Multi-Layer Increasing Coherence Clustering of Autonomous

Systems with MULICsoft

Bill Andreopoulos
Aijun An

Xiaogang Wang

Technical Report CS-2005-07

April 2005

Department of Computer Science and Engineering

4700 Keele Street North York, Ontario M3J 1P3 Canada

Multi-Layer Increasing Coherence Clustering of
Autonomous Systems with MULICsoft

Bill Andreopoulos
Department of Computer
Science, York University,

Toronto, Ontario, Canada,
M3J 1P3

billa@cs.yorku.ca

ABSTRACT

Discovering the properties of the Internet topology is crucial
for the use, maintenance and optimization of the Internet. A
recent approach in the research community is to collect IP
path data from active probing of hosts and to map the IP paths
to known Autonomous System (AS) paths. We apply the
MULICsoft clustering algorithm to network data for ASs
forming the Internet backbones. MULICsoft is intended for
categorical data sets where each categorical attribute value
(CA) has a ‘weight’ in the range 0.0 to 1.0, indicating how
strongly the corresponding CA should influence the clustering
process. MULICsoft produces as many clusters as it can find
in the data set. Each cluster consists of layers formed
gradually through iterations, by reducing the similarity
criterion for inserting objects in layers of a cluster at different
iterations. The objects in the data are ASs and the CAs
represent links between ASs. The weights are inversely
related to the number of unknown IPs in an indirect link
between ASs. We introduce a novel significance metric for
identifying the most significant ASs in a cluster.
http://www.cs.yorku.ca/~billa/MULIC/

1. INTRODUCTION

Clustering aims to partition a set of objects into groups, so
that objects with similar characteristics are grouped together
and different groups contain objects with different
characteristics. A high quality clustering tool produces clusters
with high intra-class similarity and low inter-class similarity
[10-13]. Clustering is applied to Internet data to help
researchers identify prominent subgroups of the Internet map
and understand the structure of the Internet. Clustering
techniques employ certain types of Internet traffic data sets -
such as packets sent between network points - to identify
significant subgroups. A subgroup in an Internet data set
generally represents a set of network points that communicate
with similar sets of network points through sending and
receiving packets [3-6, 8, 15, 16]. Our objective is to partition
an Internet traffic data set into clusters, so that network points
sending and receiving packets to and from similar sets of
points are placed in the same cluster, while points in different
clusters send and receive packets to and from dissimilar sets of
points [3, 8, 15, 16].

We developed the MULICsoft categorical clustering tool,
which is based on the MULIC algorithm that is described in
[2]. We showed that MULIC clustering results are of higher
quality than those of other categorical clustering algorithms,
such as k-Modes, ROCK, AutoClass, CLOPE and others [2].
Characteristics of MULIC and MULICsoft include: a. The

Aijun An
Department of Computer
Science, York University,

Toronto, Ontario, Canada,

M3J 1P3

aan@cs.yorku.ca

Xiaogang Wang
Department of Mathematics and
Statistics, York University,
Toronto, Ontario,
Canada,M3J1P3

stevenw@mathstat.yorku.ca

algorithm does not sacrifice the coherence of the resulting
clusters for the number of clusters desired. Instead, it produces
as many clusters as there naturally exist in the data set. b. Each
cluster consists of layers formed gradually through iterations,
by reducing the similarity criterion for inserting objects in
layers of a cluster at different iterations.

Section 2 describes the AS network data set. Section 3 gives
an overview of previous related work in network data
clustering. Section 4 outlines the MULICsoft categorical
clustering algorithm and the extensions that we have built for
clustering network data. Section 5 describes the results.
Section 6 proposes a novel significance metric for the
clustering results. Section 7 concludes the paper.

