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Abstract

Finding the maximals in a collection of vec-
tors is relevant to many applications. The
maximal set is related to the convex hull—
and hence, linear optimization—and near-
est neighbors. The maximal vector prob-
lem has resurfaced with the advent of skyline
queries for relational databases and skyline
algorithms that are external and relationally
well behaved.

The initial algorithms proposed for maximals
are based on divide-and-conquer. These es-
tablished good average and worst case asymp-
totic running times, showing it to be O(n)
average-case, where n is the number of vec-
tors. However, they are not amenable to ex-
ternalizing. We prove their performance is
quite bad with respect to the dimensional-
ity, k, of the problem. We demonstrate that
the more recent external skyline algorithms
are actually better behaved, although they
do not have as good an apparent asymptotic
complexity. We introduce a new external al-
gorithm, LESS, that combines the best fea-
tures of these, experimentally evaluate its ef-
fectiveness and improvement over the field,
and prove its average-case running time is
O(kn).

1 Introduction

The maximal vector problem is to find the subset of
the vectors such that each is not dominated by any of
the vectors from the set. One vector dominates an-
other if each of its components has an equal or higher
value than the other vector’s corresponding compo-
nent, and it has a higher value on at least one of the
corresponding components.1 This problem has been

1One may likewise consider points in a k-dimensional space
instead of vectors. In this context, the maximals are also called
the admissible points, and the set of maximals is also called the
Pareto set.

considered for many years, as identifying the maximal
vectors is useful in many applications. A number of
algorithms have been proposed for efficiently finding
the maximals.

The maximal vector problem has been rediscovered
recently in the database context with the introduction
of skyline queries. Instead of vectors or points, this
is to find the maximals over tuples. Certain columns
(with numeric domains) of the input relation are des-
ignated as the skyline criteria, and dominance is then
defined with respect to these. The non-dominated tu-
ples then constitute the skyline set.

Skyline queries have attracted a fair amount of at-
tention since their introduction. It is thought that
skyline offers a good mechanism for incorporating pref-
erence queries into relational query languages, and, of
course, its implementation could enable maximal vec-
tor applications to be built on relational database sys-
tems efficiently. While the idea itself is older, much
of the recent skyline work has focused on designing
good algorithms that are well-behaved in the context
of a relational query engine and are external (that is,
that work over data sets that are too large for main-
memory).

In this paper, we focus on generic maximal-vector
algorithms; that is, on algorithms for which prepro-
cessing steps or data-structures such as indexes are
not required. We summarize the generic algorithmic
approaches—both older algorithms and newer, exter-
nal skyline algorithms—for computing maximal vec-
tor sets. We formally analyze their run-time perfor-
mances, identify their bottlenecks, and compare ad-
vantages and disadvantages. We present a new algo-
rithm, LESS (linear elimination sort for skyline), that
essentially combines aspects of a number of the estab-
lished algorithms. We present experimental evaluation
of LESS that demonstrates its improvement over the
existing field. We formally analyze its runtime char-
acteristics, prove it has O(kn) average runtime perfor-
mance, and demonstrate its advantages with respect
to the other algorithms. In final, we identify the key
bottlenecks for any maximal-vector algorithm, and dis-
cuss further ways the bottlenecks can be addressed.
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algorithm ext.? best-case average-case worst-case

DD&C [13] no O(knlgn) §2.2 – O(nlg k−2n) [13]

LD&C [4] no O(kn) §2.2 O(n)a [4] O(nlg k−1n) [4]

FLET [3] no O(kn) §2.2 O(kn) [3] O(nlg k−2n) [3]

SD&C [5] – O(kn) Thm. 1 O(
√

k 22kn) Thm. 9 O(kn2) Thm. 2
BNL [5] yes O(kn) Thm. 3 – O(kn2) Thm. 4
SFS [8] yes O(kn + nlgn) Thm. 5 O(kn + nlg n) Thm. 7 O(kn2) Thm. 8

LESS – yes O(kn) Thm. 11 O(kn) Thm. 10 O(kn2) Thm. 12

aThis asymptotic analysis is quite misleading. We discuss the behavior of LD&C in Section 2.4.

Figure 1: The generic maximal vector algorithms.

2 Algorithms and Analyses

2.1 Cost Model

A simple approach would be to compare each point
against every other point to determine whether it is
dominated. This would be O(n2) (for any fixed dimen-
sionality k). Of course, once a point is found that dom-
inates the point in question, processing for that point
can be curtailed. So average-case running time should
be significantly better, even for this simple approach.
In the best-case scenario, for each non-maximal point,
we would find a dominating point for it immediately.
So each non-maximal point would be eliminated in
O(1) steps. Each maximal point would still be ex-
pensive to verify; in the least, it would need to be
compared against each of the other maximal points to
show it is not dominated. If there are not too many
maximals, this will not be too expensive. Given m, the
expected number of maximals, if m <

√
n, the number

of maximal-to-maximal comparisons, O(m2), is O(n).
Thus, assuming m is sufficiently small, in best-case,
this approach is O(n). A goal then is for algorithms
with average-case running time of O(n).

Performance then is also dependent on the number
of maximals (m). In worst-case, all points are maxi-
mal (m = n); that is, no point dominates any other.
We shall consider average-case performance based on
the expected value of m. To do this, let us make the
following assumptions about the input set:

1. (independence) the values of the points over a sin-
gle dimension are statistically independent of the
values of the points along any other dimension;
and

2. (distinct values) points (mostly) have distinct val-
ues along any dimension (that is, there are not
many repeated values).

Collectively, these assumptions are called compo-
nent independence (CI) [4]. Under CI, the expected
value of the number of maximals is known [6, 10]:
m = Hk−1,n, where Hk,n is the k-th order harmonic
of n. Let H0,n = 1, for n > 0, and Hk,n be in-

ductively defined as Hk,n =

n
∑

i=1

Hk−1,i

i
, for k > 1.

