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Recently, BEA, IBM, Microsoft, SAP and Siebel Systems introduced the business process execution language
for web services (BPEL4WS) [ACD*03]. BPEL4WS has been designed to compose web services. For an
introduction to web services, we refer the reader to, for example, [Que03]. Web service composition is
discussed in, for example, [KS03]. BPEL4WS has been submitted to OASIS for standardisation and is
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Abstract

Dead-path-elimination (DPE) is a key ingredient of the business process execution language for web
services (BPEL4WS). In this paper, we introduce a small language called the BPE-calculus which contains
those constructs of BPELAWS that are most relevant to DPE. We present three models for the BPE-
calculus: one without DPE, one with DPE, and one with our proposed modification of DPE. We formulate
a condition and show that it is sufficient and necessary for (modified) DPE to be free of (unintended)
side effects. More precisely, we prove the following two properties. First of all; if the condition is
satisfied, then the behaviour of a BPE-process is the same in the model without DPE and the model
with (modified) DPE. Secondly, if the condition is not satisfied, then we can construct a BPE-process
that behaves differently in the models. As a consequence, if the condition is satisfied, then DPE becomes
an optimisation. In that case, programmers can ignore DPE and, hence, programming in BPEL4WS
becomes simpler.

Introduction

expected to become the basis of a de facto standard for web service composition.

BPEL4WS is XML based, that is, its syntax is defined in terms of an XML grammar. For example, the

BPEL4WS snippet

<invoke partner="producer"
operation="sell"
inputVariable="offer"
outputVariable="confirmation">
</invoke>

invokes the web service operation sell of the producer.

In BPEL4WS, the basic activities include assignments, invoking web service operations, receiving re-
quests, and replying to requests. These basic activities are combined into structured activities using ordinary

sequential control flow constructs like sequencing, switch constructs, and while loops.

*This research is supported by IBM Canada Ltd. and the Natural Sciences and Engineering Research Council of Canada.
IBM is a registered trademark of International Business Machines Corporation in the United States, other countries, or both.



1.1 Concurrency in BPEL4WS
Concurrency is provided by the flow construct. For example, in

<flow>
buy
sell

</flow>

the activities buy and sell, whose behaviour has been left unspecified to simplify the example, are concurrent.
The pick construct allows for selective communication. Consider, for example,

<pick>
<onMessage partner="consumer">
sell
</onMessage>
<onMessage partner
buy
</onMessage>
</pick>

="producer">

On the one hand, if a message from consumer is received then the activity sell is executed. In that case,
the buy activity will not be performed. On the other hand, the receipt of a message from producer triggers
the execution of the buy activity and discards the sell activity. In the case that both messages are received
almost simultaneously, the choice of activity to be executed depends on the implementation of BPEL4WS.
This pick construct is similar to the summation construct found in calculi like, for example, CCS [Mil89].

Synchronisation between concurrent activities is provided by means of links. FEach link has a source
activity and a target activity. Furthermore, a transition condition is associated with each link. The latter is
a Boolean expression that is evaluated when the source activity terminates. Its value is associated with the
link. As long as the transition condition of a link has not been evaluated, the value of the link is undefined.
In this paper, we will use, for example

true
@

to depict that link £ has source a; and target a; and transition condition true. The source and target of a
link cannot change at run time and, hence, links cannot be used to express mobility in the way names can
in the m-calculus [Mil99).

Each activity has a join condition. This condition consists of incoming links of the activity combined by
Boolean operators. Only when all the values of its incoming links are defined and its join condition evaluates
to true can an activity start. As a consequence, if its join condition evaluates to false then the activity never
starts. We will use, for example,

true true

£1Vieg

to depict that the join condition of activity a; is ¢; V £2. In the above example, activity a; can only start
after activities al and a2 have finished. From now on, we will use the convention that the default transition
condition (true) and the default join condition (disjunction of the incoming links) are not depicted.
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1.2 Dead-Path-Elimination

Let us consider the following activities and links.

In the above picture, we use + to depict the pick construct. Note that the choice between the activities a}
and a? determines which of the activities a3, as and as are performed. For example, if a} is chosen then a3
is executed. In that case neither a4 nor as can ever occur. As a consequence, the activities a4 and as could
be “garbage collected.” Here, we use the term “garbage collection” to denote the process of automatically
reclaiming activities (rather than memory). The activities can be “garbage collected” as follows.

e If a pick construct is executed, then we also assign false to all the outgoing links of those branches of
the pick construct that are not chosen.

e If the join condition of an activity evaluates to false, then the activity is “garbage collected” after
assigning false to its outgoing links.

The first rule is also applicable to the switch construct. Since the pick and switch constructs are very
similar, we only consider the pick construct in this paper. This “garbage collection” scheme is named dead-
path-elimination (DPE) [LA94, ACD%03]. DPE not only “garbage collects” activities but also simplifies
termination detection of structured activities [Rol03].

Let us briefly return to the above example. Assume that activity a} is chosen. Then, as a result of DPE,
the value of the link ¢2 becomes false. When activity a, terminates, the link > gets the default value true.
At this point, the join condition of activity a4 can be evaluated. Since its value is false, by DPE, false is
assigned to link /3 and activity a4 is “garbage collected.” Subsequently, again exploiting DPE, activity as
can be “garbage collected” as well.

1.3 The Problem

Now let us consider another example.

+ true

At first sight, one may be tempted to conclude that activity az will never be executed. Without DPE this is
indeed the case. However, DPE may trigger the execution of activity az as follows. Assume that activity al
is chosen. By DPE, the value of the link £2 becomes false. Since the value of the link /> becomes false as
well, the join condition ¢? = ¢ evaluates to true. Hence, activity as can be performed. The above can be
paraphrased as DPE may have side effects. We believe that side effects as in the above example may be
introduced unintentionally.

