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Abstract

We advocate the extension of relational
database systems to support preference
queries. Many database applications today—
from e-commerce to queries over scientific
data-sets—are essentially best-match searches.
Relational queries are ill-suited for these. Sup-
porting preference criteria in the query lan-
guage can extend its expresssiveness to cover
best-match queries in a natural way.

We study skyline queries as a foundation for
preference queries. Skyline offers a natural
way to combine multiple preference criteria in
parallel. Skyline as it was introduced, how-
ever, is limited in its expressiveness, and does
not capture many types of preferences and
compositions people would like to support.
We present a formal model of skyline and mo-
tivate two extensions to skyline that greatly
increase its expressiveness. These extensions
destroy though the partial-order semantics of
skyline as originally defined. We develop the
stable skyline semantics that accommodates
the extensions and the loss of transitivity in
the preference relation in a natural manner.
This also opens the door to other, potentially
useful extensions. We present a high-level al-
gorithm that computes the stable skyline set.
Lastly, we show how skyline criteria can be
grounded in a natural way in cases when the
preference relation may otherwise have cycles.

1 Introduction

1.1 What is Wrong?

answer the question
i find there are no answers
then make something up

“Find me a house in Monterey in good condition for
less than $300,000 with at least three bedrooms and an
ocean view.” With an appropriate database at hand,
one could compose a query (say, in SQL) to express

this. But what if the query comes up empty? Our
house hunter must try again with a new query, perhaps
by modifying (weakening) the criteria from the original
query. This process can be long and arduous, and is
often unsuccessful because of it. Kaplan named this
seeming behavior of the database system to withhold
information stonewalling [22, 23].

Relational database systems—and, for that mat-
ter, other common information system technologies—
do not offer a solution. They stonewall. A relational
query selects the tuples that satisfy the query’s condi-
tions. The querier must know something—or quite a
bit usually—about the data in the database in order
to specify these conditions suitably.

There are many applications and tasks today much
like the house hunter’s. The person might not know
much about the data. (A house for $300,000 in Mon-
terey? Really!) Furthermore, the house hunter’s crite-
ria are not conditions, per se. Rather, they are prefer-
ences: in reasonable condition, inexpensive, many bed-
rooms, and a good view. The house hunter may not
even be expecting to find a house that actually satis-
fies all these preferences, or that satisfies them in equal
measure. The house hunter is looking for the best op-
tions, with bestness measured against the preferences.

E-commerce tasks are similar to the house hunter’s.
Customers search for products and services with cer-
tain criteria—requirements and preferences—in mind.
The relational systems that back-end e-commerce sys-
tems require coercing the preferences into conditions,
leading to stonewalling and frustration.

In scientific domains, a researcher often queries a
database in an investigatory manner. An astronomer
queries an astronomical body database to find objects
most similar to the description of a hypothetical ob-
ject. A geneticist queries a human genome database
to find genes that best-match given criteria. Relational
queries are ill-suited to these tasks.

What solutions are there to stonewalling? What
would an information system or query language need
to address these issues? Is the notion of best-match
and preferences at odds with the relational approach?
There is much interest in these issues, and the need for
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good approaches is ever more pressing. There is quite
a bit of research within the area, especially as of late.
However, there remains little practical progress so far.

1.2 Why Preferences?

choice everywhere
how to rank from best to worst

the way is not clear

Numerous solutions to stonewalling have been pur-
sued. SQL allows for the ordering of results. Thus, if
one could rank answer tuples by bestness, they could
be returned in order from best to worst. This requires
providing each tuple a score. For this, two things are
needed: the user’s preference criteria; and a utility
function that combines the “preference” scores of a
tuple into a single score.

If one is able to specify the preference criteria well,
though, one could write a query in a preference query
language. Devising an appropriate utility function is
quite hard. How does one combine the value of a
house’s condition with its number of bedrooms? With
the Boolean ocean view?

The utility function is opaque, so it is often difficult
for the user to interpret why results are ranked as they
are. Ideally, a preference query language removes the
need for a utility function.

Ranking approaches return all the “items”, al-
though ranked. This can be expensive to evaluate.
There has been substantial work to address this. Top-
k queries limit the results to the top k scoring tuples.
This permits optimization. Determining a natural k
for a given query in advance, though, is hard.

Cooperative query answering (CQA) has sought
to address the stonewalling problem in various ways.
Some techniques relay information back to the user
after a query that would help the user in designing
follow-up queries. Other CQA techniques generate
follow-up queries automatically when it is determined
the initial query was insufficient. These approaches,
however, do not provide for the most part means by
which the user can express which are the preferential
components of the query.

These different approaches, in truth, are orthogo-
nal. There is no reason a system employing a pref-
erence query language could not also rank the results
by bestness. There is no reason why information re-
trieval (IR) techniques could not be integrated in a
full-fledged system. In many ways, CQA and prefer-
ence queries are opposite sides of the same coin: pref-
erence queries allow the user to state the preference
criteria up front; and CQA helps remedy the case when
the the query is unsuccessful. Furthermore, we do not
believe relational queries and preferences to be at odds.