Hk,n ≈ H
k

1,n/k ! ≈ ((ln n) + γ)k/k !.

For best-case, assume that there is a total ordering
of the points, p1, . . . , pn, such that any pi dominates
all pj , for i < j. Thus, in best-case, m = 1 (the one
point being p1).

2

We shall assume that k � n. Furthermore, we as-
sume that, generally, k < lg n. We include the dimen-
sionality k in our O-analyses.

We are now equipped to review the proposed algo-
rithms for finding the maximal vectors, and to ana-
lyze their asymptotic runtime complexities (O’s). Of
course, these do not tell the whole story. The behav-
iors of the algorithms are not near asymptotic conver-
gence for the n and k of any input we are likely to
encounter, so secondary components of the cost equa-
tions for the algorithms will be important. Not all of
the O(n) average cases can be considered equivalent
without factoring in the impact of the dimensional-
ity k. Furthermore, we are interested in external al-
gorithms, so I/O cost is pertinent. After our initial
analyses, we shall look into these details.

2.2 The Algorithms

The main (generic) algorithms that have been pro-
posed for maximal vectors are listed in Figure 1. We
have given our own names to the algorithms (not nec-
essarily the same names as used in the original papers)
for the sake of discussion. For each, whether the al-
gorithm was designed to be external is indicated, and
the known best, average, and worst case running time
analyses—with respect to CI and our model for aver-
age case in §2.1—are shown. For each runtime analy-
sis, it is indicated where the analysis appears. For each
marked with ‘§’, it follows readily from the discussion
of the algorithm in that Section. Those marked with
‘–’ are not amicable to to analyses. The remainder are
proven in the indicated theorems.3

The first group consists of divide-and-conquer-
based algorithms. DD&C (double divide and conquer)
[13], LD&C (linear divide and conquer) [4], and FLET

2We consider a total order so that, for any subset of the
points, there is just one maximal with respect to that subset.
This is necessary for discussing the divide-and-conquer-based
algorithms.

3Some of the theorems are relatively straightforward, but we
put them in for consistency.
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(fast linear expected time) [3] are “theoretical” algo-
rithms that were proposed to establish the best bounds
possible on the maximal vector problem. No attention
was paid to making the algorithms external. Their
initial asymptotic analyses make them look attractive,
however.

DD&C does divide-and-conquer over both the data
(n) and the dimensions (k). First, the input set is
sorted in k ways, once for each dimension. Then, the
sorted set is then split in half along one of the di-
mensions, say dk, with respect to the the sorted order
over dk. This is recursively repeated until the result-
ing set is below threshold in size (say, a single point).
At the bottom of this recursive divide, each set (one
point) consists of just maximals with respect to that
set. Next, these maximal sets are merged. On each
merge, we need to eliminate any point that is not maxi-
mal with respect to the unioned set. Consider merging
sets A and B. Let all the maximals in A have a higher
value on dimension dk than those in B (given the orig-
inal set was divided over the sorted list of points with
respect to dimension dk). The maximals of A ∪ B are
then determined by applying DD&C, but now over di-
mensions 1, . . . , dk−1, so with reduced dimensionality.4

Once the dimensionality is three, an efficient
special-case algorithm can be applied. Thus, in worst-
case, nlg k−2n steps are taken. In the best-case, the
double-divide-and-conquer is inexpensive since each
maximal set only has a single point. (It resolves to
O(n).) However, DD&C needs to sort the data by each
dimension initially, and this costs O(knlgn). Average-
case for DD&C is difficult to analyze; we provide in-
sight into DD&C’s likely average-case performance in
Section 2.4. Note that DD&C establishes that the
maximal vector problem is, in fact, o(n2).

LD&C [4] improves on the average-case over DD&C.
Their analysis exploits the fact that they showed m to
be O(ln k−1n) average-case. LD&C does a basic divide-
and-conquer recursion first, randomly splitting the set
into two equal sets each time. (The points have not
been sorted.) Once a set is below threshold size, the
maximals are found. To merge sets, the DD&C algo-
rithm is applied. This can be modeled by the recur-
rence

T (1) = 1

T (n) = 2T (n/2) + (ln k−1n)lg k−2(ln k−1n)

Note that (ln k−1n)lg k−2(ln k−1n) is o(n). Therefore,
LD&C is average-case linear, O(n) [4].

In best case, each time LD&C calls DD&C to merge
to maximal sets, each maximal set contains a single
point. Only one of the two points survives in the re-
sulting maximal set. This requires that DD&C recurse
to the bottom of its dimensional divide, which is k
deep, to determine the winning point. O(n) merges

4All points in A are marked so none will be thrown away.
Only points in B can be dominated by points in A, since those
in A are better along dimension dk.

are done at a cost of O(k) steps each. Thus, LD&C’s
average-case running time is O(kn). In worst case,
the set has been recursively divided an extra time, so
LD&C is lgn times worse than DD&C.

FLET [3] takes a rather different approach to im-
proving on DD&C’s average-case. Under CI, a virtual
point x—not necessarily an actual point in the set—is
determined so that the probability that no point from
the set dominates it is less than 1/n.5 The set of points
is then scanned, and any point that is dominated by x
is eliminated. It is shown that the number of points x
will dominate, on average, converges on n in the limit,
and the number it does not is o(n). It is also tracked
while scanning the set whether any point is found
that dominates x. If some point did domninate x, it
does not matter that the points that x dominates were
thrown away. Those eliminated points are dominated
by a real point from the set anyway. DD&C is then ap-
plied to the o(n) remaining points, for a O(kn) average-
case running time. This happens at least (n − 1)/n
fraction of trials. In the case no point was seen to
dominate x, which should occur less than 1/n fraction
of trials, DD&C is applied to the whole set. However,
DD&C’s O(nlg k−2n) running time in this case is amor-

tized by 1/n, and so contributes O(lg k−2n), which is
o(n). Thus, the amortized, average-case running time
of FLET is O(kn). FLET is no worse asymptotically
than DD&C in worst case.

