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Abstract

The following report details the construction of three-dimensional (e.g.,
X-Y-Z) separable steerable filters. The approach presented is an exten-
sion of the construction of two-dimensional (X-Y) separable steerable fil-
ters outlined in [6]. Additionally, three-dimensional separable steerable
filters, both continuous and discrete versions, for the second derivative of
the Gaussian and its Hilbert transform are reported. Experimental eval-
uation demonstrate that the error in the constructed separable filters are
negligible. Finally, an application of the filters for surveillance based on
visual motion is presented.



1 Introduction

In many vision and image processing tasks the application of filters at arbitrary
orientations is made. For example in [1], the authors show that motion mani-
fests itself as orientation in the spatiotemporal domain and use spatiotemporally
oriented filters to detect it. A computationally expensive approach is the appli-
cation of many rotated versions of a filter differing by a small rotation angle. In
[6], the authors demonstrate that for a certain class of functions (i.e., filters),
rotated copies can be synthesized by taking linear combinations of a small set of
basis functions (i.e., the basis functions span the space of all rotations). For ex-
ample, to synthesize the nth order directional derivative (in two-dimensions) of a
circular-symmetric function (e.g., Gaussian) requires n+1 basis functions. Fur-
thermore, the authors leverage the distributive property of linear filters by first
convolving the input image by the set of basis functions and then realizing the
required filtered version of the image by taking appropriate linear combinations
of the outputs; this architecture is summarized pictorially in Fig. 1. Addition-
ally, the authors present the construction of two-dimensional separable filters
(for polynomial functions) that provide a significant gain in computational effi-
ciency over their non-separable equivalents. The computational efficiency gain
is achieved by simplifying the complexity of the two-dimensional convolution
from O(k2n2) to O(kn2); where k is the size of the filter and n is the size of
the image (n by n). Related work to the steerable filters considered in this re-
port include, early work in image restoration (e.g., [12]) and analyzing oriented
patterns (e.g., [11]), alternative analytic descriptions of steerable filters (e.g.,
[10, 14, 18, 22]), generating steerable filters through SVD approximations (e.g.,
[8, 15, 17]) and work considering various orders of Gaussian derivatives (e.g.,
[3, 9, 13]).

In the following report explicit forms of three-dimensional (e.g., X-Y-Z) nth
degree separable steerable filters are given. The approach presented is an exten-
sion of the construction of two-dimensional (X-Y) separable steerable filters for
polynomial functions outlined in [6]. As examples, both analytic and discrete
forms for the second derivative of a Gaussian (G2) and its Hilbert transform1

(H2) are provided. Additionally, numerical evaluations of the discrete separable
versions of the G2 and H2 filters are provided. It appears that explicit analytic
and numerical formulations for these filters has not previously appeared.

The organization of this report is as follows. Section 2 reviews the relevant
assumptions and theorem for the construction of three-dimensional steerable
filters presented in [6]. Section 3 presents the construction of X-Y-Z separable
steerable filters for polynomial functions. Section 4 summarizes the separable
basis functions (both continuous and discrete) for the G2 and H2 filters. Sec-
tion 5 summarizes an experimental evaluation of the accuracy of the separable
version of the second derivative of a Gaussian. Section 6 summarizes a surveil-
lance application that utilizes the G2 and H2 filters. Finally, Section 7 provides
concluding remarks.

1The Hilbert transform introduces a 90
�

phase shift to every frequency of a signal [2].
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2 Preliminaries

In this report it is assumed that the functions to be steered are of the form of a
polynomial times a separable windowing function. Additionally, the functions
are assumed to have an axis of rotational symmetry2. These function, rotated by
a transformation R such that their axis of symmetry point along the direction
cosines α, β and γ, can be written as,

fR(x, y, z) = W (r)PN (x′) (1)

where W (r) is any spherically symmetric function (e.g., three-dimensional Gaussian-

like function: e−r2

, r =
√

x2 + y2 + z2) and PN (x′) is an nth order polynomial
in

x′ = αx + βy + γz (2)

The following theorem (Theorem 4 in [6]) provides the means for construct-
ing steerable filters of axially symmetric three-dimensional functions (see Ap-
pendix E in [6] for proof):

