Translational and Rotational Invariant Mining of Frequent

Trajectories and Related Optimizations

Alexander Andreopoulos
Bill Andreopoulos
Aijun An

Xiaogang Wang

Technical Report CS-2006-02

January 2006

Department of Computer Science and Engineering

4700 Keele Street North York, Ontario M3J 1P3 Canada

Translational and Rotational Invariant Mining of Frequent
Trajectories and Related Optimizations

Alexander Andreopoulos
York University
Centre for Vision Research
Department of Computer
Science and Engineering
Toronto, Ontario, Canada

alekos@cs.yorku.ca

ABSTRACT

We present a framework for mining frequent trajectories from a
database of trajectories and propose various novel optimization tech-
niques for efficiently mining such trajectories. We begin by pre-
senting a methodology for discovering frequent trajectories, fre-
quent trajectories which are translated with respect to each other
and frequent trajectories which are both translated and rotated with
respect to each other. We perform experiments demonstrating the
effectiveness and accuracy of our approach. We then proceed to
demonstrate a multiresolution methodology based on the wavelet
transformation for speeding up the discovery of frequent trajecto-
ries and present some related experiments. We conclude the pa-
per by proposing a methodology for tackling the so called curse of
dimensionality problem of higher dimensional trajectories, by pre-
senting an algorithm which scales linearly instead of exponentially
as we increase the dimension of the trajectories we are interested
in mining. Such optimizations are a necessity for mining higher
dimensional trajectories. We conclude by pointing out some issues
where more work needs to be done and argue that they can provide
interesting topics for future research.

1. INTRODUCTION

There exist many situations where we are confronted with trajec-
tories describing the movement of various objects. We are often
interested in mining the frequent trajectories that groups of such
objects go through. Trajectory datasets arise in many real world
situations, such as in mobility experiments, for the discovery of bi-
ological patterns and in surveillance [12, 11, 5]. In surveillance, for
example, we might have a camera observing a large shopping mall
over a period of months, extracting the trajectories that customers
in the mall follow. We could use such trajectories to mine for fre-
quent paths that people like to follow and potentially make various
improvements in the layout of the shopping mall. This could be
very difficult to do manually, due to the high number of trajectories
we would have to mine. Another example of where we might be

Bill Andreopoulos, Aijun

York University
Department of Computer
Science and Engineering
Toronto, Ontario, Canada

{billa, aany@cs.yorku.ca

Xiaogang Wang
York University
Department of Mathematics
and Statistics
Toronto, Ontario, Canada

stevenw@mathstat.yorku.ca

interested in finding frequent trajectories is for observing the sur-
roundings of a high security area such as an embassy. We might
be interested in finding whether there are repeated patterns over a
long period of time indicating that someone is surveying the loca-
tion. In sports situations, a computer vision system could extract
from images of the field the trajectories that players follow over
periods of time and we could extract from these trajectories the fre-
quent trajectories that players follow, in order to better understand
the opponent’s strategy. In a situation where we have lots of tra-
jectories, it could be very difficult if not impossible to distinguish
such interesting trajectories from the deluge of irrelevant trajecto-
ries. The contributions of this paper are as follows:

e We present a framework for finding frequent trajectories whose
sampling interval is small enough to allow extracting their
first and second order derivatives.

e We propose a fuzzy framework for dealing with errors and
uncertainties in the trajectories.

e We propose a robust framework for mining trajectories that
are translated and/or rotated with respect to each other.

e We present a multiresolution based framework for speeding
up frequent trajectory mining.

This paper is organized as follows. Section 2 presents some related
work. Section 3 introduces our notation and the general frame-
work we use for mining trajectories. Section 4 describes a method
for mining translated and rotated trajectories. Section 5 offers an
approach for optimizing the mining speed of frequent trajectories.
Section 6 proposes some possible approaches for extending this
method to higher dimensions. Section 7 concludes the paper.

2. RELATED WORK

Trajectory mining is a domain where various data mining tech-
niques could be applied. Naturally, sequential pattern mining tech-
niques [2, 17, 14] can provide useful insights. In sequential pat-
tern mining we are typically given a database containing sequences
of transactions and we are interested in extracting the frequent se-
quences, where a sequence is frequent if the number of times it oc-
curs in the database satisfies a minimum support threshold. Popular
methods for mining such data sets include the GSP algorithm [2] -
which is an Apriori [1] based algorithm - and the PrefixSpan [15]

algorithm. GSP can suffer from a high number of generated candi-
dates and multiple database scans. Pattern growth methods such as
PrefixSpan are more recent approaches for dealing with sequential
pattern mining problems. They avoid the candidate generation step,
and focus the search on a restricted portion of the initial database
making them more efficient than GSP [2, 15].

The problem that is most related to frequent trajectory mining is
sometimes referred to as frequent spatio-temporal sequential pat-
tern mining in the literature [12, 11, 5, 6]. The main difference be-
tween our work and previous work [12, 11, 19, 21, 20, 5, 6] is that
our method assumes that we are dealing with densely sampled tra-
jectories - trajectories whose sampling interval is small enough to
allow us to extract from a trajectory its first and second derivative.
Furthermore, this allows us to define a neighborhood relation be-
tween the cells making up our trajectories, allowing us to perform
various optimizations. In general, previous work often assumes that
we have sparsely sampled trajectories in our database.

The fact that the space of frequent trajectories forms a metric space
where we can define a neighborhood relationship amongst the points
through which a trajectory passes, can be exploited to provide var-
ious optimization techniques for efficient mining of trajectories.
Similar work has been done in [3] for determining typical user nav-
igation patterns of web users. However, the main difference of our
work is what we have just indicated, namely, that in general they do
not assume a neighborhood relationship amongst the websites vis-
ited, since from any website a user might directly jump to any other
website. There has been a significant amount of research on defin-
ing similarity measures for detecting whether two trajectories are
similar [18, 4]. However, this research has not focused on mining
frequent trajectories.