2. DESCRIPTION OF DATA SETS

An AS is a collection of IP networks under control of a
single entity, typically an Internet service provider (ISP) or a
very large organization with redundant connections to the rest
of the Internet [S]. Because of the large size of the Internet,
researchers often restrict analysis of the Internet to the AS
level. We have applied the MULICsoft clustering algorithm to
the AS data set provided by the Cooperative Association for
Internet Data Analysis (CAIDA) [3-5, 15, 16]. This data set is
derived from IP addresses collected using a TCP utility called
traceroute that are mapped to ASs. The data reflects packets
that have traversed a path, representing links between ASs. We
chose this data as it is more likely to faithfully correspond to IP
topology than Border Gateway Protocol (BGP) data [5].

Each object in the data set corresponds to an AS. The CAs
represent the relationships or links between ASs (packets
passed from an AS to other ASs). The data set contains a large
number of ‘zeros’ with ‘ones’ occurring sparsely. There are
12,517 objects in the data set, corresponding to 12,517 ASs on
the Internet [S]. The AS data set contains:

Direct links between ASs: A direct link from source AS to
destination AS exists if an IP was found in the source AS’s
address space and it was directly followed by an IP in the
destination AS’s address space.

Indirect links between ASs: An indirect link from source
AS to destination AS exists if an [P was found in the source
AS’s address space, followed by a number of IPs with an
unknown prefix, ended by an IP in the destination AS’s
address space [5]. We use the number of unknown IP
addresses between source and destination ASs, k, to compute
the ‘weights’ on the categorical attribute values. The weights
are computed by evaluating 1/(k+1). Thus, a k value of 0
becomes a weight of 1.0, a k value of 1 becomes a weight of
0.5, a k value of 3 becomes a weight of 0.25 and so on.

LSl AS12517
51 | 10} e 0
852 0 {105}
L53 | L0333} {1,025}

Fig. 1 - The AS data set to be clustered. Each cell
representing a link has a value of {1, weight}.

We used categorical data for clustering by representing the
links between ASs as a matrix shown in Figure 1, where a
value of “one” in a cell represents a link between ASs and a
value of “zero” in a cell represents no link. We imposed
weights on the CAs of “one”, representing the number of
unknown [P addresses between ASs. We used a special
similarity formula described in Section 4.5.

3. RELATED WORK

Graph theory was applied by Faloutsos et al. [9] to AS
Internet data for discovering properties of the Internet
topology, such as power-laws that govern AS graphs. Chang
et al. [6] included additional data in the analysis to depart
from the power-law discovery in AS graphs. Vukadinovic et
al. [22] found that the Normalized Laplacian Spectrum (NLS)
of AS graphs is invariant regardless of the Internet’s
exponential growth. Mihail et al. [18] used eigenvectors
corresponding to the largest eigenvalues of the Laplacian
matrix to find AS clusters with certain characteristics, such as
geographic locations. Chen et al. [7] employed NLS and
applied it to AS data from CAIDA and from the Route Views
project to identify cluster characteristics.

Clustering methods have been applied to network data
analysis in Intrusion Detection Systems (IDSs), when the log
files of user behavior are too large for an expert to analyze
[24]. Clustering is applied to files with logged behavior of
users over time, to separate instances of normal activity from
instances of abusive or attack activity. Both unsupervised and
supervised clustering can be used.

Unsupervised clustering: When unsupervised clustering is
applied to IDSs’ data on which no prior knowledge exists, the
data is first clustered and then different clusters are labeled as
either ‘normal’ or ‘intrusions’ based on the size of the cluster.
Then, a new unclassified object is classified in the cluster to
which it is the closest. Given a new object d, classification
proceeds by finding a cluster C which is closest to d and
classifying d according to the label of C as either normal or
anomalous [17, 19].

IDSs based on unsupervised clustering focus on activity
data that may contain features of an individual TCP
connection, such as its duration, protocol type, number of
bytes transferred and a flag indicating the connection’s
normal or error status. Other features may include the number
of file creation operations, number of failed login attempts,
whether root shell was obtained, the number of connections to
the same host as the current connection within the past two
seconds, the number of connections to the same service as the
current connection within the past two seconds and others.

