation
require
b2 - 4*a*c >=0
do
-- implementation...
ensure
(a*Result~2 + b*Result + c) =0
end

Figure 9. Contracts for the root feature

class CREDIT_FIXTURE2 inherit ES_COLUMN_FIXTURE create
make
feature {NONE}
make is
do
bind ("Allow Credit*", agent allow_credit)
bind ("Credit Limit*", agent credit_limit)
end

allow_credit(m:INTEGER;r:BOOLEAN;b:REAL):TUPLE is
do
Result := [m > trading_months and r and b < balance_owing]
end

credit_limit(m:INTEGER;r:BOOLEAN;b:REAL):TUPLE is
do
if m > trading_months and r and b < balance_owing then
Result := [credit_allowed]
else
Result := [0.00]
end
end

credit_allowed: REAL is
do
Result := get_reference ("Global Data 1",
<<"Credit Limit (X)", "?">>).to_real
end

trading_months: INTEGER is
do
Result : = get_reference ("Global Data 1",
<<"Trading Months (Y)", "?">>).to_integer
end

balance_owing: REAL is
do
Result := get_reference ("Global Data 1",
<<"Balance Owing (Z)", "?">>).to_real
end
end

Figure 10. Fixture code for requirement [R2]
which refers to a reference table

A Test Specification may also be used to describe
collaboration between a collection of objects (as will
be shown later).

Whether specifications are contracts or tests, they
can both be written early, long before the code itself.
Furthermore, these specifications are testable. Test
Specifications will fail if (a) the collaboration between
the various elements fails to produce the anticipated
result, or (b) the contracts fail while executing the
tests. There is thus a synergy between the contracts and
specification tests — together, they are used to check
the correctness of our software products.

We may now write a Test Specification that de-
scribes the collaboration between these classes in the
business logic (Figure 11). A test for a credit worthy
customer is shown in Figure 12.

There are some points to notice about the code in
Figure 12 that make this Unit Test a Test Specification
describing the collaboration of classes CUSTOMER
and RULE:

‘logic .
4

‘ customer .

ST e T

Figure 11. BON diagram of the business logic

test a_good customer_with_a_rule: BOOLEAN is
local
bob: CUSTOMER
a_rule: RULE
min_months: INTEGER
max_balance, max_credit: REAL
allow_credit: BOOLEAN
do
create bob.make ("Bob", 5999, true, 13) - a creditworthy customer
Result := bob.balance = 5999
and bob.is_reliable
and bob.months_trading = 13
check Result end
-- setup rule parameters
min_months := 12; max_balance := 6000.00
max_credit := 1000.00
-- [R2]
allow_credit := bob.balance < max_balance
and bob.months_trading > min_months
and bob.is_reliable
-- create a rule
create a_rule.make (bob, min_months, max_balance, max_credit)
Result := a_rule.allow_credit = allow_credit
and a_rule.credit_limit = max_credit
end

Figure 12. Test Specification for a credit
worthy customer

e The informal requirement [R2] has been precisely
formalized by a Boolean expression allow_credit.

e The allow credit formalization will ultimately
become a contract in the business logic thus mak-
ing it part of the delivered code.

e The test describes a collaboration of the two
classes CUSTOMER and RULE as shown in the
BON dynamic diagram (Figure 13).

e The collaboration (via the Test Specification) is
checked by ES-Test.

e The test also provides the names of the relevant
features so that it specifies the interfaces of
CUSTOMER and RULE. A chart view of class
RULE is shown in Figure 14.

5.1. Contracts

Eiffel has a mature contracting mechanism called
Design by Contract. Contracts are written between the
user (“client”) of a module and the developer
(“supplier”). Clients may invoke the module if the pre-
condition is satisfied and the supplier must guarantee
the postcondition. Classes are also supplied with class
invariants that capture the business rules [10].

A customer may want to check that it does not
make sense to apply the business rule [R2] in a case
where the months traded is negative. Thus we would
expect to see an error in the calculated amount for the
first row in Figure 15. We can express that expectation
by using the special Error keyword. The calculated
values will display as green when an error is detected.
By declaring the expected value of a cell to be “error”,
a customer asserts that it is expected that an exception
will be generated when running the code.

