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ABSTRACT

Density-based clustering algorithms often have a solid math-
ematical basis. A challenge involved in applying density-
based clustering to categorical data sets is that the ‘cube’ of
attribute values has no ordering defined. In this paper we
propose the CEED framework for clustering categorical data
based on its empirical probability distribution. CEED offers
a basis for designing categorical clustering algorithms that
balance the tradeoff of accuracy and speed. The advantages
of CEED are: (i) it offers a probabilistic basis for clustering
categorical data, (i7) it minimizes the user-specified input
parameters, (i#i) it is insensitive to the order of the input
objects, (iv) it can discover clusters of arbitrary shapes and
sizes. We present a faster approximation of CEED called
the MULIC algorithm, which is designed for categorical data
sets with a multi-layered structure. We evaluate CEED and
MULIC on various data sets, including protein interaction
data. CEED produces more accurate results than other al-
gorithms on small-dimensional data sets. MULIC can find
the multi-layered structure of special data sets such as pro-
tein interaction data better than other algorithms and has
comparable runtimes.
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1. INTRODUCTION

A growing number of clustering algorithms for categorical
data have been proposed in recent years, along with interest-
ing applications such as partitioning large software systems
and protein interaction data [3, 7, 14]. In the past, poly-
nomial time approximation algorithms have been designed
for NP-hard partitioning algorithms [10]. Moreover, it has
recently been shown that the “curse of dimensionality” in-
volving efficient searches for approximate nearest neighbors
in a metric space can be dealt with, if and only if, we as-
sume a bounded dimensionality [13, 22]. Clearly, there are
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tradeoffs of efficiency and approximation involved in the de-
sign of categorical clustering algorithms. A framework for
clustering categorical data would be a basis for algorithms
that approximate the framework. This would allow design-
ing and comparing categorical clustering algorithms on a
more formal basis.

A categorical data set with m attributes is viewed as an m-
dimensional ‘cube’, offering an empirical distribution basis
for density-based clustering. A cell of the cube is mapped to
the number of objects having values equal to its coordinates.
Clusters in such a cube are regarded as subspaces in which
the objects are dense and are separated by subspaces of low
object density. Clustering the cube poses several challenges:

(7) Since there is no ordering of attributes or values, the
cube cells have no ordering either. The search for dense
subspaces could have to consider several orderings of the
cube’s dimensions to identify the best clustering.

(#1) The density of a subspace is often defined relative to
a user-specified value such as a radius. However, different
radii are preferable for different subspaces of the cube [4]. In
dense subspaces where no information should be missed, the
search is more accurately done ‘cell by cell’ with a low radius
of 1. In sparse subspaces a higher radius may be preferable
to aggregate information. The cube search could start from
a low radius and gradually move to higher radii.

We present the CEED framework for clustering categorical
data that addresses the above challenges. CEED clusters the
m-dimensional cube representing the empirical distribution
of a set of objects with m categorical attributes. To find its
dense subspaces, CEED considers an object’s neighbors to
be all objects that are within a radius of mazimum dissim-
ilarity. Objects’ neighborhoods are insensitive to attribute
or value ordering. Clusters start from the most dense sub-
spaces of the cube. Clusters expand outwards from a dense
subspace, by connecting nearby dense subspaces. Figure 1
shows simple examples of creating and expanding clusters in
a 3-dimensional data set. The radius specifies the maximum
number of dimensions by which neighbors can differ. CEED
can discover clusters of arbitrary shapes and sizes.

CEED offers a framework for categorical clustering, rather
than an algorithmic solution. There is often a tradeoff be-
tween clustering accuracy and time efficiency. Many cluster-
ing problems are NP-complete [10, 22]. The time require-
ment forbids an exhaustive search of all possible clusters and



Figure 1: Clustering examples. The cube has
no ordering. Cells in a cluster are shown near
one another for illustration clarity. A cluster is
a dense subspace with a ‘central’ cell marked
with a dot. (a) radius=1, two new clusters. (b)
radius=1, clusters expand. (c) radius=2, clus-
ters expand. (d) radius=2, one new cluster.

assignments of objects to find the clustering that gives the
best value for some quality metric. Clustering algorithms
are often approximations to some ideal solution.

We present the MULIC algorithm as a faster approxima-
tion of CEED. MULIC is motivated by clustering of cate-
gorical data sets that have a multi-layered structure. For
instance, in protein interaction data a cluster often has a
center of very similar proteins surrounded by peripheries of
less similar proteins [5, 8]. On such data, MULIC’s accuracy
outperforms other algorithms that create a flat clustering.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 presents the CEED frame-
work. Section 4 describes the MULIC clustering algorithm
and its relation to CEED. Sections 5 and 6 discuss the ex-
periments and protein interaction data results. Section 7
discusses the runtimes. Section 8 concludes the paper.

2. RELATED WORK

Section 2.1 provides an overview of density-based clustering
algorithms for categorical and numerical data. Sections 2.2-
2.3 describe several more categorical clustering algorithms.

2.1 Density-based Clustering

Density-based clustering approaches use a local density cri-
terion. Clusters are subspaces in which the objects are dense
and are separated by subspaces of low density. Advantages
of many of these algorithms include time efficiency and abil-

ity to find clusters of arbitrary shapes. Some of these algo-
rithms take a large number of input parameters. Some can
not always identify clusters of very different densities. In
some of these algorithms the central subspace of a cluster
can not always be distinguished from the rest of the cluster
based on a higher density [7, 14, 32]. Our approach deals
with these cases since a central subspace often has a higher
density and the radius relaxes gradually. Density-based al-
gorithms for categorical data include CACTUS [11], COOL-
CAT [6], CLICK [32], ROCK [15], CLOPE [31], STIRR [12].