FLET’s average-case runtime as O(kn) because
FLET compares O(n) number of points against point x.
Each comparison involves comparing all k components
of the two points, and so is k steps. DD&C and LD&C

never compare two points directly on all k dimensions
since they do divide-and-conquer also over the dimen-
sions. In [13] and [4], DD&C and LD&C were analyzed
with respect to a fixed k. We are interested in how k
affects their performance, though.

The second group—the skyline group—consists of
external algorithms designed for skyline queries. Sky-
line queries were introduced in [5] along with two gen-
eral algorithms proposed for computing the skyline in
the context of a relational query engine.

The first general algorithm in [5] is SD&C, single
divide-and-conquer. It is a divide-and-conquer algo-
rithm similar to DD&C and LD&C. It recursively di-
vides the data set. Unlike LD&C, DD&C is not called
to merge the resulting maximal sets. A divide-and-
conquer is not performed over the dimensions. Con-
sider two maximal sets A and B. SD&C merges them
by comparing each point in A against each point in B,
and vice versa, to eliminate any point in A dominated
by a point in B, and vice versa, to result in just the
maximals with respect to A∪ B.

5An additional assuption is made implicitly here that the
data points are distributed uniformally along each dimension.
This is without loss of generality, though, since we could replace
the points’ values with their ordinal ranks (with respect to the
data set) with respect to each dimension.
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Theorem 1 SD&C considered under CI has a best-
case runtime of O(kn).

Proof 1 Let mA denote the number of points in A
(which are maximal with respect to A). Let mA\B de-
note the number of points in A that are maximal with
respect to A∪B. Likewise, define mB and mB\A in the
same way with respect to B. Thus, an upper bound on
the cost of merging A and B is kmAmB and a lower
bound is kmA\BmB\A. In best case, SD&C is O(kn).
2

For a fixed k, average case is O(n). (We shall con-
sider more closely the impact of k on the average case
in §2.4.)

Theorem 2 SD&C considered under CI has a worst-
case runtime of O(kn2).
Proof 2 The recurrence for SD&C under worst case
is

T (1) = 1
T (n) = 2T (n/2) + (n/2)2

This is O(n2) number of comparisons. Each com-
parison under SD&C costs k steps, so the runtime is
O(kn2). 2

No provisions were made to make SD&C particu-
larly well behaved relationally, although it is clearly
more amenable to use as an external algorithm than
DD&C (and hence, LD&C and, to an extent, FLET too,
as they rely on DD&C). The divide stage of SD&C is
accomplished trivially by bookkeeping. In the merge
stage, two files, say A and B, are read into main mem-
ory, and their points pairwise compared. The result
is written out. As long as the two input files fit in
main memory, this works well. At the point at which
the two files are too large, it is much less efficient. A
block-nested loops strategy is employed to compare all
A’s points against all of B’s, and vice versa.

The second algorithm proposed in [5] is BNL, block
nested loops. This is basically an implementation of
the simple approach discussed in §2.1, and works re-
markably well. A window is allocated in main memory
for collecting points (tuples). The input file is scanned.
Each point from the input stream is compared against
the window’s points. If it is dominated by any of them,
it is eliminated. Otherwise, any window points dom-
inated by the new point are removed, and the new
point itself is added to the window.

At some point, the window may become full. Once
this happens, the rest of the input file is processed dif-
ferently. As before, if a new point is dominated by a
window point, it is eliminated. However, if the new
point is not dominated, it is written to an overflow
file. (Dominated window points are still eliminated
as before.) The creation of an overflow file means
another pass will be needed to process the overflow
points. Thus, BNL is a multi-pass algorithm. On a
subsequent pass, the previous overflow file is read as
the input. Appropriate bookkeeping tracks when a
window point has gone full cycle. (That is, it has been

compared against all currently surviving points.) Such
window points can be removed from the window and
written out, or pipelined along, as maximals.

BNL differs substantially from the divide-and-
conquer algorithms. As points are continuously re-
placed in the window, those in the window are a sub-
set of the maximals with respect to the points seen so
far (modulo those written to overflow). These global
maximals are much more effective at eliminating other
points than are the local maximals computed at each
recursive stage in divide-and-conquer.
Theorem 3 BNL considered under CI has a best-case
runtime of O(kn).
Proof 3 BNL’s window will only ever contain one
point. Each new point off the stream will either re-
place it or be eliminated by it. Thus BNL will only
require one pass. 2

A good average case argument with respect to CI
is difficult to make. We shall discuss this in §2.5. Let
w be the maximum size of the window in number of
points.
Theorem 4 BNL considered under CI has a worst-
case runtime of O(kn2).
Proof 4 In worst case, every point will need to be
compared against every other point for O(kn2). This
requires dn/we passes. Each subsequent overflow file
is smaller by w points. So this requires writing n2/2w
points and reading n2/2w points. The size of w is fixed.
In addition to requiring O(n2) I/O’s, every record will
need to be compared against every other record. Every
record is added to the window; none is ever removed.
Each comparison costs k steps. So the work of the
comparisons is O(kn2). 2

In [8], SFS, sort filter skyline, is presented. It differs
from BNL in that the data set is topologically sorted
initially. A common nested sort over the dimensions
d1, . . . , dk, for instance, would suffice. Processing the
sorted data stream has the advantage that no point in
the stream can be dominated by any point that comes
after it. In [8], sorting the records by volume descend-

ing,
∏

k

i=1 t[di];
6 or, equivalently, by entropy descend-

ing,
∑

k

i=1 ln t[di] (with the assumption that the values
t[di] > 0 for all records t and dimensions i) is advo-
cated.7 This has the advantage of tending to push
records that dominate many records towards the be-
ginning of the stream.