A preference query language brings tools to bear
that the other approaches do not. This warrants the
study of this approach.

1.3 Why Skyline?

i see the skyline
transcending geometry

a surface no more

The skyline clause was proposed in [5] as an extension
to SQL, with syntax as in Figure 1. Skyline offers
an elegant approach to combining multiple preference
criteria in parallel.

select . . . from . . . where . . .
group by . . . having . . .
skyline of A1 [min | max | diff], . . .,

An [min | max | diff]

Figure 1: The proposed skyline clause for SQL.

The skyline operator filters the set of tuples derived
by (the rest of) the query. Any tuple r is removed if
there is another tuple s that is better than, or equal
to, tuple r on each skyline criterion (Ai), and is strictly
better than tuple r on at least one criterion. In this
case, we say that s trumps r. Tuple s is better than
tuple r on criterion Ai max if s’s Ai value is greater than
r’s. Tuple s is better than tuple r on criterion Ai min
if s’s Ai value is less than r’s. If there is a criterion
Ai diff, then r cannot be trumped by s if s’s Ai value is
different from r’s. The answer set is the set of tuples
never trumped, called the skyline set.

Each skyline criterion, Ai max or Ai min, imposes a
weak order over the input tuples.1 The skyline criteria
taken together (conjunctively) then impose a partial
order over the input tuples.2 The skyline set is the
crown of this partial order.

select Address, Agent, Lockbox#, Cond,
Price, #bdrm, OceanView, Style

from HouseListing
where area = ’Monterey’
skyline of Cond max, Price min,

#bdrm max, OceanView max,
Style diff;

Figure 2: Skyline query for the house hunter.

The query in Figure 2 is a skyline query expressing
the house hunter’s query from Section 1.1. It is as-
sumed here that Cond (the condition of the house) is a
numeric score, say, from 1..5, with 5 as the best. Price
and #bdrm (number of bedrooms) are as one would
expect. OceanView is a Boolean: 1 for true; and 0
for false. We have added the criterion Style diff; this
means the query will find the best houses per house-
style (e.g., bungalow, modern, and Victorian).

1It is not a total order since two tuples may have the same
Ai value, thus tying. A weak order is a total order except for
allowing ties.

2We can ignore diff here. Note that any criterion Ai diff can
be replaced by the criteria Ai max and Ai min.
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Note that Cond and OceanView might not be avail-
able (and in the expected format) in a base House ta-
ble. HouseListing though can be a view. Or it can be
replaced by a sub-query in the query in Figure 2. The
requisite information for the skyline criteria can be as-
sembled via any relational query. The skyline operator
is composable with the relational algebra.

We believe that skyline offers a natural founda-
tion for a preference query language. It provides a
way to combine multiple preference criteria. And via
composition—with itself, as in nested skyline clauses,
and with other relational operations—it provides a
fairly rich language to compose and prioritize prefer-
ences. Furthermore, skyline is readily understandable.

While the skyline clause is a readily understandable
extension to SQL, a relational engine can be extended
with a skyline operator to optimize and execute sky-
line queries efficiently. There has been a fair amount
of work as of late on algorithms to compute skyline ef-
ficiently. Thus, a fairly rich, skyline-based preference
query language could be supported with the addition
of a single operator to the relational engine. Other
studied preference query languages would seemingly
require extensive changes to the relational system.

However, SQL with skyline is not expressive enough.
There are many natural preferences and preference
compositions that have been proposed that cannot be
expressed by skyline. Prioritizing preferences can be
accomplished to some degree by nested skyline clauses,
but often not naturally. To realize a skyline-based
preference query language, skyline needs to be ex-
tended somehow.

1.4 In This Paper

what is accomplished
in the span of a season
the weather changes

We demonstrate specific ways that skyline can be ex-
tended that greatly increase its expressiveness. We
focus on two extensions particularly: a new criterion
directive equal as a dual to diff (and, as a logical conse-
quence, another directive maxeq); and a criterion mod-
ifier by. For example, the criterion Price min by 5000
means that house (tuple) s does not trump house r
with respect to the criterion unless s is at least $5,000
less expensive than r.

These extensions affect skyline’s partial-order se-
mantics. Equal can mean loss of transitivity. We are no
longer guaranteed a partial order, but are guaranteed
a directed acyclic graph. We introduce a change to
the skyline semantics that we call stable skyline which
accommodates the loss of transitivity.

The addition of by can mean the introduction of cy-
cles into the preference relation (that is, the algebraic
relation induced by the skyline query over the input
set of tuples). We do not believe that there is any
reasonable “skyline” semantics which would accommo-

date naturally cycles. However, we show how skyline
queries can be made safe in a natural way, which guar-
antees a cycle-free preference relation. This is possible
with the addition of equal, and thus in stable skyline,
but not in original skyline.