CACTUS assumes the existence of a minimum size of the
distinguishing attribute value sets that uniquely occur within
one cluster. The distinguishing sets in CACTUS rely on the
assumption that a cluster is uniquely identified by a core
set of attribute values that seldomly occur in other clusters.
While this assumption may hold true for many real world
datasets, it may be unnatural for clustering [32]. CACTUS
has difficulty finding clusters within clusters or subspace
clusters [13]. The distinguishing sets are extended to candi-
date cluster projections, which are used to generate cluster
candidates of higher dimensionality. Too many candidate
cluster projections may result in too many clusters.

COOLCAT is an entropy-based algorithm for categorical
clustering. COOLCAT first identifies a set of k initial max-
imally dissimilar points from the data set to create initial
clusters. Clusters are created by “cooling” them down, i.e.,
reducing their entropy. All remaining tuples of the data set
are placed in one of the clusters such that, at each step, the
increase in the entropy of the resulting clustering is mini-
mized. Naturally, this approach is highly dependent on the
order of selection [7, 14].

CLICK creates a graph representation of a data set. Ver-
tices are categorical values and an edge is a co-occurrence of
values in an object. A cluster is a k-partite clique such that
most pairs of vertices are connected by an edge. CLICK
may return too many clusters or too many outliers [7, 14].

ROCK is an adaptation of an agglomerative hierarchical
clustering algorithm for categorical data. It does not re-
quire the user to specify the number of clusters. ROCK
assumes a similarity measure between tuples and defines a
“link” between two tuples whose similarity exceeds a thresh-
old w. Initially, each tuple is assigned to a separate cluster
and then clusters are merged repeatedly according to the
closeness between clusters. The closeness between clusters
is defined as the sum of the number of “links” between all
pairs of tuples, where the number of “links” represents the
number of common neighbors between two clusters. The al-
gorithm exhibits cubic complexity in the number of objects,
which makes it unsuitable for large data sets [7, 14, 32].

CLOPE is a clustering algorithm for categorical and trans-
actional data. CLOPE uses a heuristic method of increasing
the height-to-width ratio of the cluster histogram. Its ad-
vantages include fast performance and scalability to large
data sets with high dimensions. Its main disadvantage is
that the accuracy of the results often suffers [7, 14].

STIRR is an iterative algorithm. STIRR applies a linear
dynamical system over multiple copies of a hypergraph of



weighted attribute values, until a fixed point is reached.
STIRR is sensitive to the input ordering and lacks a def-
inite convergence. STIRR looks for relationships between
all attribute values in a cluster. It is not designed to dis-
tinguish the center of a cluster based on higher density or
a subset of the attribute values. The notion of weights is
non-intuitive and several operators are left to the user to
define. The final detected clusters are often incomplete [32].

Density-based clustering algorithms for numerical data in-
clude DBSCAN [9], OPTICS [4], DENCLUE [17], CLIQUE
[1], WaveCluster [28]. Some density-based approaches such
as DENCLUE, CLIQUE, Wave-Cluster are also grid-based,
meaning that a histogram is constructed by partitioning the
data space into a number of non-overlapping regions. Re-
gions with relatively many objects are cluster centers. The
size of the regions often must be specified by the user in this
approach and it affects the success of the result.

In DBSCAN for each point of a cluster the neighborhood
of a given radius (e) has to contain at least a minimum
number of points (MinPts) where € and MinPts are input
parameters. OPTICS finds an ordering of the data which
is consistent with DBSCAN. OPTICS covers a spectrum of
all different ¢ < e. Both DBSCAN and OPTICS require a
number of parameters to be specified by the user which will
affect the quality of the result. However, OPTICS considers
that different parts of the data space could require different
parameters. DBSCAN and OPTICS have difficulty identi-
fying clusters within clusters [13].

DENCLUE differs from previous approaches in that it pins
density to a point in the attribute space instead of an object.
It manages information about regions that contain objects
in a tree-based access structure. Although DENCLUE has
a large number of input parameters, it is very efficient with
a complexity of O(NV).

CLIQUE is grid-based and assumes that points lie in vector
space. It partitions the space into non-overlapping rectangu-
lar units and identifies the dense units. Then, it intersects
dense units to form a search space of higher dimensional-
ity. CLIQUE detects subspaces of the highest dimensional-
ity such that high-density clusters exist in those subspaces.
Its input parameters are the grid size and a global den-
sity threshold for clusters. CLIQUE considers only hyper-
rectangular clusters and projections parallel to the axes [13].

WaveCluster is a multiresolution clustering algorithm that
uses the Wavelet transform to transform the original data
and find dense regions in the transformed space. The Wavelet
transform is useful because it has the ability to suppress
weaker information, effectively being a good method for
noise removal. This results in two main benefits: since we
are dealing with less information, we can speed up the min-
ing process and it is easier to detect clusters at varying levels
of accuracy. WaveCluster is fast with a time complexity of
O(N). However, it is only applicable to low-dimensional
data [7, 14, 13]. Its input parameters are the number of grid
cells for each dimension, the wavelet to use and the number
of applications of the Wavelet transform.

2.2 k-Modes Categorical Clustering

The k-Modes categorical clustering algorithm requires the
user to specify the number of clusters as an input parameter.
The algorithm builds and refines the specified number of
clusters [18]. K-Modes assigns a mode to each cluster as
a summary of the cluster’s most frequent attribute values.
The mode of cluster c is a vector pe = {fte1, - , ftem } Where
Lei 1S the most frequent value for the ith attribute in c.

