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Abstract

We present an efficient algorithm for the fitting of three
dimensional (3-D) Active Appearance Models (AAMs) on
short axis cardiac MRI, using an extension of the inverse
compositional image alignment algorithm that was recently
introduced by Matthews and Baker [8]. We demonstrate
its applicability for the segmentation of the left ventricle in
short axis cardiac MR images. We perform experiments to
evaluate the speed and segmentation accuracy of our al-
gorithm on a total of 477 MR images, acquired from 11
patients. We observe a 60 fold increase in fitting speed
compared to a brute force Gauss-Newton optimization and
a segmentation accuracy which agrees well with an inde-
pendent standard. We conclude that this is an efficient and
robust algorithm for left ventricle segmentation using 3-D
Active Appearance Models.

1. Introduction

In 2001, Cardiovascular Disease (CVD) contributed to al-
most one third of global deaths. CVD is the leading cause
of death in the developed world and by 2010, CVD is esti-
mated to be the leading cause of death in developing coun-
tries. Heart disease has no gender, geographic or socioeco-
nomic boundaries [1].

Three dimensional imaging of the heart using imaging
modalities such as Ultrasound, Magnetic Resonance Imag-
ing (MRI), and X-ray Computed Tomography, is a rapidly
developing area of research in medical imaging [7]. The
manual segmentation of short axis cardiac MRI provide
clinically useful indicators of the heart function, such as the
Ejection Fraction (EF) ratio. However, the manual segmen-
tation is a slow and error prone procedure. Fully automated
methods for performing this, are highly desirable.

The main reason why existing segmentation algorithms
perform worse than human experts do, is because most
methods do not incorporate as an integral part of their func-
tionality a sufficient amount of a-priori knowledge about

the 3-D cardiac structure and its temporal deformation [9].
Most methods do not attempt to locate the true anatomi-
cal boundaries using expert knowledge, and instead try to
perform the segmentation by positioning the segmentation
boundaries at the locations of strongest local image features,
such as edges.

Active Appearance Models (AAMs) are a promising
method for the interpretation of medical images [4, 5, 6].
Recently, there has been a lot of interest in the application
of 3-D Active Appearance Models for the automatic seg-
mentation of the left ventricle from short axis cardiac MRI
[9, 10], due to their robustness against noisy medical im-
ages, and their ability to learn the 3-D structure of the heart
and not lead to unlikely segmentations.

Standard numerical optimization methods for the fitting
of AAMs, such as gradient descent, are very slow, mainly
due to the high number of parameters needing to be opti-
mized. This problem is exacerbated even more when mov-
ing from 2-D AAMs to 3-D AAMs. When using 3-D AAMs
for the segmentation of the left ventricle, it is not uncom-
mon for such models to use 50-100 parameters. In an effort
to deal with this, efficient algorithms for fitting AAMs have
been developed [5]. However, the fitting accuracy and the
convergence rates of such algorithms are known to be sub-
optimal in many applications.

Recently, a novel algorithm for the fitting of 2-D AAMs
was introduced by Matthews and Baker [8]. Its applicabil-
ity was demonstrated on artificial data and on real life data
for face tracking. In this paper we present an extension of
this algorithm for the fitting of 3-D AAMs, when used for
the segmentation of short axis cardiac MRI. By definition,
short axis cardiac MR images are such that the long axis of
the heart is perpendicular to the acquisition image plane. In
practice, this means that during the AAM fitting we need
to rotate our model only around the long axis of the heart.
We take advantage of this fact to design an efficient fitting
algorithm. To the best of our knowledge, this is the first ef-
fort at extending the inverse compositional image alignment
algorithm to 3-D AAMs, and testing its applicability to the



Figure 1: Short axis cardiac MRI.

interpretation of medical images.

The algorithms described in the literature for fitting
AAMs, can be classified as either robust but inefficient gra-
dient descent type algorithms, or as the efficient but ad-hoc
algorithms described next. The original AAM formulation
uses regression to find a constant matrix R, such that if the
current fitting error between the AAM and the image is dt,
the updated AAM parameters are dp=RJt. In more recent
implementations, the estimation of matrix R is superseded
by a faster and simpler method which regards R as a ja-
cobian matrix of the error function between the AAM and
the image [5]. In general there is no reason why the error
measure dt should uniquely identify the update parameters
dp. Such methods lack a sound theoretical basis. Moreover,
it has been shown that using a constant matrix R to esti-
mate the update parameters can lead to incorrect results [8].
However, the constant matrix technique is widely used due
to its fitting speed. Later, Matthews and Baker [8] showed
how to use the inverse compositional image alignment al-
gorithm to fit 2-D AAMs.