Next, we consider the following example.

+




On the one hand, if we do not have DPE and the activity a! is chosen, then the link ¢2 will be undefined
forever. Since join conditions in BPEL4WS are only evaluated once all links that are part of the join condition
are defined, the join condition £2 V {5 will never be evaluated in this case and, hence, the activity az will
never be executed. On the other hand, if the activity aj is chosen, then DPE may trigger the execution of
activity as as follows. When the activity al is chosen, the value of the link ¢? becomes false by DPE. After
activity as has been performed, the value of the link ¢, is set to true. At this point, the join condition can be
evaluated. Since its value is true, activity az is executed in this case. This is another example of a process
that behaves differently with and without DPE.

1.4 The Analysis

The side effect in the first example of the previous section is caused by negative occurrences of links in the
join condition. The join condition ¢3 = {5 is equivalent to the Boolean expression (£ A €y) V (=3 A —fs).
The links #2 and /> both have a negative occurrence in the disjunctive normal form of the join condition.
By disallowing negative occurrences of links in join conditions, side effects like the one in the first example
can be eliminated.

In the second example of the previous section, the side effect is caused by the fact that all links need to be
defined before a join condition can be evaluated. By evaluating the join condition as soon as its truth value
is known, this type of side effect can be removed as well. In that case, L V true is true (where L denotes
undefined). This type of evaluation is supported in, for example, the web service flow language (WSFL)
[LeyO1].

1.5 Our Solutions

As we have already mentioned above, by disallowing negative occurrences of links in join conditions and by
evaluating the join condition as soon as its truth value is known, DPE becomes free of side effects.

However, there is an alternative remedy. Note that the value of a link is either undefined or it has the
value true or false. We cannot distinguish between

e 3 link whose value is false because its transition condition evaluated to false, and
e 3 link whose value is false due to DPE.

However, if we can distinguish between these two cases, then side effects like the one in the first example of
Section 1.3 do not occur. This can be accomplished by modifying DPE in the following way. Links can either
be undefined, have the value true or false, or be defined but have a value different from true and false. The
latter value, denoted T, is used to denote that the link’s value has been set by DPE. Hence, our proposed
modification of DPE amounts to the following ingredients:

e If a pick construct is executed, then we also assign T to all the outgoing links of those branches of the
pick construct that are not chosen.

e If the join condition of an activity evaluates to false, then the activity is “garbage collected” after
assigning T to its outgoing links.

In the first example of Section 1.3, modified DPE sets the value of link #? to T rather than false. As a
consequence, the join condition /2 = /5 evaluates to false rather than true and, hence, activity as is not
executed. Therefore, this example gives rise to the same behaviour without DPE and with modified DPE.

Let us consider modified DPE for the second example of Section 1.3. If the activity ai is chosen, then
modified DPE may also trigger the execution of activity az. When the activity al is chosen, the value of the
link #? becomes T this time. After activity as has been performed, the value of the link £, is set to true. At
this point, the join condition can be evaluated since both links are defined. Since T V true is true, activity ag
is also executed in this case. Hence, this example behaves differently without DPE and with modified DPE.
However, if a join condition is evaluated as soon as its value is known, then modified DPE is free of side
effects. In this case, negative occurrences of links in join conditions are allowed.



1.6 The Technical Details

The above examples show that (modified) DPE can have side effects. The proposal of the modification of
DPE and the formulation of a condition and the proofs that this condition is sufficient and necessary for
(modified) DPE to be free of side effects are the main contributions of this paper. The condition is named
SEF for side effect free. The condition is formulated in terms of the evaluation function of join conditions.
This function determines the value of a join condition, given the values of the links. The evaluation function of
BPEL4WS does not satisfy the condition. Below, we describe how our main results are proved. Furthermore,
we mention the other contributions of this paper.

Rather than studying BPEL4AWS as a whole, we focus on a small language that includes all the concepts
we introduced above. Furthermore, we leave unspecified some syntactic categories, like for example the basic
activities. That is, we assume a set of basic activities but we do not specify their syntax. The language
so obtained we call the BPE-calculus, as it is similar in flavour to calculi like, for example, CCS [Mil89].
In the BPE-calculus, we abstract from many details to obtain a small language to study the essence of
DPE. For a calculus that captures more of BPEL4AWS, we refer the reader to [Kos03]. A calculus with
compensation handlers, an ingredient of BPEL4WS that is not considered in [Kos03], has been studied in
[BLZ03, CGV102]. Although we only consider an abstraction in the form of the BPE-calculus, we are
confident that our results scale up to extended calculi for BPEL4WS and even BPEL4WS as a whole.

In order to prove our main result, we introduce three models for the BPE-calculus. The predominant
approach to model calculi like our BPE-calculus is to capture the behaviour of BPE-processes in terms of a
labelled transition system, as advocated in, for example, [Plo04]. In this paper, we will follow this approach
as well. Alternative approaches to model business processes, namely by means of Petri nets and distributed
abstract state machines, are discussed in the concluding section of this paper. The first labelled transition
system models the BPE-calculus in the absence of DPE. The second one captures the BPE-calculus with
DPE. The third and final system models the BPE-calculus with our proposed modification of DPE.

To show that the condition SEF is sufficient and necessary for (the modification of) DPE to be free of
side effects, we prove the following two properties. First of all, if the condition SEF is satisfied, then the
behaviour of a BPE-process is the same in the model without DPE and the model with (modified) DPE.
Secondly, if the condition SEF is not satisfied, then we can construct a BPE-process that behaves differently
in the models. In the next two paragraphs, we discuss how we prove these properties.