A dissimilarity metric is used to choose the nearest cluster
to an object, by computing the dissimilarity between the
cluster’s mode and the object. Let 0 = {01,--- ,0m} be an
object where 0;, 7 = 1---m, is the ith attribute’s value. The
dissimilarity between o and p. is defined as:

dist(o, pc) = Zé(oi, tei) where 6(04, pei) =

i=1

1, if 04 7é Mei
07 lf 0i = [ei

2.3 AutoClass and LIMBO

AutoClass is a clustering algorithm for categorical and nu-
merical data [29]. It does not require the user to specify
the number of clusters. AutoClass uses a Bayesian method
for determining the optimal classes. AutoClass takes a prior
distribution for each attribute in each cluster, symbolizing
the prior beliefs of the user. It changes the classifications of
objects in clusters and changes the means and variances of
the distributions, until the means and variances stabilize.

LIMBO is a hierarchical categorical clustering algorithm
that builds on the Information Bottleneck (IB) framework
for quantifying the relevant information preserved when clus-
tering [3]. LIMBO uses the IB framework to define a dis-
tance measure for categorical tuples. LIMBO handles large
data sets, using a memory bounded summary for the data.

3. THE CEED CLUSTERING FRAMEWORK

The CEED framework consists of a clustering process for
categorical data, based on its empirical probability distribu-
tion. We begin with section 3.1 defining the basic concepts.
We proceed with section 3.2 describing CEED. Section 3.3
discusses the advantages and drawbacks of CEED.

3.1 Basics

We are given a data set of objects S (which might con-
tain duplicates) with m categorical attributes, X1, --- , Xpm.
Each attribute X; has a domain D; with a finite number
of d; possible values. The empirical distribution S™ in-
cludes the collection of possibilities defined by the cross-
product (or cartesian product) of the domains, D1 X---X Dy,.
This can also be viewed as an m-dimensional ‘cube’ with
[T, di cells (positions). A cell of the cube represents the
unique logical intersection in a cube of one member from
every dimension in the cube. The function A\ maps a cell
x = (T1, - ,Zm) € S™ to the nonnegative number of ob-
jects in S with all m attribute values equal to (1, -+ ,Tm):

Xi{(z1, - ,xm) €S™} — N.

We define the CEED hyper-cube C(xo,7) C S™, centered at
cell xo with radius r, as follows:

C(xo0,7) = {x:x € S™ and dist(x,%x0) < r and A\(x) > 0}.
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Figure 2: Two CEED ‘hyper-
cubes’ in a 3D cube, for r=1.

The dist(-) is a distance function. The Hamming distance
is defined as follows:

HD(x,y) = 25(%7%) where (zi,yi) =

i=1

17 ifxi ;éyl
0, ifx;=1wy;

Figure 2 illustrates two CEED hyper-cubes in a 3-dimensional
cube. Since r=1, the hyper-cubes are visualized like ‘crosses’
in 3D and are not shown as actually having a cubic shape.
A hyper-cube excludes cells for which A returns 0. A hyper-
cube can not equal S™, unless r = m and Vx € S™ A(x) > 0.
Normally only a subset of S™ will belong in a hyper-cube.

The density of hyper-cube C'(xo,7) C S™ involves the sum
of function A evaluated over all of the hyper-cube’s cells:

Ae)
2 S|

ceC(xq,r)

density(C(xo0,7)) =

This probability density is the likelihood that the hyper-
cube contains a random object from S. CEED seeks the
most dense hyper-cube C(xq,7) C S™. This is the hyper-
cube centered at xo which has the maximum likelihood of
containing a random object from S. The cell xo is a member
of the set {x € S™ : Max(P(Q2 € C(x,7)))}, where Q is a
discrete random variable that assumes a value from set S.

The distance between two clusters G; and G is the distance
between the nearest pair of their objects, defined as:

Distance(Gi, Gj) = Min{dist(x,y) :x € Gs andy € G;}.

Clusters G; and G are directly connected relative to r if
D(G;, G;) <r. Clusters A and B are connected relative to r
if: A and B are directly connected relative to r, or if: there
is a chain of clusters C1,Cs, -+ ,Cpn, A =Ci and B = C,,
such that C; and C;4+1 are directly connected relative to r
for all 1 <i < n.

3.2 The CEED Clustering Process

Figure 3 shows the CEED clustering process. The radius
r’s default initial value is 1. Gy represents the kth cluster
formed. The remainder set, R = {x : x € S™ and x ¢
Gi,i =1,---  k}, is the collection of unclustered cells after
the formation of k clusters.

Input: empirical probability distribution S™.
Output: a hierarchy of clusters.

Method:
r=1. //radius of hyper-cubes
R=5". //set of unclustered cells
k=0 //number of leaf clusters

kr = 0. //number of clusters at level r
//kth cluster
//set of hyper-cube centers

Step 1:Find xo € R such that
density(C(xo,1)) = max, density(C(Xw,T))-

If density(C(xo,7)) < |_L1€\7 then
(1) r=r+1.
(2) If kr—1 > 1, then
(3) Merge clusters that are connected relative to r.
(4) kr = #merged + #unmerged clusters.
(5) Repeat Step 1.

Step 2: Set xc = x0, k =k + 1, Gx = C(xe, 1),
R=R—-C(Xc,r) and U = U U {xc}.

Step 3: Examine C'(xc,r) and find a point x* such that
x* € C(xe,r) and x* ¢ U and

density(C(x*,r)) = 7rp(ax )density(C’(xw,r))
xw €T (xc,7,

where T'(Xc, 7, R) = {x : x € C(Xc,7) and x ¢ U}.

Step 4: If density(C(x*,r)) > ‘—é‘, then
Update current cluster G: Gy = G U C(x*, 7).
Update R: R =R — C(x",r).
Update U: U =U U {x*}.
Re-set the new center: xe = x*.
Go to Step 3.
Otherwise, move to the next step.

Step 5: Set kr = kr + 1.
If k. > 1, then execute lines (3) — (4).
If r < m and density(R) > 0, then go to Step 1.

Step 6: While r < m, execute lines (1) — (4).