ES-Fit has the advantage of contracts over the stan-
dard Fit frameworks. Contract violations are reported
in the Fit tables where appropriate (Figure 15). Is it a
precondition violation? Then the calling class is at
fault. Is it a postcondition violation? Then the supplier
is at fault.

These types of errors are illustrated in Figure 15. In
the second row, a precondition violation is reported
due to the fact that the balance is negative. In the forth
row a postcondition violation is reported. This is due
to an implementation error in routine allow credit of
class RULE (Figure 16). According to requirement
[R2], credit is allowed if a customer has a balance
owing less than the maximum allowed (in our case
$6000).

1 'J CUSTOMER
-7 A

i .

- \2\'3 |
"~ RULE

Scenario: Creating a customer and checking if it satisfies [R2]

I1- Create a reliable customer “Bob” with balance 85999 who
has been trading for 13 months.

2- Create a rule to check [R2] for “Bob”.

3- Check that “Bob” satisfies [R2].

4- allow_credit for “Bob” for the amount of $1000.

Figure 13. Collaboration diagram in BON
notation

class
RULE
General
create: make
Queries
allow_credit: BOOLEAN
customer: CUSTOMER
credit_limit: REAL
max_balance_owing: REAL
max_credit_allowed: REAL
min_months_trading: INTEGER
Commands
make (a_customer: CUSTOMER;
min_months: INTEGER;
max_balance, max_credit: REAL)

Figure 14. Chart view of RULE class

Calculate Credit3
Months Reliuble Balance Allow Credit*
-1 true 3000 Error

true
Precondition violated.
CUSTOMER make @4 r1:

13 true -1 <000000000176E210> Precondition violated. Fail
CREDIT_FIXTURES3 allow_credit @1
<000000000226FBB0> Routine failure. Fail

24 false 0 false

false

Postcondition violated.

RULE allow_credit @3 e1:

<0000000001B14938> Postcondition violated. Fail

18 Hue 6000 | QULE allow_credit @4

<0000000001B14938> Routine failure. Fail

CREDIT_FIXTURES allow_credit @3
<000000000226FBBO0> Routine failure. Fail

12 true 5500 false
Figure 15. Contract violations in Fit tables

5.2. Unit Tests

In addition to the Fit acceptance tests, the software

developer will also want to write Unit Tests (and Test
Specifications) for the CUSTOMER and RULE
classes. The contracts in these classes may be seen as
test amplifiers, i.e. as the Unit Tests are run, the con-
tracts are also checked and any contract violations are
reported. The ESpec Unit Testing engine (ES-Test)
provides two types of test cases:

Boolean test case: returns a Boolean value as the
result of a test on the system under development.
This test case passes if and only if the Boolean
result returned is t7ue and no contract violation is
generated throughout the execution of the test.
Details about the contract violations are reported
to help in the debugging of the error. We already
encountered a Boolean test case in the Test
Specification of Figure 12.

Violation test case: this type of test case passes
only if an (expected) violation happens while exe-
cuting this test case. If the test executes without
any violations, this type of test case will fail.
There are two types of violation cases: the stan-
dard case, and the case in which a specific contract
violation is expected. If a standard violation is de-
clared, any violation will suffice.

We may use the credit example to illustrate the dif-

ferent kinds of tests. Consider the Boolean test case in
Figure 17 in which a rule is created with data that
violates the precondition »/ which specifies that the
months traded must not be negative (Figure 19). ES-
Test (correctly) reports a precondition violation (tag
rl) in the make routine of class RULE (Figure 18),

thus indicating that this Boolean Test fails.

allow_credit: BOOLEAN is
do
Result := customer.balance <= max_balance_owing -- bug
Result := Result and customer.is_reliable
Result := Result and customer.months_trading >

min_months_trading

ensure
el: Result = (customer.balance < max_balance_owing
and customer.is_reliable
and customer.months_trading > min_months_trading)
end

test a_bad_rulel: BOOLEAN is

local

bob: CUSTOMER
a_rule: RULE

do

create bob.make ("Bob", 5999, true, 12)
create a_rule.make (bob, -1, 6000, 1000)
Result := a_rule.min_months_trading = -1

end

Figure 17. Failing Boolean test for a bad rule

Figure 16. Implementation bug in allow_credit

of class RULE

test_a_bad_rulel

Class f Object Foutine Mature of exception Effect
RULE make @4 rl:
£00000000016442F0 = Precondition violated. Fail