The algorithm we describe in this paper is an extension
of [8] to 3-D, under the constraint that all rotations take
place around one axis. Our experimental results show it
is an accurate, robust and efficient algorithm. Our border
positioning errors are significantly smaller than the errors
reported for other 3-D AAMs [9] which use the constant
matrix approach for the fitting, and are comparable to the
errors of Gauss-Newton based fitting. This is good evidence
that under thorough clinical validation on a big data set, our
algorithm might be proven to be superior than most, if not
all, fitting algorithms for 3-D AAMs.
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Figure 2: Endocardial and epicardial landmarks stacked on
top of each other. Displayed as curves for greater clarity.

2. 3-D AAMs

We describe our implementation of the 3-D AAM of the left
ventricle. It has many similarities to the methodology used
in [9, 10]. We begin by giving a quick overview of point dis-
tribution models for 3-D AAMs. We then describe how we
aligned the landmarks which made up our training set. We
end by giving an overview of how we handled appearance
variation.

2.1. The Point Distribution Model

Figure 1 shows a short axis cardiac MR image. A stack
of such images gives us a volumetric representation of the
heart. Manual segmentations of the left ventricle provide us
with contours representing the endocardium and epicardium
of the left ventricle. By uniformly sampling each of these
contours at i points along their arclength, each contour is
represented by a set of landmarks. By stacking the land-
marks on top of each other we obtain a 3-D representation of
the left ventricle’s endocardium and epicardium, as shown
on figure 2. However, the number of images intersecting the
left ventricle is not the same across every patient. There-
fore, we need to interpolate between the contours so that
every 3-D model is made up of the same number of slices.
If we want to create a slice at height zg located between two
slices, we can simply do the following: From the line seg-
ment joining the 7" landmark in the two slices, we find the
location with height zo. This gives us the i*” landmark in
the new slice. In our implementation, we created 15 contour
slices, evenly sampled along the z-axis, located between the
apex and basal contours.

So, assuming that we have a set of N sample shapes, each
sample made up of m landmarks, we can represent each



shape sample as a 3m dimensional vector, since each land-
mark is made up of 3 coordinates. By applying principal
component analysis (PCA) on the distribution of the shape
vectors, any shape s out of the N shapes can be represented
as

n
s=50+ > _pisi &)
i=1
for some p = (p1,...,pn) € R", where sq is the mean

shape vector (a.k.a base mesh), and s; indicates the ith
eigenvector. Notice that we are summing over n eigenvec-
tors s; with eigenvalues A\; > Ay > ... > A, > 0. These are
the n eigenvectors with highest eigenvalues that we found
with PCA. We chose n such that it explained around 95% of
the variation. Empirically, it has been shown that this is a
good value. Higher values tend to lead to PDMs which over-
fit the training set, and much smaller values lead to PDMs
which cannot generalize to new shapes.

2.2. Landmark Alignment

When building a 2-D AAM, we need to make sure that the
shapes are aligned with each other so that we remove any
difference between two shapes due to a similarity trans-
form. See [4] for more details. This leads to more compact
AAMs, which can be described by a smaller number of pa-
rameters. In [8] and in our algorithm, this is a necessary step
since, as we will see below in the 3-D case, by removing the
similarity transform from the training set shapes, the s; vec-
tors will be orthogonal to a subspace of the 3-D similarity
transforms of sg. In our algorithm, this was accomplished
by using an iterative alignment procedure as described in
[4], only that in this case we aligned the shapes so that they
were as close to each other with respect to translation, scal-
ing and rotation around only the z-axis. We did not align the
shapes with respect to x and y axis rotations since we only
wanted our model to handle rotations around the z-axis. The
reason will become clearer later on.