To capture those states of a labelled transition system—in our case, these are the BPE-processes— that
behave the same, it is common practice to introduce a behavioural equivalence on the states of the system.
Many different behavioural equivalences have been introduced in the literature. To prove the first result, we
exploit weak bisimilarity which is among the strongest of the weak behavioural equivalences. Recall that a
behavioural equivalence is called weak if it abstracts from internal actions. We show that if the condition
SEF is satisfied, then a BPE-process in the labelled transition system without DPE is weak bisimilar to
the BPE-process in the system with (modified) DPE. We actually prove the following even stronger result.
If the condition holds, then a BPE-process in the labelled transition system without DPE is expanded by
the BPE-process in the system with (modified) DPE. Expansion, which we denote by 3, is a behavioural
preorder that was first introduced in [AH92]. Since expansion is stronger than weak bisimilarity, the latter
result implies the former. To prove the latter result, we exploit the powerful proof technique of expansion
up to X which was introduced in [SM92].

In the proof of the second result, we use weak trace equivalence which is one of the weakest behavioural
equivalences. We show that if the condition SEF is not satisfied then we can construct a BPE-process such
that this process in the labelled transition system without DPE is not trace equivalent to the same process
in the system with (modified) DPE.

1.7 Overview

The rest of this paper is organised as follows. In Section 2, we introduce our BPE-calculus. In Section 3
and 4, we present labelled transition systems that model the BPE-calculus without and with DPE. The
condition is introduced in Section 5. In Section 6 and 7, we show that SEF is a sufficient and necessary
condition. In Section 8, we model our proposed modification of DPE by means of a labelled transition
system, adapt the condition to the modified setting, and prove that this adaptation of the condition is also



a sufficient and necessary condition. In Section 9, we focus on the evaluation of join conditions. The final
section concludes and discusses some related work.

2 The BPE-calculus

The BPE-calculus concentrates on those constructs of BPEL4WS that are key to DPE. It also abstracts
from many details of BPEL4WS that are not relevant for our study of DPE.
Before defining BPE-processes, we first fix

e a set A of basic activities,
e an infinite set L of links and

e a set C of join conditions.

Definition 1 The set P of processes is defined by
P == 0|a.P|t1bP|lc—>P|Q+Q|P|P
Q == aP|Q+Q

where a € A, £ € L, b € {true, false} and c € C.

Most operators of the BPE-calculus are very similar to the operators of calculi like, for example, CCS [Mil89)].
Let us focus on the new ingredients of our calculus. In the process £ 1 b.P, the Boolean value b is the value of
the transition condition associated to the link £. In the process ¢ — P, c is the join condition of process P.

For example, the BPEL4WS snippet described by the last picture of the introductory section is captured
by the BPE-process

(al.0 + a2.02 1 true.0) || az.la 1 true.0 || (62 V £y) = a3.0

In BPEL4WS, each link should have a unique source. We capture this restriction by means of the
following very simple type system. Only if a process satisfies this restriction can it be typed. Its type will
be the set of its outgoing links.

Definition 2 The relation {t C P x 2& is defined by
(NiL) 01 0

PyL

(PREF) WP 1L

PAL (&L
(1b.P ) LU{L}

(our)

PHL

o) TS F T

P Ly P,y Ly LinLy=10
P1+P2ﬂL1UL2

(PICK)

P L P fy Lo LinLy =10
P || Pyfy Ly ULy

(FLOW)

Not every process can be typed. For example, the process £ 1 true.0 || £ 1 true.0 cannot be typed. However,
if a process is well-typed then its type is unique. That is, if P {} Ly and P f} L, then Ly = Ly. Furthermore,
each type is finite. That is, if P {} L then L is a finite set of links.



3 A Model without Dead-Path-Elimination

Since we want to compare the BPE-calculus without DPE and the BPE-calculus with (modified) DPE,
we introduce three models: one without DPE, one with DPE, and one with our proposed modification of
DPE. All three models are defined in terms of a labelled transition system. Below, we present the labelled
transition system without DPE. The labelled transition system with (modified) DPE are given in Section 4
and 8.

In the labelled transition system, we need to keep track of the values of the links. The value of a link is
either true, false, or undefined. The latter we denote by L.

Definition 3 The set A of links statuses is defined by
A =L — {true, false, L }.
The initial links status A, assigns L to each link. The links status AM{L — b} is defined by

b iftel
ML= b}(0) = { A(¢) otherwise

Instead of A{{/} — b} we often just write A{£ — b}. To model the evaluation of join conditions, we fix an
evaluation function C : C — A — {true, false, 1 }. We assume that this evaluation function C satisfies

if C(c) (M€ —L}) £L then C(e)(\) = C(c)(A{L —L}) 1)

for all c € C, A € A and ¢ € L. This is a very natural assumption (compare with, for example, [Win93,
Lemma 9.3], where the evaluation of expressions is shown to be continuous).

Next, we define the labelled transition system without DPE. The states of the system are pairs, each
consisting of a process P and a links status A. To distinguish the process P with links status A in the labelled
transition system without DPE and from the process P with links status A in the system with (modified)
DPE, we denote the former by and the latter by (P, \) (and (P, A)).

There are two types of labels. A transition is either labelled by a basic activity or by ¢. The former
captures the execution of a basic activity whereas the latter models an internal action. Whether these
internal actions modelled by ¢ are observable or not has no impact on our results. We use « to denote the
labels of the system. That is, « is either a basic activity or it is .

The transitions of the system are defined in the following definition.

Definition 4 The labelled transition relation - CP x A x (AU {i}) x P x A is defined by

(PREF) —
(ouT) -
Cley(N) =t
(JOINg) @) . e
_)
(PICK/) 7)
—
(PICK,) 7
—
(rLowe) —
—
(FLOW,) 7
—



The rules (PREF), (PICK), (PICK,), (FLOW;) and (FLOW,) are very similar to the rules that are used to
model prefixing, summation and composition in CCS. The rule (OUT) captures that process £ 1 b.P sets the
value of link ¢ to Boolean value b. Process ¢ — P evaluates the join condition ¢, given the values of the
links represented by the links status A. If this evaluation results in true, then the process ¢ — P can make
a transition.