SFS sorts by volume because records with higher
volumes are more likely to dominate more records
in the set. They have high “dominance” numbers.
(Given the CI and uniform distribution assumptions,
the number of records a given record dominates is
proportional to its volume.) By putting these earlier
in the stream, non-maximal records are eliminated in

6As in the discussion about FLET, an assuption is made im-
plicitly here that the data points are distributed uniformally
along each dimension. Again, this is without loss of generality.

7Keeping entropy instead of volume avoids register overflow.
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fewer comparisons, on average. The importance of this
effect will be emphasized in our discussion of LESS in
§3 and in the proof that LESS is O(kn) (Thm. 10).

SFS maintains a main-memory window as does
BNL. It is impossible for a point off the stream to dom-
inate any of the points in the window, however. Any
point is thus known to be maximal at the time it is
placed in the window. The window’s points are used
to eliminate stream points. Any stream point not elim-
inated is itself added to the window. As in BNL, once
the window becomes full, surviving stream points must
be written to an overflow file. At the end of the input
stream, if an overflow file was opened, another pass is
required. Unlike BNL, the window can be cleared at
the beginning of each pass, since all points have been
compared against those maximals. The overflow file is
then used as the input stream.

SFS has less bookkeeping overhead than BNL since
when a point is added to the window, it is already
known that the point is maximal. This also means
that SFS is progressive: at the time a point is added
to the window, it can also be shipped as a maximal
to the next operation. In [8], it was shown that SFS

performs better I/O-wise than BNL, and runs in better
time (and this includes SFS’s necessary sorting step).
The experiments were run over million-tuple data sets
and with dimensions of five to seven.

Theorem 5 SFS considered under CI has a best-case
runtime of O(kn + nlg n).

Proof 5 Under our best-case scenario, there is one
maximal point. This point must have the largest vol-
ume. Thus it will be the first point in SFS’s sorted
stream, and the only point to be ever added to the win-
dow. This point will eliminate all others in one pass.
So SFS is sorting plus O(kn) in best-case, and works
in one filtering pass. 2

For average-case analysis of SFS, we need to know
how many of the maximal points dominate any given
non-maximal. For any maximal point, it will be com-
pared against every maximal point before it in the
sorted stream to confirm its maximality. Thus there
will be m2/2 of these comparisons. For any non-
maximal point, how many maximals (points in the
window) will it need to be compared against before
being eliminated?

Lemma 6 In the limit of n, the probability that any
non-maximal point is dominated by the maximal point
with the highest volume converges to one.

Proof 6 Assume CI and furthermore, without loss of
generality, that the values of the points are distributed
uniformally on (0, 1) on each dimension.

We draw on the proof of FLET’s average case run-
time in [3]. Consider the (virtual) point x with coor-
dinates x[di] = 1 − ((ln n)/n)1/k, for each i ∈ 1, . . . , k.
The probability that no point from the data set dom-
inates x then is (1 − (ln n)/n)n, which is at most
e−lnn = 1/n.

The expected number of points dominated by x (and
hence, dominated by any point that dominates x) is
(1 − ((ln n)/n)1/k)k.

lim
n→∞

(1 − ((ln n)/n)1/k)k = 1

Thus any maximal with a volume greater than x’s
(which would include any points that dominate x) will
dominate all points in the limit of n. The probabil-
ity there is such a maximal is greater than (n − 1)/n,
which converges to one in the limit of n. 2

Theorem 7 SFS considered under CI has an average-
case runtime of O(kn + nlgn).
Proof 7 The sort phase for SFS is O(nlgn). On
the initial pass, the volume of each point can be com-
puted at O(kn) expense. During the filter phase of SFS,
m2/2 maximal-to-maximal comparisons will be made.

Expected m is Θ((ln k−1n)/(k − 1)!), so this is o(n).
Number of comparisons of non-maximal to maximal is
O(n). Thus the comparison cost is O(kn). 2

Theorem 8 SFS considered under CI has a worst-
case runtime of O(kn2).
Proof 8 In the worst-case, all records are maximal.
Each record will be placed in the skyline window af-
ter being compared against the records currently there.
This results in n(n − 1)/2 comparisons, each taking k
steps. The sorting phase is O(nlgn) again. 2

Experimentally, it is observed that SFS makes fewer
comparisons than BNL. SFS compares only against
maximals, whereas BNL will have non-maximal points
in its window. On the other hand, SFS does require
sorting. For much larger n, the sorting cost will begin
to dominate SFS’s performance.

2.3 Index-based Algorithms and Others

In this paper, as stated already, we focus on generic
algorithms to find the maximal vectors, so that do
not require any pre-processing or pre-existing data-
structures. Any query facility that is to offer maximal
vector, or skyline, computation would require a generic
algorithm for those queries for which the pre-existing
indexes are not adequate.

There has been a good deal of interest though in
index-based algorithms for skyline. The goals are to
be able to evaluate the skyline without needing to
scan the entire dataset—so for sub-linear performance,
o(n)—and to produce skyline points progressively, to
return initial answers as quickly as possible.

The shooting-stars algorithm [12] exploits R-trees
and modifies nearest-neighbors approaches for finding
skyline points progressively. This work is extended
upon in [14] in which they apply branch-and-bound
techniques to reduce significantly the I/O overhead.
In [9, 11], bitmaps are explored for skyline evaluation,
appropriate when the number of values possible along
a dimension is small. In [1], an algorithm is presented
as instance-optimal when the input data is available
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for scanning in k sorted ways, sorted along each dimen-
sion. If a tree index were available for each dimension,
this approach could be applied.