2.3. Appearance Variation

We need to model the appearance variation of the shape. We
first manually tetrahedrize s, as shown in figure 3. This
splits the left ventricular volume enclosed by s into tetra-
hedra. The same landmark connectivity defining the tetra-
hedra of s can be used to define the tetrahedrization of any
shape variation resulting from Eq. (1). Then, we uniformly
sample the texture enclosed by each training shape using
the same methodology as in [9]. Let the mean texture we
get by averaging the sampled textures be Ag(x) and the k
eigenvectors we found by PCA, describing around 95% of
the texture variation, be A(x), A2(x), ..., Ax(x) (where x
denotes the texture coordinate in the base model s coordi-
nate system. Notice that we are abusing terminology here.
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o
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Figure 3: Tetrahedrization of base mesh sg. Every tetrahe-
dron represents a part of the myocardial muscle or a part of
the left ventricle’s blood pool.

A;(x) can be viewed as a geometric vector or as a function
of x, the context will make it clear which case it is). Then

k

defines the different texture variations the model has learned
from our training data.

3. The Inverse Compositional Ap-
proach to Image Alignment

There is a wealth of literature on image alignment algo-
rithms and the reader is referred to [2, 3] and the refer-
ences therein for an overview. The inverse compositional
approach has been shown to be a fast and reliable image
alignment algorithm.

Assume we have a template Ag(x) that we want to align
with an image I(x). In the compositional framework for
image alignment we compute a warp W (x; Ap) that is
composed with the current warp W (x; p)(where p are warp
parameters and x denotes pixel/voxel coordinates), in order
to find the update parameters Ap minimizing

> [I(W(W(x;Ap);p)) — A(x)]%  (3)

x€Domain(Aop)
In the inverse compositional approach we are trying to min-

imize

> [I(W(x;p)) — Ao(W(x; Ap))>. (4)
x€Domain(Ag(W))



It can be shown [2] that the solution to this least squares
problem is approximately

Ap =
OW
—1 T .
B Y A (W p) — Ao
xeDomain(Ao)
(5)
where
B OW ;. OW
H= Z [V Ao p |7 [V 4o p | ®)
x€Domain(Ag)

and 2% is evaluated at (x; 0). It can be shown that within
first order, under the condition of a fairly “smooth” warping
function W, (4) is equal to

[[(W(W ™ (x; Ap);p)) — Ao (x)]*. (1)

xeDomain(Ap)

This means that the Ap in (5) can also be used to minimize
(7). Notice that (7) is an image alignment error measure of
the form (3). So once we have found Ap we can update the

warp by
W (x;p) <« W(x;p) o W !(x; Ap) (8)

and go to Eq. (5) to perform another iteration of the im-
age alignment algorithm. This is a very efficient algorithm,
known as the inverse compositional algorithm [3]. It is ef-
ficient because we can precompute VAO%—V: and H. This
algorithm can easily be used for fitting templates A(x) with
appearance variation as described in section 2.3 Eq. (2). In
that case, if in Eq. (4) above, A(x) is replaced by A(x),
with appearance variation as described in section 2.3, then
(7) can be shown to be equal to [3]:

Z [pr()js;zmn(Ai)L (I(W(X’ p)) — Ao (X))]2—|—
x€Domain(Ag)
©))

Z LprojSpan(Ai)(I(W(X; P))— A(X))]Z- (10)
xeDomain(Ap)
In practice we estimate (9) by projecting VAO%—‘;V onto
span(A;)* in Eq. (5) and (6) above. Then, since the min-
imum of expression (10) is zero (by choosing the b, in Eq.
(2) appropriately), the error is equal to the value of expres-
sion (9).

4. 3-D AAM Fitting Using the Inverse

Compositional Algorithm

In this section we show how to fit 3-D AAMs using the
inverse compositional approach. In section 4.1 we show

how to extend [8] to fit 3-D AAMs with no global simi-
larity transformations. In section 4.2 we show how to fit
a 3-D AAM when we allow translations, rotations around
only one axis - by convention we will be rotating around
the z-axis - and scaling of the coordinate axes.

4.1. Fitting Without Global Shape Transform

We now show how the inverse compositional algorithm can
be used for fitting 3-D AAMs without taking care of any
global shape similarity transformations (translation,scalings
and rotations).