We consider related work in Section 2. We formalize
skyline in Section 3, and we extend it, introducing the
stable skyline semantics, in Section 4. We conclude in
Section 5.

2 Related Work

questions are sacred
answers are often profane

ask me what you will

People have recognized a need for preferences in
queries nearly since the the introduction of expres-
sive, declarative query languages for databases. In
[6], a deductive query language called DEDUCE was
proposed for relational databases which includes pref-
erences. Lacroix and Pirotte [30] introduced the do-
main relational calculus (DRC) and the intermediate
level language, ILL, as an English-like language allow-
ing structured expressions with the goal of more natu-
ral, more expressive query languages. In [29], Lacroix
and Lavency showed how to extend the DRC to provide
a preference mechanism. Preferences within a query
are satisfied if possible, but “ignored” when not.

Approaches to preferences in queries can be classi-
fied as qualitative and quantitative. Qualitative ap-
proaches allow for preferences to be represented in
queries, offer means to compose preference criteria—
with themselves and with the other query constructs
and conditions—and extend the query semantics to en-
compass preferences, as did the extension to DRC in
[29]. In quantitative approaches, answers are scored
with respect to “preferences”. The preferences are not
usually composed in the query, but are reflected in the
scoring function. Answers then with the best scores
are deemed to match the user’s preference best, and
the answers are returned in best-to-worst order.

Our main interest is in qualitative approaches. In
designing a qualitative preference query facility, we
have the following criteria (that which we hold sacred).
• Simple: Queries are understandable and natural.
• Adjustable: It is easy to rewrite queries, to com-

pose followup queries.
• Composable: It is easy to compose preference ele-

ments with themselves and with other (say, rela-
tional) operators.

• Realizable: Preference queries can be optimized
and executed efficiently.

• Expressive: Many types of preference queries can
be expressed.

• Declarative: There is a declarative semantics.
Lacroix and Lavency’s preference extension to the

DRC [29] is simple and understandable which enables
preferred conditions to be stated. They addressed
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composability in showing how multiple preference con-
ditions could be combined and prioritized. As their
extended query language inherits the same first-order
logic definition as the DRC, their language has a declar-
ative semantics. The approach is limited in expressive-
ness, though. Each preference condition is evaluated
in a Boolean manner: either there are answers that
satisfy the query and it; or there are not (and so the
query is evaluated as without that preference). Also,
there was no consideration of realizability. In fact, the
addition of multiple preferences can lead to exponen-
tially larger representations in the DRC.

In current work, Chomicki has introduced a general
logical framework for preferences as preference formu-
las, and has proposed a relational operator winnow for
composing preference relations in the relational alge-
bra [8, 9]. His model and winnow are quite expres-
sive, and he has investigated the types of preferences
that can be expressed, and has shown how they can
be composed. Winnow offers a declarative semantics.
Chomicki has investigated the effects of types of pref-
erence formulas on the preference relation, the order
the preferences induce over the potential answer tu-
ples. Much work in preferences restricts consideration
to partial orders. Chomicki has found useful preference
formulas that violate partial orders, but shows how
this can be accommodated. (Likewise, we consider the
ramifications of giving up partial orders with skyline
in this paper.) Thus, winnow is a quite rich model.
However, it is not simple; it can be complex to under-
stand how to write preferences and how to compose
them. It is also not clear so far how to realize winnow,
say, in a relational system. In [10], Chomicki derives
some special cases of winnow-based queries that can be
evaluated efficiently. More work is needed though to
identify significant, useful sub-classes of winnow that
can be handled well.

In [24], Kiessling has taken an algebraic approach
to constructing a rich preference query language as
an extension to SQL that he calls Preference SQL. A
number of preference operators are introduced, and
how they compose is defined. Preference SQL allows
users to write best-match queries by composing their
preference criteria via the preference operators. Pref-
erence SQL has been on the market since 1999, and
is used in several commercial ventures. The system
compiles preference queries into SQL for evaluation. In
[26], Kiessling and Koestler investigate further how to
extend SQL and XPATH for the Preference SQL opera-
tors, and present rich examples of the types of queries
that can be composed.

Preference SQL is not simple. How to compose pref-
erences in the language meaningfully can be challeng-
ing. Because Preference SQL introduces many new
constructs, how to realize it efficiently is a challenge.
The current system translates queries into SQL. It
would be hard to integrate the preference mechanisms

within a relational engine because of the extensive ad-
ditions. Preference SQL has an operational semantics,
but not a defined declarative semantics. In particular,
composition of the preference operators can raise diffi-
culties. The intended semantics is that the preference
relation be a partial order, but certain compositions
can violate this. In [25], Kiessling proposes the con-
cept of substitutable values (SV’s) and SV relations to
address sound composition of Preference SQL’s Pareto
and prioritized preferences.

