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Abstract

We present the MULICsoft software clustering tool.
This tool is intended for categorical data sets in which
each categorical attribute value (CA) has a ‘weight’ in
the range 0.0 to 1.0, indicating how strongly the
corresponding CA should influence the clustering
process. MULICsoft produces as many clusters as there
naturally exist in the data set. Each cluster consists of
layers formed gradually through iterations, by reducing
the similarity criterion for inserting objects in layers of
a cluster at different iterations. We have applied this
tool to clustering the mozilla software system. The
objects in the data are files. The CAs represent the
relationships, such as invocation and dependency
relationships, between files. The weights depend on the
number of times that each file invoked other files during
a run time profiling of execution. The results of
MULICsoft are better than those of LIMBO, BUNCH
and ACDC, as shown by the MoJo error rates that are
derived by comparing the computed partitions of
mozilla with an authoritative manual partitioning.
http://www.cs.yorku.ca/~billa/MULIC/

1. Introduction

Reverse engineering is the process of analyzing a
system’s internal elements and its external behavior
and creating a structural view of the system. Automatic
construction of a structural view of a large legacy
system significantly facilitates the developers’
understanding of how the system works. In legacy
systems the original source code is often the only
available source of information about the system and it
is very time consuming to study.

Software clustering techniques aim to decompose a
software system into meaningful subsystems, to help
new developers understand the system. Clustering is
applied to large software systems in order to partition
the source files of the system into clusters, such that
files containing source code with similar functionality
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are placed in the same cluster, while files in different
clusters contain source code that performs dissimilar
functions.  Software clustering can be done
automatically or manually. Automatic clustering of a
large software system using a clustering tool is
especially useful in the absence of experts or accurate
design documentation. Automatic clustering techniques
generally employ certain criteria (i.e., low coupling
and high cohesion) in order to decompose a software
system into subsystems [Tzerpos00, Mancoridis99,
MancoridisO1]. Manual decomposition of the system is
done by software engineers. However, it takes plenty
of time and it requires full knowledge of the system.

We developed the MULICsoft categorical clustering
tool, which is based on the MULIC algorithm that is
described in [Andreopoulos04]. We showed that
MULIC clustering results are of higher quality than
those of other categorical clustering algorithms, such as
k-Modes, ROCK, AutoClass, CLOPE and others
[Andreopoulos04]. Characteristics of MULIC and
MULICsoft include: a. The algorithm does not sacrifice
the coherence of the resulting clusters for the number of
clusters desired. Instead, it produces as many clusters as
there naturally exist in the data set. b. Each cluster
consists of layers formed gradually through iterations,
by reducing the similarity criterion for inserting objects
in layers of a cluster at different iterations.

Section 2 describes the mozilla data set used for
clustering. Section 3 gives an overview of previous
software clustering tools. Section 4 describes the
MULICsoft clustering algorithm. Section 5 describes
the experimental results on the mozilla system. Section
6 discusses inputting additional data to MULICsoft.
Section 7 discussed the runtime performance. Sections
8 and 9 discuss the results and conclude the paper.

2. Description of Data Sets

Both categorical and numerical data can be used for
clustering a software system.



Categorical data. A categorical data set on a
software system represents for each file, which other
files it may invoke. Such data sets are referred to as
static and exist in a market-basket format. Each row of
the data set corresponds to a file x of the software
system. In each row after the file name x there is a list
of the other filenames that x may invoke during
execution.

Numerical data. A numerical data set on a software
system contains the results of a profiling of the
execution of the system, representing how many times
each file invoked other files during the run time. Such
data sets are referred to as dynamic. Each row of the
data set corresponds to a file x of the software system.
In each row after the file name x there is a list of the
other filenames that x invoked as well as how many
times x invoked them, during the profiled run time.

We have applied the MULICsoft tool for clustering
of large software systems to the mozilla system. There
are 1202 objects in the mozilla data set, corresponding
to 1202 source files of the mozilla system. Each object
in the data set corresponds to a source file. We use
both categorical and numerical data in clustering. The
CAs are boolean values describing the relationships
between the mozilla files. The CAs for an object
represent the relationships, such as invocation and
dependency relationships, of the corresponding source
file with each of the other files. The data set contains a
large number of ‘zeros’ with ‘ones’ occurring sparsely.
We use numerical data in clustering by imposing a
‘weight’ in the range 0.0 to 1.0 on each CA, indicating
how strongly the corresponding CA should influence
the clustering process. We use a special similarity
formula, as described in sections 4.4 and 5.1.