3. APRIORIBASED MINING OF FREQUENT

TRAJECTORIES

In this section we present an extension of the GSP algorithm [1] for
mining frequent trajectories. We begin by introducing a so called
cell representation of trajectories and then present an Apriori based
algorithm for mining frequent trajectories. Then we introduce an
improvement to the frequent trajectory mining algorithm that is
more robust in mining trajectories that are similar but not identi-
cal.

3.1 Cell representation of trajectories

We define a trajectory c as a continuous function c¢(s) = [z(s), y(s)]
in the 2D case and as ¢(s) = [z(s),y(s), z(s)] in the 3D case.
Similar extensions follow for higher dimensional trajectories. The
function c(s) is an arc-length parameterization of a curve/trajectory.
In other words, the parameter s denotes the length along the trajec-
tory and c(s) denotes the position of the trajectory after traversing
distance s. In other words our trajectories do not depend on time, or
the speed with which the object/person traverses the trajectory. We
assume independence from time and speed for mining the frequent
trajectories and subtrajectories.

‘We define a trajectory c as frequent, if the number of the trajectories
{c1,¢2,...,¢o} in a database that pass through the path described
by c satisfies a minimum support count threshold (minsup). This
definition requires only that there exist minsup subtrajectories of all
trajectories in {c1, c2, ..., ¢o } that are identical to c; but it does not
require that ¢ = ¢; for a sufficient number of ¢;’s. More formally,
we say that trajectory c over interval [0, 7] is frequent with respect

y10 —
y9
y8
y7
y6
y5
y4
y3
y2
y1 [\

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

)]

1 TN
(-

Figure 1: A cell sequence representation of a dense trajectory.
The cell sequence representation of the dense trajectory con-
sists of the gray cells (in order) that are intersected by the dense
trajectory.

to a dataset of trajectories if there exist a minsup number of compact
intervals [y, @1 + 7], -+, [@minsup, ®minsup + T such that for
alli € {1,--- ,minsup} and for all 0 < s < 7 we have ¢(s) =
iy (i + s) (where 7 is a permutation function of {1,- -, 0}).

The frequent trajectory mining problem can be formulated as a se-
quential pattern mining problem in the following way. Here we
only discuss the 2D case as the 3D case is similar. Assume that
we are observing a square region of size N x N over which all
the trajectories occur. Although this region can be of arbitrary size
N x M, for notational convenience we assume it is an N x IN
square. By splitting the region into a grid of square cells, as shown
in Figure 1, we denote by (x;, ;) the cell located at the i*" column
and j'" row. A potential way of discretizing a region into a grid is
by uniformly sampling along the two dimensions. In this paper we
create the grid by uniform sampling, even though square cells are
not necessary for our approach to work. Then we define:

(7) A trajectory c(s) is referred to as a dense trajectory if it is
represented by a densely sampled set of points. The sampling in-
terval depends on the problem at hand and should be small enough
to obtain accurate first and second derivatives.

(#1) A dense trajectory’s cell sequence refers to the sequence of
cells ((Zry(1)s Ymy(1))s ** » (Trp(n)s Ymy(n))) intersected by the
dense trajectory (where 7, is a permutation function). The follow-
ing conditions must hold: a. 74 (%) # 75 (i+ 1) or my(i) # my(i+
1), and b. |72 (i) — 72 (i +1)| < land |my(i) — my(i + 1) < 1.
Thus, we encode the order in which the dense trajectory intersects
the cells. As we discuss below, in some situations it is preferable
to also associate with each cell (x;,y;) from the sequence the ar-
clength/distance over which the trajectory falls in this cell.

(#4%) The number of cells in a trajectory’s cell sequence is its
length. For example, the cell sequence
((z4,y3), (z3,y2), (x3,y3), (x3,Y4), (2, y5)) has length 5.

(iv) A continuous subsequence w of a trajectory c’s cell se-
quence ((Tx, (1), Yry(1))s = * 5 (Trp(n)s Yy (n))) Must satisfy w =

(T ()5 Yy (i))> (T (i 1) Yy (i41))s =+ 5 (T () Yy (4))) Where
1<i<j<n.

In practice, for various reasons, a trajectory c(s) might be repre-
sented by a small number of sample points. We can interpolate
those points and subsample the interpolated trajectory, to obtain
the dense representation of those trajectories.

Another possible way of representing a trajectory is by uniformly

sampling the trajectory along its arclength and using the sequence
of cells in which sampled points fall. If the sampling interval is
sufficiently small this still enforces the constraint that for every cell
there is a finite neighborhood of cells that the next point could fall
in. However, this representation does not guarantee that the neigh-
borhood relationship holds when mining translationally and/or ro-
tationally invariant trajectories, so we decided to use the method
described in the previous paragraphs for representing trajectories.

3.2 Standard Apriori based Mining

Using the cell representation method to represent trajectories, the
problem of mining frequent trajectories is defined as finding all the
contiguous subsequences of the cell sequences in a database that
satisfy a support threshold. We first point out that frequent trajec-
tories satisfy the Apriori property. Namely, any continuous sub-
sequence of a frequent trajectory’s cell sequence is frequent. We
exploit this property to implement efficient algorithms for mining
frequent cell sequences.

If (z4,y;) is our current cell position, the next allowable cell po-
sition (xg,y;) must be one of its 8 neighboring cells, such that
li — k| < 1land|j— 1] < 1. We use this constraint to modify
the GSP algorithm to generate a much lower number of candidates
than using the GSP algorithm if it does not include this constraint
during candidate generation.

Inputs: minsup: Minimum support count.
D: Data set of cell sequences of trajectories.

Output: All the frequent cell sequences.

(1) for each cell sequence t € D

?2) foreachcell g € ¢

A3 g.count + +.