The skyline operator was introduced in [5], as dis-
cussed in Section 1.3. Skyline queries have uses be-
yond preference queries. In fact, the problem has been
studied earlier as the maximal vector problem [28].
Skyline imports the concept to relational databases,
and supporting preferences is a key motivation behind
the research. Skyline offers a simple, understandable
construct for combining multiple preference criteria in
parallel, and is composable with the relational algebra.
Skyline as introduced has a clear partial-order seman-
tics. Much recent work has gone into developing ef-
ficient, external, relationally well-behaved algorithms
for evaluating skyline queries [5, 12, 14, 20, 27]. Thus
skyline is a promising approach for supporting pref-
erence queries. By itself, however, skyline is not as
expressive as winnow or Preference SQL. To serve as
a foundation for preference queries, the expressiveness
of skyline needs to be improved.

Quantitative approaches to preferences provide
means to score potential answer tuples based on prefer-
ence criteria. At its simplest, this can be done in SQL
via the order by clause. This requires a single metric,
or score, to be computed for each tuple. The met-
ric is a utility function that combines the preference
“values” somehow into a score. A disadvantage is that
devising this utility function is not simple, as discussed
in Section 1.2. On the other hand, ranking is a natural
way to respond to preference. There is work on how
to address better composability in ranking approaches.
In [2], Agrawal et al. explore how numeric as well as
categorical attributes can be combined, and Agrawal
and Wimmers [1] present a framework for combining
preferences. In [36], preferences are expressed as ex-
pressions stored as data, and evaluated during query
execution. There has also been much research on how
to rank efficiently. Often, one may be willing to accept
just the top k answers from the ranking. Top-k queries
can be optimized [7, 21].

There are many hybrid approaches that add con-
structs to the query language for preferences and that
partially automate devising the utility function. In
[15], Fagin et al. study utility functions that are best
with respect to minimizing the discrepancy between
the partial order and the weak orders of the prefer-
ences. In [6], membership functions are defined to
measure a tuples adherence to stated preference con-
ditions. In [32], Motro uses functions that measure
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distance between tuples to measure adherence to goals
expressed in the query. In [3], Bosc and Pivert in-
tegrate fuzzy sets with relational queries. The fuzzy
conditions indicate degree of adherence to preferences.

Cooperative query answering, as discussed in Sec-
tion 1.2, attempts to address many of the same issues
preference queries do, and is the genesis of much pref-
erence query work [22, 23]. In [13], a cooperative in-
formation system, CoBase, is discussed, which allows
for approximate answers. Thus “preferences” can be
added to the query as conditions; if the query cannot
be answered absolutely, conditions are “relaxed” to the
point it has answers, thus approximate with respect to
the original query. In [19], we explored the theoretical
complexity of automatically eliminating as few condi-
tions as necessary from the query if it fails so that the
modified query has answers. This is a dual approach
to the (Boolean) preference satisfaction that the sys-
tem in [29] performs. See [31] for a broader survey of
cooperative answering work.

Others have studied how query answers may be an-
notated to indicate the degree of adherence to, say,
“preferences” [16, 33, 34]. These annotations are not
metric scores, per se, as in the ranking approaches,
but are deduced during query evaluation based upon
rules that are part of the database. Thus, the annota-
tion process is part of the query semantics, and is not
specified as a function in the query.

Under the topic of ceteris paribus (with other things
equal), researchers are studying the nature of prefer-
ence, and when one situation—or solution or tuple—
may be considered better than another [4]. Such work
is clearly relevant to our endeavors here. There is more
work in artificial intelligence and intelligent databases
that seeks to embed preference and priority into the
semantics. Preferences can disambiguate indefinite in-
formation, and prioritize certain sources over others.
Thus preferences affect the canonical models of the
database, and thus the semantics of the database it-
self. Reiter’s default logic [35] is an example. There
are parallels in this work in methods and goals with
the pursuit of preference query languages, but they are
distinct endeavors. Preferences for us identify best tu-
ples, but they cannot affect answers to queries with no
preferences involved.

3 Skyline Formalized

four values, not two
express the truth in our world

what would you prefer

We carefully formalize skyline so that we might pro-
pose extensions in a principled way and address the ex-
tensions’s ramifications. In the skyline clause in Figure
1, the Ai’s are columns; these may be derived columns
(e.g., (age + salary)/#bdrm + 3). Therefore, we can
consider each Ai as a function with its domain as all
potential tuples over that schema, and its range as the

real numbers. Paired with each function, Ai, is a direc-
tive that indicates how the tuples are to be compared
with respect to Ai. Let us call a function-directive pair
a skyline comparator. Let us call the set of function-
directive pairs of a skyline-of clause the skyline filter.