3. Related Work

Bunch is a clustering tool intended to aid the
software developer and maintainer in understanding,
verifying and maintaining a source code base
[Mancoridis99]. The input to Bunch is a Module
Dependency Graph (MDG). Figure 1 shows an MDG
graph. Bunch views the clustering problem as trying to
find a good partition of an MDG graph. Bunch views a
“good partition" as a partition where highly
interdependent modules are grouped in the same
clusters (representing subsystems) and independent
modules are assigned to separate clusters. Figure 1b
shows a “good” partitioning of figure la. Finding a
good graph partition involves systematically
navigating through a very large search space of all
possible partitions for that graph. Bunch treats graph
partitioning (clustering) as an optimization problem.
The goal of the optimization is to maximize the value
of an objective function, called Modularization Quality
(MQ) [Mancoridis99].

MDG “GOOD” MDG Partition

Figure 1. An MDG graph, from [Mancoridis99].

ACDC works in a different way from other
algorithms. Most software clustering algorithms
identify clusters by utilizing criteria such as the
maximization of cohesion, the minimization of
coupling or some combination of the two. ACDC
performs the task of clustering in two stages
[Tzerpos00]. In the first one it creates a skeleton of the
final decomposition by identifying subsystems using a
pattern-driven approach. There are many patterns that
have been used in ACDC [Tzerpos00]. Depending on
the pattern used the subsystems are given appropriate
names. In the second stage ACDC completes the
decomposition by using an extended version of a
technique known as Orphan Adoption. Orphan
Adoption is an incremental clustering technique based
on the assumption that the existing structure is well
established. It attempts to place each newly introduced
resource (called an orphan) in the subsystem that
seems “‘more appropriate”. This is usually a subsystem
that has a larger amount of connectivity to the orphan
than any other subsystem.

LIMBO is introduced in [Andritsos04] as a scalable
hierarchical categorical clustering algorithm that builds
on the Information Bottleneck (IB) framework for
quantifying the relevant information preserved when
clustering. LIMBO uses the IB framework to define a
distance measure for categorical tuples. LIMBO
handles large data sets by producing a memory
bounded summary model for the data.

4. The MULICsoft Clustering Algorithm

Clustering is performed using MULICsoft — an
extension of MULIC [AndreopoulosO4] — having a
special similarity metric that is described in Sections 4.4
and 5.1. Figures 2 and 3 illustrate the algorithm and the
results, respectively. MULICsoft is an extension of the
k-Modes clustering algorithm for categorical data sets
[Huang98]. k-Modes is a clustering algorithm that deals
with categorical data [Huang98]. The k-Modes
clustering algorithm requires the user to specify from
the beginning the number of clusters to be produced and
the algorithm builds and refines the specified number of
clusters. Each cluster has a mode associated with it.
Assuming that the objects in the data set are described
by m categorical attributes, the mode of a cluster is a
vector O={q;, q2, ..., gu} Where g; is the most frequent
value for the ith attribute in the cluster of objects.



MULICsoft makes substantial changes to the k-Modes
algorithm. The purpose of our clustering algorithm is to
maximize the following similarity formula ar each
iteration individually, while at the same time to ensure
that all objects can eventually be inserted in clusters if
so desired:

N

z similarity(o,, mode,) (1)

i=1
where o; is the ith object in the data set and mode; is the
mode of the ith object’s cluster containing the most
frequent values in the cluster. Maximizing formula (1)
leads to the situation where all objects are as similar to
their clusters’ modes as possible, thus minimizing the
number of values in a cluster that differ from the most
frequent value for the same attribute.

The MULICsoft algorithm has a few more
requirements. First, the number of clusters is not
specified by the user. Clusters should be formed,
removed or merged during the clustering process as the
need arises. Second, a cluster ¢ must contain at least two
objects, otherwise, it is not a cluster. Third, it must be
possible for all objects to be inserted in clusters by the
end of the clustering process if so desired.