4) L1 = {cell g|g.count > minsup}.
/I L1 is the frequent length-1 cell sequences
//(consisting of a single cell)

(5) for (k=2;Lx_1 # Oik++) {

(6) Cy =trajectory(Ly_1). //candidate
/Nength-k cell sequences

(7) for each cell sequence representation t € D {

(t) C'= the set of contiguous subsequences of ¢
that are contained in C

9 for each candidate cell sequence ¢ € C
(10) c.count++. //increment the support count
//of this candidate cell sequence

an }
(12) Ly = {c € Cylc.count > minsup}.
(13) }

(14) return L = Uy L.

Figure 2: Apriori based mining of frequent trajectories.

Figure 2 shows the pseudocode for the Apriori based mining of fre-
quent trajectories. Ly, is the set of frequent length-k cell sequences

Input: Lj: The length-k frequent cell sequences.
Output: Cj1: The candidate length-(k + 1) cell sequences.
M if (k=1){

(2) for all pairs of single cells (a1) € L1,(b1) € L1
such that (a1) # (b1)

3) if (a1) and (b1) are neighbors, then
)] c2 = (a1,b1). //join a1 and by
5 Cy=0CU {02}.

(6) }else {

(7) for all pairs of length-k cell sequences
(a1,--- ,ar) € Li, (b1,--- ,br) € Li
such that (al, s ,ak) #* (b17 s ,bk)

8) if (a2, ,ar) = (b1, -+ ,br_1), then
© crv1 = (a1, -+, ak, by).

(10) Cri1 = Crr1 U{cri1}

an }

(12) return Cl1.

Figure 3: The trajectory () function.

found in the grid. C}, is the set of candidate length-£ cell sequences.
The algorithm first scans the database to find L1, i.e., the length-1
frequent cell sequences, and then generates C', the length-2 can-
didate cell sequences using the trajectory () function. It then
computes the support count of each candidate in C'> by scanning
the database, and keeps the frequent candidates as the length-2 fre-
quent cell sequences. It then generates the next level (i.e. length-3)
candidate using the trajectory () function. The process goes
on until a frequent set or a candidate set is empty. The main differ-
ence between this algorithm and GSP lies in the trajectory ()
function for generating candidates of length k£ from frequent cell
sequences of length k£ — 1. Figure 3 describes this function. Fig-
ure 4 shows step by step how this algorithm initially works to find
frequent length-2 cell sequences from length-1 cell sequences (i.e.
single cells). When finding the candidate length-2 cell sequences,
it suffices to only join two length-1 cell sequences (i.e. single cells)
if the cells are neighboring/adjacent to each other, resulting in a
much smaller number of candidates than if we had used GSP to
accomplish this without using this neighborhood constraint. For
k > 2, when joining length-k cell sequences to find length-(k 4 1)
candidate cell sequences it suffices to only join cell sequences a
with b if the last £ — 1 cells of a and first k& — 1 cells of b are
identical. Figure 5 shows an example of this. We notice that by
joining two continuous paths, the resulting path is also continuous.
Also, notice that there is no pruning step in the candidate genera-
tion process of our algorithm. This is because pruning may cause
the loss of good candidates since we are mining for frequent con-
tiguous subsequences. This is another major difference between
the stardard GSP algorithm and our algorithm.

Assume there are 7 cells into which our /N X N region has been split
and there are b neighboring cells for each non-boundary cell. In our

Grid of /)
trajectories

(] (] |

(] . _l
> /

(] L] —

Figure 4: Assuming minsup = 3, the grid contains 6 frequent
trajectories and 2 different cell sequence representations (these
are the 2 gray columns). A cell sequence is represented as a
line intersecting one or more cells. ; : The frequent length-
1 cell sequences are the single cells that have at least minsup
trajectories intersecting them. C : The candidate length-2 cell
sequences include any set of 2 neighboring frequent single cells.
C¢ : Overlaps between C> and cell sequence representations
in the initial grid. L.: The frequent length-2 cell sequences
include any cell sequence in C> that occurs at least minsup
times in the initial grid.

case b = 8, since each cell is surrounded by at most 8 other cells.
Then, the upper bound on the number of length-(k 4 1) candidate
cell sequences generated is |Lx| x b. This is lower than the upper
bound of |Ly| x r that GSP might generate if we were dealing with
a sequential pattern mining problem where we could not apply this
neighborhood constraint, since typically b << r. Of course, other
algorithms for sequential pattern mining, such as PrefixSpan [15],
could potentially be modified to solve this problem. An interesting
topic for future research is to investigate their performance in this
domain.

3.3 Robust Representation of Trajectories: Fuzzy

Apriori
A problem with the previously discussed cell representation is that
it is not too robust when trajectories pass close to a border of the
grid, but on opposite sides of the border. This problem has been
recognized in previous work on spatiotemporal pattern mining and
various solutions have been proposed [11]. Consider for example
two linear 2D trajectories. Assume for illustration purposes that

they are given by the equations y = 0.01 and y = —0.01. If
y = 0 is a border between cells (assuming we have split the region
uniformly into square cells) then y = 0.01 and y = —0.01 will

Figure 5: An example of joining two length-5 cell sequences to
find a length-6 candidate cell sequence.

A B

\— b a

Figure 6: (A) Potential neighbors of cell ¢ in its fuzzy cell rep-
resentation are indicated with gray. Notice that cells b and c are
excluded because they are entrance and exit points of the tra-
jectory. (B) The fuzzy cell representation of cell a consists of
cells a, e and f because the trajectory passes sufficiently close
to those cells.

have completely different cell representations, even though they are
extremely close to each other. We need to make our algorithm more
robust in such situations.

To accomplish this, we define a fuzzy cell representation in the fol-
lowing way. Considering the 2D case shown in Figure 6 A, assume
a trajectory enters cell a from cell b and exits cell a to cell c. If we
remove cells b and ¢, there remain 6 neighbors of cell a, indicated
with gray in Figure 6A. If the trajectory passes sufficiently close
to a subset .S of these 6 neighboring cells, then we define the fiizzy
cell through which the trajectory passes by {a} U S. Figure 6B
shows the fuzzy cell as consisting of cells a, e and f. A cell = of
a candidate trajectory matches this fuizzy cell if = is equal to any of
the items/cells in the fuzzy cell.