Figure 18. Violation is reported by ES-Test

make (a_customer: CUSTOMER; min_months: INTEGER; max_balance,
max_credit: REAL) is
require
ri1: min_months>=0 and max_credit>=0.0 and max_balance>=0.0
r2: a_customer /= Void
ensure
el: ¢ = a_customer and min_months_trading = min_months
e2: max_credit_allowed = max_credit and
max_balance_owing = max_balance
end

Figure 19. Contract view of the make routine
of class RULE

In the test in Figure 17, the precondition violation is
expected. Although the Boolean test failed, we would
actually like to convert this test into a success. We can
do this by converting the Boolean test case
test a_bad rulel (Figure 17) into a Violation test case
test_a_bad rule? (Figure 20). The Boolean test is a
function routine whereas the Violation test is a com-
mand routine that succeeds precisely when the precon-
dition with tag r/ is violated anywhere in the execution
of the routine. The tests reside in a class that inherits
from ES TEST, and the tests are added to the database
(using the Eiffel agent mechanism) either with an
add_boolean_case or add _violation_case declaration.
If a specific contract must be checked, the associated
violation tag can be declared wusing an
add violation case with_tag declaration.

class CUSTOMER_AND_RULE_TESTS inherit ES_TEST create
make
feature {NONE}
make is
do
add_boolean_case (agent test_a_bad_rulel)
add_violation_case_with_tag ("r1", agent test_a_bad_rule2)
end
-- More agents here

test_a_bad_rule2 is
local
bob: CUSTOMER

a_rule: RULE
do

create bob.make ("Bob", 5999, true, 12)

create a_rule.make (bob, -1, 6000, 1000) -- contract violation
end

end

Figure 20. Violation case for incorrect rule

6. Flexible Fixture redefinition

ES-Fit supports the three standard Fit Fixtures:
ES COLUMN FIXTURE, ES ROW_FIXTURE and
ES ACTION FIXTURE. In addition to standard Fix-
tures, ES-Fit provides a flexible mechanism to develop
new Fixture types. We first discuss the standard Fix-
tures and then describe how to create new Fixture
types. Column Fixtures were already explained and
illustrated earlier (see Figure 1 and Figure 4).

’Calculate Credit Action 1

|start lCreditDatabase’

|enter ’name ’Bob
lenter |balance owing [5000.00
Ienter lre]iable ’true
Ienter |months trading ’14
lpress ’add to database [

|check Icount ’1

'enter Iname ’Anne

lenter [balance owing |6000.00
Ienter lre]iable ’true
Ienter ’months trading ’18
lpress Iadd to database [

Ichcck Icount ’2

Figure 21. Action Fixture to add customers to
the database

6.1. Action Fixture

An Action Fixture, associated with a table, tests that
a series of actions carried out on an application works
as expected [12]. An Action Fixture starts a named
class by creating an actor which is an instance of that
class. Subsequent actions are made through feature
calls on that separate actor object. The allowed actions
(in addition to starf) are enter (setting an attribute),
press (calls a command) and check (can be used to
check the value of a query). The Fit developer can
create an Action Fixture by inheriting from
ES ACTION FIXTURE.

We can use our credit example to illustrate an
Action Fixture. We may wish to add some new cus-
tomers (Bob and Anne) to a Credit Database. As
shown in Figure 21, our user may specify these actions
as follows:

e The start action in the first row creates an object
associated with the Credit Database.

e The enter (name) action in the second row calls a
routine residing in CREDIT ACTION_FIXTURE
that is bound to the item in the second column
("name"). The developer may choose any routine
to be bound to name (e.g. set name) passing to it
the string "Bob" in the third column.

e After entering some more information about Bob,
such as his balance owing, months trading, and
other information, our user may specify press
("add to database") in the sixth row of Figure 21,
to indicate that Bob's data is complete and he can
be added to the database.

e The check (count) in the seventh row can be used
to check that the expected value of count (i.e. one
item in the database) matches with the actual
database. If there is a match, then the check field
will be marked with green and this Fit test passes.