We introduce a corresponding skyline operator, ‘∇’,
for conciseness’s sake, and to facilitate formal discus-
sion. Figure 3 enumerates the types of comparators,
and how we shall designate them in our notation. So,
for example, skyline of A max, B min, C diff is denoted
by ∇{>A,<B, 6=C}. The directives max, min, and diff

essentially are the equality operators ‘>’, ‘<’, and ‘6=’,
respectively, from the perspective of comparing tuples
to compute the skyline.

skyline of ∇
F max >F
F min <F
F diff 6=F

Figure 3: Original skyline comparators.

Note that the single operator ‘>’ (max) would suf-
fice; both ‘<’ and ‘6=’ are algebraically redundant,
given ‘>’. A skyline filter {6=A} ∪ F is equivalent to
{<A, >A} ∪ F . A skyline filter {<A} ∪ F is equiva-
lent to {>(−1 · A)} ∪ F . In proofs then, we restrict
our attention to ‘>’, dismissing ‘<’ and ‘6=’. In dis-
cussion and definitions, we consider both ‘>’ and 6=’,
as ‘6=’ will help to motivate the extensions we propose.
In examples, we shall still employ ‘<’ for naturalness,
with it understood that it can be rewritten via ‘>’.

compare (tuple r, tuple s, comparator OP F ± ε) {
if ((F(r) OP F(s) + ε) ∧ (F(s) OP F(r) + ε))

return >;
else if (F(r) OP F(s) + ε)

return t;
else if (F(s) OP F(r) + ε)

return f;
else

return ⊥;
}

Figure 4: The compare evaluation with a comparator.

The skyline filter (a set of comparators) defines how
tuples are to be compared, to determine which will be
returned in the skyline set. The compare procedure
in Figure 4 defines how two tuples are compared with
respect to a comparator. F is a tuple function. OP is
either ‘>’ or ‘6=’ (for now). We consider an extension,
‘±ε’, later on. (So for now, let ε = 0.) The procedure
returns one of four truth values:
• >, denoting over-defined (nicknamed top);
• t, denoting true;
• f, denoting false;
• ⊥, denoting under-defined (nicknamed bottom);
For ‘>’, t, f, and ⊥ are the possible return values.
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> t f ⊥

> never F(r) > F(s) F(r) < F(s) F(r) = F(s)
6= F(r) 6= F(s) never never F(r) = F(s)
≥ F(r) = F(s) F(r) > F(s) F(r) < F(s) never
= F(r) = F(s) never never F(r) 6= F(s)

Figure 5: Return values for compare(r, s, OP F).

If F(r) > F(s), t is returned. If F(s) > F(r) instead, f is
returned. However, if F(s) = F(r), then ⊥ is returned.
For ‘6=’, only > and ⊥ are possible. If F(s) 6= F(r),
then > is returned; else (F(s) = F(r)), ⊥ is returned.
Figure 5 summarizes the return values. (‘≥’ / maxeq
and ‘=’ / equal will be introduced and discussed next
in Section 4.)

◦ > t f ⊥
> > > > >
t > t > t
f > > f f
⊥ > t f ⊥

Figure 6: How compare’s truth values compose.

For any pair of tuples, r and s, we want to combine
the results of the comparators (applied to r and s) in
the filter, F , to determine how the tuples relate. If
for all (OP F) ∈ F , compare(r, s, OP F) returns t or ⊥,
and for some (OP F) ∈ F , it returns t, we say that r
trumps s.

However, if for one comparator, (OP1 F) ∈ F ,
compare(r, s, OP1 F) = t, but for another, (OP2 G) ∈
F , compare(r, s, OP2 G) = f, then r and s are in-
comparable. There are two additional ways that r
and s can be incomparable. If for all (OP F) ∈ F ,
compare(r, s, OP F) = ⊥, they are incomparable. Fi-
nally, if for any (OP F) ∈ F , compare(r, s, OP F) = >,
they are incomparable. The last case can occur when
OP is ‘6=’, which implements the intended semantics
for diff correctly.

compare (tuple r, tuple s, set F) {
result := ⊥;
foreach F in F {

result := result ◦ compare(r, s, F);
if (result == >) return ⊥;

}
return result;

}

Figure 7: The compare evaluation with a filter.

Thus, the truth-value results of the comparators
from the filter compose as in Figure 6. The compare
procedure in Figure 7 defines how two tuples are com-
pared with respect to a filter.

Denote a set of tuples as T, which we shall call the
input table. For any T, any skyline filter F induces
an algebraic relation over T. Call this the preference

relation over T with respect to F . Denote the pref-
erence relation by ‘�F ’, and define it as r �F s iff
compare(r, s, F) = t. Call tuples r and s incomparable
with respect to F iff r 6�F s and s 6�F r. Denote this
by r ∼F s.

Compare for filters (Figure 7) then returns t (true)
if r �F s; f (false) if s �F r instead; and ⊥ (meaning
incomparable in this context) if s ∼F r. Note that
compare with respect to a filter does not return >. We
only use > when combining the comparison results of
the comparators.