Theorem 1 Given a three dimensional axially symmetric function f(x, y, z) =
W (r)PN (x), where PN (x) is an even or odd symmetry nth order polynomial in

x. Let α, β and γ be the direction cosines of the axis of symmetry of fR(x, y, z)
and αj, βj and γj be the direction cosines of the axis of symmetry of fRj (x, y, z).
Then the steering equation,

fR(x, y, z) =

M
∑

j=1

kj(α, β, γ)fRj (x, y, z), (3)

holds if and only if

1. M ≥ (N + 1)(N + 2)/2 and

2. the kj(α, β, γ) satisfy
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3 Basis functions separable in X, Y and Z

In this section we provide the steering coefficients and X-Y-Z separable basis
functions for some polynomial functions. The following section has been adapted
from Appendix D of [6] and extended to the case of three-dimensional functions.

2Definition: An axis of rotational symmetry is an axis where a rotation about it results in
no change of the function.
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We consider the case of even or odd filters fΩ(x, y, z) which can be written
as,

fΩ(x, y, z) = G(r)QN (x′) (5)

where G(r) is a separable windowing function (e.g., Gaussian-like function

e−r2

= e−(x2+y2+z2) = e−x2

e−y2

e−z2

) and QN (x′) is an nth order polynomial
in,

x′ = αx + βy + γz (6)

By Theorem 1, (N+1)(N+2)/2 functions can form a basis set for fΩ(x, y, z). We
assume that a basis of M = (N +1)(N +2)/2 X-Y-Z separable functions exists.
Then there will be some set of separable basis functions Qi,j(x)Ri,j(y)Si,j(z)
for which

fΩ(x, y, z) = G(r)
∑

ki,j(Ω)Qi,j(x)Ri,j(y)Si,j(z) (7)

The interpolation functions, ki,j(Ω) are found by equating the highest order
products of x, y and z in Eq. (5) with those in Eq. (7), i.e., equating the
coefficients of xN−i−jyizj for {i, j|i, j ∈ N and i+ j ≤ N}. Substituting Eq. (6)
into Eq. (5), yields M different products of x, y and z of order N , since (by the
specialization of the multinomial theorem [16])

(x′)N =
∑ n!

(n − i − j)!i!j!
αN−i−jβiγjxN−i−jyizj (8)

where the summation is taken over terms with all possible integer values of i, j
between 0 and N subject to the constraint that i + j ≤ N .

Each basis function Qi,j(x)Ri,j(y)Si,j(z) can contribute only one product
of powers of x, y and z of order N (otherwise Qi,j(x)Ri,j(y)Si,j(z) would be a
polynomial of x, y and z of order higher than N). So we have

Qi,j(x)Ri,j(y)Si,j(z) = c(xN−i−j + · · · )(yi + · · · )(zj + · · · ), (9)

where c is a constant. Therefore, Eq. (5) shows that the coefficients of the
highest order terms xN−i−jyizj , in fΩ(x, y, z) is

ki,j(α, β, γ) =
n!

(n − i − j)!i!j!
αN−i−jβiγj . (10)

Note that the lower order terms can appear in more than one separable basis
function, so their coefficients will be the result of a sum of different ki,j(α, β, γ).

To find the separable basis functions Qi,j(x)Ri,j(y)Si,j(z) from the original
function f(x, y, z), we note that from the steering equation for the separable
basis functions, Eq. (7), we have,
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(11)

The Qi,j(x)Ri,j(y)Si,j(z) can be written as a linear combination of fΩj by
inverting the matrix of ki,j ’s of Eq. (11).
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4 G2/H2 steerable quadrature filter pairs

In this section steerable filters (i.e., quadrature pairs) for both the three-dimensional
G2 filter (i.e., second derivative of Gaussian) and the three-dimensional H2 filter
(the Hilbert transform of the G2 filter) will be summarized.

A three-dimensional Gaussian-like function can be written as,

G(x, y, z) = e−(x2+y2+z2). (12)

The second derivative with respect to x of the three-dimensional Gaussian-like
function is written as,

∂2G

∂x2
= (4x2 − 2)e−(x2+y2+z2). (13)

Using Theorem 1 where N = 2, we need 6 basis functions. Tables 1, 2 and 3
were arrived at by using the construction outlined in Section 3. The direction
cosines α, β and γ used were a distinct subset3 of the unit normals to the faces of
the dodecahedron (or the vertices of the icosahedron), which can be generated
according to a cyclic permutation of (±1, 0,±r) where r is the golden mean,
(
√

5 + 1)/2 [19]. The dodecahedron provides a uniform 12-face tessellation of a
sphere.