The (partial) Fixture code associated with the
Action Fixture table is shown in Figure 22. The
developer must implement the deferred routine start
when inheriting from ES ACTION FIXTURE.

class CREDIT_ACTION_FIXTURE inherit ES_ACTION_FIXTURE create
make
feature {NONE}
make is
do
bind ("name", agent set_name)
bind ("balance owing", agent set_balance)
bind ("add to database", agent add_to_database)
-- More bindings in here ...
end

a_customer: CUSTOMER

name: STRING

balance: REAL

reliable: BOOLEAN

months_trading: INTEGER
customer_database: CREDIT_DATABASE

set_name (a_name: STRING): TUPLE is
do
name := a_name
end

set_balance (b: REAL): TUPLE is
do
balance := b
end

start is
-- starts the application
do
create customer_database.make
end

add_to_database: TUPLE is
-- set the telephone number of the object
do
create a_customer.make (name, balance, reliable,
months_trading)
customer_database.add (a_customer)
end

-- More methods in here ...
end

Figure 22. Code for Credit Action Fixture
6.2. Row Fixture

A Row Fixture associated with a table, tests
whether the expected elements of a list (or database)
matches the actual elements in the list (or database)
[12]. We can use a Row Fixture table (Figure 23) to
check that Bob and Anne are in the database. The as-
sociated Row Fixture code is shown in Figure 24. The
developer creates a Row Fixture (say,
CREDIT_ROW_FIXTURE) by inheriting from
ES ROW_FIXTURE[G], where G is a generic pa-
rameter which must be instantiated to the type of the
object in the database (in this case CUSTOMER).

[Calculate Credit Row 1
‘name [balance owing [reliable [months trading [Allow Credit* |Credit Limit*

Bob [5000.00 e [14 ferue [1000
[4nne [6000.00 e [18 Ifatse [0.00
Figure 23. Table associated with the Row
Fixture

As before, the table headings are bound (via agent
expressions) to appropriate routines. A deferred func-
tion routine guery must be effected by the developer.
The guery routine returns a LINKED LIST[G] repre-
senting the items in the database of the business logic.
In our case, we need to connect the Row Fixture with
the Action Fixture (Figure 22), i.e. the query routine
should return the database listing from the Action
Fixture object.

6.3. Defining new Fixture types

ES-Fit provides an easy mechanism for the devel-
opers to redefine the behaviour of the standard
Fixtures (i.e., Column, Row and Action) in order to
produce new types of Fixtures. The ES-Fit tool ab-
stracts away unnecessary loop structures from the
Fixture code. This is due to the fact that the underlying
ES-Fit engine reads and processes one row at a time.
This abstraction is supported by class
ES FIXTURE UNIT (the ancestor of all Fixtures)
which treats all tables row by row, hence enabling easy
redefinition. Therefore, Fit developers only need to
define how ES-Fit should process one row at a time,
instead of defining how to process the complete table.
The following routines in ES FIXTURE UNIT
provide this flexible redefinition capability:

e pre-process-table (actions before reading a table)

e pre-process-row (actions before reading a row)
e process-row (how to process a row)

e post-process-row (actions after reading a row)

® post-process-table (actions after reading a table)

Consider, for example, the table in Figure 25. The
table looks like a Row Fixture, but it also has a Total
Credit in the last row (as in a spreadsheet). Since the
table is very similar to a Row Fixture, we may inherit
from ES ROW_FIXTURE and redefine the standard
behaviour (Figure 26). Routines process row and
post_process_table are redefined.