For any skyline filter F built over ‘>’ (and ‘6=’)
comparators, the preference relation ‘�F ’ over T is
guaranteed to be a partial order, and thus is irreflexive,
antisymmetric, and transitive. The skyline of T is then
defined as the crown of the partial order ‘�F ’ over T.
That is, it consists of those tuples in T that are not
trumped with respect to F by any other tuples in T.
Definition 1 The skyline set is defined as

∇F (T) ≡ {s ∈ T | ¬∃r ∈ T. r �F s}

Call this the crown skyline semantics.3

We can characterize the skyline set via soundness
and completeness properties.
Definition 2 The soundness property of skyline sets
states that

∀s ∈ ∇F (T). ¬∃r ∈ T. r �F s

The completeness property of skyline sets states that

¬∃r ∈ (T −∇F (T)). ∀s ∈ ∇F (T). s 6�F r

By soundness, we mean that each skyline tuple rep-
resents a best tuple; that is, there is no tuple that
is better than it with respect to the skyline criteria.
By completeness, we mean that the skyline set repre-
sents all the best tuples, with respect to the skyline
criteria. Hence, every non-skyline tuple is trumped by
some skyline tuple. In this way, the skyline set charac-
terizes the table; for any tuple in the table, it is either
skyline itself, or there is a skyline tuple that trumps
it, and hence, “represents” it in the skyline set.

4 Stable Skyline

4.1 Extending Skyline

the sky is open

3The crown skyline semantics is the semantics for skyline as
originally defined. We shall consider an alternate semantics, the
stable skyline semantics, in Section 4.
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it is the ground that stops us
up is all there is

We are interested in what extensions can be made to
the skyline formalism that might make for a richer,
more expressive class of skyline queries. In particu-
lar, we seek extensions that would facilitate composing
skyline queries in meaningful ways.

In this paper, we present two extensions. First, we
add a directive equal (‘=’) to the skyline comparators.
This also consequently provides ‘≥’, which we shall
call maxeq. Second, we add a modifier by (‘±’) for
the max (‘>’) and maxeq (‘≥’) comparators. These
are summarized in Figure 8. The behavior of each of
the new comparator constructs is determined as by the
compare procedure in Figure 7. For now, let ε remain
0. We shall discuss by (‘±’) in Section 4.4.

skyline of ∇
F max by ε >F ± ε
F diff 6=F
F maxeq by ε ≥F ± ε
F equal =F

Figure 8: New skyline comparators (Stable Skyline).

4.2 EQUAL and Stable Skyline

transitivity
cannot always be preserved

but not all is lost

Adding ‘≥’ (maxeq) to the skyline repertoire (with-
out adding ‘=’ / equal also) in one respect does not
increase skyline’s expressiveness.
Theorem 1 For any skyline filter F composed of ‘>’
and ‘≥’ comparators and input table T, there exists a
skyline filter F ′ composed of just ‘>’ comparators such
that the preference relation ‘�F ’ over T and ‘�F ′ ’ over
T are equivalent.
Proof. It is possible to represent any partial order as
the conjunction of total orders or as the conjunction
of weak orders.4 2

While there is guaranteed to exist a skyline filter F ′

without use of ‘≥’ that is equivalent to a skyline filter
F with ‘≥’, finding it is not straightforward. Such a
F ′ can be constructed from F by ensuring each func-
tion involved in F ′ is a total order over T. If F over T

is a total order, then the comparators ≥F and >F act
equivalently over T. Without analyzing T, one could

4How many total orders are needed, via their conjunction,
to represent an arbitrary partial order is known as the partial

order dimension problem [17]. To determine the partial order

dimension, given an arbitrary PO, has been proven to be NP-
hard [37]. It has been proven that any partial order that can
be represented via the conjunction of two or more total orders
can also be represented via a conjunction of the same number
of weak orders [18].

Of course, skyline is the opposite way around: we provide a
conjunction of weak orders, which in turn, define a partial order.

not devise such an F ′ guaranteed to provide the same
partial order as F . So the addition of ‘≥’ does effec-
tively increase skyline’s expressiveness. Skyline with
‘≥’ can express the equivalent of the intersection op-
erator, ‘�’, as well as the Pareto operator, ‘⊗’, of the
Preference SQL of Kiessling et al. [24].

Adding ‘=’ (equal) to the skyline repertoire in-
creases skyline’s expressiveness both effectively and
logically. Skyline with ‘=’ can express preference re-
lations that skyline without ‘=’ cannot. (This will
become evident in the following discussion.) Equal
is useful in composing more complex skyline queries.
Note that ‘≥’ is algebraically redundant, given ‘=’ and
’>’. Filter {≥F} ∪ F can be written equivalently as
{>F, =F} ∪ F . It will be convenient for discussion,
however, to keep ‘≥’ in our language.
Example 1 Say the house hunter is interested only
in bungalow and modern-style houses. In both cases,
price should be minimized and #bdrm should be maxi-
mized. For bungalows, the house hunter prefers older
houses, so yr built should be minimized. For modern-
style houses, however, the house hunter prefers newer
houses, and yr built should be maximized.