Clustering of the data sets is done using a typical single-
linkage clustering. This is not the most effective type of
clustering but it is very fast with a complexity of O(n).

Then, clusters are labeled based on the size of the cluster, as
clusters containing normal instances or clusters containing
attacks. Since normal instances constitute a majority of the
data set, clusters with more objects are more likely to contain
normal instances than attacks. Therefore, the clusters
containing the largest number of objects are labeled “normal”
while the rest of the clusters are labeled “anomalous”. A
problem with this approach is that many sub-types of normal
objects may exist in the data set — such as using different
protocols like ftp, telnet, www, etc — in which case a large
number of clusters might be produced containing a small
number of normal objects, one for each type of normal use of
the network. Then, these normal clusters may be incorrectly
labeled as “anomalous”.

Solka et al. [20] examine the application of hierarchical
cluster analysis to the characterization of single machine SYN
ACK time series. The purpose of this analysis is the
identification of normal and abnormal activity for a small
group of mail and web servers.

Supervised classification: Supervised -classification is
applied to IDSs for Signature Recognition purposes. This
means that signatures representing patterns of previous
intrusion activities are learned by the system. Then, new
patterns of activity are compared to the previously learned
signatures to determine if the activities are normal or if they
may be intrusions [23].

The automatic learning of intrusion signatures from historic
data containing labeled examples of normal and intrusive
activity can be done using a data mining technique such as
Support Vector Machines. The learned intrusion signatures
should be updated whenever more data of normal and
intrusive activity becomes available.

IDS based on signature recognition focus on two main types
of activity data: network traffic data and computer audit data.
Some categorical activity attributes that can be obtained from
this data include the user id, event type, process id, command,
remote [P address. Some numerical attributes that can be
obtained from this data include the time stamp, CPU time etc.

Using SVMs, new activity patterns are matched to the
learned signatures to determine if they are more likely to fall
in the class of normal or intrusive patterns. An example is the
CCA-S clustering algorithm used for IDSs [23].

4. MULICsoft CLUSTERING

Clustering is performed using MULICsoft — an extension of
MULIC [2] — having a special similarity metric that is
described in Sections 4.4 and 4.5. Figures 2 and 3 illustrate the
algorithm and the results, respectively. MULICsoft is an
extension of the k-Modes clustering algorithm for categorical
data sets [13]. k-Modes is a clustering algorithm that deals
with categorical data [13]. The k-Modes clustering algorithm
requires the user to specify from the beginning the number of
clusters to be produced and the algorithm builds and refines the
specified number of clusters. Each cluster has a mode
associated with it. Assuming that the objects in the data set are
described by m categorical attributes, the mode of a cluster is a
vector O={q;, q>, ..., g} Where g; is the most frequent value
for the ith attribute in the cluster of objects.

MULICsoft makes substantial changes to the k-Modes
algorithm. The purpose of our clustering algorithm is to
maximize the following similarity formula ar each iteration
individually, while at the same time to ensure that all objects
can eventually be inserted in clusters if so desired:

N

D similarity(o,, mode,) (1)

i=l
where o; is the ith object in the data set and mode; is the mode
of the ith object’s cluster containing the most frequent values
in the cluster. Maximizing formula (1) leads to the situation
where all objects are as similar to their clusters’ modes as
possible, thus minimizing the number of values in a cluster that
differ from the most frequent value for the same attribute.

The MULICsoft algorithm has a few more requirements.
First, the number of clusters is not specified by the user.
Clusters should be formed, removed or merged during the
clustering process as the need arises. Second, a cluster ¢ must
contain at least two objects, otherwise, it is not a cluster. Third,
it must be possible for all objects to be inserted in clusters by
the end of the clustering process if so desired.