Figure 3: The CEED clustering framework.

Step 1 retrieves the most dense hyper-cube C' C S™ of
radius 7. Step 1 checks that the most dense hyper-cube
represents more than one object (density(C(xo,7)) > ﬁ),
since otherwise the cluster will not expand, ending up with
one object. If the hyper-cube represents zero or one object,
then 7 is incremented. Step 2 creates a new cluster. Starting
from an existing cluster, step & tries to move to the most
dense hyper-cube of radius r nearby. If a dense hyper-cube
is found near the cluster, then in step 4 the cluster expands
by collecting the hyper-cube’s cells. This is repeated for a
cluster until no such connection can be made.

Objects are clustered until r = m, or R represents zero
objects (step ). For most data sets, most objects are likely
to be clustered long before » = m.

Initially » = 1 by default, since most data sets contain sub-
sets of similar objects. Such subsets are used to initially
identify dense hyper-cubes. When r is incremented, a spe-
cial process merges clusters that are connected relative to r.



Figure 4: A link (circle) represents
two or more merged clusters.

Although the initial 7 = 1 value may result in many clusters,
similar clusters are merged gradually. The merging process
considers previously merged clusters as one cluster. As Fig-
ure 4 shows, a merge is represented as a link at level r be-
tween two or more clusters or links. This process gradually
constructs one or more cluster tree structures, resembling
hierarchical clustering [20]. The user specifies a cut-off level
(e.g. 7 = 3) to cut the tree(s); then, links at levels lower
than the cut-off level are extracted as merged clusters. The
cut-off level could be set based on Mojena’s rule [26]. Step
5 checks if a newly formed cluster is connected to another
cluster relative to r and if so links them at level r. Step 6
continues linking existing clusters into a tree, until » = m.
By allowing r to reach m, a whole tree is built. At the top of
the tree, there is a single cluster containing all the objects.

3.3 CEED Discussion

CEED can often distinguish the central hyper-cube of a clus-
ter from the rest of the cluster because of its higher density.
The radius relaxes progressively, implying that CEED can
find clusters of different densities. An optional CEED fea-
ture is to identify as outliers any objects clustered after r
exceeds some user-specified threshold in steps 1-5.

It is costly to cluster high-dimensional data sets with the
CEED process. A computing of hyper-cubes is costly, al-
though several effective indexation schemes exist. The CEED
search of a cube in memory could rely on R*-tree indexa-
tion or R*-tree indexation, meaning O(log(N)) rather than

O(N) fetches per search [16, 23, 27]. Identifying the dense
hyper-cubes in a cluster may require testing possi-

bilities. Finally, manipulating a cube in memory is costly
with the limited capacity of modern computers.

4. MULIC AS AN APPROXIMATION OF CEED

MULIC stands for multiple layer clustering of categorical
data. MULIC is an approximation of CEED. MULIC bal-
ances clustering accuracy with time efficiency. The MULIC
algorithm is motivated by data sets the cluster structure of
which can be visualized as shown in Figure 5. In such data
sets a cluster often has a center of objects that are very sim-
ilar to one another, along with peripheral objects that are
less similar to the central objects. Such data sets include
protein interaction data, large software systems and others
[5, 8, 21]. Users in these domains often value clustering
accuracy more than speed.

MULIC does not store the cube in memory and makes sim-
plifications to decrease the runtime. A MULIC cluster starts
from a dense area and expands outwards via a radius repre-
sented by the ¢ variable. When MULIC expands a cluster it

Figure 5: A cluster has
a center surrounded by
peripheral areas.

does not search all member objects as CEED does. Instead,
it uses a mode that summarizes a cluster’s content. MULIC
produces layered clusters, does not require the user to spec-
ify the number of clusters and can identify outliers. Section
4.1 describes MULIC and 4.2 compares MULIC with CEED.

4.1 The MULIC Clustering Algorithm

Each MULIC cluster has a mode associated with it [18].
Assuming that the objects in the data set are described by m
categorical attributes, the mode of cluster ¢ is a vector p. =
{fte1s*+ , flem } Where pic; is the most frequent value for the
ith attribute in the given cluster ¢. The MULIC clustering
algorithm ensures that when an object o is clustered it is
inserted into the cluster ¢ with the least dissimilar mode
pe. The default dissimilarity metric between o and p. is the
Hamming distance presented in Section 3.1.

Figure 6 shows the main part of the MULIC clustering al-
gorithm. The algorithm stores objects in S. An optional
preprocessing step, described in [2], orders the objects by
frequency of their attribute values such that the modes will
likely contain the most frequent values. The first object is
inserted into a new cluster, the object becomes the mode of
the cluster and the object is removed from S. Then, it con-
tinues iterating over all objects that have not been assigned
to clusters yet, to find the nearest cluster. In all iterations,
the nearest cluster for each unclassified object is the clus-
ter with the least dissimilarity between the cluster’s mode
and the object, as computed by the dissimilarity metric. A
cluster’s mode is updated through the process to reflect the
most frequent values over all objects in the cluster. A mode
can be viewed as moving to the ‘center’ of the cluster.

The variable ¢ is motivated by the r radius of CEED. It
specifies that only objects within a dissimilarity distance of
¢ from the nearest cluster’s mode are allowed to be inserted
in the cluster. Thus, the variable ¢ in combination with the
mode of a cluster are used for selecting the subspaces of the
m-dimensional cube that will join a cluster. If the number of
different values between the object and the nearest cluster’s
mode is greater than ¢ then the object is inserted in a new
cluster on its own, since the object is outside distance ¢ of
the mode; else, the object is inserted in the nearest cluster
and the mode is updated. Initially ¢ equals 1, meaning that
the dissimilarity has to be very small between an object and



Input: a set S of objects.
Parameters: (1) d¢ : the increment for ¢.