Index-based algorithms for computing the skyline
(the maximal vectors) additionally have serious limi-
tations. The performance of indexes—such as R-trees
as used in [12, 14]—does not scale well with the num-
ber of dimensions. Although the dimensionality of a
given skyline query will be typically small, the range
of the dimensions over which queries can be composed
can be quite large, often exceeding the performance
limit of the indexes. For an index to be of practical
use, it would need to cover most of the dimensions
used in queries.

Note also that building several indexes on small sub-
sets of dimensions (so that the union covers all the
dimensions) does not suffice, as the skyline of a set
of dimensions cannot be computed from the skylines
of the subsets of its dimensions. It is possible, and
probable, that

maxes{d1,...,di}(T) ∪ maxes{di+1,...,dk}(T)
( maxes{d1,...,dk}(T)

Furthermore, if the distinct-values assumption from
§2.1 is lifted, the union is no longer even guaranteed
to be a proper subset. (This is due to the possibility
of ties over, say, d1, . . . , di.)

Another difficulty with the use of indexes for com-
puting skyline queries is the fact that the skyline oper-
ator is holistic, in the sense of holistic aggregation op-
erators. The skyline operator is not, in general, com-
mutative with selections.8 For any skyline query that
involves a select condition then, an index that would
have applied to the query without the select will not
be applicable.

Finally, in a relational setting, it is quite possible
that the input set—for which the maximals are to be
found—is itself computed via a sub-query. In such a
case, there are no available indexes on the input set.

2.4 The Case against Divide and Conquer

Divide-and-conquer algorithms for maximal vectors
face two problems:

1. it is not evident how to make an efficient external
version; and,

2. although the asymptotic complexity with respect
to n is good, the multiplicative “constant”—and
the effect of the dimensionality k—may be bad.

Since there are algorithms with better average-case
runtimes, we would not consider DD&C. Furthermore,
devising an effective external version for it seems im-
possible. In DD&C, the data set is sorted first in
k ways, once for each dimension. The sorted orders
could be implemented in main memory with one node
per point and a linked list through the nodes for each
dimension. During the merge phase, DD&C does not

8In [7], cases of commutativity of skyline with other relational
operators are shown.

re-sort the data points; rather, the sorted orders are
maintained. In a linked-list implementation, it is easy
to see how this could be done. It does not look possible
to do this efficiently as an external algorithm.

LD&C calls DD&C repeatedly. Thus, for the same
reasons, it does not seem possible to make an effec-
tive external version of LD&C. FLET calls DD&C just
once. Still, since the number of points that remain
after FLET’s initial scan and elimination could be sig-
nificant, FLET would also be hard to externalize.

SD&C was introduced in [5] as a viable external
divide-and-conquer for computing maximal vectors.
As we argued above, and as is argued in [14], SD&C is
still far from ideal as an external algorithm. Further-
more, its runtime performance is far from what one
might expect.

Each merge that SD&C performs, say, of sets A
and B, every maximal with respect to A∪B that sur-
vives from A must have been compared against every
maximal that survives from B, and vice-versa. This
is a floor on the number of comparisons done by the
merge. We know the number of maximals in aver-
age case under CI. Thus we can model SD&C’s cost
via a recurrence. The expected number of maximals
out of n points of k dimensions under CI is Hk−1,n;

(ln k−1n)/(k − 1)! converges on this from below, so we
can use this in a floor analysis.

Theorem 9 SD&C considered under CI has average-
case runtime of Ω(

√
k 22kn).

Proof 9 Let n = 2q for some positive integer q, with-
out loss of generality. Consider the function T as fol-
lows.

T (1) = 1

T (n) = 2T (n/2) + (1
2 (ln k−1n)/(k − 1)!)2

c1 = 1/(4(k− 1)!2) D = 2k − 2

= 2T (n/2) + c1ln
Dn

= c1

q
∑

i=1

2i(ln n − ln 2i)D

c2 = c1/(lg 2e)
D

= c2

q
∑

i=1

2i(lg 2n − lg 22
i)D

= c2

q
∑

i=1

2i(q − i)D

= c2

q−1
∑

i=0

2q−iiD

j
∑

i=0

2j−iiD ≈ (lg 2e)
D−1D! 2j+1

≈ c2(lg 2e)
D−1D! 2q

= 1
4 (ln 2)

(

2k−2
k−1

)

n
(

2j
j

)

≈ 22j/
√

πj (by Stirling’s approximation)

≈ ln 2√
π(k−1)

22k−4n
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Figure 2: Behavior of LD&C.

This counts the number of comparisons. Each compar-
ison costs k steps.

For each merge step, we assume that the expected
value of maximals survive, and that exactly half came
from each of the two input sets. In truth, fewer might
come from A and more from B sometimes. So the
square of an even split is an over-estimate, given vari-
ance of resulting set sizes. In [2], it is established that
the variance of the number of maximals under CI con-
verges on Hk−1,n. Thus in the limit of n, runtime of
SD&C will converge up to an asymptotic above the re-
currence. 2

This is bad news. SFS requires n comparisons in the
limit of n, for any fixed dimensionality k. SD&C, how-
ever, requires on the order of (22k/

√
k)×n comparisons

in n’s limit!
We can model LD&C’s behavior similarly. For a

merge (of A and B) in LD&C, it calls DD&C. Since
A and B are maximal sets, most point will survive
the merge. The cost of the call to DD&C is bounded
below by its worst-case runtime over the number of
points that survive. The double recursion must run to
complete depth for these. So if m points survive the
merge, the cost is mlg k−2

2 m steps. As in the proof of
Thm. 9 for SD&C, we can approximate the expected
number of maximals from below. Let mn = (ln k−1(n+
γ))/(k − 1)!. This results in the recurrence

T (1) = 1

T (n) = 2T (n/2) + max(mnlg k−2
2 mn, 1)

We have not found a closed form of this recurrence
as for SD&C. We plot it in Figure 2.9 We show the
ratio of the number of comparisons over n. The re-
currence asymptotically converges to a constant value
for any given k. It is startling to observe that the k-
overhead of LD&C appears to be much worse than that
of SD&C! The explanation is that milg

k−2
2 mi is larger

initially than is m2
i , for the small i sizes of data sets en-

countered near the bottom of the divide-and-conquer.
(Of course m2

i � milg
k−2
2 mi in i’s limit; or, in other

words, as i approaches n each subsequent merge level,
for very large n.) However, it is those initial merges

9The behavior near the dimensions axis is an artifact of our
log approximation of Hk−1,i, the expected number of maximals.