MULICsoft normally is preceded by a preprocessing step,
where the data objects are ordered according to the frequency
by which their CAs appear in the data set — details of this step
are given in [2]. The main part of the MULICsoft clustering
algorithm is shown in Figure 2. The algorithm starts by reading
all objects from the input file and putting them in order. Then,
it continues iterating over all objects that have not been placed
in clusters yet, to find the closest cluster. In all iterations, the
closest cluster for each unclassified object is determined by
comparing how many similar attributes exist between a mode
and the object. The similarity between a mode and an object is
determined by the similarity equation described in Section 4.5.

The variable num_values_can_differ is maintained to
indicate how strong the similarity has to be between an object
and the closest cluster’s mode for the object to be inserted in
the cluster — initially num_values_can_differ equals 0, meaning
that the similarity has to be very strong between an object and
the closest cluster’s mode. If the number of different values
between the object and the closest cluster’s mode are greater
than num_values_can_differ then the object is inserted in a
new cluster on its own. If the number of different values
between the object and the closest cluster’s mode are less than
or equal to num_values_can_differ, then, the object is inserted
in the closest cluster and the mode is updated.

At the end of each iteration, all objects classified in clusters
with size one have their clusters removed so that they will be
considered again at the next iteration. This ensures that the
clusters that persist through the process are only those
containing at least 2 objects for which a substantial similarity
can be found. Objects belonging to clusters with size greater
than one are removed from the set of unclassified objects.

At the end of each iteration, if no objects have been placed in
clusters of size greater than 1, then the variable
num_values_can_differ is incremented to represent how many
values are allowed to differ next time. Thus, at the next
iteration the threshold will be more flexible, ensuring that more
objects will be placed in clusters. It is possible for all objects to
be classified eventually, even if the closest cluster is a little
similar. The iterative process stops when all objects have been
placed in clusters of size greater than 1, or when
num_values_can_differ exceeds a user-specified threshold.

The MULICsoft algorithm can eventually place all objects in
clusters, because num_values_can_differ can continue
increasing until all objects are classified. Even if, in the
extreme case, an object o with I attributes has only one value
similar to the mode of the closest cluster, it can still be
classified when num_values_can_differ = I-1.

Figure 3 illustrates what the results of MULICsoft look like.
Each cluster consists of many different "layers" of objects. The
layer of an object represents how strong the object's similarity
was to the mode of the cluster when the object was allocated to
it. The cluster’s layer in which an object is inserted depends on
the value of num_values_can_differ. Lower layers have a
lower coherence and correspond to higher values of
num_values_can_differ and to a more flexible similarity
criterion for insertion. MULICsoft starts by inserting as many
objects as possible in high layers — such as layer O or 1 - and
then moves to lower layers, creating them as the need arises.
Eventually, all objects can be classified in clusters; if little
similarity exists between an object and its closest cluster mode,
the object can be inserted in a low layer of the cluster.

If an unclassified object has equal similarity to the modes of
the two (or more) closest clusters, then the algorithm tries to
resolve this ‘tie’ by comparing the object to the modes of the
clusters’ top layers. These modes were stored by MULICsoft
when the clusters were created, so they do not need to be
recomputed. If the object has equal similarity to all top layers’
modes, the object is assigned to the cluster with the highest
bottom layer. If all clusters have the same bottom layer then
the object is assigned to the first cluster, since there is
insufficient data for selecting the best cluster.

Input: (1) asetS of objects;
(2) the maximum number of values that can differ
between an object and the mode of its cluster
(threshold for num_values_can_differ)
Output: a set of clusters
Method:
Order the objects in S according to their scores [2];
Insert the highest-ordered object into a new cluster, use
the object as the mode of the cluster, and remove the object
from S;
Initialize num_values_can_differ to 0;
Loop through the following until S is empty or
num_values_can_differ is greater than the specified threshold
For each object o in S from the highest-ordered to
lowest-ordered
Find o’s closest cluster ¢ by comparing o with
the modes of all existing cluster(s);
If the number of different values between o and
¢’s mode is larger than num_values_can_differ,
insert o into a new cluster
Otherwise, insert o into ¢ and update ¢’s mode;
Remove object o from S;
For each cluster c, if there is only one object in c,
remove c¢ and put the object back in S;
If in this loop no objects were placed in cluster with
size > 1, increment num_values_can_differ by 1.