(2) threshold for ¢ : the maximum number

of values that can differ between an
object and the mode of its cluster.
Default parameter values: (1) ¢ = 1.
(2) threshold = the number of
categorical attributes m.
Output: a set of clusters.
Method:

1. Insert the first object into a new cluster, use the
object as the mode of the cluster, and remove the
object from S.

2. Initialize ¢ to 1.

3. Loop through the following until S is empty or
¢ is greater than the specified threshold

a. For each object 0 in S

i. Find 0’s nearest cluster ¢ by using the
dissimilarity metric to compare o with
the modes of all existing cluster(s).

1. If the number of different values
between o and ¢’s mode is larger than ¢,
insert o into a new cluster

#ii. Otherwise, insert o into ¢ and update
c’s mode.

iv. Remove object o from S.

b. For each cluster ¢, if there is only one object
in ¢, remove ¢ and put the object back in S.
c. If in this iteration no objects were inserted in
a cluster with size > 1, increment ¢ by d¢.

Figure 6: The MULIC clustering algorithm.

the nearest cluster’s mode and only neighbors of a mode are
allowed to join its cluster.

Similar to the way CEED seeks dense hyper-cubes, MULIC
seeks at least two objects that are within a dissimilarity
distance of ¢ from each other. The clusters that persist
through the process are only those containing at least two
objects. Objects assigned to clusters of size greater than one
are removed from the set S, therefore those objects will not
be re-clustered. Clusters of size one are removed at the end
of each iteration, therefore their objects will be re-clustered.
This is motivated by CEED’s hyper-cube density criterion.

At the end of each iteration, if no objects have been inserted
in clusters of size greater than one, then the variable ¢ is
incremented by d¢. Thus, at the next iteration the criterion
for inserting objects in clusters will be more flexible. This is
motivated by CEED’s expanding clusters and increasing r.

MULIC can create new clusters at any value of ¢, just like
CEED can create new clusters at any value of r. Figure 7 il-
lustrates what the results of MULIC look like, showing that
cluster 3 is created when ¢ = 2. Each cluster consists of
‘layers’ of objects. The layer in which an object is inserted
depends on the value of ¢. The layer of an object reflects
the object’s dissimilarity to the mode when the object was
assigned to the cluster. MULIC starts by inserting as many
objects as possible in top layers - such as layer 1 - and then
moves to lower layers, creating them as ¢ increases. Low
layers correspond to high values of ¢ and their objects have
a high dissimilarity to the cluster mode. This implies that
objects in lower layer tend to be more dissimilar to the ob-

cluster 2 cluster 3

cluster 1

layer 1 @
layer 2 @

Figure 7: A MULIC cluster consists of one
or more layers representing dissimilarities be-
tween the objects and mode. Ovals represent
layers and circles represent objects.

layer 3

layer 4

jects in top layers. This is consistent with the multi-layered
structure of the data sets MULIC is designed for.

MULIC can eventually classify all objects in clusters, since
¢ can continue increasing until it equals the number of at-
tributes m. Alternatively, setting an upper threshold for ¢
allows outliers to be detected.

4.1.1 Merging of clusters

Sometimes the dissimilarity of the top layers of two clusters
is less than the dissimilarity of the top and bottom layers of
one of the two clusters. To avoid this, after the clustering
process MULIC can merge pairs of clusters whose top layers’
modes’ dissimilarity is less than the maximum layer depth
of the two clusters. For this purpose, MULIC preserves the
modes of the top layers of all clusters. This process, de-
scribed in Figure 8, reduces the total number of clusters
and may improve the quality of the results.

for (¢ = first cluster to last cluster)
for (d = ¢+ 1 to last cluster)
if the dissimilarity between ¢’s mode and d’s mode
is less than the maximum layer depth of ¢ and
d, merge c into d and break the inner loop;
The dissimilarity between two modes (pec = {fte1, -+ s fiem }
and pg = {pa1,- - , am}) is defined as:
dissimilarity(pie, pra) = 3272, 6(Kei, fai)
1, if prei # pas

where 0(pici, pai) = 0, if frei = pras
y ci — Hdi

Figure 8: Merging clusters.

4.2 MULIC Discussion

MULIC is an approximation of CEED. The tradeoffs be-

tween accuracy and time efficiency are described as follows:
() When creating a cluster, CEED searches the cube to

retrieve the most dense hyper-cube relative to r representing

two or more objects, which is costly. MULIC creates a clus-

ter if two or more objects are found within a dissimilarity



distance of ¢ from each other, likely indicating a dense sub-
space. Clusters of size one are filtered out. MULIC’s ¢ vari-
able is motivated by CEED’s radius r. The initial objects
clustered with MULIC affect the modes and the clustering.
For this issue we proposed in [2] to order the objects by fre-
quency of their attribute values in a preprocessing step.

(41) When expanding a cluster CEED searches the mem-
ber cells to find dense hyper-cubes relative to r, which is
costly. MULIC instead uses a ‘mode’ as a summary of a
cluster’s content and only clusters objects within a distance
of ¢. MULIC increases ¢ by d¢ when no new objects can
be clustered, which is motivated by CEED’s increasing 7.
MULIC can create new clusters at any value of ¢, just like
CEED can create new clusters at any value of . Although
MULIC can find clusters of arbitrary shapes by increasing
¢, it loses some of CEED’s ability in this realm.

(#13) MULIC’s cluster merging is motivated by CEED’s
merging. Even though this process does not organize clus-
ters in a tree like CEED does, it could be modified to do
so. A tree could be constructed by merging pairs of clusters
in increasing order of their dissimilarity. We chose not to
construct a tree since we preferred the clusters to have a
clear separation and not to have to specify a tree cut-off for
MULIC applications, like the one discussed in section 6.