The Hilbert transform4 of the second derivative of the three-dimensional
Gaussian function is written as,

H2(x, y, z) = (−2.254x + x3)e−(x2+y2+z2). (14)

Using Theorem 1 where N = 3, we need 10 basis functions. Tables 4, 5 and 6
were arrived at by using the construction outlined in Section 3. The direction
cosines α, β and γ used were a distinct subset of the normals (normalized) to
the faces of the icosahedron (or the vertices of the dodecahedron), which can be
generated according to a cyclic permutation of (0,±r,±1/r) and (±1,±1,±1)
where r is the golden mean (

√
5 + 1)/2 [19].

5 Experimental evaluation

In this section the root mean square (rms) errors of the discrete separable G2

and H2 filters presented in Section 4 are reported.
For each of the filters we compared the convolution output of a test image

with the rotated versions of the non-separable and separable filters. The test
image used was a three-dimensional zone plate, specifically a 2D analog of the
1D linear chirp (i.e., f(x) = cos[(ωx)x] = cos(ωx2), where ωx denotes the
instantaneous frequency) 5, defined as,

f(x, y, z) = cos[(ω
√

x2 + y2 + z2)
√

x2 + y2 + z2] (15)

= cos[ω(x2 + y2 + z2)]

3When selecting the direction cosines care must be taken that no two directions share the
same absolute direction (e.g., invalid selection (1, 0, 0) and (-1,0,0)).

4The Hilbert transform of the second derivative of the three-dimensional Gaussian function
was approximated by finding the least squares fit to a third-order polynomial times a Gaussian
[6].

5Matlab code for constructing the three-dimensional zone plate can be obtained from:
http://cvr.yorku.ca/members/gradstudents/kosta/Software
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Given the orientation and frequency selectivity of the filters, the zone plate was
selected because it captures a continuum in both orientations and frequencies
above and beyond those that the individual filters are selective for. In Fig. 2(a)
a two-dimensional slice of the three-dimensional zone plate is presented. The
rotated versions of the non-separable filters were arrived at by conducting the
rotations in the continuous domain followed by discretization.

The sampling of the orientation of the filters were arrived at by representing
the direction cosines (α, β, γ) of the axis of symmetry parametrically by spherical
coordinates (θ, φ, ρ = 1) as follows,

α = cos(θ)sin(φ)

β = sin(θ)sin(φ) (16)

γ = cos(φ)

For the experiment, both angles (θ, φ) were sampled at 5
�

intervals with the
following bounds, 0 ≤ θ ≤ 2π and −π/2 ≤ φ ≤ π/2, which corresponds to a
sampling of a full sphere. Depicted in Fig. 2(b)-(g) are the convolutions of the
G2 and H2 filters at various orientations with the three-dimensional zone plate.

The maximum rms errors for the G2 and H2 were found to be 6.63 × 10−13

and 3.55×10−12, respectively. In Fig. 3(a) and Fig. 3(b) plots of the rms errors
for the G2 and H2 filter are presented. The symmetrical nature of the rms error
plots is due to the symmetrical nature of the filters in the frequency domain
about the origin. The prominent minima of the H2 rms error correspond to
the filters with a single non-zero coefficient ki(·). The increased errors in the
remaining filter outputs may be due to accumulation errors in the construction
of the basis filters (i.e., more than one non-zero coefficient ki(·)). Nonetheless
the maximum error encountered is insignificant.

6 Example application

In this section a summary of a surveillance application is given that utilizes the
steerable G2 and H2 filters detailed in Section 4.

A major problem with traditional approaches (e.g., difference imaging [4])
for surveillance of outdoor environments based on visual motion is that they are
susceptible to distraction by irrelevant motions. Example distractions include,
vegetation fluttering or swaying in the wind, specularities across water and
clouds drifting across the sky.