In computing the graph, milg
k−2

2
mi is rounded up to one when-

ever it evaluates to less than one.

near the bottom of the divide-and-conquer that con-
tribute most to the cost overall, since there are many
more pairs of sets to merge at those levels.

In [5], it was advocated that SD&C is more appro-
priate for larger k (say, for k > 7) than BNL, and is
the preferred solution for data sets with large k. We
believe their observation was an artifact of the exper-
iments in [5]. The data sets were only 100,000 points,
and up to 10 dimensions. Our analysis conclusively
shows the opposite. SD&C will perform increasingly
worse for larger k and with larger n.

2.5 The Case against the Skyline Algorithms

SFS needs to sort initially, which gives it too high an
average-case runtime. However, it was shown in [8] to
perform better than BNL. Furthermore, it was shown
in [8] that BNL is ill-behaved relationally. If the data
set is already ordered in some way (but not for the ben-
efit of finding the maximals), BNL can perform very
badly. Of course, SFS is immune to input order since
it must sort. When BNL is given more main-memory
allocation—and thus, its window is larger—its per-
formance deteriorates. This is because any maximal
point is necessarily compared against all the points
in the window. There no doubt exists an optimal
window-size for BNL for a data set of any given n and
k. However, not being able to adjust the window size
freely means one cannot reduce the number of passes
BNL takes.

All algorithms we have observed are CPU-bound,
as the number of comparisons to be performed often
dominates the cost. SFS has been observed to have a
lower CPU-overhead than BNL, and when the window-
size is increased for SFS, its performance improves.
This is because all points must be compared against
all points in the window (since they are maximals)
eventually anyway. Also, the number of maximal-to-
maximal comparisons for SFS is m2/2 because each
point only needs to be compared against those before it
in the stream. BNL of course has this cost too. Often,
m is reasonably large, and so this cost is substantial.

3 LESS

3.1 Description

We devise an external, maximal-vector algorithm,
LESS, that combines aspects of SFS, BNL, and FLET,
but that does not contain any aspects of divide-and-
conquer. LESS filters the records via a skyline-filter
(SF) window, as does SFS. The record stream must be
in sorted order by this point. Thus LESS must sort
the records initially too, as does SFS. LESS makes two
major changes:

1. it uses an elimination-filter (EF) window in pass
zero of the external sort routine to eliminate
records quickly; and
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Figure 3: Buffer pool for LESS.

2. it combines the final pass of the external sort with
the first skyline-filter (SF) pass.

The external sort routine used to sort the records is
integrated into LESS. Let b be the number of buffer-
pool frames allocated to LESS. Pass zero of the stan-
dard external sort routine reads in b pages of the data,
sorts the records across those b pages (say, using quick-
sort), and writes the b sorted pages out as a b-length
sorted run. All subsequent passes of external sort are
merge passes. During a merge pass, external sort does
a number of (b − 1)-way merges, consuming all the
runs created by the previous pass. For each merge,
(up to) b − 1 of the runs created by the previous pass
are read in one page at a time, and written out as a
single sorted run.

LESS sorts the records by their entropy scores,
as discussed in §2.2 with regards to SFS. LESS ad-
ditionally eliminates records during pass zero of its
external-sort phase. It does this by maintaining a
small elimination-filter window. Copies of the records
with the best entropy scores seen so far are kept in the
EF window (Fig. 3(a)). When a block of records is read
in, the records are compared against those in the EF
window. Any input record that is dominated by any
EF record is dropped. Of the surviving input records,
the one with the highest entropy is found. Any records
in the EF window that are dominated by this highest
entropy record are dropped. If the EF window has
room, (a copy of) the input record is added. Else, if
the EF window is full but there is a record in it with a
lower entropy than this input record, the input record
replaces it in the window. Otherwise, the window is
not modified.

The EF window acts then similarly to the elimina-
tion window used by BNL. The records in the EF win-
dow are accumulated from the entire input stream.
They are not guaranteed to be maximals, of course,

but as records are replaced in the EF window, the col-
lection has records with increasingly higher entropy
scores. Thus the collection performs well to eliminate
other records.

LESS’s merge passes of its external-sort phase are
the same as for standard external sort, except for the
last merge pass. Let pass f be the last merge pass. The
final merge pass is combined with the initial skyline-
filter pass. Thus LESS creates a skyline-filter window
(like SFS’s window) for this pass. Of course, there
must be room in the buffer pool to perform a multi-
way merge over all the runs from pass f − 1 and for
a SF window (Fig. 3(b)). As long as there are fewer
than B − 2 runs, this can be done: one frame per run
for input, one frame for accumulating maximal records
as found, and the rest for the SF window. (If not,
another merge pass has to be done before commencing
the SF passes.) This is the same optimization done in
the standard two-pass sort-merge join, implemented
by many database systems. This saves a pass over the
data by combining the last merge pass of external sort
with join-merge pass. For LESS, this typically saves a
pass by combining the last merge pass of the external
sort with the first SF pass.