When we form L; (the set of frequent single cells) we do not use
the fuzzy cell representation. If we used fuzzy cells in L; the algo-
rithm would be intractable. Let us consider 3 identical trajectories’
cell sequence representations of length n and assume each fuzzy
cell has size 4. If our minimum support count is less than or equal
to 3, then the number of frequent cell sequences of length n would
be at most 4. Obviously the algorithm would be intractable for
large data sets. We tested this and indeed the algorithm is extremely
slow if we do not use the above mentioned simplification.

When calculating the support count of a candidate cell sequence, it
is infeasible to check if it agrees with each cell sequence implied
by a fuzzy cell sequence. Instead, the support counting for a can-

didate cell sequence should be done by checking if each of its cells
belongs to the corresponding fuzzy cell. If each cell of the candi-
date belongs to its corresponding fuzzy cell, then the candidate’s
support count is incremented. This takes linear time in the number
of cells in the candidate cell sequence.

A potential future improvement could be to associate a number in
the range O to 1 with each item/cell in a fuzzy cell. This num-
ber would indicate the importance of that particular item/cell in the
fuzzy cell. When counting the support of a candidate cell sequence,
we could use all the fuzzy values to better adjust the support count.

3.4 Experiments

We used MATLAB 7.01 running on an Intel Xeon 3Ghz with 3GB
RAM to run our experiments. We chose to use MATLAB due to
its suitability for rapid prototyping. The drawback that we encoun-
tered was that since MATLAB is an interpreted programming lan-
guage it can be quite slow compared to other languages like C. To
compensate for this drawback we adjusted the size of our testing
set accordingly, so that our MATLAB programs could execute the
code within a reasonable amount of time. We leave it for future re-
search to implement these algorithms in a language such as C and
use larger test sets.

If a dense trajectory passed within a Euclidean distance of 0.15
from one of the 6 neighboring cells we discussed above, we added
the corresponding neighboring cell to the fuzzy representation of
the cell (each cell had a dimension of 1 x 1 in our experiments). We
used artificially created datasets as our trajectories. They were cre-
ated by sampling the sinusoidal functions (sin, cos) and by placing
various rotated lines in our trajectory space. The minimum support
count we used was 2.

We first compared the standard Apriori mining method of section
3.2 by its own on a test set with 70 trajectories to verify the cor-
rectness of our algorithm. The dataset consisted of 10 identical
sinusoidal trajectories, 10 randomly translated versions of these tra-
jectories and 50 trajectories rotated by varying angles. Figures 10A
and 10B show examples of translated and rotated trajectories, re-
spectively. We discretized our trajectory space into 32 X 32 cells.
The algorithm correctly mined all the frequent trajectories. It took
about 4 minutes to mine these trajectories.

Then we created another artificial dataset in order to compare the
two methods given in sections 3.2 and 3.3 and find which method is
more robust when the trajectories are slightly different from one an-
other. In this case, our test set contained three identical sinusoidal
functions which had been randomly translated with respect to each
other by a random distance between 0 and 1. The sinusoidals con-
sisted of at most 67 cells/fuzzy cells. We discretized our trajectory
space into 32 x 32 cells. The fuzzy Apriori algorithm managed to
locate a frequent trajectory of length 67; however, the longest fre-
quent trajectory that standard Apriori managed to find had length
31, worse than Fuzzy Apriori (Figure 7). In the presence of noise,
standard Apriori tends to fragment the frequent trajectories, i.e.,
break them up into different smaller trajectories. This demonstrates
the superior capabilities of Fuzzy Apriori for mining noisy trajec-
tories. Fuzzy Apriori is proven to be slower than standard Apriori,
but very robust and is able to handle trajectories for which standard
Apriori is not satisfactory. The runtime of the algorithms is 8 sec-
onds for standard Apriori and 9 minutes for Fuzzy Apriori for the
data set. Fuzzy Apriori is slower mainly due to the greater size of
its candidate data sets (Figure 8).

Figure 7: An original trajectory from our database (with color
blue) and one of the two longest mined trajectories mined from
the database using Fuzzy Apriori (with color red) superim-
posed on each other. Notice that the longest mined trajectory
using Fuzzy Apriori is extremely similar to all the trajectories
from the data set. Moreover, it does not have the problem of
breaking up into different smaller trajectories (fragmentation)
like it does when using standard Apriori. The arrows indicate
the positions where the two trajectories do not overlap.

1200

1000 -

800 -

600 -

400

200 -

Figure 8: The y axis indicates the number of length-k can-
didates for the corresponding k-value on the z-axis. The red
dashed line corresponds to standard Apriori and the solid blue
line corresponds to Fuzzy Apriori.

4 N
[
0 14
|]
-4 Vi
039 0 0.39 2 101 2 3
(a) (b)
2
1 °
0
-1 °
-2
-3
2 101 2 3
(c) (d)

Figure 9: (a) A trajectory given by function c(s) =
(s, sin(4s)). (b) The derivative space ¢’ (s) = (1,4cos(4s)). We
mine for such patterns to find translated patterns. (c) A tra-
jectory that is not differentiable everywhere. (d) The deriva-
tive space of this function consists of two isolated and non-
neighboring cells. We either have to smooth the function in (c)
to have a continuous derivative space, or we are forced to use
standard Apriori to do the mining, which is much slower.

We believe that there is a wealth of research waiting to be done for
creating more efficient methods for mining fuzzy trajectories, using
a smaller number of candidate trajectories. Algorithms similar to
PrefixSpan [15] could potentially lead to significant improvements
in the mining speed. Furthermore, by adjusting the threshold by
which we create the fuzzy trajectories and by adjusting the maxi-
mum size a fuzzy cell can have, we believe we could get significant
improvements in mining speed.