With these difficulties in mind, in [20] (later extended in [21]) the author
suggests a parsing of motion information that highlights salient regions relevant
to the application of surveillance. The author observes that the time course that
unimportant random and oscillatory motion events occur are small compared to
the period that targets of interest maintain a coherent direction of movement.
Given this observation the author suggests basing motion salience on the extent
that a single coherent motion dominates local regions in the spatiotemporal
domain. The author proposes using a set of directionally selective filters to
capture the point-wise dominant direction in space-time. As an aside, there
is evidence [7] that human vision finds salient structures jointly in space and
time. In both [20, 21] measures of local direction are initially restricted to two-
dimensional planes consisting of one spatial dimension (x or y) and time t. These
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measures are combined to make a final measure of motion salience. Rather, than
analyze the spatiotemporal structure in separate slices in the discussion that
follows we will analyze the three-dimensional structure directly. An advantage
of analyzing the three-dimensional structure directly utilizing three-dimensional
kernels (in our case the the G2 and H2 filters) is that they can provide a direct
measure of motion not lying in either plane.

The first step consists of filtering the image sequence I(x, y, t) by the direc-
tionally selective filters G2 and H2 at orientations (α, β, γ)i (orientations spec-
ified below). Next, the filters are taken in quadrature to eliminate the phase
sensitivity present in the output of each filter (see Appendix A). This produces
a measure of local energy E(α,β,γ)(x, y, t), within a frequency band,

E(α,β,γ)(x, y, t) = [G2(α,β,γ)
∗ I(x, y, t)]2 + [H2(α,β,γ)

∗ I(x, y, t)]2 (17)

where ∗ denotes the convolution operator. The resulting energy is a function
of both orientation and contrast. To get a purer measure of orientation the
response of each filter is normalized by the sum of the consort response, as
follows,

Ê(α,β,γ)i
(x, y, t) =

E(α,β,γ)i
∑

j E(α,β,γ)j
(x, y, t) + ε

(18)

where ε is a small bias introduced to prevent instabilities when the overall
pointwise energy estimate is negligible.

In [21] the author identifies six orientation patterns that have semantic in-
terpretations; see Table 7 for a summary of the three-dimensional G2/H2 filter
orientation analogs of the two-dimensional filters presented in [21]. One case of
interest are regions in the spatiotemporal domain that exhibit elongated struc-
tures (horizontal and vertical oriented spatial structures) parallel to the tempo-
ral axis when considered in X-T or Y-T spatiotemporal slices. In the frequency
domain, these structures have their energy concentrated along the spatial fre-
quency axis. This case is referred to as “static”. A second case identified is of
a homogeneous spatial region where the intensity fluctuates over time. In the
frequency domain the energy of this structure is concentrated on the temporal
axis. This case is referred to as “flicker”. A third case is of a spatiotemporal
region that exhibits coherent velocity in the X-T plane or Y-T plane. This
region traces a slant in the spatiotemporal domain. In the frequency domain
the energy also exhibits a slant about the origin. This case is referred to as
“coherent motion” which includes rightward, leftward, upward and downward
constant velocity motion. The use of the three-dimensional steerable filters al-
lows us to elaborate this category by including constant velocity motion that
does not lie strictly on the spatial coordinate axes.

The goal of this surveillance application is the extraction of coherently mov-
ing targets for subsequent tracking [5]. Figure 4 shows the energy outputs
(upward, downward) of a synthetic image sequence consisting of a random dot
square region moving 1 pixel/frame downward over a random dot background
moving 1 pixel/frame upward. Figure 5 shows the energy outputs (rightward,
static horizontal and static vertical) of a real world scene. Two people are
walking away from each, one leftward the other rightward.
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7 Summary

In this report the construction of three-dimensional separable steerable filters
of the nth derivative of the Gaussian was presented. Additionally, as a proof
of concept the second derivative of the Gaussian and its Hilbert transform,
both in the continuous and discrete domains, were presented. Experimental
evaluation shows that the error in the construction of the separable steerable
second derivative of the Gaussian and Hilbert transform is negligible. Finally,
an application of the G2 and H2 filters for surveillance was presented as an
example of the filters’ utility.
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A Local energy

In this section the local energy extracted from a cosinusoidal signal using the

quadrature outputs of the G2 (i.e., ∂2

∂t2 G(t)) and H2 (i.e., the Hilbert transform
of G2) filters will be derived. Note that local energy as derived below is exact
only for a pure sinusoidal signal.