5. PERFORMANCE EVALUATION

In order to evaluate the applicability of CEED and MULIC
to the clustering problem, first we use the categorical data
sets described in Table 1 obtained from the UCI Repository
of Machine Learning [24]. Objects have class labels defined
based on some domain knowledge. We ignore class labels
during clustering. We compare the CEED and MULIC re-
sults to those of k-Modes [18], ROCK [15] and AutoClass
[29]. To evaluate the clustering quality we use HA In-
dezes [19] and an Entropy-based metric. HA Indexes is a
class-label-based evaluation, which penalizes clustering re-
sults with more or fewer clusters than the defined number
of classes. Since the class labels may or may not be consis-
tent with the clustering structure and dissimilarity measure
used, we also use the Entropy-based metric [14]. This pe-
nalizes non-uniformity of attribute values in a cluster. In
this section we only discuss the results for zoo and soybean-
data. We give the full set of results in [2], along with com-
parisons to more clustering algorithms such as CLOPE. We
only present the best results in this paper because of space
limitations. The MULIC value of §¢ is 1, threshold equals
the number of attributes m and clusters are not merged.

Data Set Objects| Attribs | Classes
Soybean-small 47 35 4

Zoo 101 16 7
Soybean-data 307 35 19
Soybean-test 376 35 20
Congressional Vote 435 16 2
Balance Scale 625 4 3
Contraceptive Method 1,473 10 2
Mushroom 8,124 22 2

Table 1: The categorical test data sets.

For zoo we implement the CEED process described in Sec-
tion 3. CEED clusters the zoo cube starting from r = 1,
i.e., a cell by cell cube search. For zoo we cut off CEED’s

tree of merged clusters at level r = 1, since zoo is a rather
dense cube with many nonzero cells and we do not want to
aggregate information in the cube. For soybean-data we cut
off CEED’s tree of merged clusters at level = 9. Soybean-
data is a sparse cube of mostly ‘0’ cells, since the data set
has 35 dimensions but only 307 objects. We do not store the
entire soybean-data cube in memory, but just the 307 ob-
jects, since the cube is too large to fit in memory. Moreover,
it would be too slow to search the soybean-data cube.

We apply each clustering algorithm on 10 random orderings
of the objects of each data set and we report the average
result. For the k-Modes and ROCK experiments, we set the
number of clusters k£ to the number of classes in the data
set, as well as to larger numbers, and we use the k value
giving the best results. For example, for the mushroom
data set we try k values between 2 and 1500. For k-Modes,
we set the convergence threshold to 0 and we set the modes
of the initial clusters equal to the first objects clustered.
For ROCK, we set the § parameter to values ranging from
0.05 to 0.9. For AutoClass, we do not specify the number
of clusters as it considers varying numbers of clusters from
a minimum of 2; we set the prior distribution to the single
multinomial distribution, with no attributes ignored.

5.1 HA Indexes

Given a data set of objects S, suppose that:

e U represents the partition known or believed to be
present in S.

e V is the clustering result by some algorithm.

e ¢ is the number of pairs of objects that are placed in
the same class in U and in the same cluster in V.

e b is the number of pairs of objects in the same class in
U but not in the same cluster in V.

e c is the number of pairs of objects in the same cluster
in V' but not in the same class in U.

e d is the number of pairs of objects in different classes
and different clusters in both U and V.

Then, Hubert and Arabie [19] define: HA Index = —%+4

a+b+c+d”
Z0O0 soybean-data
Tool HAI. Tk sec HAI. Tk sec
CEED 95% 7 0.002 | 90.5% | 22 0.05
MULIC 92.5% | 11 0 88.1% | 38 0.05

k-Modes | 92.3% | 10 0.005 | 84.6%| 25 0.03

ROCK 85.5%| 10 0.008 | 70.2%| 25 0.04

AutoClass 89% 6 0.04 71.6%| 7 0.13

Table 2: HA Indexes - higher is better.

5.2 Entropy-based Metric

Given N objects, m attributes and k clusters, n; is the size
of cluster ¢;, 1 < i < k, and D; is the domain or set of
possible values of the jth attribute, 1 < 7 < m. Then, the
entropy-based metric is defined as:

Yo (ni x H(ei)
N

Entropy of the partition =

where H(¢;) = —Z Z P(cij = v) X logP(cij = v).

j=1lveD;



Z0O soybean-data

Tool Entr. Tk sec Entr. Tk sec
CEED 2.7 7 0.002 | 11.6 22 0.05
MULIC 2.5 11 0 11.1 38 0.05

k-Modes | 3.5 10 0.005 | 16.12 | 25 0.03
ROCK 3.8 10 0.008 | 19.5 25 0.04
AutoClass| 3.6 6 0.04 18.6 7 0.13

Table 3: Entropy measures - lower is better.

Tables 2 and 3 show that CEED on small-dimensional data
produces results of high quality. Even though all algorithms
produce good results on zoo, CEED has better HA Indexes
and Entropy. CEED’s number of clusters on zoo and soybean-
data is close to the class-label-based number of classes. MULIC
without merging produces many clusters for these data sets.
MULIC has good entropy measures and HA Indexes because
the attribute values are quite uniform in clusters. It is inter-
esting how MULIC finds subclusters of very similar animals.
For example, the animals ‘porpoise’, ‘dolphin’, ‘sealion’ and
‘seal’ are clustered together in one MULIC cluster.

6. EVALUATION ON PROTEIN INTERAC-
TION DATA

MULIC is useful for finding complexes in protein interaction
data (PID). A complex is a group of proteins that interact
at the same time. MULIC differs from traditional k-Cores
partitioning of PIDs, which seeks high-degree subspaces [5].
MULIC instead creates layered clusters and seeks proteins
with similar interaction sets. As a result, MULIC can find
more complexes of varying sizes and shapes. We use the
yeast Saccharomyces cerevisiae PID originating from [30],
containing 988 proteins. We refer to this data set as Y 2%,
The MULIC value of §¢ is 3, threshold has its default value
(988) and clusters are merged.

protein 1---------- protein 988
protein 1 [ 0
protein 2 0 oot 1
protein3 | 1 --roooeeceeeeo 1

Figure 9: Cells representing
interactions between pro-
teins have values of ‘1’ or ‘0’.