4. TRANSLATIONAL AND ROTATIONAL
INVARIANT MINING

In this section we present two trajectory mining techniques. The
first is a method for mining frequent trajectories that are translated
with respect to each other. The second method is for mining fre-
quent trajectories that are both translated and rotated with respect to
each other. Figures 10A and 10B show examples of translated and
rotated trajectories, respectively. Such algorithms are useful in sit-
uations where we are interested in detecting more complex motion
patterns. For example in surveillance situations, the camera which
extracts the motion patterns might be rotated and translated by an
unknown amount over the course of acquiring the motion patterns.
In such situations the best we can hope to accomplish, in terms of
frequent trajectory mining, is to make the frequent trajectory ex-
traction invariant to the unknown amount by which the camera and
subsequently the trajectories were translated and rotated.

4.1 The Derivative and Curvature

Assume ci1(t) = [z(t),y(t)] and c2(t) = [z(t) + 5,y(t) + 3].
In other words ¢ is a translated version of path c;. If we take
the derivatives ¢} (t), c5(t) of these two paths then we notice that
ci(t) = c4(t) for all values of t. We use this fact to mine for
frequent trajectories that are translated with respect to each other.

Figure 10: (A) Trajectories that are translated with respect to
each other. (B) Trajectories that are both translated and ro-
tated with respect to each other.

An issue to keep in mind is that derivatives tend to magnify noise.
In other words, two trajectories that are slightly different due to
noise would have an even more different derivative. We discuss
methods for dealing with this later. We mine for frequent trans-
lated trajectories in the following way. For every dense trajectory
¢i(t) = [zi(t),y:(t)] in our database of trajectories we use finite
differences to find its derivative c;(t) = [x}(t), yi(t)]. Then we
use equiwidth binning [7] to discretize the space of derivatives for
the x-coordinates and y-coordinates into a number of bins (cells).
Then we represent every c;(t) by a sequence of tuples (dz;, dy;),
each of which denotes the current derivative cell in which the tra-
jectory is located. A new tuple (dz}, dy;) is added to the sequence
of tuples whenever the trajectory’s derivative changes significantly
enough to be part of a new derivative cell (Figure 9). For example,
a linear trajectory is encoded by a sequence of length 1 (a single
derivative cell) since its slope is constant. With each such tuple we
could also associate a number denoting the arclength/distance over
which the cell occurs. We use this measure, as described below, to
detect translated trajectories. We can apply on this new trajectory
representation the mining algorithms described in section 3 to find
frequent trajectories that are translated with respect to each other.

Note than in our test cases we make the assumption that we are
dealing with differentiable functions that do not change ‘abruptly’.
Figures 9c and 9d show problems that might arise otherwise. If
we wish to mine such trajectories, we could either apply some sort
of smoothing such as the wavelet transformation described in the
next section to make the function better behaved, or we could apply
some sort of standard Apriori/GSP/PrefixSpan mining which does
not make the neighborhood assumption for adjacent cells in our
cell sequence representation. This would likely be detrimental to
our trajectory mining speed. We do not deal with this issue in this
paper and leave it as a topic for future research.

The curvature of an arclength parameterized path (f(s),g(s)) at
position s is given by the derivative with respect to s of the angle 0

the path makes with the z axis.
dé
= — 1
K= (M

Intuitively the curvature gives us a measure of the rate with which
a curve is changing direction. It can be shown that an equivalent
way of expressing the curvature is by the following determinant:

=fg" —f'q 2

It is straightforward to show that any rotation and translation of
(f(s), g(s)) results in the same curvature measure. In other words
curvature for 2D trajectories is rotation and translation invariant.
We can, therefore, use this measure to detect rotationally and trans-
lationally invariant patterns in a similar way as we did with trans-
lated trajectories.

To encode each trajectory c¢; (t) we follow the same procedure that
we followed for the translationally invariant mining. We can use
equiwidth or equidepth binning [7] to discretize the space of cur-
vature measures and encode each trajectory using a sequence of
curvature cells. We could also associate a number with each curva-
ture cell, denoting the arclength/distance over which the trajectory
belongs in this cell before it changes significantly to warrant using
another cell in the sequence to encode it.

4.2 Experiments

First we mined the translated trajectories. We used the dense tra-
jectories that were also used in section 3. However, in this case we
randomly translated all the sinusoidal trajectories by much greater
distances than we did for some of the trajectories in section 3. This
removes the possibility that two trajectories match because they
are physically near each other. Then, we found the derivatives of
the dense trajectories and discretized the trajectories into deriva-
tive cell representations. The derivatives were split into a 32 x 32
grid. Then, we applied our mining method to mine these derivative
cell representations. It took about 7 seconds to mine the dataset
and the method was proven to be succesful in finding the translated
datasets.

Then, we mined the translated and rotated trajectories. This time
we also randomly rotated the sinusoidal patterns. We applied the

previously described curvature detection method and then used equidepth

binning to split the space of curvature values from our dataset into
bins (cells). Each dense trajectory was then split into a curva-
ture cell representation and we again applied our mining method
to mine for the frequent trajectories. The algorithm ran on 12 sec-
onds and was able to find all the rotated trajectories, demonstrating
the validity of the algorithm.

‘We wish to point out a potential problem when we are dealing with
real world applications which, however, has not been a problem
in our dataset. The problem is that in the above cell sequence
representation of derivatives and curvatures we have not associ-
ated the distance over which each dense trajectory belongs in a
particular cell. It is possible for example to have two trajectories
whose cell derivative representation consists of the same two cells.
If the distance over which each dense trajectory belongs in each
cell is very different, the two trajectories might be very different
and should not lead to a match. The solution to this problem is
the one indicated at the beginning of this section, namely to asso-
ciate with each cell the distance over which the dense trajectory
belongs to the cell. There are two simple ways we could use these
distances to solve this problem. In one solution the cell distances
could become an extra dimension in the trajectory. So for exam-
ple in a 2D trajectory, we would add a third dimension containing
the distance over which each derivative/curvature cell has the value
it has and then perform mining of 3D trajectories. A simpler and
probably faster approach would be for each frequent mined deriva-
tive/curvature cell sequence, to investigate the trajectories support-
ing the sequence and split the supporting trajectories into groups
based on the cell distances of each trajectory - using for example
some sort of a clustering technique.