Fig. 2 - Main part of the MULICsoft clustering algorithm

The runtime complexity of MULICsoft is O(IN), where I
represents the number of annotations in an object and N
represents the number of objects in the data set [2].

4.1 Optional Merging of Clusters

We should generally avoid the situation where the similarity
of the top layers of two different clusters is stronger than the
similarity of the top and bottom layer of the same cluster. To
avoid this, at the end of the clustering process MULICsoft can
merge pairs of clusters whose top layers’ modes’ dissimilarity
is less than the maximum layer depth of the two clusters. For
this purpose, MULICsoft preserves the modes of the top layers
of all clusters. Besides increasing the cluster coherence, this
process reduces the total number of clusters, as well as the
resulting error rates. This process is described as follows:
for (c = first cluster to last cluster)

for (d = c+1 to last cluster)

if the dissimilarity between ¢’s mode and d’s mode is less

than the maximum layer depth of ¢ and d, merge c into d and
break the inner loop;
where the dissimilarity between two modes (Q.= {qc, ---» Gem}
and Qy= {qus, ---» qam}) 1s defined as:

dissimilarity(Q., Q)= »_ d(q,,4q,)

i=1

0 (q: =94
ci di /°
where 5(q,,,q,) = 1
(G, # q4)-
cluster 1 cluster & cluster 3

\:;i? @Icz:) layer 0
%00 Coooy C 00D lager:
{_:501/) layer 2
(ko o ‘\ﬁ 03 layer 3
Co 0 @ro) Co ©D iayer 4
(cz—o:j;) layer 5

Fig. 3 -MULICsoft results. Each cluster consists of one or
more different layers representing different coherences and
similarities of the objects attached to the cluster.

4.2 Optimized Version of MULICsoft

We developed an optimized version of MULICsoft for
runtime purposes. The optimized version increases the
similarity criterion num_values_can_differ by 3 or 5 at a loop,
while the non-optimized version increases it by 1 at a time.
Sometimes - but not always - there is a slight loss in accuracy
for the optimized version. On the other hand, sometimes there
is a gain in accuracy. The runtime is significantly better. It is
also possible to increase num_values_can_differ exponentially
instead of linearly.

4.3 Dealing with Outliers

MULICsoft can eventually put all the objects in clusters.
When num_values_can_differ equals the number of attributes,
an unclassified object can be inserted in the lowest layer & of
any existing cluster. This is undesirable if the object is an
outlier and has little similarity with any cluster. The user can
disallow this situation from happening, by specifying a
maximum value for num_values_can_differ — represented as
threshold in Figure 2 — therefore, when this value is reached,
any remaining objects are not classified and are treated as
outliers. As discussed in Section 5, the quality of the results
often improves by treating the lowest-layer objects as outliers.

4.4 MULICsoft Extensions to MULIC

MULICsoft includes extensions to MULIC for network
clustering. A reason why network categorical data needs a
special clustering method is that the data contains mostly
‘zeros’ with ‘ones’ occurring sparsely.

A mode for a cluster contains ‘zeros’ by default. A position
of the mode is set to ‘one’ if there is at least one object in the
cluster that has a CA of ‘one’ in the corresponding position, or
has a weight greater than zero at the corresponding position.

When calculating the similarity of a mode and an object,
pairs of ‘zero’ attribute values between mode and object are
ignored. The CAs in an object are represented as o;.

All CAs in an object have "weights" in the range of 0.0 to 1.0
associated with them, which are inversely related to the
number of unknown IPs in an indirect link between ASs. We
represent an object’s weights as f~_object.