MULICsoft normally is preceded by a preprocessing
step, where the data objects are ordered according to the
frequency by which their CAs appear in the data set —
details of this step are given in [Andreopoulos04]. The
main part of the MULICsoft clustering algorithm is
shown in Figure 2. The algorithm starts by reading all
objects from the input file and putting them in order.
Then, it continues iterating over all objects that have not
been placed in clusters yet, to find the closest cluster. In
all iterations, the closest cluster for each unclassified
object is determined by comparing how many similar
attributes exist between a mode and the object. The
similarity between a mode and an object is determined
by the similarity equations described in Section 5.1.

The variable num_values_can_differ is maintained to
indicate how strong the similarity has to be between an
object and the closest cluster’s mode for the object to be
inserted in the cluster — initially num_values_can_differ
equals 0, meaning that the similarity has to be very
strong between an object and the closest cluster’s mode.
If the number of different values between the object and
the closest cluster’s mode are greater than
num_values_can_differ then the object is inserted in a
new cluster on its own. If the number of different values
between the object and the closest cluster’s mode are
less than or equal to num_values_can_differ, then, the
object is inserted in the closest cluster and the mode is
updated.

At the end of each iteration, all objects classified in
clusters with size one have their clusters removed so
that they will be considered again at the next iteration.
This ensures that the clusters that persist through the

process are only those containing at least 2 objects for
which a substantial similarity can be found. Objects
belonging to clusters with size greater than one are
removed from the set of unclassified objects.

At the end of each iteration, if no objects have been
placed in clusters of size greater than 1, then the
variable num_values_can_differ is incremented to
represent how many values are allowed to differ next
time. Thus, at the next iteration the threshold will be
more flexible, ensuring that more objects will be placed
in clusters. It is possible for all objects to be eventually
classified, even if the closest cluster is a little similar.
The iterative process stops when all objects have been
placed in clusters of size greater than 1, or when
num_values_can_differ —exceeds a  user-specified
threshold.

The MULICsoft algorithm can eventually place all
objects in clusters, because num_values_can_differ can
continue increasing until all objects are classified. Even
if, in the extreme case, an object o with [ attributes has
only one value similar to the mode of the closest cluster,
it can still be classified when num_values_can_differ =
I-1.

Input: (1) aset S of objects;

(2) the maximum number of values that can
differ between an object and the mode of
its cluster (threshold for
num_values_can_differ)

Output: a set of clusters
Method:

1. Order the objects in § according to their scores
[2];

2. Insert the highest-ordered object into a new
cluster, use the object as the mode of the cluster,
and remove the object from S;

3. Initialize num_values_can_differ to 0;

4. Loop through the following until S is empty or
num_values_can_differ is greater than the
specified threshold
a. For each object o in S from the highest-

ordered to lowest-ordered
i. Find o’s closest cluster ¢ by comparing o
with the modes of all existing cluster(s);
ii. If the number of different values between
o and ¢’s mode is larger than
num_values_can_differ, insert o into a
new cluster
iii. Otherwise, insert o into ¢ and update ¢’s
mode;
iv. Remove object o from S;
b. For each cluster c, if there is only one object
in ¢, remove ¢ and put the object back in S;
c. Ifin this loop no objects were placed in
cluster with size > 1, increment
num_values_can_differ by 1.

Figure 2. MULICsoft clustering algorithm
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Figure 3. MULICsoft results. Each cluster
consists of one or more different layers
representing different coherences and
similarities of the objects attached to the
cluster.

Figure 3 illustrates what the results of MULICsoft
look like. Each cluster consists of many different
"layers" of objects. The layer of an object represents
how strong the object's similarity was to the mode of
the cluster when the object was allocated to it. The
cluster’s layer in which an object is inserted depends on
the value of num_values_can_differ. Lower layers have
a lower coherence and correspond to higher values of
num_values_can_differ and to a more flexible similarity
criterion for insertion. MULICsoft starts by inserting as
many objects as possible in high layers — such as layer O
or 1 - and then moves to lower layers, creating them as
the need arises. Eventually, all objects can be classified
in clusters and if little similarity exists between an
object and its closest cluster mode, the object can be
inserted in a low layer of the cluster.