We first need to define W (x; p), where p denotes the
current landmarks model parameters from Eq. (1), and
the x = (z,y,2)T parameter denotes a point in the base
mesh sg. Then W (x; p) denotes the warping of x under
the current warp parameters p. As mentioned above, every
base mesh voxel x lies in a tetrahedron T defined by the
vertices (a2, ¢, 20), (@2, 49, 20). (@, 49, 20), (0, 47, 20).
If the current shape parameters of our point distribution
model are p, then let the vertices of the deformed tetrahe-
dron Ty be (i, Yi, 2i), (¥4, Yjs 25)s (Thes Ys 2k)s (T, Y1, 21)
which were computed from Eq. (1). W (x; p) computes the
affine transformation of x from T'g to Ty. If o, o, o, i
denote the barycentric coordinates of x in T ¢ given by

0 0 0o\ !

aj | _ |y o oW y "

a - 0 0 0 0 ( )
k z, Zj oz 7 z

ay 11 1 1

(remember that by the definition of barycentric coordinates
o +aj +op +ap=1and 0 < oy, o5, ag, ap < 1), then
the affine transformation of x is W (x; p) and is given by:

Z; €Zj T Iy
o | Y +a; | yj +oar | Yk +ar | w
Zi Zj Zk Zl

(12)

To compute (W (x;p)) in Eq. (5) we do the following:
For every point x in the mean tetrahedrization s ¢ compute
W (x;p) and sample image I at that location by trilinear
interpolation. By a straightforward extension of [8] from
2-D to 3-D, it can be shown that - we skip the proof due to
lack of space, see [8] for details -

where oW
o = (i, 0,0) 7 (x, i) (14)
aW = (0, cv;, 0)'m(x, ) (15)



A\

5 = (0,0, o) T m(x, ) (16)
and 5

aﬁ: = (s, 85", ..., s7%) 17

g—gg = (s¥",s¥, ..., s%0) (18)

BZZ' . . 2

op = (s§%, 85, ..., 8%). (19)

Notice that 7(x,4) equals 1 if x is in a tetrahedron of sq
having landmark 7 as its vertex, and is O otherwise. Also
s7' s?", s;' denote the element of s; that corresponds to
z;,y; and z; respectively. Notice that the summation in
(13) is nonzero only for the 4 vertices of the tetrahedron
enclosing the current point x where we are evaluating the
jacobian.

By the argument in [8] we see that within first order,
W 1(x;Ap) = W(x; -Ap). From (8) we conclude
that we need to find a parameter p’ such that W(x; p’) =
W (x;p) o W=1(x; Ap). We can approximate this quan-
tity by finding a p” such that W(x;p”) = W(x;p) o
W(x; —Ap). The problem here is that piecewise affine
warping does not form a group under the operation of com-
position. In other words the composition of two piecewise
affine warps cannot necessarily be described by another
piecewise affine warp. We compensate for this in the fol-
lowing way. We first estimate a new position for the land-
marks sg under the composition of the two warps. So for
every one of the landmarks a in vector s¢g we do the fol-
lowing: We estimate W (a; —Ap) simply by using Eq. (1)
with —Ap as parameter and looking at the resulting vec-
tor indices corresponding to landmark a. Then, to compute
W (W (a; —Ap); p) we use the following heuristic proce-
dure, which gives good results for the 2-D case in [8] and
our 3-D case. For each one of the tetrahedra in s having
a as a vertex, we estimate the destination of W (a; —Ap)
under that tetrahedron’s affine warp. Then, we define the
value of W(W (a; —Ap); p) to be the average value of the
destination of W (a; —Ap) under those tetrahedra’s affine
warps. Once we have done this for all landmarks in sy we
can then estimate p” by finding the closest vector p”/=p in
Eq. (1) satisfying the new landmarks.