Figure 9 shows the formulation of Y2X for our clustering
approach. PID data on an organism is categorical. The
objects (proteins) have categorical attribute values that are
taken from the set of discrete values (‘1°,°0’). These values
have no specified ordering. We represent Y2 as an N x N
symmetric square matrix A = (a;;), where N=988 is the
number of proteins in Y2, The rows and columns represent
proteins and a;; = 1 if there is a known interaction between
proteins ¢ and j and a;; = 0 otherwise.

The resulting MULIC clusters significantly overlap with many
known protein complexes derived from the MIPS yeast database
[25]. More than 50% of MULIC clusters match a known

MIPS complex. The matching criteria are that a cluster
should either have 60% of its proteins contained in a known
MIPS complex of a similar size, or have 90% of its proteins
contained in a known MIPS complex of a larger size. Table 4
shows a comparison of the MULIC results with the results
of the RNSC clustering algorithm [21]. The RNSC results
were evaluated using the same matching criteria as in our
MULIC evaluation. Even with our strict matching criteria,
our number of clusters that match a known MIPS complex
is higher and our cluster size is often larger. With MULIC
there is a cluster of 79 proteins matching the MIPS complex
“550.1.149” of size 88 proteins. Their overlap is 44 proteins.

Matching | Largest size of a cluster that
clusters matches a MIPS complex

MULIC| 45 MIPS complex “550.1.149” of size
88 matches MULIC cluster of size
79. Their overlap is 44 proteins.

RNSC | 23 MIPS complex of size 29 matches
RNSC cluster of size 17. Their over-
lap is 10 proteins.

k- 18 MIPS complex of size 20 matches k-

Modes Modes cluster of size 15. Their over-
lap is 10 proteins.

Auto- 10 MIPS complex of size 15 matches

Class AutoClass cluster of size 14. Their

overlap is 6 proteins.

Table 4: The number of Y?X clusters matching a
MIPS complex and the largest size of a cluster that
matches a MIPS complex, for several algorithms.

As another comparison, Bader and Hogue use k-Cores to
identify hubs of proteins of degree at least k. They generate
a set of 209 protein complexes, of which 54 match the MIPS
database in at least 20% of their proteins [5].

MULIC has characteristics specific to PID that allow it to
find unknown protein complexes. In PID, there are many
complexes of small sizes that have high internal connectivity,
where the connectivity is the number of interactions divided
by the number of proteins. For example, in the yeast pro-
teome of 6,000 proteins most complexes have sizes of 4-40
proteins. MULIC does not require for the number of clus-
ters to be specified - a new cluster is created when a set
of proteins is discovered that have highly overlapping in-
teraction sets. As the process continues MULIC relaxes its
criterion for assigning proteins to clusters, forming cluster
layers of lower connectivity. This is in accordance with a re-
cent study [8] in which protein complexes were discovered to
feature centers of highly co-expressed proteins which mostly
display the same deletion phenotype.

The multiple layer structure of the MULIC clusters reveals
several things about the structures of the predicted pro-
tein complexes that could not be identified with other algo-
rithms. In all of the derived MULIC clusters the top-layer
proteins (layer 0 and 1) have the highest connectivity to
the other protein members of the cluster. For clusters that
match known MIPS complexes, the proteins in the top layer
are often ‘central’ points of connectivity for the matched
complex and perhaps even the entire cell. In other words,
interactions occur with top-layer proteins more frequently
than other proteins in the complex. For example, the well-



studied FKS1p (YLR342W) and FKS2p (YGR032W) pro-
teins have a high connectivity to the other proteins in their
complex and were clustered in the top layers of MULIC clus-
ters. The drug caspofungin binds to FKS1p and FKS2p
to disturb the interactions of the glucan synthase complex.
Thus, a biologist could start by testing a new drug on the
proteins in top layers, instead of all proteins in the cluster.

Cluster Percentage of proteins that are contained
layers in the matched complex

1-4 75%

7-10 66%

13-19 40%

Table 5: Proteins in top layers of Y?X clusters
matching a known MIPS complex are more likely
to be contained in the matched complex.

The multiple layer structure of the derived MULIC clus-
ters can be useful in cases where few protein complexes are
known for an organism, such as fruitfly and worm. Lab
experiments can initially focus on the proteins clustered in
top layers. Later, proteins in lower cluster layers can guide
the lab experiments on finding protein complexes. Table 5
shows that for the Y'2¥ clusters that match a MIPS complex,
the proteins in top layers (1-4) are likely to be contained in
the matched complex. While the proteins in bottom layers
(7-19) are less likely to be contained in the matched com-
plex. This table was derived by averaging the percentage of
the proteins in various layers of matching clusters that are
contained in the matched complex.

7. RUNTIME EVALUATION

This Section discusses the MULIC runtimes. The exper-
iments were performed on a Sun Ultra 60 with 256 MB
of memory and a 300 MHz processor. MULIC, k-Modes,
ROCK and AUTOCLASS are implemented in C/C++. The
reason for the low MULIC runtimes presented in this sec-
tion is that most objects are clustered in the initial iterations
when the top layers (e.g. 1-5) are created. For instance, for
the mushroom data set 5 iterations occurred. Thus, rela-
tively few comparisons between objects and modes are done
throughout the process. Section 7.1 compares the runtimes
of MULIC to other algorithms on data sets of various sizes.
Section 7.2 discusses the MULIC runtimes on larger data
sets, ranging from the 8124 x 22 mushroom data set to a
5323 x 5323 protein interaction data set.