If an unclassified object has equal similarity to the
modes of the two (or more) closest clusters, then the
algorithm tries to resolve this ‘tie’ by comparing the
object to the modes of the clusters’ top layers. These
modes were stored by MULICsoft when the clusters
were created, so they do not need to be recomputed. If
the object has equal similarity to all top layers’ modes,
the object is assigned to the cluster with the highest
bottom layer. If all clusters have the same bottom layer
then the object is assigned to the first cluster, since there
is insufficient data for selecting the best cluster.

The runtime complexity of MULICsoft is O(IN),
where I represents the number of annotations in an
object and N represents the number of objects in the
data set [Andreopoulos04].

4.1. Optional Merging of Clusters

We should generally avoid the situation where the
similarity of the top layers of two different clusters is
stronger than the similarity of the top and bottom layer
of the same cluster. To avoid this, at the end of the

clustering process MULICsoft can merge pairs of
clusters whose top layers” modes’ dissimilarity is less
than the maximum layer depth of the two clusters. For
this purpose, MULICsoft preserves the modes of the
top layers of all clusters. Besides increasing the cluster
coherence, this process reduces the total number of
clusters, as well as the resulting error rates, as
described in Section 5.4. This process is described as
follows:

for (c = first cluster to last cluster)
for (d = c+1 to last cluster)
if the dissimilarity between ¢’s mode and d’s

mode is less than the maximum layer
depth of ¢ and d, merge ¢ into d and break
the inner loop;

where the dissimilarity between two modes (Q.= {q.;,

ooy Gem} and Qu={qus, ---, qam}) is defined as:

dissimilarity(Q. , Q)= Y. d(q,.4,)

i=1

0 (qci =4 ’)’
where 5(QCi’qdi) = {1 (q * qd )
ci di 7t

4.2. Optimized Version of MULICsoft

We developed an optimized version of MULICsoft
for runtime purposes. The optimized version increases
the similarity criterion num_values_can_differ by 3 or
5 at a loop, while the non-optimized version increases
it by 1 at a time. Sometimes - but not always - there is
a slight loss in accuracy for the optimized version. On
the other hand, sometimes there is a gain in accuracy,
as Section 5.2 describes for clustering of software
systems. The runtime is significantly better. Section
5.2 also describes increasing num_values_can_differ
exponentially instead of linearly.

4.3. Dealing with Outliers

MULICsoft can eventually put all the objects in
clusters. When num_values_can_differ equals the
number of attributes, an unclassified object can be
inserted in the lowest layer / of any existing cluster.
This is undesirable if the object is an outlier and has
little similarity with any cluster. The user can disallow
this situation from happening by specifying a
maximum value for num_values_can_differ,
represented as threshold in Figure 2. When this value
is reached, any remaining objects are not classified and
are treated as outliers. As discussed in Section 5.3 for
clustering of software systems, the overall quality of
the results almost always improves by treating the
lowest-layer objects as outliers.



4.4. MULICsoft Extensions to MULIC

MULICsoft includes extensions to MULIC for
software clustering. A reason why software data needs
a special clustering method is that the data contains
mostly ‘zeros’ with ‘ones’ occurring sparsely.

A mode for a cluster contains ‘zeros’ by default. A
position of the mode is set to ‘one’ if there is at least
one object in the cluster that has a CA of ‘one’ in the
corresponding position, or has a weight greater than
zero at the corresponding position.

When calculating the similarity of a mode and an
object, pairs of ‘zero’ attribute values between mode
and object are ignored. The CAs in an object are
represented as o;.

All CAs in an object have "weights" in the range of
0.0 to 1.0 associated with them, which are dynamic
data derived from profiling the execution of a system.
We represent an object’s weights as f object. The
weights were normalized in the data set, so that they
span the range from 0.0 to 1.0, by dividing all numbers
in a column by the maximum value in that column.
Thus, there is at least one ‘1.0’ value in each column of
the data set.

Besides storing the boolean values of zero or one for
the mode of a cluster, we also store real numbers for
each position of the mode, which represent the sum of
all weights at that position over all objects allocated to
the cluster. We refer to this special mode as the “real
numbers’ mode” and we represent its values as
f mode;. These values are used by some of our
similarity metrics to compute which cluster is the
closest to an object by computing the similarity
between the cluster’s mode and the object.