4.2. Fitting Without X and Y Axes Rotations

Assume N(x; q) is a global transform, which does not ro-
tate the shape around the x and y axes, defined as follows.
Letx = (z,y,2)T and q = (a,b, ¢, ts,ty,t.)T. Then de-
fine N(x; q) by

N(x;q) =
1+4a —b 0 T te
b 1+a 0 y |+ ty |- (20)

o
o
—
_|_
o
™
o~
[}

Notice that g = O gives the identity transformation. If we
leta = kcos(0) — 1, b = ksin(f) and ¢ = s — 1 then

N(x;q) =
kcos(0) —ksin(f) 0O T ty
ksin(0)  kcos(f) 0 y |+| &t |. QD
0 0 S z t,

This performs a rotation by an angle 6 around the z-axis
followed by a scaling by k of the x,y coordinates and a scal-
ing by s of the z-coordinates, followed by a translation by
(tz, ty,t- )T Notice that if we replace the s above by k, then
we are performing a three-dimensional similarity transform
where we are not rotating around the x,y axes. In other
words (20) above has slightly more expressive power than
a typical similarity transform since it allows to scale the z-
coordinate values by a value different than the scaling of the
x,y coordinates. Then N o W is a warp which can perform
both the piecewise affine warp of section 4.1 and the global
transform N.

Some may argue against scaling along the z axis inde-
pendently from the x,y axes scalings, since this is not a sim-
ilarity transform. But from the test cases we performed later
on, this does not lead to incorrect model instances, and in-
stead adds more expressive power to our model, making it
easier to fit heart models with different z-axes scalings than
the ones in our training set.

As noted above, our base mesh is sg =
(29,99, 29, .. 20 .40 29T, Let

m?’ m

Si = C1S0 = cl(xtllvy(l)aoa "'axo ygz)O)T (22)

m?

S; :02(_y?7x(1:|70;"'a_ygwmgn70)T (23)
S?-} = 63(03 072?7 a3} 07 Ovzgz)T (24)

si = ¢4(1,0,0,...,1,0,0)T (25)

si = ¢5(0,1,0,...,0,1,0)7 (26)

SE = 06(03 07 1; ey ana 1)T (27)

where ¢; is a constant such that s; is of unit length. Notice
that then

6
N(so;q) =so + Y aisi (28)
=1

whereqr = 2, o = L, gs = S, qu = 2,5 = 2, ¢6 =
2—25. If during the shape alignment we aligned the training
data such that their center of gravity was at point (0,0,0)
(ie:for any training shape their average x,y and z coordinate
was 0) then S* = {s}, s3, s}, s}, S5, 85} is an orthonormal
set.



4.2.1 Orthonormalizing S* and S and computing the
jacobian

Remember that set S = {s1, Sa, ..., 85, } from Eq. (1) is the
set of eigenvectors of the covariance matrix (the permissi-
ble modes of deformation). For reasons which will become
obvious later, we must make sure that every vector in S is
orthogonal to every vector in S. The shape alignment that
we performed before, should in theory take care of this. In
practice, however, this is not usually the case and due to
various sources of errors they are not fully orthogonal. We,
therefore, have to orthonormalize the two sets S™* and S. In
our test cases we did it as follows. For every vectorinv € S
we take its projection v’ onto the space orthogonal to S* by

vV =v-— Z (vTv*)v*k (29)

v*es*

We call this new set S’. Then, by using an orthogonaliza-
tion algorithm such as the Gram-Schmidt algorithm we can
transform S’ into S, where now S” is an orthonormal set.
Then every vector in S* is orthogonal to every vectorin S”.

There are two remaining issues that need to be explained.
We need to show what is the Jacobian of N o W which will
be used instead of %—‘S’ in Eq. (5)-(6), and how to update
the parameters from Eq. (7). By a straightforward exten-

sion of [8] it can be shown that the jacobian of N o W is
(E)NoW F)NOW):(S_N M)
dq ’ Op dq’ Op

4.2.2 Updating the Parameters

In the same way that we noted in section 4.1, to within first
order (NoW)~1(x; Aq, Ap) = NoW(x; —Aq, —Ap).
We can use this approximation to calculate

NoW((NoW) '(so; Aq,Ap);q,p)  (30)

(the new locations of the landmarks sg) by using the
method of section 4.1 for composing two warps. Once
we have estimated the new landmark positions st from Eq.
(30), we need to find new values for p and q such that
N o W(so; q,p) = s'. First notice that

n
NoW(so;q,p) =N(so+ Y pisiza) (3
=1

which can be rewritten as

1+a —b 0 n
N(so; q) + b l4+a 0 |D psi (32
0 0 1+c¢c ) i=1

where the summations above are taking place over all vec-
tors s; € S”. The matrix multiplication in (32) above with
the 3m dimensional vector s;, indicates the result of multi-
plying every triple of adjacent x,y,z coordinates by the ma-
trix.