A novel similarity metric is defined to compute the similarity
between a mode and an object, considering the CAs with their
weights, as described next.

4.5 MULICsoft Similarity metric
A similarity metric is needed to choose the closest cluster to
an object by computing the similarity between the cluster’s
mode and the object. We used the similarity metric described
below, which considers the categorical attribute values and
their weights. Our f_similarity metric amplifies the object
positions having high weights, at pairs of CAs between an
object 0 and a mode m that have identical values of ‘one’. The

weights of object o are represented as f_object.

I 9— jecti

f _similarity(o,m) = 2, 9 = (4x [_objects)
=05 (4% f _objecti)

x 0(0i, mi)

where S(opom;) = {1 (0; = m; =1)
0 otherwise

Figure 4 shows the shape of the values returned by this
similarity metric. Each object in this example has 10 CAs and
weights. This graph shows that an object will be much more
likely to be assigned to a cluster if all CAs match the mode
with high weights of 1.0, than if all CAs match the mode with
medium weights of 0.5, than if all CAs match the mode with
low weights of 0.1, than if 1 CA matches the mode with a high
weight, than if 1 CA matches the mode with a low weight.

e and ohject.

hetw
=

0 e % L
.y < e 08
% 0f C i T R e 06
of CAs matching ~. R 0.4
S——
the mode 0 R‘D 0 Awerage weights on the CAs

matching the modes

Fig. 4. The function surface of f_similarity, using values for
the weights between 0.0 and 1.0 as described previously.

Table 2 — Quality of results for different stop criteria.

threshold Quality of results
100 61%
150 60%

5. RESULTS FOR NETWORK DATA

We clustered the data on ASs that is provided by CAIDA.
This data represents the links between ASs that form the
Internet backbones [3-6, 15, 16].

For evaluating the accuracy of the results we followed an
approach similar to that of using HA-values [14], by using the
formula below. a represents the number of pairs of ASs that
have at least 10 links between them (direct or indirect) and are
in the same cluster, b represents the number of pairs of ASs
that have at least 10 links between them and are in different
clusters, ¢ represents the number of pairs of ASs that do not
have 10 links between them and are in the same cluster and d
represents the number of pairs of ASs that do not have 10 links
between them and are in different clusters:

a+d

a+b+c+d
We compared the results of MULICsoft with the results of k-
Modes [13] and AutoClass [21] using the quality formula. The
results are shown in Table 1 below. Based on our quality
formula, we conclude that MULICsoft produced better results.
Table 1 — Quality of results for network data clustering

Quality of results =

6. M-VALUES FOR IDENTIFYING
SIGNIFICANT CAs (ASs) IN A CLUSTER

Given a resulting cluster, we assigned a Pl-value to each
CA in the cluster; the term ‘Pl-value’ was derived from the
statistical ‘P-value’. A P1-value measures whether a cluster
contains a CA of a particular type more frequently than would
be expected by chance. A Pl-value close to 0.0 indicates a
frequent occurrence of the CA in the cluster, while a P1-value
close to 1.0 indicates its seldom occurrence. We multiplied
the resulting P1-value with the reciprocal of the average of all
weights assigned to the CA in the cluster, 1/avg(CV), thus
resulting in what we call an M-value. M-values allow us to
take into consideration the probability that a particular CA
occurs in the cluster more frequently than expected by chance,
in addition to the average weight of the CA in the cluster. For
CAs that occur only once or twice in a cluster, a high P1-
value results with an avg(CV) trivial to estimate [1].

The M-values were used for identifying in each cluster the
CAs (ASs) with the lowest M-values. This gave us an
indication of the most prominent ASs in a cluster. These ASs
are very likely to be central points of communication in a
cluster, acting as major links of communication for the ASs
represented by the objects in the cluster. Table 3 shows some
of the most significanct ASs identified in different clusters.