Next, we show that if a process is well-typed, then all processes reachable from that process by means of
a transition are well-typed as well. This property is known as subject reduction.

Proposition 5 If = and P\ L then P' f} L' for some L' C L.

Proof We prove this proposition by transition induction.

a

e Consider the transition — . Assume that a.P ff L. Then P 1 L.
o Consider the transition = . Assume that £1 b.P t L. Then P f L\ {/}.
e Consider the transition = . Assume that ¢ - P f} L. Then P 1} L.

e Consider the proof

a

—

a

—

Furthermore, assume the proof

P L Py Ly LinLy=19
P +P,{y Ly ULy

By induction, P {+ L} for some L} C Ly. Obviously, L] C Ly U L,.

e Consider the proof

a

—

a

—

Furthermore, assume the proof
PiffLy  PffLy LinLy=0
P || Py L1 ULy

By induction, P{ {} L} for some L{ C L;. Hence, L} U Ly C Ly U Ly. Furthermore, L} N Ly = §.
Therefore, P| || P2 4t L} U L. O

If process P makes a transition to process P’ and the processes have types L and L', respectively, then
only the values of links in the set L \ L' may have changed as the result of the transition, that is, the links
status restricted to (L \ L) U L' does not change.

Proposition 6 If = and Py L and P' Y L' then A\ [ (L\L)UL' =X [ (L\L)UL'.

Proof We prove this proposition by transition induction.

a

e Consider the transition — . Obviously, the proposition is vacuously true in this case.

o Consider the transition — . Assume that £1 b.P ff L. Then P f} L\ {£} and
£ € L. Note that (L\ LYU (L \ {¢}) =L\ {¢}. Obviously, A [L\ {¢} = A{{—~ b} [ L\ {¢}.

e Consider the transition = . Obviously, the proposition is vacuously true in this case.

e Consider the proof

a
—

a
—



Furthermore, assume the proof
P Ly Py Ly LinLy =0
P +P QY Li UL

Assume P| {t L. By induction, A [ (L\ L;)UL] =X | (L\ L;)ULj. Hence, A | (L\ (L1 ULy))UL} =
AN (L\ (L1 ULs))U L,

e Consider the proof

(e

—

[e%

—

Furthermore, assume the proof
P Ly Pyt Ly LinLy, =0
P || Py ‘ﬂLlULz

Assume P| {t L}. Then P| || P, {t Li U Ly. By induction, A | (L\ L;) UL] = X' [ (L\ L;) ULj. Hence,
AT (L1 U L)) U (L3 U Ly) = X [ (L (L1 U Ly)) U (L U Ly). O

We restrict our attention to 's with A (£) #L for finitely many £ € L, P ff L and A({) =L for all
£ € L. We will call them valid.

a

Proposition 7 If — and is valid then is valid.

Proof Assume P {} L. Hence, by Proposition 5, P' {t L' for some L' C L. Let £ € L'. Then

N = X [A@\L)UL =X [ (L\L)UL according to Proposition 6]
= 1 ] is valid]

Since A(f) #.L for finitely many £ € L and A [ (L\L)UL' = X [ (L'\ L)U L' according to Proposition 6 and
the set L'\ L' is finite (since the sets L and L' are finite), we can conclude that A'(£) #.L for finitely many
tel O

Since initially all links are undefined, we can conclude from the above proposition that at any point only
finitely many links are defined, that is, their value is different from 1.

The behavioural equivalence strong bisimilarity, which we denote by ~, is a congruence with respect to
the flow construct.

Proposition 8 If ~ then ~

Proof The proof of this proposition is a straightforward modification of the proof that bisimilarity is a
congruence with respect to composition in CCS as shown in, for example, [Mil89, Proposition 4.10]. One
shows that

{( ; ) | ~ }

is a bisimulation. O

4 A Model with Dead-Path-Elimination

In the previous section, we modelled the BPE-calculus without DPE. Next, we present a labelled transition
system for the BPE-calculus with DPE.

The states of the labelled transition system are of the form (P, \), where P is a process and X is a links
status. Besides basic activities and ¢, a transition can also be labelled by 7. The 7-transitions correspond
to the “garbage collection” caused by DPE. These transitions are therefore not observable. The transitions
are given in the following definition.



Definition 9 The labelled transition relation — CPx A x (AU {¢,7}) X P x A is defined by (PREF), (OUT),
(JoINg), (FLOW,), (FLOW,) and

C(c)(N) = false PAHL
(c = P,\) = (0, \{L — false})

(JOINy)

(Pla)‘)i)(Plla)‘l) PZﬂL2
(P, + Py, \) =5 (P}, N'{Ly + false})

(PICKY)

(P, \) = (PLN)  PifLy
(P, + Py, \) = (Py, N'{Ly + false})

(P1cK?)

(Plv)‘) ; (PllvAl)
(P1[| P2, A) = (P || P2, )

(FLOW])

(P27/\) L> (P2la)\l)
(P || P2, \) = (P || B3, N)

(FLOWT)

Note that the rules (PICK;) and (PICK,) of Definition 4 are replaced with the rules (P1ck{) and (PICK?).
They capture the first ingredient of DPE: if a pick construct is executed, then we assign false to all the
outgoing links of the branch of the pick construct that is not chosen. Recall the second ingredient of DPE:
if the join condition of a process evaluates to false, then the process is “garbage collected” after assigning
false to all its outgoing links. This is captured by the rule (JOINy). If (a part of) process P; can be “garbage
collected”, then (that part of) process Py can also be “garbage collected” in the process Py || P,. This is
captured by the rules (FLOW}) and (FLOWT).