By using (32), we see that N o W (sg; q, p) = s’ can be
rewritten as

6
so + Z%ST +[(1+a)

i=1

0 -1 0
{1 o o
0 0 o0/)=

0

0

1

[(1+¢) pisi] =s'. (33)

o O O
o O O

We observe that the three terms in Eq. (33) above that are
multiplied by 1+a, b and 1+c, are orthogonal to the vectors
in S5*, since S* and S” are orthogonal. This is most diffi-
cult to see for the fourth term in (33) that is multiplied by b.
This term is orthogonal to the vectors in .S * because for each
vector in S™, if we switch the values of the x and y coordi-
nates and change the sign of one of the two coordinates, the
resulting vector still belongs to span(S*). Therefore, from
(33) we get that

q; = si - (sT —sg). (34)

Once we know the parameters g, we can find the exact in-
verse of N(sf; q) as

N-1(sT;q) =
l4a b 0 \ ! te
b 1+a 0 st | 39
0 0 l+c t,
where g = (a,b,¢,ts,t,,t.) and where we have again

abused terminology in (35) so that the subtraction by
(ts,ty,t.)T implies subtracting this vector from every cor-
responding triple of x,y,z coordinates in s, and the matrix
multiplication has the same meaning as in (32). Then

pi=si- (N"*(s';q) —so) (36)

and we have estimated the new parameters p and q.

5. Experimental Results

We trained and fitted the model on a data set of 11 short axis
cardiac MR image sequences with a temporal resolution of
20 time samples. The slices were acquired under breathhold
in end-expiration. Each image’s resolution was 256 X 256
pixels. The number of slices intersecting the left ventricle
ranged between 7 and 10. The voxel dimensions ranged
between 1 X 1 X 5.76 and 1 x 1 x 7.67. The implementation
and all test cases were done on an Intel Xeon 3.08Ghz with
3GB RAM using MATLAB 6.5.1.



A manual tracing of the left ventricular endocardium and
epicardium was acquired from each patient during the 6
temporal samples closest to diastole. The manual tracing
was performed on all slices where both the endocardium
and epicardium of the left ventricle was visible. As it is
common in clinical practice, the endocardial contours were
drawn behind the papillary muscles and trabeculae. In each
slice, two reference points were placed on the endocardial
and epicardial contours, at the point closest to the posterior
junction of the right and left ventricles. This point served
as a reference point from which we started sampling the
contour, to get its corresponding landmarks, as described in
section 2.1.

We used the 6 temporal samples closest to the end di-
astole of each patient to train our model, which gave us a
total of 66 training examples. We trained the model us-
ing a leave-one-out approach and by using the full 66 train-
ing examples data set. In the leave-one-out approach, if we
wanted to fit an AAM on a certain time sample of an MR
sequence, we trained our model on the 60 training exam-
ples not belonging to the same patient. This gave us a total
of 66 test cases. We also trained our model on the entire
data set and then fitted the model on each of the 66 sam-
ples. This gave us an indication of our algorithms accuracy
in the presence of a large training set.

We compared the segmentation accuracy of the algo-
rithm described in this paper and of a standard Gauss-
Newton optimizer which simultaneously optimized the
model parameters p, the global shape parameters q and the
appearance parameters b;. Other algorithms that are com-
monly used for the fitting of AAMs, as described in the
introduction, are too dependent on the implementation pa-
rameters and their results could easily be biased, so we de-
cided not to test them here. We compared our algorithm
with a Gauss-Newton optimizer for two reasons: To em-
phasize the gain in speed that our algorithm can provide
compared to brute force approaches and to investigate our
algorithms fitting accuracy against an exhaustively tested al-
gorithm whose convergence properties are well understood
and validated, such as Gauss-Newton optimization.