Routine process_row is instructed to ignore the last
row, as this row will be treated in post_process_table
at which point it executes a routine that is associated
with the rightmost bottom cell where the total of all
credits must be checked.

class CREDIT_ROW_FIXTURE inherit ES_ROW_FIXTURE [CUSTOMER]
create
make
feature {NONE}
make is
do
bind("name", agent get_name)
bind("balance owing", agent get_balance)
-- More bindings here ...
end

get_name(a_customer: CUSTOMER): TUPLE is
-- returns the name of the customer
do
Result := [a_customer.customer_name]
end

get_balance(a_customer: CUSTOMER): TUPLE is
-- returns the balance of the customer
do
Result := [a_customer.balance]
end

-- Other methods in here ...

query: LINKED_LIST[CUSTOMER] is

local
action_fixture: CREDIT_ACTION_FIXTURE
database: CREDIT_DATABASE

do
action_fixture ?= connected_to
database := action_fixture.customer_database
Result := database.customers

end

end

[Calculate Credit Row 2

M{balance owing [re]iable [months trading [A.I.low Credit* ‘Credit Lirnit*
[Bob [5000.00 hrue [14 firue [1000

[nne [6000.00 brue [18 [fatse 0.00

| \ \ [Total Credit* [2000.00

Figure 25. A new Fixture Type

Figure 24. Partial code for Credit Row Fixture

In post_process_table, we must (a) specify the cell
where the total credit will be printed, and (b) bind a
routine to the cell (in this case routine add credit). We
may think of the table as a spreadsheet with the appro-
priate cell at the intersection of row Total Credit* and
column Credit Limit* (Figure 25). The specification of
this cell is done by a call to connect_to_target (inher-
ited from ES FIXTURE UNIT). As before, the
binding of the cell to routine add credit is done in the
constructor make. The add credit routine calculates
the required totals with a suitable call to the business
logic.

7. Unification of Unit Tests and Fixtures

In Java, a developer may use JUnit for Unit Tests
and the Fit command line application for the table
acceptance tests. As pointed out earlier, ESpec adds to
the standard tools some additional features. The first
addition is that contracts are used to formally specify
the details of the business logic. Violations of this
specification will be reported in the Unit Tests and the
Fit Tables. The second addition is that we unify the Fit
Fixtures and Unit Tests in the same class, so that vali-
dation and verification can be performed simultane-
ously in order to certify the quality of the product.

class CREDIT_ROW_FIXTUREZ2 inherit ES_ROW_FIXTURE [CUSTOMER]
redefine process_row, post_process_table end
create
make
feature {NONE}
make is
do
bind("name"”, agent get_name)
-- More bindings in here ...
bind("Total Credit*", agent add_credit)
end

get_name(a_customer: CUSTOMER): TUPLE is
do
Result := [a_customer.customer_name]
end

add_credit: TUPLE is
do
Result : = [database.total_credit]
end

-- additional methods such as query as in Figure 24

process_row is
-- redefined: ignores the last row
do
if not (content_under_heading ("Allow Credit*").is_equal
("Total Credit*")) then
Precursor -- if it is not the last row, process as a row fixture
end -- if it is the last row, ignore it
end

post_process_table is
do
connect_to_target ("Total Credit*", "Credit Limit*")
execute_cell ("Total Credit*")
end
end

Figure 26. Code for a redefined Row Fixture

In order to run the Fit tests, the software developer
places the test Fixtures in a class that inherits from
class ES FIT. Unit Tests are placed in a class that in-
herits from ES _TEST. We may combine Validation
(Fit Fixture Tests) and Verification (Unit Tests and
Test Specifications) under the report of a single green
bar by declaring both types of tests in a class that is a
descendant of ES SUITE. Eiffel supports multiple
inheritance, and thus ES_SUITE unifies the two types
of tests in a single class by inheriting from both
ES FIT and ES TEST (Figure 27 and Figure 28).

a5

¢ ROOT_CLASS)

Figure 27. Inheritance hierarchy of ES_SUITE

class ROOT_CLASS inherit
ES_SUITE

create
make

feature -- Initialization

make is

-- Creation procedure

do
add_fixture ("Calculate Credit 1", create{CREDIT_FIXTURE}.make)
add_fixture ("Calculate Credit 2", create{CREDIT_FIXTURE2}.make)
add_fixture ("Calculate Credit 3", create{CREDIT_FIXTURE3}.make)
add_test (create{CUSTOMER_AND_RULE_TESTS}.make)
run_espec -- runs all specifications

end

end -- class ROOT_CLASS

Figure 28. Root class of the combined system

The software developer may run both types of tests
simultaneously under a single green/red bar via the
Run all Specs button in ESpec tool (Figure 3). Alterna-
tively, the developer can run a specific type of tests by
invoking the associated button (Run ES-Test and Run
ES-Fit). Test results for both types of tests are reported
in the tool results window.