The properties formulated in Proposition 5, 6 and 7 also hold for the above introduced labelled transition
system.

Proposition 10 If (P,\) = (P',)\') and P { L then P' 4 L' for some L' C L.

Proof We prove this proposition by transition induction. Most cases are the same as in the proof of
Proposition 5.
e Consider the transition (¢ — P,\) — (0, \{L + false}). Since 0 1 0, this case vacuously holds.
e Consider the proof
(P, ) = (P, X)
(Py + Py, \) = (P + Py, \)
Assume that
P Ly Pt Ly LinLy, =0
P+ P, ff LiU L,

By induction, P] f} L for some Lj C L;. Hence, L} U Ly C L; U Ly. Furthermore, L} N Ly = §.
Therefore, P{ + P ff L} U Ls. O

Proposition 11 If (P,\) - (P',\) and Pf L and P' y L' then A | (L\ L)UL' =X [ (L\ L)U L'

Proof We prove this proposition by transition induction. Most cases are the same as in the proof of
Proposition 6.

e Consider the transition (¢ — P,\) — (0, \{L ~ false}) where P {} L. Since 0 {} 0, it suffices to show
that A [ (L \ L) = A{L + false} | (L \ L) which is vacuously true.

10



e Consider the proof
(P, \) = (P, X)

(Py + Py, \) = (P + Py, \)
Assume that

P Ly P { Ly LinLy =10

P +P,{yL1ULs

Assume that P/ f L]. Then P + P> ff Lj U Ly. By induction, A [ (L\ L) UL, =X | (L\ Ly) U L].
Hence, A | (L\ (L1 UL2)) U (Ly U Ly) =X | (L\ (L1 UL2)) U(L] U Ly). O

Proposition 12 If (P,\) = (P',\) and (P, \) is valid then (P', ') is valid.

Proof Similar to the proof of Proposition 7. O

5 The Side Effect Free Condition

Next, we present the condition which exactly captures when DPE is free of side effects. In the following two
sections, we show that this condition, named SEF for side effect free, is sufficient and necessary for DPE to
be free of side effects. In Section 8, we will discuss how SEF can be adapted for modified DPE.

To formulate the condition SEF, we introduce the following relation on the values of links and extend it
to a relation on links statuses.

Definition 13 The relation C C {true, false, 1} is the smallest reflezive relation containing LT false. The
relation C C A x A is defined by

A1 C A2 'Lf A1 (f) C Ao (f) fOT all £ e L.

This relation roughly captures the following. If a link is undefined in the model without DPE then it either
is undefined or has value false in the one with DPE, and if a link has value true or false in the model without
DPE then it also has this value in the other model.

Now we are ready to formulate the condition SEF on C: for all A\;, A2 € A and ¢ € C,

if C(c)(A2) = true and A\; C Xy then C(c)(A1) = true. (2)

The above condition roughly requires that a join condition evaluates to true in the model without DPE if
it evaluates to true in the model with DPE (the converse always holds given that the evaluation function C
satisfies (1)).

6 SEF is Sufficient

Below, we show that if the evaluation function C satisfies the SEF condition (2) and condition (1), then
DPE is free of side effects. More precisely, we prove that if both conditions hold, then DPE has no impact
on the behaviour of a process. That is, we show that and (P, \| ) are behaviourally equivalent. The
stronger the behavioural equivalence, the stronger the result. We prove it for weak bisimilarity, which is
one of the strongest behavioural equivalences that abstracts from 7-transitions. In fact, we prove an even
stronger result. We show that (P, ) expands . Expansion, introduced in [AH92] and denoted
by =, is a behavioural preorder derived from weak bisimilarity by, essentially, comparing the number of
T-transitions performed by the processes. It enjoys the powerful proof technique of expansion up to X which
was introduced in [SM92].

For the rest of this section, we assume that (1) and (2) both hold. For the definition of expansion, we
refer the reader to, for example, [SM92, Definition 3.1]. Below, we do not rely on the definition of expansion.
We only make use of a few simple properties of expansion. We also do not present the definition of expansion
up to 3. It can be found in [SM92, Definition 3.4]. In Theorem 18, we prove that

5:{( 7(P7)‘2))|A1EA2}

is an expansion up to X. According to the definition of expansion up to 3, it suffices to show that
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Loif (P ) = (P',))) and Ay T Ao then (P,\s) == (P',),) for some X, such that (7', )) ~ & =
(P', Ab);

2. if (P, ds) — (P',)\,) and Ay C Ag then (7)) —= (7', )\}) for some | such that (7' )\)) 3 & 3
(P, A5);
3. if (P, Xs) — (P, \,) and Ay C Ag then (72, ),) 3 & 3 (P, \).
To prove 1, 2, and 3, we use the following three lemmas.
Lemma 14 If (P, )\;) — (', )\}) and A\; € Ay then (P, )s) — (P',\}) for some N, such that X} T ).
Proof We prove this lemma by transition induction.

e Consider the transition (a.7%, \;) — (7. \;). Then (a.P,\s) — (P, \2).
e Consider the transition (/1 5.7 01) = (7,0 {/~ b}). Then (/1 0. )s) = (P, A>{/+ b}). Since
A1 C A2, we also have that A1 {£ +— b} C \a{¢ — b}.
e Consider the transition (¢ — 7, ;) = (7, \;). Since C(c)(A1) = true and A\; C Xy, we can conclude
from (1) that C(c)(\2) = true and, hence, (c — P,\s) = (P, \2).
e Consider the proof
(P, A1) = (P,
(Py + Py, A1) = (P, )
Assume that
P Ly P Ly LinLy=0
P +Pyff Ly UL,

By induction, (P, \s) == (P}, \}) for some X, such that \j T X\,. Then (P, + Py, \y) —= (P}, \o{Ls ~ false}).