Novel similarity metrics are defined to compute the
similarity between a mode and an object, considering
the CAs with their weights, as described in Section 5.1.

4.5. MoJo

The evaluation measure is called “MoJo distance”.
This distance is defined as the minimum number of
Move and Join operations to transform one
decomposition into another. Move and join operations
are defined as:

Move: Remove an object from a cluster and put it
in a different cluster.
Join: Merge two clusters into one.

Figure 4 shows two decompositions A and M. The
MolJo distance between A and M is equal to 2. Since
we have to Move object 4 to one of the bottom clusters
and Join two bottom clusters in decomposition A in
order to get to decomposition M [Tzerpos99,
MancoridisO1].
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Figure 4. The MoJo distance between
decompositions A and M.

5. Results for Clustering Mozilla with
MULICsoft

MULICsoft clusters the 1202 mozilla files into 100-
200 clusters before merging. The clusters produced for
mozilla before merging had sizes ranging from 3 to 37
files. To evaluate the clustering result, we compared it
with the authoritative decomposition, which is the
human-made partition used as a reference for
comparison. We measured the error rate using the
MolJo distance metric, which is defined as the
minimum number of “move” and “join” operations to
transform a decomposition into the authoritative one.
The results indicate that MULICsoft outperforms other
software  clustering tools, such as LIMBO
[AndritsosO4], BUNCH [Mancoridis99] and ACDC
[Tzerpos00].

The Molo error rates for ACDC, BUNCH and
LIMBO applied to clustering the mozilla software
system are shown in the table below. Other software
clustering tools return MoJo error rates between 438-
640 for clustering the mozilla system. MULICsoft
partitioned the mozilla system into clusters of files,
giving MoJo error rates such as 249, 320, 340, 388,
397, 399, 424 to 456 [Tzerpos99, MancoridisOl1].
When clustering all files without treating any as
outliers, the MULICsoft error is 388. MULICsoft can
produce an error as low as 249, by setting the criterion
num_values_can_differ to an initial value of 1, by
increasing the criterion by 120 after each loop at which
no file was placed in a cluster of size greater than one
and by treating the 300 files in bottom layers as
outliers.

Mozilla
MoJo | Number of Objects
Error Clusters classified
ACDC 439 205 1202
BUNCH 440 21 1202
LIMBO 438 75 1202




5.1. Similarity metrics for comparison of
objects to modes

A similarity metric is needed to choose the closest
cluster to an object by computing the similarity
between the cluster’s mode and the object. We used the
five similarity metrics described below, which consider
the categorical attribute values and their weights. The
weights were normalized in the data set - so that they
were real values in the range from 0.0 to 1.0 — by
dividing all numbers in a column by the maximum
value in that column. Thus, there is at least one weight
with a value of 1 in each column.

The first similarity metric uses the real numbers’
mode values for each cluster, as described in Section
4.4, which are represented as f_mode. All similarity
metrics use the weights of object o, which are
represented as f_object.

Overall we found out that the 5th similarity formula
is capable of producing the best results. This section
describes the results for each of the 5 similarity
formulas. We assume a linear increase of
num_values_can_differ by setting it to an initial value
of 1 and increasing it for the 1 and 2™ metrics by 80,
for the 3" and 4™ metrics by 110, and for the 5™ metric
by 130, after each loop where no object was classified
in a cluster of size greater than one. We set no upper
bound — represented as threshold in Figure 2 - for
num_values_can_differ, so that no objects are treated
as outliers and all files are clustered. We do not merge
the clusters at the end.

Similarity metric 1. The first similarity metric
considers both the real numbers’ mode values and the
weights in each object, at pairs of categorical attribute
values between an object o and a mode m that have
identical values of ‘one’.

1
f _ similarity(o,m) = 'ZOf _objecti X f _mod ei X 6(oi, mi)
1=

1 (o; =m; =1);

0 otherwise

where S(o;,m;) = {

Mozilla
MoJo Number Objects
Error of classified
Clusters
MULICsoft 424 156 1202

Similarity metric 2. The second similarity metric
considers only the weights in each object, at pairs of
categorical attribute values between an object o and a
mode m that have identical values of ‘one’.