class RULE create
make
feature
customer: CUSTOMER
max_credit_allowed, max_balance_owing: REAL
min_months_trading: INTEGER

make (a_customer: CUSTOMER; min_months: INTEGER;
max_balance, max_credit: REAL) is
require
r1: min_months >= 0 and max_credit >= 0.0 and
max_balance >= 0.0 and a_customer /= Void
do
customer := a_customer; min_months_trading := min_months
max_credit_allowed := max_credit;
max_balance_owing := max_balance
ensure
el: customer = a_customer and
min_months_trading = min_months
e2: max_credit_allowed = max_credit and
max_balance_owing = max_balance
end

allow_credit: BOOLEAN is
do -- implementation bug: ‘<="should be ‘<’ at line 1
Result : = customer.balance <= max_balance_owing
Result := Result and customer.is_reliable and
customer.months_trading > min_months_trading
ensure
el: Result = (customer.balance < max_balance_owing and
customer.is_reliable and
customer.months_trading > min_months_trading)
end

credit_limit: REAL is
do
if customer.balance < max_balance_owing and
customer.is_reliable and
customer.months_trading > min_months_trading
then
Result := max_credit_allowed
else
Result := 0.00
end
ensure
el: allow_credit implies Result = max_credit_allowed
e2: not allow_credit implies Result = 0.0
end
invariant
customer_not_void: customer /= Void
end

Figure 29. Contracts for class RULE

8. Formal verification [ES-Perfect]

Starting with the informal requirement [R1], we de-

veloped Fit acceptance tests from the point of view of
our client. We developed the code starting with Early
Testable Specifications which resulted in the business
logic package involving classes CUSTOMER, RULE,
and CREDIT DATABASE. In each case, contract
violations were reported, either in the Fit Tables or in
the Unit Tests. These Validation and Verification tests
are relentlessly concrete and provide a certain amount
of assurance that the code is correct. These checks are
all performed dynamically at run time.

In order to provide a higher level of certification,

the ESpec tool is equipped with an experimental
formal verification module called ES-Perfect. The tool
(invoked from ESpec, see Figure 3) takes as input a
package (e.g. the set of classes in the business logic)
and transforms the classes into predicate logic
assertions in the Perfect Language [5]. The predicates
in this language can be verified by applying the Perfect
Developer theorem prover”. Thus, each class is
checked for correctness. This means, that for each
routine in the class, the implementation must be shown
to satisfy the specification (written via the pre-
conditions, postconditions and invariants).

As an example, consider class RULE (Figure 29)

which is equipped with complete contracts. ES-Perfect
provides feedback that the postcondition of
RULE.allow credit fails. An examination of the
implementation of this routine indicates that there is an
error in the first line, which should be changed to:

Result : = customer.balance < max_balance_owing

With this code fix, class RULE is certified correct with
6 verification conditions. Class RULE is simple
enough that it wverifies almost instantaneously.
However, The ESpec translator can currently deal with
more complicated constructs including generic types,
loops, quantifiers, and all contracts including precon-
ditions, postconditions, class invariants and loop
variants and invariants. We are currently extending the
tool to deal with inheritance and complete reference
semantics.

The Perfect language and theorem prover is a

formal tool aimed at software development and veri-
fication. The theorem prover is completely automatic.
This is important because it means that the software
developer can use it without any knowledge of the
formal underpinnings. If a verification cannot be
proved, the theorem prover will report this back to the
user who can then look into the reason for the failure

2 . ..
A version of the Perfect Developer theorem prover is incorporated
in ESpec with the permission of Escher Technologies.

(a failure does not necessarily mean a bug as it may
just be that the prover was not sufficiently powerful).