Let P = price, B = #bdrm, Y = yr built, and S =
style. Let

H = σstyle=’bungalow’ ∨ style=’modern’(HouseListing)

The skyline query can be composed as

Q: ∇{<P,>B,=S}(
∇{<P,>B,<Y}(σstyle=’bungalow’(H))

∪ ∇{<P,>B,>Y}(σstyle=’modern’(H))
)

The use of equal in Example 1 is necessary for us
to achieve what we intend. The outer ‘∇’ combines
the results of the skyline over the bungalow houses
(with older as a criterion) and the skyline over the
modern-style houses (with newer as a criterion). In the
outer ‘∇’ operation, we want that the bungalow houses
returned be compared against the modern-style houses
returned, and vice-versa, with respect to the criteria
in common: lower price and more bedrooms. The ‘=’
comparator is essential to ensure that the bungalow
houses are not compared against one another again,
but this time with respect to the fewer criteria; and
likewise, that the modern-style houses are not either.

A consequence of adding equal, however, is that a
skyline filter is no longer guaranteed to induce a partial
order (PO) over the set of tuples. Transitivity may be
lost. The preference relation is still guaranteed to be
irreflexive and antisymmetric; hence, it is a directed
acyclic graph (DAG).

Diff comparators (‘6=’) do not affect transitivity.
This is obvious since a diff comparator can be replaced
by max comparators (‘>’), and a skyline filter consist-
ing of just max comparators clearly induces a partial
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order. Diff simply partitions the tuples, and only tu-
ples in the same partition can relate (i.e., r �F s).

How can equal (‘=’) affect transitivity then? An
equal comparator prohibits tuples from the same
equality class (partition) to relate. In essence, it
punches holes in the partial order of the preference
relation that would be induced by the filter without
its equal comparators, by making certain pairs of tu-
ples incomparable which would have been comparable
otherwise. These “holes” can violate transitivity.
Definition 3 Given a skyline filter F , define the
partial-order simplification of F , denoted by F>, as

{>F | (>F ± ε) ∈ F ∨ (≥F ± ε) ∈ F}

For all r and s , r �F s if r �F> s; however, there
may exist r and s such that r ∼F s but r �F> s.

HouseListing

# Price Style
r $340k bungalow
s $350k modern
t $370k bungalow

Figure 9: Table for example breaking transitivity.

Example 2 Consider the table T in Figure 9, and the
skyline filter F = {<Price, =Style}. Thus, r �F s and
s �F t. However, r ∼F t.

Note that the truth value > is needed in compare to
accomplish this. Via >, one comparator can declare
two tuples to be incomparable, regardless of the results
of the other comparators in the filter.

Of course, the original semantics for skyline—the
crown skyline semantics, Definition 1—was with tran-
sitivity in mind. If we are now to permit DAG pref-
erence relations, we should re-examine the definition.
There are three possible ways to proceed:

1. recover a partial order from the directed acyclic
graph as the preference relation;

2. continue using the crown skyline semantics any-
way; or

3. develop a new skyline semantics that accommo-
dates directed-acyclic-graph preference relations
naturally.

By idea 1, we want to derive a PO from the DAG.
An obvious way to accomplish this would be to take
the transitive closure of ‘�F ’, denoted by ‘�∗

F ’. Then
the skyline could be defined with respect to ‘�∗

F ’ in-
stead. However, this is not good! Our purpose for
adding equal is to defeat certain tuples from trumping
certain other tuples. By using ‘�∗

F ’, we essentially are
undoing the effects of the equal comparators. Thus we
rule out idea 1.

Idea 2 is simply to keep the same definition, Defi-
nition 1, for skyline: it is those tuples not trumped by
any others, with respect to F . Interestingly, Defini-
tion 1 does not depend on ‘�F ’ over T being a partial

order. We shall demonstrate, however, that this is not
an ideal solution.

Once ‘�F ’ over T is not transitive, we can no longer
have both soundness and completeness, as defined in
Definition 2. Both these properties are really intended
as part of skyline’s semantics. They are consequences
of the skyline set in Definition 1 when the preference
relation is a PO. They are not consequences, however,
when the preference relation is not transitive. The
crown skyline set—as defined in Definition 1—is no
longer necessarily complete. There are non-skyline tu-
ples potentially in table T that are not trumped by
any skyline tuple. But these are not crown skyline
tuples themselves—by Definition 1, that is—because
other non-skyline tuples trump them.

Thus idea 3 is the direction in which we must pro-
ceed. We need to redefine skyline to recapture sound-
ness and completeness. We shall be able to regain
completeness if we are willing to redefine slightly our
notion of correctness.