Figure 11: Multiresolution decomposition of an image, for 3
different resolutions.

S. WAVELET BASED OPTIMIZATION OF
MINING SPEED

So called multiscale and multiresolution techniques are well known
in the signal processing community and are of great use for solving
difficult problems such as image denoising and image compres-
sion[10, 8]. More recently, the applicability of such methods has
been demonstrated for various data mining problems. For exam-
ple WaveCluster is a multiresolution clustering algorithm that uses
the Wavelet transform to transform the original data and find dense
regions in the transformed space [16]. The Wavelet transform is
useful because it has the ability to supress weaker information, ef-
fectively being a good method for noise removal. Since we are
dealing with less information, we can speed up the mining process.

In our previous experiments we demonstrated the accuracy of the
proposed mining methods. However, the methods may generate a
high number of candidates. In this section we investigate the use
of multiresolution techniques for speeding up our methods. We
point out that for various types of datasets it can lead to significant
optimizations in discovering frequent trajectories.

5.1 The Basics of Wavelets and Multiresolu-

tion Analysis
Wavelets 14 5, (a,b € Z) are L?(R) functions (functions such that
(S, [an(t) |2dt)*/? < 400) that are generated by dilations and
translations of a so called mother wavelet v [9]. One can construct
wavelets 1 such that the dilated and translated family

1 t—2%
i

is an orthonormal basis of L2(®). We can use such orthogonal
wavelet bases to compute the approximation of asignal f € L?(R)
at various resolutions, by the orthogonal projection of f on differ-
ent subspaces of L?(R). The details of how such multiresolution
approximations of functions are built is beyond the scope of this
paper and the reader is referred to [9] for more details. The point is
that it is possible to use this orthogonal wavelet basis to construct
spaces V and W such that V @& W = L2(R), where V is a space
corresponding to the low frequency content of L2(R) and W cor-
responds to the high frequency content of L?(). The projection
of a signal on these two spaces allows us to decompose a signal
into its low and high frequency content, thus, effectively splitting
the frequency axis of the signal into high and lowpass components.
Repeated applications of this process allow us to obtain a wavelet

{Wap =)} 3

oy a0 _ 0 —
NN ‘\».m‘ \/\/M-\\ Fad ‘\\
2 L ;-
r " » J - “ Y \
; o gl /
il A 1 " @0 .'“"‘l A = / / A
\,
/ .] " / y
4 v‘\ / \ s
0 ! \ / 0 /
p 1 10 /f by
A h\ \\ \\
s N ’ / 5 /
5 /
/ ‘-.\ / \\ / \
o \ o /
/ N o . / \ / \\
A \, / ' /
5 N / \ \
i Y st N\ 3 4
10 i ! / Y \
8 \ qob \ -0 b
% o 10 [] 10 20 0 15 " 0 10 o 10 20 30
) 10 10 20 30

Figure 12: Multiresolution representation of a trajectory. From left to right, three progressively denoised trajectories using the
wavelet transform, progressively using a smaller number of samples for each image (the plotting program we used automatically

joins adjacent points with a straight line).

decomposition of the signal f. Wavelets have been applied with
success in problems such as multiresolution image pyramids, tex-
ture classification, denoising and signal compression to name just
a few. Figures 11 and 12 show a multiresolution representation of
an image and a trajectory that is progressively denoised.

5.2 Approximately Correct Trajectories

We now propose a method for speeding up the frequent trajectory
mining phase. We discuss its applicability only for standard trajec-
tory based mining using the standard Apriori algorithm described
in section 3.2, as the extensions for the translational and rotational
invariant mining are similar. Let us assume dwt is a function denot-
ing the one-dimensional discrete wavelet transform. For example,
given as input a vector z of length 1024, dwt(x) returns a vector
2’ of length 512, denoting the lower resolution version of vector .
The idea is that at the moment when the original dense trajectories
are processed in order to convert them to their cell sequence repre-
sentation, we apply dwt to each dense trajectory in order to get its
lower resolution version. Then, we convert the lower resolution tra-
jectory to a lower resolution cell sequence representation, where the
cells now have twice the width and height they previously had. The
effect of this is that the lower resolution cell sequence representa-
tion has approximately half the length of the original cell sequence
representation. We refer to these new cell sequence representations
as scaled down and we refer to their larger cells as scaled down
cells. We can use these scaled down cell sequence representations
to mine the frequent trajectories in our database at a coarser scale.
This significantly decreases the length of our trajectories and the
number of cells used to represent our region. As we discuss below,
this can lead to significant improvements in the mining speed.

A potential objection to this procedure involves questioning the rea-
son why we need to apply the wavelet transform in the first place.
Some might argue that in order to get a smaller cell representa-
tion it suffices to simply double the cell size used in our equi-
width/equidepth discretization of the trajectories. This question is
similar to asking why we cannot simply decrease the resolution of a
signal by subsampling the signal, i.e., selecting every second sam-
ple. This is a fundamental issue in the signal processing literature
and the answer is that we need to do this for noise removal and for
handling the aliasing problem [13]. The reason why we would want
to remove noise and high frequency components is straightforward.
‘We run into the risk that for various signals whose dense represen-
tation has a localized high frequency component, this might lead to
incorrectly adding cells to a trajectory’s cell sequence representa-

tion, especially if the noisy trajectory passes near a cell’s border. By
‘smoothing’ a function we decrease the risk of dealing with func-
tions which are not differentiable everywhere (Figures 9c and 9d).
As the discrete wavelet transform is a linear algorithm, there is no
significant pre-processing overhead involved. As we show in our
experiments, this can significantly improve the mining speed, de-
pending of course on the distribution of the trajectories in the data
set we are currently working with. The drawback of this method is
that we lose precision on the localization of the trajectory, since the
cells are much larger. We deal with this in the next subsection.