1
f _ similarity(o,m) = 'ZO f _ objecti x 8(oi, mi)
1=l

1 (Oi =m; = 1);

0 otherwise

where J(Di’mi) = {

Mozilla
MoJo Number Objects
Error of classified
Clusters
MULICsoft 417 227 1202

Similarity metric 3. The third similarity metric we
used in this version of MULICsoft considers both the
categorical attribute values and their weights. This
metric amplifies the object positions having high
weights, at pairs of CAs between an object o and a
mode m that have identical values of ‘one’.
f _similarity(o,m) = é 6 (x ] object)
i=05— (4% f _objecti)

where S(o;,m;) = {l (03 =mi =15

X O(oi, mi)

0 otherwise

This similarity metric places more importance on
high weights (1.0) than low weights (0.1) at categorical
attributes with identical values of ‘one’ between the
object and the mode.

Mozilla
MoJo Number Objects
Error of classified
Clusters
MULICsoft 399 187 1202

# of CAs matching
the mode T a

Average weights on the CAs
matching the modes

Figure 5. The function surface of f_similarity,
using values for the weights between 0.0 and
1.0 as described previously.

Figure 5 shows the shape of the values returned by
this similarity metric. Each object in this example has
10 CAs and weights. This graph shows that an object




will be much more likely to be assigned to a cluster if
all CAs match the mode with high weights of 1.0, than
if all CAs match the mode with medium weights of 0.5,
than if all CAs match the mode with low weights of 0.1,
than if 1 CA matches the mode with a high weight, than
if 1 CA matches the mode with a low weight.

Similarity metric 4. The fourth similarity metric looks
similar to the third similarity metric except that it
amplifies even more the object positions having high
weights, at pairs of categorical attribute values between
an object 0 and a mode m that have identical values of

3 E)

one .
I 7-(@4x objecti
f _ similarity(o,m) = % (@x [ _ objecti)
i=0 5 — (4% f _ objecti)

X O(oi, mi)

1 (o; =m; =1)

where mi) =
d(oj m;) {0 otherwise

The shape of the values returned by this similarity
metric look similar to Figure 5, except that the y-scale
values range from 0 to 30, instead of 0 to 20.

it to an initial value of x and increasing it by a constant
value after each loop at which no object was placed in
a cluster of size greater than one. We also
experimented  with  increasing the  variable
num_values_can_differ exponentially (1,2,4,8,16) by
setting it to an initial value of 1 and multiplying it by 2
after each loop at which no object was classified in a
cluster of size greater than one, as discussed in Section
4.2.

Specifically, our results are shown below for both a
linear and an  exponential increase  of
num_values_can_differ. We cluster all objects, without
treating any of the objects in bottom layers as outliers.
We use the 1" or 2™ or 3" or 4™ or 5" similarity
metrics, as indicated below. We assume no merging is
done on the clusters after the clustering process.

Mozilla

MoJo | Number
Error of
Clusters

Objects
classified

MULICsoft
Linear growth

- Initial value 1, 399 187 1202
increment by
150, 5®
similarity metric

Mozilla
MoJo Number Objects
Error of classified
Clusters
MULICsoft 397 183 1202

Similarity metric 5. The fifth similarity metric looks
similar to the third and fourth similarity metrics except
that it amplifies even more the object positions having
high weights, at pairs of categorical attribute values
between an object 0 and a mode m that have identical
values of ‘one’.
f _ similarity(o,m) = é 9~ (4 [ objects)
i=05_ (4% f _ objecti)

X 0(oi, mi)

1 (Oi =m; = 1);

where Cms) =
5(01 i) {0 otherwise

The shape of the values returned by this similarity
metric look similar to Figure 5, except that the y-scale

values range from 0 to 50, instead of 0 to 20.