Perfect Developer is built around a predicate logic
based notation for expressing state-based specifica-
tions and optionally refining them to a form resem-
bling a program (as in the Z or B method [2, 15]). The
Perfect language has a library of useful collections and
structure types such as sets, bags, sequences, and maps
[4]. In order to translate from the Eiffel contract lan-
guage to Perfect, we therefore developed an equivalent
mathematical library in Eiffel (to be reported on in a
future paper).

9. Conclusions

In this paper we provided a lightweight formaliza-
tion of Validation and Verification with the addition of
Design by Contract. We used Fit Tables for answering
the Validation question and Early Testable
Specifications for answering the Verification question.
Early Testable Specifications involved the use of Test
Driven Development (Unit Tests) as well as Design by
Contract. Contract violations were signaled in Unit
Tests as well as Fit Tables. We argued that V&V can
be specified in a testable format very early in the soft-
ware life cycle, and the working product is subjected to
both Validation and Verification tests right from the
very beginning. Any change to the software product
must be regression tested against both the Validation
and Verification tests, thus providing some guarantee
for a quality product. We provided the ESpec tool, the
first implementation of the Fit framework in the Eiffel
programming language that embodies some of these
fundamental ideas for formal V&V throughout the
lifecycle, and aids in the achievement of product qual-
ity certification written in Eiffel. The tool extends the
Fit framework with some additional features that aid in
formalizing customer requirements, including the abil-
ity of a table to reference data in other tables, flexible
naming conventions, and a flexible method for con-
structing new Fixture types. ES-Perfect combines
classical ideas of formal specification and verification
with these new automatic checking technologies. As
shown in Figure 27, ESpec allows a developer to mix
all three types of tests, i.e. Fit Tests, Unit Tests and
formal verification in a single class that inherits from
ES _SUITE. The tests can be run individually or in
unison with feedback to a single green/red bar. The
combination of all these checks thus results in a higher
quality of certification.

10. Acknowledgments

ESpec project made possible by the collaborative
inputs and contributions of all members at the Soft-
ware Engineering Lab, York University. Our special
thanks to Eric Kerfoot for developing ESpec’s Eiffel
parser (ES-Parser) and Jackie Wang for developing the
Eiffel to Perfect translator.

11. References

[1] "IEEE Standard for Software Verification and Validation
Plans," IEEE Std 1012-1986, 1986.

[2] J.-R. Abrial, The B-Book: Assigning programs to
meanings: Cambridge University Press, 1996.

[3] K. Beck, Test-driven development: by example. Boston:
Addison-Wesley, 2003.

[4] G. Carter, R. Monahan, and J. Morris, "Software
Refinement with Perfect Developer," presented at
Software Engineering and Formal Methods Conference
(SEFM2005), 2005.

[5] D. Crocker, "The Perfect Developer Language Reference
Manual: Version 3.0," Escher Technologies 2004.

[6] W. Cunningham, "Framework for Integrated Test, Java
Platform, http://fit.c2.com/wiki.cgi?JavaPlatform," 2005.

[7] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave, "A
Reference Model for Requirements and Specifications,"
IEEFE Software, vol. 17, pp. 37-43, 2000.

[8] M. Jackson, Sofiware Requirements and Specifications:
Addison-Wesley, 1995.

[9] A. Leitner, "Erl-G: Eiffel Reflection Library Generator,"
2005.

[10] B. Meyer, Object-Oriented Software Construction:
Prentice Hall, 1997.

[11] Mike Barnett, K. R. M. Leino, and W. Schulte, "The
Spec# programming system: An overview," in CASSIS
2004, vol. LNCS 3362: Springer Verlag, 2004.

[12] R. Mugridge and W. Cunningham, Fit for Developing
Software: Framework for Integrated Tests: Prentice-Hall,
2005.

[13] J. S. Ostroff and R. F. Paige, "The Logic of Software
Design," Proc. IEE - Software, vol. 147, pp. 72-80, 2000.

[14] K. Rustan, M. Leino, G. Nelson, and J. B. Saxe,
"ESC/Java User's Manual," Compaq Systems Research
Center Technical Note 2000-002, October 2000.

[15] J. M. Spivey, The Z Notation: A Reference Manual (2nd
edition). Englewood Cliffs, N.J.: Prentice-Hall, 1992.