Since (/) + P, \;) is valid and Py + Py fy Ly U Ly, we have that A\;(¢) =1 for all £ € Ly. Assume

P| {y L. According to Proposition 11, \; [ (L\ L) UL} = X| | (L'\ Ly) U L. Since Ly N Ly = 0, we

can conclude that A (¢) =L for all £ € Ly. Therefore, A\] C A,{Ls — false}.

e Consider the proof
(Proh) = (PN
(P || P2y M) = (P} || P2, \y)

By induction, (P1, Xs) —= (P}, \}) for some X, such that X} T \,. Hence, (P, || Po, A2) — (P} || P>, \b).

(]

Lemma 15 If (P,)s) — (P',)\,) and A\; E Ao then (P, ) ) — (P'.\|) for some N such that \j T ).
Proof We prove this lemma by transition induction. Most cases are the same as in the proof of Lemma, 14.
e Consider the transition (¢ — P, \s) — (P, X2). Since C(c)(\2) = true and A\; T A2, we can conclude
from (2) that C(c)(A\1) = true and, hence, (¢ — P, )\ ) = (P, ).
e Consider the proof
(Pi,00) = (P,)y) Pt Lo
(P1 + P, /\2) LN (Pll7 AIZ{LZ — false})
Assume that
P Ly P Ly LiNnLy, =0
P+ P,y LiU Ly

By induction, (7, \,) == (7], )\}) for some A} such that X} C X,. Hence, (77, + %, \;) — (], \}).
Since (P, + P, \;) is valid and Py + Py fy Ly U Ly, we have that A\;(£) =1 for all £ € Ly. Assume
P/ ¢ Lj. According to Proposition 6, Ay [ (L\ L) UL, =X [ (L\ Ly) UL}. Since Ly N Ly = (), we
can conclude that A (¢) =L for all £ € Ly. Therefore, A\] C A,{L2 — false}. O
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Lemma 16 If (P, \s) — (P',\,) and A T Ay then (P, )\) ~ (P')\).
Proof We prove this lemma by transition induction.

e Consider the transition (¢ — P, \y) — (0, A\o{L + false}). Then C(c)(A2) = false. Since \; C Xy we
can conclude from (1) that C(c)(A2) # true. Hence, (¢ — P, A;) ~ (0, A;).
e Consider the proof
(P, ho) = (P, )
(Pu || P2y A2) = (P || P2, Ap)

By induction, (P, A1) ~ (P, A\;). According to Proposition 8, (P || P, Ay) ~ (P || Po, Ap). O
In the proof of 3, we also exploit
Proposition 17 If (P,\) — (P',\) then AC X'.
Proof We prove this proposition by transition induction.

e Consider the transition (¢ — P, \) — (0, \{L  false}) where P {} L. Since (¢ — P, )) is valid, A(£) =L
for all £ € L. Hence, A C A{L > false}.
e Consider the proof
(P, ) = (P{,X)
(Py || P2, A) = (P || Py, X')
By induction, A C X. O

Now we are ready to prove
Theorem 18 & is an expansion up to 3.

Proof Obviously, the identity relation = is a bisimulation and an expansion and, hence, = C ~ and = C 3.
Consequently, 1 and 2 follow from Lemma 14 and 15, respectively. Next, we prove 3. As shown in [SM92,
Theorem 3.3], ~ C 3. Assume that (P, \y) — (P’,\,) and A\; C Ag. Then,

(Poa) 3 (P A) [~ C X and Lemma 16]
E (P',))) [M C X2 and A2 C N, by Proposition 17]
3 (PN [=cF
which proves 3. O

This brings us to our first main result: (7, )\, ) and (P, \) are weak bisimilar.
Corollary 19 (P )\ ) = (P,AL).
Proof Since £ is an expansion up to 3, we know that £ C 3 according to [SM92, Theorem 3.5]. As shown

in [SM92, Theorem 3.3], we have that 3 C . Hence, £ C ~. Since (P, ), )& (P, L), we can conclude that
(P m (P AL). O
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7 SEF is Necessary

Next, we prove that if the evaluation function C does not satisfy the SEF condition (2), then DPE may
have side effects. We show this by constructing a BPE-process P such that and (P, A1) behave
differently. In this case, the weaker the behaviour equivalence, the stronger the result. We prove it for weak
trace equivalence, which is one of the weakest behavioural equivalences.

Assume that the evaluation function C does not satisfy the SEF condition (2). That is,

C(c)(A2) = true and Ay C Ap and C(c)(\1) # true. (3)
for some A1, A2 € A and ¢ € C. Given this assumption, we can prove our second main result.

Theorem 20 There exists a process P such that and (P,)\1) are not weak trace equivalent.

Proof Assume that A\; C A2. Without loss of generality, we can assume that A; (¢;) #L and Az(4;) #L and
forall 1 <i<mand A\ (¢pti) =L and A2(£yys) = false for all 1 < i <m and A;(£) =L and A2(¢) =L for
all other ¢ € .. Now consider the processes

p
Q

0t Al A (B2 - 1 A (60).Q
(a.c = a.0) + (a-lpy1 T truelpio T true. . . Lyym T true.0)

Since (3), we have that

- -, A
and
(PAL) 5 (Q, M) 2 (¢ = a.0,X0) = (2.0, X2) =% (0,X2) £
Therefore, and (P, \|) are not weak trace equivalent. O

8 A Modification of Dead-Path-Elimination

Below, we model the BPE-calculus with the modification of DPE as proposed in the introduction. Further-
more, we adapt the SEF condition to this setting. This adapted condition is necessary and sufficient for the
modification of DPE to be free of side effects.