Table 3 — Most significant ASs identified in clusters.

Cluster | AS # links in data P- Avg(CV)
id id set from/to AS value

C20 AS209 700 0.01 1

C40 AS668 800 0.02 0.95

C60 AS3356 | 700 0.01 0.95

Clustering algorithm Quality of results
MULICsoft 62%
k-Modes 40%
AutoClass 37%

5.1 Treating Objects as Outliers by Setting

an Upper Bound for num_values_can_differ

We have found that by treating the last 500-1000 objects in
bottom layers of clusters as outliers the quality improves.
Objects are treated as outliers by setting an upper bound —
represented as threshold in Figure 2 - for the variable
num_values_can_differ. For example, setting a threshold for
num_values_can_differ of 150 means that clustering will stop
at layer 150 and any objects in layers greater than 150 will be
treated as outliers. This supports the idea that lower layers are
less reliable than higher layers. We have experimented with
various thresholds for num_values_can_differ, for a linear
growth of num_values_can_differ as discussed in Section 4.2.
No merging is done on the clusters after the clustering.

7. DISCUSSION AND CONCLUSION

An AS network data set is typically composed of many tight
and highly coherent subgroups of ASs that through merging
form larger less coherent groups. Although human
identification of the major groups in a network data set is often
impossible, identifying highly coherent subgroups of ASs is
very helpful when trying to understand a large network data
set. We have applied MULICsoft clustering on the AS network
data set provided by CAIDA representing links between ASs.
Figure 5 shows a graph of Internet topology, highlighting the
tight clusters of connectivity. It is clear that there are many
such tight clusters and they are often of a small size.

MULICsoft offers many advantages for clustering of AS
network data. It focuses from the start on identifying all of the
most coherent clusters as shown in Figure 5. MULICsoft finds
all of the very coherent clusters that naturally exist in the data
set. MULICsoft allows for a flexible number of clusters to be
produced and does not sacrifice the coherence of the data sets
for the number of clusters, which in k-Modes is defined strictly
before the process. We showed that when requiring a strict
number of clusters to be output from the clustering process, the
resulting clusters might not have the maximum coherence [2].

i@‘_ -

Fig. 5. A 3D hyperbolic graph of Internet topology. It was
created using the Walrus visualisation tool developed by
Young Hyun at CAIDA [5].

For each cluster, MULICsoft forms layers of varying
coherence. It starts by forming a layer of high coherence using
strict criteria concerning which objects to insert in the layer.
As the process continues MULICsoft relaxes its criteria,
forming layers that may be less coherent than the previous
layers. A MULICsoft cluster is very representative of the
underlying patterns in a network data set, as shown in Figure 5,
because it recognizes that differing layers of coherence and
similarity exist in a cluster amongst network objects.

Our method provides the user with the option to merge any
clusters that are very similar, to build larger clusters and
reduce the total number of clusters after the clustering process.
We are currently implementing and testing an improved
method for merging the clusters. This improved merging
method will further improve the results of MULICsoft,
because some times the results are too refined.

By incorporating weights on the CAs in the clustering
process, one can use significance metrics considering the CAs
and the weights, to identify the most prominent CAs in a
cluster. These are the CAs that occur frequently and which
exhibit high average weights in the cluster. Future work will
include developing more significance metrics for the CAs and
applying MULICsoft to more network data sets.

8. REFERENCES

[1] B. Andreopoulos, A. An and X. Wang. (2005) Clustering
Mixed Numerical and Uncertain Categorical Data with M-
BILCOM: Significance Metrics on a Yeast Example.
Technical Report # CS-2005-03. Department of Computer
Science, York University.

[2] B. Andreopoulos, A. An and X. Wang. (2004) MULIC:
Multi-Layer Increasing Coherence Clustering of Categorical
Data Sets. Technical Report # CS-2004-07. Department of
Computer Science, York University.