As with SFS multiple SF passes may be needed. If
the SF window becomes full, then an overflow file will
be created. Another pass then is needed to process the
overflow file. After pass f—if there is an overflow file
and thus more passes are required—LESS can allocate
b − 2 frames of its buffer-pool allocation to the SF
window for the subsequent passes.

In effect, LESS has all of SFS’s benefits with no ad-
ditional disadvantages. LESS should consistently per-
form better than SFS. Some buffer-pool space is allo-
cated to the EF window in pass zero for LESS which
is not for SFS. Consequently, the initial runs produced
by LESS’s pass zero are smaller than SFS’s; this may
occasionally force that LESS will require an additional
pass to complete the sort. Of course LESS saves a
pass since it combines the last sort pass with the first
skyline pass.

LESS also has BNL’s advantages, but effectively
none of its disadvantages. BNL has the overhead of
tracking when window records can be promoted as
known maximals. LESS does not need this. Maxi-
mals are identified more efficiently once the input is
effectively. Thus LESS has the same advantages as
does SFS in comparison to BNL. LESS will drop many
records in pass zero via use of the EF window. The
EF window works to the same advantage as BNL’s
window. All subsequent passes of LESS then are over
much smaller runs. Indeed, LESS’s efficiency rests on
how effective the EF window is at eliminating records
early. In §3.3, we show this elimination is very effec-
tive, enough to reduce the sort time to O(n).
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3.2 Experimental Evaluation

The LESS prototype is in C and uses Pthreads to
implement non-blocking reads and writes. It imple-
ments external sort with double buffering. It was im-
plemented and run on RedHat Linux 7.3 on an Intel
Pentium III 733 MHz machine.

All tests calculate the skyline of a 500,000 record set
with respect to 5, 6, and 7 dimensions. Each record
is 100 bytes. A disk-page size of 4,096 bytes is used.
Each column used as a skyline criterion has a value
1 . . . 10, 000. The values were chosen randomly, and
the record sets obey the CI criteria from §2.1.

Input and output is double-buffered to increase per-
formance and to simulate a commercial-caliber rela-
tional algorithm. Each input / output block has a
thread watchdog that handles the reading / writing of
the block. The thread blocks on write but the main
process is free to continue processing.

If the EF window is too large, LESS will take more
time simply as management of the EF window starts
to have an impact. If the EF window is too small (say
a single page), the algorithm become less effective at
eliminated records early. As more records survive the
sort to the SF-phase, LESS’s performance degrade. We
experimented with varying the size of the EF window
from one to thirty pages. Its size makes virtually no
difference to LESS’s performance in time or I/O usage.
(We make clear why this should be the case in §3.3.)
Below five pages, there was some modest increase in
LESS’s I/O usage. We set the EF window at five pages
for what we report here.

We experimented with various buffer pool allot-
ments from 10 to 500 pages. The size affects primarily
the efficiency of the sorting phase, as expected. We set
the allocation at 76 pages for what we report here.

SFS and BNL are benchmarked in [8] where SFS is
shown to provide a distinct improvement. Hence we
benchmarked LESS against SFS. We implemented SFS

within our LESS prototype. In essence, when in SFS-
mode, the external sort is done to completion without
using an EF window for elimination, and then the SF
passes are commenced.

I/O performance for SFS and LESS are shown in
Fig. 4(a). It is the same for SFS in this case for the
five, six, and seven dimensional runs. This is because
the external sorting is the same in each case, and the
number of SF pass I/O’s needed were the same. LESS

shows a remarkable improvement in I/O usage, as we
expect. Many records are eliminated by the EF win-
dow during the sorting phase. The I/O usage climbs
slightly as the dimensionality increases. This is due to
the fact that the elimination during sorting becomes
less effective (for a fixed n) as the dimensionality k
increases.

The time performance for SFS and LESS are show
in Fig. 4(b). For five dimensions, LESS clocks in at
a third of SFS’s time. The difference between LESS
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Figure 4: Performance of LESS versus SFS.

and SFS closes as the dimensionality increases. This is
because, for higher dimensionality, more time is spent
by LESS and SFS in the skyline-filtering phase. This is
simply due to the fact more records are maximal. The
algorithms become CPU-bound as most of the time is
spent comparing skyline records against one another
to verify that each is, in fact, maximal.

3.3 Analysis

LESS also incorporates implicitly aspects of FLET. Un-
like FLET, we do not want to guess a virtual point
to use for elimination. In the rare occasion that the
virtual point was not found to be dominated, FLET

must process the entire data set by calling DD&C.
Such hit-or-miss algorithms are not amenable to re-
lational systems. Instead, LESS uses real points accu-
mulated in the EF window for eliminating. We shall
show that these collected points ultimately do as good
a job of elimination as does FLET’s virtual point. Fur-
thermore, the EF points are points from the data set,
so there is no danger of failing in the first pass, as there
is with FLET.

To prove that the EF points are effective at elimi-
nating most points, we can construct an argument sim-
ilar to that used in [3] to prove FLET’s O(n) average-
case runtime performance and in Lemma 6.
Theorem 10 LESS considered under CI has an
average-case runtime of O(kn).
Proof 10 Let the data set be distributed on (0, 1)k un-
der CI. Furthermore, let the data be distributed unifor-
mally along each dimension, without loss of generality.
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Consider a virtual point v with coordinate x ∈ (0, 1)
on each dimension. Call the “box” of space that dom-
inates v A, and the “box” of space dominated by v B.
(This is shown in Fig. 5 for k = 2.) The size of B
is then xk, and the size of A is (1 − x)k. Let x =
(1 − n−1/2k). Thus the size of B, xk, is (1 − n−1/2k)k.
In the limit of n, the size of B is 1.

lim
n→∞

(1 − n−1/2k)k = 1

If a point exists in A, it trumps all points in B.
The expected number of points that occupy A is pro-
portional to A’s volume, which is 1/

√
n by our con-

struction. There are n points, thus
√

n is the expected
number of points occupying A.