The key difference between DPE and its proposed modification is the value T. This value is assigned to
a link when its source activity is “garbage collected” by modified DPE. It captures that the link has been
defined (the opposite of being undefined), but its value is different from true and false. Since a link can have
the value T, we redefine the set of links statuses as follows.

Definition 21 The set A of links statuses is defined by
A =1L — {true, false, L, T}.

As before, we assume that the evaluation function C : C x A — {true, false, 1, T} satisfies (1). Note that
the value of a join condition can be T.

This time, we denote a state of the labelled transition system as (P, \), where P is a BPE-process and A
is an (extended) links status. The labels are the same as before. The transitions are defined in the following
definition.

Definition 22 The labelled transition relation — C P x A x (AU{t,7}) x P x A is defined by (PREF), (OUT),
(JOINg), (FLOW;), (FLOW,), (FLOW} ), (FLOW]), and
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Ce)N)=T PHL
(c= P,\) — (0,ML~ T}

(JOINT)

(P, A) = (P, XN) P Lo
(P + P2, A) = (P, N{Ly— T})
LN

(PICKY)

(P27)‘) (PQIJ)‘I) Pl ﬂLl
(Pr+ P2, 2) = (P, N{Ly1 = T})

(pick?)

Note that the only difference between the rules (PICKS), (PICK) and (JOINy) in the above definition and
Definition 9 is the use of T instead of false. The rule (JOINT) also uses T rather than false. If the value of
the join condition is T, the process is “garbage collected.” Proposition 5, 6 and 7 also hold for the modified
labelled transition system.

To adapt the SEF condition to the current setting, we only have to extend the relation C so that the
new value T is taken into consideration as well. The value T takes over the role of false.

Definition 23 The relation C C {true, false, L, T}? is the smallest reflexive relation containing LC T.

SEF can be shown to be necessary and sufficient for the modification of DPE to be free of side effects.
The proofs of Section 6 and 7 can be adapted in a straightforward manner to the current setting.

9 Evaluation of Join Conditions

Next, we focus on the evaluation of join conditions. First, we define the syntax of join conditions. Second,
we describe a number of different evaluation functions of join conditions and check if these satisfy SEF.
Without loss of expressiveness, we can simplify the syntax of the join conditions of BPEL4WS as follows.

Definition 24 The set C of join conditions is defined by
cu=true |L]|-c|cAc|eVe

The evaluation function C is defined by

C(true)(A) = true
CON) = A
C(=e)(A) = —C()(V)
Cler Ae2)(A) = Cler)(A) AC(e2)(N)
CleaVea)(A) = Cler)(A) VC(e2)(N)

Below, we present different interpretations of the operators —, A and V. First, we consider the case where
each link can only have three values (true, false and 1). In this case, we obtain three valued logics. Next,
we also consider T as a possible value for links, giving rise to four valued logics.

9.1 Three valued logics

In this section, we assume that each link is either true, false or L. Thus, the value of a join condition is
either true, false or L. Obviously, the operator — is interpreted as follows.

| true false L
- |false true L

Now, consider the join condition —¢. Assume that the value of the link / is undefined in the model without
DPE and that it has the value false in the model with DPE, that is, A1 (£) =L and Ay (£) = false. Obviously,
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A1 C A2. In the model without DPE, C(—¢)(A1) =L but in the model with DPE we have that C(—£)(\2) =
true. Hence, SEF is not satisfied. The fact that this evaluation function C that does not satisfy SEF is
caused by the presence of negative occurrences of links in the join conditions, as we already discussed in the
introduction. However, note that not every negative occurrence is problematic. For example, in

(@a)—Ha)

the link £ has a negative occurrence in the join condition —¢, but DPE does not get triggered and, hence, no
side effects arise. We will come back to this in the concluding section of this paper.

For the rest of this section, we restrict ourselves to join conditions without any negative occurrences of
links by removing —c from Definition 24.

There are two natural ways to interpret the operators A and V. In the first interpretation, a join condition
is only evaluated if all links that are part of the join condition are defined. That is, the operators A and V
are strict with respect to L. Hence, the operators A and V are interpreted as follows.

A | true false L V | true false L
true | true false L true | true true L
false | false false L false | true false L
1 1 1 1 1 1 1 1

We denote the corresponding evaluation function by C;i. This is the way join condition evaluation is defined
in BPELAWS [ACD*03]. One can easily verify that the evaluation function C; satisfies (1). Let us consider
the join condition £V true. Assume that the link £ has value L in the model without DPE and value false in
the model with DPE, that is, A; (¢) =L and A2(£) = false. In the model without DPE, C; (£ V true)(A1) =L
but in the model with DPE we have that Cy (¢ V true)(A2) = true. Hence, SEF is not satisfied.

In the second interpretation, a join condition is evaluated as soon as its value is known. This approach
is supported in, for example, the web services flow language (WSFL) [Ley01]. In this case, the operators A
and V are interpreted as follows.

A | true false L \Y% | true false L
true | true false L true | true true true
false | false false false false | true false L

L L false L 1 | true L L

The induced evaluation function C» satisfies (1) and SEF. Hence, if we disallow negative occurrences of links
in join conditions and evaluate a join condition as soon as its value is known, then DPE is free of side effects.