The output of the G2 filtering process is formalized as follows,

∂2

∂t2
G(t) ∗ Acos(ωt) = AG(t) ∗ ∂2

∂t2
cos(ωt) (19)

= −G(t) ∗ Aω2cos(ωt) (20)

= −mAω2cos(ωt) (21)

where ∗ represents the convolution operator, A and ω denote the amplitude
and frequency of the input signal, respectively, and m is a constant from the
modulation transfer function (MTF) of G(t).

The Hilbert transform H[·] introduces a phase shift of π/2 to every frequency
of a signal [2]. The Hilbert transform of Eq. (19) yields,

H

[

∂2

∂t2
G(t) ∗ Acos(ωt)

]

= H

[

AG(t) ∗ ∂2

∂t2
cos(ωt)

]

(22)

= H

[

−mAω2cos(ωt)

]

(23)

= −mAω2cos(ωt + π/2) (24)

= −mAω2sin(ωt) (25)

Taking the G2 (Eq. (21)) and H2 (Eq. (25)) filter outputs in quadrature,
yields,

[−mAω2cos(ωt)]2 + [−mAω2sin(ωt)]2 = m2A2ω4[cos(ωt)2 + sin(ωt)2] (26)

= m2A2ω4[1] (27)

= m2A2ω4 (28)

Therefore, the local energy is a function of the amplitude A, frequency ω of
the input signal and the distance of the input signal’s frequency with respect to
the optimal tuning of the G2 and H2 filters.
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Basis Interpolation
G2a = N(2x2 − 1)e−(x2+y2+z2) k(α, β, γ) = α2

G2b = N(2xy)e−(x2+y2+z2) k(α, β, γ) = 2αβ
G2c = N(2y2 − 1)e−(x2+y2+z2) k(α, β, γ) = β2

G2d = N(2xz)e−(x2+y2+z2) k(α, β, γ) = 2αγ
G2e = N(2yz)e−(x2+y2+z2) k(α, β, γ) = 2βγ
G2f = N(2z2 − 1)e−(x2+y2+z2) k(α, β, γ) = γ2

Table 1: X-Y-Z separable basis set and interpolation functions for the second
derivative of the Gaussian. N is a normalization constant equaling 2√

3
( 2

π )3/4,

introduced so that the integral over all space of the square of the function
equals one. To construct a second derivative of a Gaussian where the axis of
symmetry (i.e., X-axis) is mapped to the direction cosine Ω = (α, β, γ), use
GΩ

2 =
∑

i∈{a,...,f} ki(Ω)G2i.

1D Function Tap #
0 1 2 3 4

f1 N(2t2 − 1)e−t2 -0.8230 -0.0537 0.3540 0.1025 0.0084

f2 e−t2 1.0000 0.6383 0.1660 0.0176 0.0008

f3 2Nte−t2 0 0.7039 0.3662 0.0582 0.0034

f4 te−t2 0 0.4277 0.2225 0.0354 0.0020

Table 2: 9-tap filters for X-Y-Z separable basis set for G2. Filters f1 and f2 have
even symmetry; f3 and f4 have odd symmetry. These filters were taken from
Table 1, with a sample spacing of 0.67.

G2 Basis Filter Filter in X Filter in Y Filter in Z
G2a f1 f2 f2
G2b f3 f4 f2
G2c f2 f1 f2
G2d f3 f2 f4
G2e f2 f3 f4
G2f f2 f2 f1

Table 3: G2 basis filters. Summarized is the construction of the G2 basis filters
(a-f) using the filters given in Table 2.
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Basis Interpolation
H2a = N(x3 − 2.254x)e−(x2+y2+z2) k(α, β, γ) = α3

H2b = Ny(x2 − 0.751333)e−(x2+y2+z2) k(α, β, γ) = 3α2β
H2c = Nx(y2 − 0.751333)e−(x2+y2+z2) k(α, β, γ) = 3αβ2