5.3 Refining the Trajectories

Since the scaled down cell sequence representations consist of larger
cells, they might give a worse localization of the trajectories. We
now propose a method for refining the accuracy of the frequent
trajectories that were mined using the above described method -
in other words obtaining a better localization of the coordinates
through which frequent trajectories pass. When mining for frequent
trajectories we are often only interested in finding trajectories that
have a minimum non-scaled down length of m. Let S denote the
set of all scaled down cells through which a frequent scaled down
trajectory of length at least | 5 | passes. Then, we are guaranteed
that the frequent trajectories with a non-scaled down cell sequence
representation of length over m pass through the scaled down cells
in S. This means that to refine the accuracy of mining frequent
scaled down cell sequence representations, it suffices to consider
only the non-scaled down cell sequence representations that pass
through some cells in S. For datasets that have very spread out tra-
jectories with a few paths through which frequent trajectories pass,
this can also result in significant improvements in mining speed. In
the next subsection we perform experiments on artificial data that
we created and demonstrate the significant gains in speed that this
approach can offer.

5.4 Experiments

We performed experiments on mining frequent trajectories of length
over 30, to investigate the improvements in mining speed offered
by the approach described in this section. We employed the dense
trajectories used to create the first dataset from section 3.

First, we utilized the dense trajectories to create their cell sequences
on a 64 x 64 grid, instead of the 32 x 32 grid used in section 3. All
cell sequences on the 64 x 64 grid had length over 30. We applied
the standard Apriori based method of section 3.2 to estimate the

time it took to find the frequent trajectories on the 64 x 64 grid. In
our experiments with MATLAB it took 26 minutes.

Then, we employed the standard Apriori based method of section
5.2 to mine the frequent trajectories on the scaled down 32 x 32
cell grid. It took 4 minutes for standard Apriori to terminate, a
significant improvement in the mining speed, underscoring what a
major effect the number of cells and the trajectory’s cell sequence
representation’s length can have on the mining speed.

Then, we used the method described in section 5.3 to find the trajec-
tories on the non-scaled down 64 x 64 grid. We removed from our
dataset the non-scaled down cell sequence representations whose
scaled down version in the 32 x 32 grid did not contribute to a
frequent sequence of length over % = 15. The resulting mining
speed was 13 minutes, for a total time to find the frequent trajec-
tories of length over 30 of 4 + 13 = 17 minutes, significantly
better than the 26 minutes it took with the standard Apriori based
method. The frequent cell sequence representations of length over
30 that were found are the same as those found using the algorithm
in section 3, so no loss of frequent trajectories was observed.

There exist various types of datasets where this approach can lead
to significant improvements in mining speed. This method im-
proves the mining speed if there are clusters through which frequent
trajectories of the desired length m pass, since it provides a quick
method of finding which trajectories should be ignored from fur-
ther processing. However, this method should not be considered a
panacea. If our trajectories are evenly spread out around the region
we do not expect to gain a lot in terms of mining speed.

It is possible that this process be repeated iteratively. In other
words, we could further scale down the scaled down cell sequence
representations and repeat this iteratively. For various datasets it is
possible that this would lead to significant improvements in min-
ing speed. Storing the scaled down cell sequence representations,
in addition to the original non-scaled down ones, will at most dou-
ble the database space requirements. This is so because on average
each scaled down cell sequence representation has half the length
of its previous representation and 1 + % + i 4+ =2

6. EXTENSION TO HIGHER DIMENSIONS

A problem with mining high dimensional trajectories (trajectories
of dimension greater than 2) is that the number of cells grows by an
entire factor for every increase in the dimension. For example, if we
use equiwidth binning to split every dimension into n cells, then we
are dealing with 2 distinct cells for 1D trajectories, n? distinct cells
for 2D trajectories, n® distinct cells for 3D trajectories and so on.
This can become computationally expensive, making the method
we presented above infeasible in practice for dimensions greater
than 2. We propose a method for handling this problem. We discuss
the problem of mining standard trajectories, leaving the problem
of mining frequent trajectories that are translated and rotated with
respect to each other for future research.

Let us consider the 3D case. In 3D, any cell has 3B _1=26
neighbors. In other words if we are trying to generate the set Cj,
of length-%£ candidates, from set Li_1 of frequent length-k — 1
cell sequences, an upper bound on the cardinality of Cy is |Cx| <
|Lr—1| x 26. On the other hand, assume that we first mined the -
coordinates of the trajectories, then mined the y-coordinates of the
trajectories in our database and then mined the z-coordinates of the
trajectories. Notice that in 1D, any cell has 3 neighbors, since it is

Inputs: minsup: Minimum support count.
D: Data set of cell sequences of trajectories.

Output: L*,LY,L*, the frequent 1D trajectories of the
z,y and 2z coordinates.

(1) Let LT,LY,L7 be the frequent length-1 trajectories
of the z,y,z coordinates respectively.

(2) for (k=2:Ly_1 # @:k++){
3) Cj =trajectory(Ly_1);
4 C} =trajectory(LY_,);
(5) Cf =trajectory(L;_4);

(6) for each cell sequence t € D {

@) C} =subset(Cy, t);

t)) CY =subset(CY, t);

9 Ct =subset(C}, t);

(10) for each candidate ¢ € C{,c € CY,c € Cf
a1 c.count++;

12

a3 ¢ = {c € C}|c.count > minsup}
(14) L} ={ce Clle.count > minsup}
15 Lj = {c € C;|c.count > minsup}

(1e) }
(17) return L® = Uy Lg, LY = U LY L* = Ui Lj.