- Initial value 1, 391 188
increment by
140, 5"
similarity metric

1202

- Initial value 1, 388 191
increment by
130, 5"
similarity metric

1202

- Initial value 1, 408 197
increment by
110, 5"
similarity metric

1202

- Initial value 1, 410 199 1202
increment by 90,
5" similarity
metric

- Initial value 1, 397 183
increment by
110,4"
similarity metric

1202

Mozilla
Molo Number Objects
Error of classified
Clusters
MULICsoft 388 191 1202

5.2. Optimized MULICsoft: linear and
exponential growths of num_values_can_differ

We experimented with increasing the variable
num_values_can_differ linearly (0,3,6,9,12) by setting

- Initial value 1, 413 178
increment by
100, 4"
similarity metric

1202

- Initial value 1, 399 197 1202
increment by
100, 3"

similarity metric




- Initial value 1, 407 195 1202
increment by
105, 3"
similarity metric

- Initial value 1, 399 187 1202
increment by
110, 3"
similarity metric

- Initial value 1, 414 212 1202
increment by 70,
3" similarity

will stop at layer 150 and any objects in layers greater
than 150 will be treated as outliers. This supports the
idea that lower layers are less reliable than higher
layers. We have experimented with various thresholds
for num_values_can_differ, for both linear and
exponential growths of num_values_can_differ as
discussed in Section 4.2. We have used the 4"
similarity metric as described in Section 5.1. We
assume no merging is done on the clusters after the
clustering process.

metric Mozilla

- Initial value 1, 412 207 1202 MoJo | Clusters Objects
increment by 80, Error classified
3" similarity MULICsoft

metric Exponential

- Initial value 1, | 402 199 1202 growth, 4"

increment by 90, similarity metric

3" similarity - Initial value 1, 320 250 850
metric multiply by 2,

- Initial value 1, 402 187 1202 threshold 32

increment by - Initial value 1, 391 270 1016
120, 3" multiply by 2,

similarity metric threshold 64

- Initial value 1, 417 227 1202 MULICsoft

increment by 80,
2" similarity
metric

- Initial value 1, 427 158 1202
increment by 75,
1™ similarity
metric

- Initial value 1, 424 156 1202
increment by 80,
1™ similarity

Linear growth, 4™
similarity metric

- Initial value 1, 249 110 800
increment by 120,
threshold 121 (400
objects in bottom
layers are treated as
outliers)

- Initial value 1, 336 180 1061
increment by 120,

metric threshold 121

MULICsoft - Initial value 1, 340 254 915

Exponential increment by 10,

growth threshold 50

- Initial value 1, 456 280 1202 - Initial value 1, 397 276 1076

multiply by 2, increment by 10,

5" similarity threshold 80

metric - Initial value 1, 338 214 936
increment by 50,

5.3. Treating objects as outliers by fixing an threshold 51

upper bound for num_values_can_differ - Initial value 1, 339 207 959
increment by 60,

We have found that by treating the last 100-300 threshold 61

- Initial value 1, 356 179 1050

objects in bottom layers of clusters as outliers (from a
data set of 1202) the error rate decreases significantly.
Objects are treated as outliers by setting an upper
bound — represented as threshold in Figure 2 - for the
variable num_values_can_differ, as discussed in
Section 4.3. For example, setting a threshold for
num_values_can_differ of 150 means that clustering

increment by 99,
threshold 100

The results improve when increasing
num_values_can_differ exponentially. We set its initial
value to 1 and multiply its value by 2 after each loop at




which no file was placed in a cluster of size greater
than 1. With a maximum threshold of 32 the error rate
is 320 and 850 files are clustered. With a threshold of
64 the error rate is 391.

5.4. Optional merging of clusters

This algorithm provides the capability to merge
clusters that are very similar after the clustering
process, for the purpose of reducing the number of
clusters, as described in Section 4.1. This section
describes the results for merging the clusters, while
modifying the parameters described above. We use the
4th similarity metric.

Mozilla
MULICsoft MolJo Clusters Objects
Exponential Error classified
growth, 4™
similarity
metric
- 100 clusters | Increased | Reduced 850
after merging, | from 320 | from 250
Initial value 1, to 374 to 100
multiply by 2,
threshold 32
- 90 clusters Increased Reduced 850
after merging, | from 320 | from 250
Initial value 1, to 379 to 90
multiply by 2,
threshold 32
- 80 clusters Increased | Reduced 850
after merging, | from 320 | from 250
Initial value 1, to 384 to 80
multiply by 2,
threshold 32

Mozilla with
Dev+Dir+LocEQ+Tim
MULICsoft linear MoJo Error Number of
growth, 5™ Clusters
similarity metric
- Initial value 1, 387 196
increment by 130,
NO threshold
Mozilla with
Dev+Dir+LocEQ
MULICsoft linear MoJo Number of
growth, 5" similarity Error Clusters
metric
- Initial value 1, 407 192
increment by 130, NO
threshold
Mozilla with
Dev+Dir+Tim