5.1. Quantitative Validation Method

We manually translated, rotated and scaled sq until our
model fitted well the median MR slice of the left ventricle.
The same initialization was used when fitting on an image
stack a model trained with the leave-one-out approach and
the model trained with all the data. We estimated the fit-
ting accuracy of our algorithm in the following way. For
each of the image slices intersected by our model, we ex-
tracted the endocardial and epicardial contours of our mod-
els intersection with the image. If the MR slice had been
manually segmented, we sampled the two extracted con-
tours at 50 evenly spaced points on the endocardial contour

Figure 4: Resulting segmentation of a few slices.

and 50 points on the epicardial contour, and for each one
of those points, we found the smallest distance of the point
from the manually traced contour of the endocardium and
epicardium respectively. The mean distance of the 100 ex-
tracted distances gives the average distance of a point on a
contour to the manually traced contour and is a metric in-
dicating how well our model has segmented the particular
image. We also visually inspected all the segmented images
to verify the correctness of the segmentation.

5.2. Results

Table 1 gives the fitting speed, as well as the average seg-
mentation error for the images that had been manually
segmented and which were also intersected by the AAM
model. Figure 4 shows the resulting segmentations for
some slices. The total number of slices segmented var-
ied slightly depending on the fitting algorithm, the train-
ing method used, and the subsequent z-axis extension, and
ranged between 468 and 477.

The inverse compositional algorithm described in this
paper fits the model approximately 60 times faster than a
typical brute force Gauss-Newton optimization. The er-
ror of the inverse compositional algorithm is comparable
or even significantly less than the error of standard Gauss-
Newton optimization, and is well below previously reported
errors for 3-D AAMs which use different fitting algorithms
[9]. We suspect that the reason why Gauss-Newton gives a
slightly greater error in one case is because Gauss-Newton
has to optimize the appearance parameters also, while the
inverse compositional algorithm projects them out. Our
models were made up of 30 shape parameters, 20 appear-
ance parameters and the 6 global shape parameters q =
(a,b, ¢, tz, ty,t;), for a total of 56 parameters. The inverse
compositional algorithm proved to be extremely sensitive
to global intensity changes in the images. We handled this
by normalizing the left ventricle’s intensity in each image
to a common mean and standard deviation before train-
ing and fitting our models. It should be noted that Gauss-
Newton optimization was not very sensitive to global inten-



Results Average Slice | Standard Deviation | Average Slice | Standard Deviation | Average Number
Error in of Error in Error in Pixels of Error in of Seconds till

Millimeters Millimeters Pixels Convergence

Leave 1 out with

ic algorithm 1.60 0.71 1.28 0.59 10.59

Leave 1 out with

Gauss-Newton 1.58 0.69 1.25 0.55 626.40

Full data set with

ic algorithm 0.88 0.45 0.71 0.39 8.06

Full data set with

Gauss-Newton 1.21 0.49 0.95 0.37 465.15

Table 1: Fitting errors and fitting speed of inverse compositional (ic) and Gauss-Newton algorithm.

sity changes. The AAM never got confused by the papil-
lary muscles and trabeculae, which tend to be a problem for
most cardiac segmentation algorithms. Most cases of erro-
neous segmentations involved the epicardial contour, which
didn’t extend fully to the edge of the epicardium and got
stuck inside the myocardium. The reason for this is most
likely because the model has no knowledge of the surround-
ing texture. A multiscale fitting scheme might fix this.

6. Summary and Conclusions

We presented an efficient and robust algorithm for fitting
3-D AAMs on short axis cardiac MRI. To the best of our
knowledge this is the first attempt at using the inverse com-
positional algorithm for fitting 3-D AAMSs on medical im-
ages. It gives rapid segmentation results with a precision at
least as good as that of previously reported results and com-
parable to brute force Gauss-Newton optimization. Clini-
cal validation of the method on a much larger training set
is necessary, if we want to have more reliable conclusions.
Improvements to the algorithm include using a multiscale
approach to do the fitting, incorporating knowledge about
the texture variation in the neighborhood surrounding the
left ventricle, extending the algorithm to handle rotations
around the x and y axes, and making the model extend fully
along the z axis so that it segments all image slices. In con-
clusion, we believe that 3-D AAMs are one of the most
promising methods for solving the segmentation problem
of cardiac MRI. The optimization algorithm presented here
has given us encouraging results, leading us to believe that
it has the potential to become the method of choice for solv-
ing this problem.
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