Figure 13: Pseudocode for extracting the three frequent 1D tra-
jectories from a 3D trajectory.

possible that a sequence has two identical successive cells. In that
case |C| < |Lk—1| x 3 for all k, when mining the frequent cell
sequences of each dimension. By applying the Apriori algorithm
3 times to discover the frequent cell sequences for each dimension
and then recombining the sequences to form the frequent trajec-
tories, we could potentially end up with significant improvements
in the mining of trajectories, at least in terms of memory require-
ments. Consider the pseudocode shown in Figure 13.

We can assume without loss of generality that in the above piece
of code we only retain the maximally frequent trajectories, i.e.,
trajectories that do not have a frequent supersequence. The dif-
ficulty lies in recombining the frequent 1D trajectories into fre-
quent 3-dimensional trajectories. A potential solution would in-
volve searching each trajectory one by one. Assume each trajectory
cell has a pointer to the maximally frequent x, y and z 1D trajecto-
ries it supports. Then by scanning each trajectory one by one, we
can join the frequent x, y and z 1D trajectories it points to into a
frequent 3D trajectory.

Memorywise it is obvious that this method is significantly less de-
manding. Based on the experiments discussed so far, we believe
it will most likely also lead to significant improvements in mining
speed. However, we do not test this in this paper and leave this
problem for future research.

A direction worth pursuing as future work is to investigate using

cells of varying sizes for splitting the original trajectory into its
cell sequence representation. This could have a significant effect in
terms of mining speed and could be useful in various applications,
such as monitoring the paths followed by vehicles. For example, we
could encode the entire length of a certain road by a single cell and
use another cell only when the road is intersected by another road.
If it is a long road, this could provide a significant optimization.
Other optimizations could involve using an unsupervised clustering
algorithm such as k-Means to split the range into intervals based
on the density of trajectories passing through a certain region, or
to investigate the use of equidepth binning for discretizing the tra-
jectories. Depending on the application, we believe that this could
prove to be very important in improving the speed of the algorithm.

Further research could focus on methods for mining translationally
and rotationally invariant trajectories in 3D. The definition of cur-
vature we have given in this paper applies only to 2D paths. More
work is needed to come up with efficient ways of doing this for 3D

paths [z(s), y(s), z(s)].

7. CONCLUSIONS

We have presented various methods for mining frequent trajecto-
ries. We have also presented various methods for optimizing the
mining of such trajectories. We believe these are appropriate steps
in the right direction and we have pointed out issues that remain
to be taken care of. More research needs to be done in using in-
telligent methods for discretizing the continuous range of values
that the trajectories can assume, as this could potentially decrease
the number of cells used to encode trajectories. Finally, a direction
worth pursuing as future work is to find methods for mining the
frequent trajectories without candidate generation.

Acknowledgements
The authors are grateful for the financial support of the National

Science and Engineering Research Council (NSERC) and Ontario
Graduate Scholarship (OGS).

8. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. 20th Int. Conf. Very Large Data
Bases, 1994.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In
Proceedings of ICDE’95, 1995.

[3] J. Borges and M. Levene. Data mining of user navigation
patterns. Web Usage Analysis and User Profiling, 2000.

[4] Y. Cai and R. Ng. Indexing spatio temporal trajectories with
chebyshev polynomials. In SIGMOD 2004, 2004.

[5] H. Cao, N. Mamoulis, and D. Cheung. Mining frequent
spatio-temporal sequential patterns. In Proceeding of the
ICDM, 2005.

[6] M. Dimitrijevic. Mining for co-occuring motion trajectories -
sport analysis. Master’s thesis, University of British
Columbia, Department of Computer Science, 2001.

[7] J. Han and M. Kamber. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2000.

[8] T.Lindeberg. Scale-Space Theory in Computer Vision.
Kluwer Academic Publishers, 1994,

[9] S. Mallat. A Wavelet Tour of Signal Processing. Academic
Press, 2nd edition, 1999.

[10] S. G. Mallat. A theory for multiresolution signal
decomposition: The wavelet representation. /[EEE
Transactions on Pattern Analysis and Machine Intelligence,
11(7), July 1989.

[11] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou,
Y. Tao, and D. W. L. Cheung. Mining, indexing, and
querying historical spatiotemporal data. In Conference on
Knowledge Discovery in Data, 2004.

[12] Y. Morimoto. Mining frequent neighboring class sets in
spatial databases. In Conference on Knowledge Discovery in
Data, 2001.

[13] A. Oppenheim. Signals and Systems. Barnes and Noble,
1996.

[14] J. Pei. Prefixspan: Mining sequential patterns efficiently by
prefix-projected pattern growth. In Proceedings of ICDE
2001, 2001.

[15] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M. Hsu. Prefixspan: Mining sequential
patterns efficiently by prefix-projected pattern growth. In
Proc. Int. Conf. on Data Engineering (ICDE’01), 2001.

[16] G. Sheikholeslami, S. Chatterjee, and A. Zhang.
Wavecluster: A multi-resolution clustering approach for very
large spatial databases. In Proceedings of the 24th
International Conference on Very Large Databases, 1998.

[17] R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In
Proceedings of the 5th International Conference Extending
Database Technology, 1996.

[18] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and
E. Keogh. Indexing multi-dimensional time-series with
support for multiple distance measures. In SIGKDD’03,
2003.

[19] J. Wang, W. Hsu, and M. L. Lee. A framework for mining
topological patterns in spatio-temporal databases. In
Conference on Information and Knowledge Management,
2005.

[20] X. Xiong, M. F. Mokbel, and W. G. Aref. Processing of
continuous k-nearest neighbor queries in spatio-temporal
databases. In Proceedings of the International Conference of
Data Engineering, 2005.

[21] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest
neighbor queries over moving objects. In Proc. of ICDE,
2005.