7.1 Comparison with Other Algorithms

Table 6 compares the runtimes of MULIC, k-Modes [18],
ROCK [15] and AUTOCLASS [29]. The runtimes of MULIC
with d¢p=1 are better than ROCK and AUTOCLASS, but
comparable to k-Modes. Table 7 shows the runtimes of
MULIC with 6¢=3 on data sets varying from 47 to 8,124 ob-
jects. MULIC with §¢=3 runs slightly faster than k-Modes.

7.2 Larger Data Sets
7.2.1 Mushroom

Table 8 shows comparative runtimes for the 8124 x 22 mushroom

data set. MULIC with §d¢ = 1 took less time than other
algorithms. The misclassification rate of MULIC on the

Data set MULIC] EModes] ROCK | AutoClag
Soybean-smal | 0 0.005 0.008 0.04
Z.00 0 0.005 0.008 0.04
Soybean-data | 0.05 0.03 0.04 0.13
Soybean-test 0.06 0.04 0.055 0.12
Congr. Vote 0.01 0.03 0.1 0.27
Balance Scale | 0 0.02 0.15 0.83
Contraceptive | 0.14 0.16 2 1.97
Mushroom 1.37 3.1 5 1.23

Table 6: Runtimes in seconds of MULIC (d¢=1), k-
Modes, ROCK and AutoClass on various data sets.

Data set Objects] Attribs | Seconds
Soybean-small a7 35 0

Z.00 101 16 0
Soybean-data 307 35 0.03
Soybean-test 376 35 0.03
Congressional Vote 435 16 0.01
Balance Scale 625 4 0
Contraceptive Method 1,473 10 0.12
Mushroom 8,124 22 1.36

Table 7: Runtimes in seconds of MULIC (§¢=3).

mushroom data set was 0%, measured by averaging over
all clusters the percentage of objects with a minority class
label in the cluster. The misclassification rate of k-Modes on
the mushroom data set decreased as the number of clusters
increased. For k-Modes the best reported misclassification
rate of 0.02% was produced by setting the number of clusters
to 1500. However, many objects were placed separately in
clusters of size one, which did not happen with MULIC. Ini-
tially MULIC produced 1,674 clusters for mushroom. After
decreasing the number of clusters to 150 by merging, the
misclassification rate remained the same.

Algorithm

MULIC (with d¢=1)

WEKA Expectation Maximization
WEKA SimpleKMeans (k = 1500)
CobWeb

k-Modes (k =2 to 1500)
ROCK (k=2 to 1500)
AutoClass

Runtime

1.37 seconds

~ 3 minutes

Did not terminate
Did not terminate
3.1 seconds

5 seconds

1.23 seconds

Table 8: Runtimes on the mushroom data set.

7.2.2  Protein Interaction Data

Table 9 shows MULIC runtimes on PID sets of various sizes.
The most costly test run was on Y% which took seven
minutes. The runtimes of MULIC are comparable to those
of other algorithms, but MULIC can find more complexes
and the cluster structure is more interesting for analysis.

7.3 Computational Complexity

The best-case complexity of MULIC has a lower bound of
Q(mNEk) and its worst-case complexity has an upper bound
of O(mN?threshold) " Gften m << N, since in a categorical
data set the number of attributes m is usually smaller than
the number of objects N. The cost is related to the num-
ber of clusters k generated throughout the process. In most



PID | Proteins| Runtime

YK 988 10 seconds
y K 2617 30 seconds
y"8K 5323 ~ 7 minutes
K 4603 ~ 2 minutes
whK 3659 ~ 1 minute

Table 9: Runtimes of MULIC on PID sets.

of the runtimes we have presented, the number of clusters
k is smaller than the number of objects N and all objects
are clustered in the initial iterations, thus N often domi-
nates the cost. The worst-case runtime would occur for the
rather unusual data set where all objects were extremely
dissimilar to one another, such that the algorithm had to go
through all m iterations and all IV objects were clustered in
the last iteration when ¢ = m. In this case, at each iteration
while ¢ < m the number of comparisons between objects
and modes would be 3V i = w = O(N?) imply-
ing a quadratic runtime. Decreasing the value of threshold
or increasing the value of §¢ often improves the runtime.
Changing these parameters does not imply weakening the
clustering quality. Decreasing the value of threshold is use-
ful for detecting outliers. On some data sets, a value of
d¢ greater than 1 improves the clustering quality by allow-
ing the modes to change from one iteration to another [2].
The MULIC complexity is comparable to that of k-Modes
of O(mNkt), where t is the number of iterations [18].

8. CONCLUSION

We have presented the CEED framework for categorical
clustering. CEED produces good clustering quality on small-
dimensional data sets. CEED offers a probabilistic basis
for developing faster clustering algorithms. MULIC is an
approximation of CEED, designed for categorical data sets
that have a multi-layered structure. MULIC balances clus-
tering accuracy with time efficiency. It performs better than
traditional algorithms on special data sets and has compa-
rable runtimes. Besides protein interaction data, MULIC
is also applicable to clustering large software systems and
other categorical data. MULIC provides a good solution
for domains where clustering primarily supports long-term
strategic planning and decision making. The tradeoffs in-
volved in approximating CEED with MULIC point us to
the challenge of designing clustering algorithms that are ac-
curate, efficient and offer good solutions to the categorical
clustering problem. One direction worth pursuing as future
work is to design an approximation of CEED for fuzzy clus-
tering of categorical data sets, such that there is no sharp
boundary between clusters and objects have cluster mem-
bership degrees between zero and one. Another direction
worth pursuing is to develop a parallel implementation of
MULIC and CEED and apply it to very large data sets.
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