If points are drawn at random with replacement
from the data set, how many must be explored, on av-
erage, before finding one belonging to A? 10 If there
were exactly

√
n points in A, the expected number of

draws would be n/
√

n =
√

n.
Of course,

√
n is only the expected number of points

occupying A. Sometimes fewer than
√

n points fall in
A; sometimes, more. The actual number is distributed
around

√
n via a binomial distribution. Taking the re-

ciprocal of this distribution, the number of draws, on
average, to finding a point in A (or to find no point is
in A) is bound above by (lnn)

√
n.

So during LESS’s pass zero, in average case, the
number of points that will be processed before finding
an A point is bounded above by (ln n)

√
n. Once found,

that A point will be added to the EF window; else, there
is a point in the EF window already that has a better
volume score than this A point. After this happens,
every subsequent B point will be eliminated; else, every
point in some box bigger than B will be eliminated due
to the EF point that blocked the addition of the A point
to the EF window.

The number of points that remain, on average, after
pass zero then is at most 1− (1− n−1/2k)k +(ln n)

√
n.

This is o(n). Thus, the surviving set is bound above by
nf , for some f < 1. Effectively, LESS only spends ef-
fort to sort these surviving points, and nf lgnf is O(n).

Thus the sort phase of LESS is O(kn). The skyline
phase of LESS is clearly bound above by SFS’s average-
case, minus the sorting cost. SFS average-case cost

10This is simpler to consider than without replacement, and
is an upper bound with respect to the number of draws needed
without replacement.

after sorting is O(kn) Thm. 7. In this case, only nf

points survived the sorting phase, so LESS’s SF phase
is bounded above by O(kn). 2

Proving LESS’s best-case performance directly is
not as straightforward. Of course, it follows directly
from the average-case analysis.

Theorem 11 LESS considered under CI has a best-
case runtime of O(kn).

Proof 11 The records have a linear ordering. Thus,
this is like considering the average-case runtime for
skyline problem with dimensionality one. 2

Worst-case analysis is straightforward.

Theorem 12 LESS considered under CI has a worst-
case runtime of O(kn2).

Proof 12 Nothing is eliminated in the sort phase,
which costs O(nlgn). The SF phase then has the same
expense as the worst-case of SFS, or O(kn2) (Thm. 8).
2

3.4 Issues and Improvements

Since our experiments in §3.2, we have been focus-
ing on how to decrease the CPU load of LESS, and of
maximal-vector algorithms generally. LESS and SFS

must make m2/2 comparisons just to verify that the
maximals are, indeed, maximals. The m2 is cut in half
since the input stream is in sorted order; we know no
record can be trumped by any after it. BNL faces this
same computational load, and may do cumulatively
more comparisons as records are compared against
non-maximal records in its window.

There are two ways to address the comparison load:
reduce somehow further the number of comparisons
that must be made; and improve the efficiency of the
comparison operation itself. The divide-and-conquer
algorithms have a seeming advantage here. DD&C,
LD&C, and FLET have a o(N2) worst-case perfor-
mance. They do not need to compare every maximal
against every maximal. Of course, §2.4 demonstrates
that the divide-and-conquer algorithms have their own
limitations.

We have learned that the sorted order of the in-
put stream need not be the same as that in which
the records are kept in the EF and the SF windows.
Indeed, using two different orderings is advantageous.
Say that we sort the data in a nested sort with re-
spect to skyline columns, and keep the EF and SF win-
dows sorted by entropy as before. (This has the addi-
tional benefit that the data can be sorted in a natural
way, perhaps useful to other parts of a query plan.)
Now when a stream record is compared against the
SF records, the comparison can be stopped early, as
soon as the stream record’s entropy is greater than the
next SF record’s. At this point, we know the stream
record is maximal. We have observed this change to
drop the maximal-to-maximal comparisons needed by
LESS by 60%. This would reduce LESS’s performance
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on the seven dimensional data-set in Fig. 4 from 15 to
10 seconds.

There may be other ways to reduce the computa-
tional load of the comparisons themselves. Clearly,
there is much to gain by making the comparison op-
eration that the maximal-vector algorithm must do so
often more efficient. We are exploring these techniques
further, both experimentally and analytically, to see
how much improvement we can accomplish. We antic-
ipate to be able to improve upon the algorithm signif-
icantly more.

4 Conclusions

4.1 Future Work

There are a number of items and directions for future
work.

• Reduce the comparison load of maximal-to-
maximal comparisons necessary in LESS-like al-
gorithms.

• Improve on worst-case for LESS-like algorithms.
– Can worst-case for LESS-like, external

maximal-vector algorithms be improved
from O(kn2)?

– Can worst-case be avoided in more cases?
Anti-correlation in the data-set causes m to
approach n. Can cases of data-sets with high
anti-correlation be better handled?

• Understand more deeply the runtime behavior of
existing field.

– What are DD&C’s and LD&C’s average-case
running times with respect to k?

4.2 In Closing

While there have been a number of efforts to develop
good algorithms for finding the maximals, there has
not been a clear understanding of the performance
issues involved. The more recent algorithms devel-
oped for skyline queries have brought attention to
making the algorithms additionally external and I/O-
conscious.

We reviewed extensively the existing field, and filled
in analytically on their runtime performances. We
show that the divide-and-conquer based algorithms
are flawed in that the dimensionality k results in
very large “multiplicative-constants” over their O(n)
average-case performance. Surprisingly, the skyline al-
gorithms, while seemingly more näıve, are much better
behaved in practice. Still, there has, and does, remain
much room for improvement. We introduced LESS,
which improves significantly over the existing skyline
algorithms, and we prove that its average-case perfor-
mance is O(kn), This is linear in the number of data
points for fixed dimensionality k, and well behaved as
k is increased.
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