9.2 Four valued logics

In the proposed modification of DPE, a link can have four different values: true, false, 1L and T. Con-
sequently, the value of a join condition can either be true, false, L or T. In this case,the operator — is
interpreted as follows.

|true false 1L T
= |false true 1 T

Next, we discuss how we can extend the two scenarios described above. In the first scenario, we only
evaluate a join condition once all its links are defined. That is, the operators are strict with respect to L.
Hence,

A | true false L T V | true false L T
true | true false L true | true true L
false | false false L false | true false L

1 1 1 1 1 1 1 1 1l 1
T 1 T 1

Next, we discuss how the above tables can be completed such that (1) and SEF are satisfied. Let us focus
on the most interesting entry of the table defining disjunction. Again we consider the join condition £V true.
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Assume that the value of the link £ is T, that is, the source activity of link £ is “garbage collected” by DPE.
The most obvious choice seems to define true V T as true. However, in this way we obtain an evaluation
function C3 that does not satisfy SEF. Assume that the link £ has value L in the model without DPE and
that it has the value T in the model with modified DPE. That is, A\1(£) =L and Ay(¢) = T. Obviously,
A1 C Xq. Since C3(£V true)(A1) =L and C3(£ V true)(A2) = true, we can conclude that SEF is not satisfied.

As an alternative choice, we could set the value of the join condition £V true to T (and as a consequence
the corresponding activity will be “garbage collected”) in case the value of the link £ is T (since its source
has been “garbage collected”). This choice gives rise to the following table.

V| true false L T
true | true true L T
false | true false 1 T

1 1 1 1 1

T T T 1 T
The induced evaluation function Cy4 satisfies (1) and SEF. To prove that C4 satisfies SEF, we can show that

if C4(c)(A2) = true and Ay C Ay then C4(c)(\1) = true and
if C4(c)(A2) = false and Ay C Ay then Cy4(c)(N\1) = false

by structural induction on c.

Note that a join condition evaluates to T if all its incoming links are defined and at least one of them
has the value T. In this case, once an activity is “garbage collected”, all other activities that can be reached
from the activity along links will never be executed and, hence, will eventually be “garbage collected” as
well.

In the second scenario, we evaluate a join condition as soon as we know its value. Therefore,

A | true false L T \% | true false L T
true | true false L true | true true true true
false | false false false false false | true false L

L 1L false L 1 | true L L

T false T | true

Again, we want to complete the above tables in such a way that (1) and SEF are satisfied. This can be done
as follows.

\ | true false L T
true | true true true true
false | true false L T

1 true 1 1 1

T true T 1 T

Also in this case, the resulting evaluation function Cj satisfies (1) and SEF.

10 Conclusion

Let us first summarise our main contributions. We observed that DPE may give rise to unintended side
effects. We presented a calculus, named the BPE-calculus, that contains those constructs of BPEL4WS that
are key to DPE. We modelled our BPE-calculus, both in the absence and in the presence of (our proposed
modification of) DPE. The model without DPE and the model with modified DPE are new. The other model
was already presented in [KB04]. We formulated a condition that exactly captures when (modified) DPE
has side effects. We proved that this condition is sufficient and necessary for DPE (and its modification) to
be free of side effects. We are confident that these results scale up from the BPE-calculus to BPEL4WS.
The model without DPE is simpler than the model with DPE (compare Definition 4 with Definition 9).
However, since DPE may have side effects in BPEL4WS, one cannot rely on the simpler model (the one
without DPE). From time to time, these side effects may be introduced unintentionally. Therefore, we believe
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that it is important that one is aware of DPE and its possible side effects. In the previous section, we have
presented three ways to avoid DPE having side effects. As a consequence, in these cases one can rely on the
simpler model without DPE.

There are three ways to avoid DPE having side effects. First of all, we could disallow negative occurrences
of links in join conditions and evaluate a join condition once its value is known. Secondly, we could consider
our proposed modification of DPE and evaluate a join conditions once its value is known. Thirdly, we could
consider our proposed modification of DPE and evaluate a join condition once all its links are defined. In
these three cases, DPE does not have side effects. As a consequence, in these cases one can rely on the
simpler model without DPE.

10.1 Related Work

In our study, we used labelled transition systems to model the BPE-calculus. Petri nets provide an alternative
approach to model business processes. For an overview of modelling business processes by means of Petri
nets, we refer the reader to, for example, [AH02a]. We believe that there are at least two major advantages of
labelled transition systems over Petri nets to address the question whether DPE has side effects. First of all,
in our proofs we fruitfully exploited induction on the structure of BPE-processes and transition induction.
Such proof techniques are less applicable to Petri nets. Secondly, as also pointed out in [AH02b], advanced
synchronisation patterns like DPE cannot easily be captured by means of Petri nets (although it can be
done, as shown in [Mar03]).

A paper that also considers DPE is [CKLWO03]. The focus of that paper is exception handling in
BPEL4WS. Using a rather informal model, it is shown that DPE can be seen as a particular type of
exception handling.

In [FGV04], distributed abstract state machines are used to model BPEL4WS processes. That model
abstracts away from the details of join conditions and, hence, does not consider DPE. In [DBLL04], a logical
model for abstract BPEL4AWS processes is sketched. Not many details are provided. This makes it very
difficult to determine whether this model is appropriate for studying DPE.

10.2 Future Work

The different evaluation strategies seem to have an impact on the expressiveness. For example, consider
the behaviour of the BPE-process a1.f; 1 true.0 || az.lo 1 true.0 || (41 V £3) = a3.0 when a join condition
is evaluated as soon as its value is known. We conjecture that this behaviour cannot be expressed by any
BPE-process if join conditions are evaluated once all their links are defined. Studying the expressiveness of
these two evaluation strategies is one of the topics for further research.

We are interested to see how frequent links are used in BPEL4AWS programs and what proportion of those
links are used negatively in join conditions. Of the limited number of BPEL4WS programs that we have
considered, most contain many links (for example, one BPEL4WS program contained 96 basic activities and
136 links) and only a few negative occurrences of links.

We implemented a tool that provides the programmer with a warning if a negative occurrence of a link
may give rise to side effects. The details can be found in [HFBOO05]. Although the tool detects all negative
occurrences of links that cause side effects, it also finds negative occurrences of links that do not. The tool
has to be improved to reduce the number of false positives.
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