[3] A.Broido, KC Claffy. Internet topology: Connectivity of
IP graphs. SPIE 2001 conference on Scalability and Traffic
Control in IP Networks Denver.

[4] A.Broido, KC Claffy. Complexity of global routing
policies. CAIDA 2001.

[5] Cooperative Association for Internet Data Analysis
(CAIDA). Data set ITDK0304. http://www.caida.org/

[6] H. Chang, R. Govindan, S. Jamin, S. Shenker, and W.
Willinger, “Towards capturing representative AS-level

Internet topologies”, Technical Report UM-CSE-TR-454-02,
University of Michigan Computer Science, 2002.

[7]1J. Chen and L;j. Trajkovic, Analysis of Internet topology
data, Proc. IEEE Int. Symp. Circuits and Systems, Vancouver,
British Columbia, May 2004, vol. IV, pp. 629-632.

[8] K.C. Claffy. (1999) Internet measurements and data
analysis: topology, workload, performance and routing
statistics. NAE’99 workshop.

[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-
law relationships of the Internet topology, In Proc. of ACM
SIGCOMM ’99, Cambridge, MA, Aug. 1999, pp. 251-262.

[10] Goebel, M. & Gruenwald, Le (1999). A survey of data
mining and knowledge discovery software tools. ACM
SIGKDD Explorations 1, 20-33.

[11] Grambeier J., Rudolph A. (2002) Techniques of Cluster
Algorithms in Data Mining. Data Mining and Knowledge
Discovery 6: 303-360.

[12] Hartigan, J. A. Clustering algorithms. (John Wiley and
Sons, New York, 1975).

[13] Huang Z. (1998) Extensions to the k-Means Algorithm for
Clustering Large Data Sets with Categorical Values. Data
Mining and Knowledge Discovery 2(3): 283-304.

[14] L. Hubert and P. Arabie, "Comparing partitions", Journal
of Classification, 193-218, 1985.

[15] B.Huffaker, A.Broido, KC Claffy, M.Fomenkov,
K.Keys, Y.Hyun, D.Moore. Skitter AS Internet Graph.
CAIDA, April-May 2003.

[16] B.Huffaker, D. Plummer, and D. Moore, “Topology
discovery by active probing”. CAIDA, 2002.

[17] Yun Li, H.S. Venter, J.H.P. Eloff. Categorizing
vulnerabilities using data clustering techniques. (2004)
Information Security South Africa (ISSA 2004).

[18] M. Mihail, C. Gkantsidis, and E. Zegura, Spectral
analysis of Internet topologies, Proc. Of Infocom 2003, San
Fancisco, CA, March 2003, vol. 1, pp. 364-374.

[19] Leonid Portnoy, Eleazar Eskin and Sal Stolfo. Intrusion
Detection with Unlabeled Data Using Clustering (2001).ACM
Workshop on Data Mining Applied to Security (DMSA 01).

[20] Solka, J. L. and Marchette, D. J. (2001), "Functional
Analysis of Computer Network Data", Computing Science
and Statistics, 33, /12001 Proceedings/JSolka/JSolka.pdf

[21] Stutz J. and Cheeseman P. (1995) Bayesian
Classification (AutoClass): Theory and results. Advances in
Knowledge Discovery and Data Mining, 153-180, Menlo
Park, CA, AAAI Press.

[22] D. Vukadinovic, P. Huang, and T. Erlebach, On the
Spectrum and Structure of Internet Topology Graphs. In
proceedings of 12CS, June 2002, Kiihlungsborn, Germany.

[23] Nong Ye, Xiangyang Li. A Scalable Clustering
Technique for Intrusion Signature Recognition, Proceedings
of the 2001 IEEE Workshop on Information Assurance and
Security United States Military Academy, NY, June 2001.

[24] Wenke Lee and Salvatore Stolfo. Data mining
approaches for intrusion detection, Proceedings of the 7th
USENIX Security Symposium, San Antonio, TX, 1998.