H2d = N(y3 − 2.254y)e−(x2+y2+z2) k(α, β, γ) = β3

H2e = Nz(x2 − 0.751333)e−(x2+y2+z2) k(α, β, γ) = 3α2γ
H2f = Nxyze−(x2+y2+z2) k(α, β, γ) = 6αβγ
H2g = Nz(y2 − 0.751333)e−(x2+y2+z2) k(α, β, γ) = 3β2γ
H2h = Nx(z2 − 0.751333)e−(x2+y2+z2) k(α, β, γ) = 3αγ2

H2i = Ny(z2 − 0.751333)e−(x2+y2+z2) k(α, β, γ) = 3βγ2

H2j = N(z3 − 2.254z)e−(x2+y2+z2) k(α, β, γ) = γ3

Table 4: X-Y-Z separable basis set and interpolation functions for fit to Hilbert
transform of the second derivative of the Gaussian. N is a normalization con-
stant equaling 0.877776, introduced so that the integral over all space of the
square of the function equals one. To construct a second derivative of a Gaussian
where the axis of symmetry (i.e., X-axis) is mapped to the direction cosine
Ω = (α, β, γ), use HΩ

2 =
∑

i∈{a,...,j} ki(Ω)H2i.

1D Function Tap #
0 1 2 3 4

f1 N(t3 − 2.254t)e−t2 0 -0.6776 -0.0895 0.0554 0.0088

f2 N(t2 − 0.751333)e−t2 -0.6595 -0.1695 0.1522 0.0508 0.0043

f3 e−t2 1.0000 0.6383 0.1660 0.0176 0.0008

f4 Nte−t2 0 0.3754 0.1953 0.0310 0.0018

f5 te−t2 0 0.4277 0.2225 0.0354 0.0020

Table 5: 9-tap filters for X-Y-Z separable basis set for H2. Filters f2 and f3
have even symmetry; f1, f4 and f5 have odd symmetry. These filters were taken
from Table 4, with a sample spacing of 0.67.

H2 Basis Filter Filter in X Filter in Y Filter in Z
H2a f1 f3 f3
H2b f2 f5 f3
H2c f5 f2 f3
H2d f3 f1 f3
H2e f2 f3 f5
H2f f4 f5 f5
H2g f3 f2 f5
H2h f5 f3 f2
H2i f3 f5 f2
H2j f3 f3 f1

Table 6: H2 basis filters. Summarized is the construction of the H2 basis filters
(a-j) using the filters given in Table 5.
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Category orientation (α,β,γ)

static (1, 0, 0)
vertical

static (0, 1, 0)
horizontal

flicker (0, 0, 1)

rightward (1/
√

2, 0, 1/
√

2)

leftward (−1/
√

2, 0, 1/
√

2)

upward (0, 1/
√

2, 1/
√

2)

downward (0,−1/
√

2, 1/
√

2)

Table 7: Summarized are the orientations (i.e., direction cosines) of the G2/H2

filters for isolating the energy of the corresponding motion categories.
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Input
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Figure 1: Three-dimensional steerable filter architecture. Adapted from [6].

13



(a) zone plate

(b) G2: (1, 0, 0) (c) H2: (1, 0, 0)

(d) G2: (0, 1, 0) (e) H2: (0, 1, 0)

(f) G2: (1, 1, 0) (g) H2: (1, 1, 0)

Figure 2: Filtered zone plate. Depicted is (a) an X-Y slice from a three-
dimensional zone plate and (b)-(g) various corresponding G2/H2 filtered X-Y
slices. The accompanying triples in the captions of the filtered outputs represent
the direction of the axis of symmetry.
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Figure 3: G2/H2 rms errors.
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(a) Intensity image

(b) Upward energy (c) Downward energy

Figure 4: Energy images from a synthetic image sequence. (a) a frame taken
from synthetic image sequence of a random dot foreground square region mov-
ing downwards 1 pixel/frame over a random dot background moving upward 1
pixel/frame (b) the upward normalized energy and (c) the downward normalized
energy.
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(a) Intensity image (b) Rightward energy

(c) Static vertical energy (d) Static horizontal energy

Figure 5: Energy images from an indoor scene. (a) a frame taken from scene
of two people walking away from each other, one rightward and the other left-
ward (b) the rightward normalized energy (c) the energy attributed to static
structures oriented spatially vertically and (d) the energy attributed to static
structures oriented spatially horizontally.
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