MULICsoft linear MoJo Number of
growth, 5™ similarity Error Clusters
metric
- Initial value 1, 407 192
increment by 130, NO
threshold

Mozilla with Dev+Dir
MULICsoft linear MoJo Number of
growth, 5™ similarity Error Clusters
metric
- Initial value 1, 409 177
increment by 130, NO
threshold

6. Inputting Additional Categorical Data

We integrated the categorical data sets shown below
with the mozilla file data set, to produce improved
results when MULICsoft clustering is applied to the
integrated data sets.

7. Runtime Evaluation

The run times taken for MULICsoft to cluster the
mozilla system are shown in the table below.

Time
(Seconds)

MULICsoft linear growth, 5™ 12
similarity metric

- Initial value 1, increment by 90, NO
threshold

Dev The names of all the developers who
worked on each mozilla file.

Dir The directories that contain each mozilla
file, including the ancestors in the directory
hierarchy.

LocEQ | The RANGE of each mozilla file.

Tim The date at which each mozilla file was
developed.

MULICsoft linear growth, 5™ 12
similarity metric

- Initial value 1, increment by 120,
NO threshold

The MULICsoft error rates for mozilla are described
below, after inputting additional categorical data sets.

MULICsoft linear growth, 4™ 29
similarity metric

- Initial value 1, increment by 10,
threshold 50




MULICsoft linear growth, 4™ 13
similarity metric

- Initial value 1, increment by 120,
threshold 121

MULICsoft linear growth, 5™ 13
similarity metric

- Initial value 1, increment by 50, NO
threshold

8. Discussion

MULICsoft offers many advantages for clustering of
software data sets. MULICsoft allows for a flexible
number of clusters to be produced. A MULICsoft
cluster is much more representative of the underlying
patterns in a data set, because MULICsoft recognizes
that differing layers of coherence and similarity may
exist in a cluster amongst objects. We have shown that
when requiring the user to specify the number of
clusters to be output from the clustering process, this
might not allow the clusters to have the maximum
coherence [Andreopoulos04].

Our method provides the user with the option to
merge any clusters that are very similar, to build larger
clusters, after the clustering process. We are currently
implementing and testing an improved method for
merging the clusters. This improved merging method
will further improve the results of MULICsoft, because
sometimes the results might be refined.

Human comprehension of a software system may
benefit from a clustering method that initially focuses
on creating clusters of highly coherent objects. A
software system is typically composed of many tight
and highly coherent clusters of files and a clustering
method should start by identifying as many of these
highly coherent clusters as possible. If a manual
decomposition of the software system identifies 10
clusters, it does not mean that this decomposition is the
best nor the most useful when trying to comprehend or
maintain the program, since the resulting clusters may
have a large size. On the other hand, a clustering
partition resulting in smaller clusters of highly coherent
files may be much more beneficial to a software
maintainer.

9. Conclusion

We have presented a clustering algorithm, named
MULICsoft, that deals with many of the problems
posed by k-Modes. Specifically, MULICsoft does not
sacrifice the coherence of the data sets for the number
of clusters, which in k-Modes is defined strictly before
the process. Instead, MULICsoft finds the clusters that
naturally exist in the data set and forms as many
clusters as required. For each cluster, MULICsoft can

form layers of varying coherence. It starts by forming a
layer of high coherence using strict criteria concerning
which objects to insert in the layer. As the process
continues MULICsoft relaxes its criteria, forming
layers that may be less coherent than the previous
layers. In addition, MULICsoft similarity metrics
consider weights on the categorical attribute values that
are derived from a runtime profiling of the system. In
the end, the human expert has the option of merging
clusters that are very similar to build larger clusters and
reduce the number of clusters. We have tested
MULICsoft for accuracy on the mozilla system for
which an expert-defined system partition exists. On
this data set the MULICsoft misclassification rate was
lower than the misclassification rates of LIMBO
[Andritsos04], BUNCH [Mancoridis99] and ACDC
[Tzerpos00]. Finally, we showed that the runtime of
MULICsoft which took between 10 and 30 seconds
was more than satisfactory.
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