Loss of transitivity results in that the crown sky-
line set is no longer “stable”. Consider table T and
filter F from Figure 9 and Example 2 again. Only
r is in ∇F (T). Consider when s is removed from T.
Now, ∇F(T) = {r, t}! So the addition or deletion of
non-skyline tuples from the table can affect what the
skyline set is.

We want a stability property for the skyline set.
(This will lead back to completeness.) Changes to the
table over non-skyline tuples should not change the
skyline set. To accomplish this, we re-examine our
notion of soundness for skyline.
Definition 4 Stability. Call a subset S of table T a
stable skyline set with respect to filter F and T iff

S = {r ∈ T | ¬∃s ∈ S. s �F r}

For a PO filter F , ∇F (T) is a stable skyline set with
respect to T. For a DAG filter F , for which transitiv-
ity is lost with respect to T, ∇F (T) is not necessarily a
stable skyline set. All tuples in S are pair-wise incom-
parable, as is the case for ∇F (T). And for each tuple
from T − S, there is a tuple in S that trumps it, just
as for ∇F (T). However, now a (stable) skyline tuple
may be trumped by a non-skyline tuple. (For any such
non-skyline tuple, though, there is some other skyline
tuple that trumps it.) So we modify our notion of
soundness: no skyline tuple is trumped by any other
skyline tuple.

Can we find such an S? Is it unique? We can, and
it is unique. We define this via a transformation and
a fixpoint with respect to the transformation.
Definition 5 Define SF ,T, given argument S, as fol-
lows.

SF ,T(S) = {r ∈ T | ¬∃s ∈ S. s �F r}

Define SF ,T↑ i as follows.
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• SF ,T↑0 = ∅

• SF ,T↑ i = SF ,T(SF ,T↑(i − 1)), for i > 0

Let S
i
F ,T be shorthand for SF ,T↑ i.

Note that S
2
F ,T = ∇F(T) (the crown skyline set by

Definition 1). When ‘�F ’ over T is a PO, S
2
F ,T =

lfp(SF ,T), the least fixpoint of SF ,T. When ‘�F ’ over

T is a DAG, ∇F (T) = S
2
F ,T still, but it is possible that

S
2
F ,T 6= lfp(SF ,T).

mark depths (table T) {
i := 0;
D := T;
while (D 6= ∅) {

S := {t ∈ D | ¬∃r ∈ D. r �F t};
foreach t in S {

t.depth := i;
}
D := D − S;
i++;

}
}

Figure 10: Procedure to mark tuple depths.

We introduce tuple depth for use in proving that
S

i
F ,T reaches fixpoint. The procedure in Figure 10 as-

signs a depth to each tuple. Any tuple not trumped by
any other tuple is assigned depth 0; inductively, any
tuple not trumped by any other tuple not of depth i
or less is assigned depth i + 1.
Lemma 1 For a tuple t ∈ T of depth i (as assigned
by mark depths in Figure 10), either ∀j ≥ 2(i+1). t ∈

S
j
F ,T or ∀j ≥ 2(i + 1). t 6∈ S

j
F ,T.

Proof. Proof by induction.
base: The set of tuples of depth 0 is equivalent to
S

2
F ,T (and to ∇F (T)). Thus, for any t ∈ T of depth

0, ∀j ≥ 2. t ∈ S
2
F ,T.

hypothesis: Assume the proposition is true for all
tuples of depth i, for 0 ≤ i < k, for given k.
induction: Consider tuple t ∈ T of depth k. Consider
a tuple r ∈ T such that r �F t. Tuple r’s depth then is

less than k. If r 6∈ S
2(k+1)
F ,T , then

∀j ≥ 2(k + 1). r 6∈ S
j
F ,T, by the hypothesis. Else if

r ∈ S
2(k+1)
F ,T , then ∀j ≥ 2(k + 1). r ∈ S

j
F ,T, by the

hypothesis.

Therefore, if ∃r ∈ T. (r �F t) ∧ r ∈ S
2(k+1)
F ,T , then

∀j ≥ 2(k+1). t 6∈ S
j
F ,T. Otherwise, ¬∃r ∈ T. (r �F t),

and ∀j ≥ 2(k + 1). t ∈ S
j
F ,T. 2

Theorem 2 For any finite T, the least fixpoint of
SF ,T, lfp(SF ,T), is obtained in finite iterations; thus,
for any skyline filter F and input table T, there exists
k ∈ ω such that S

k
F ,T = S

k+1
F ,T .

Proof. Follows directly from Lemma 1. 2

We have established that there is a least fixpoint of
SF ,T, that it reaches fixpoint in finite iterations, and

that it is equivalent to a stable skyline set. Next, we
prove that the stable skyline set is unique.
Lemma 2 Given a finite table T and skyline filter F ,
there exists only one stable skyline set (Definition 4).
That is, the stable skyline set is unique.
Proof. For a given T and F , assume there exist two
distinct stable skyline sets S and R. It is not possible
that S ⊃ R (or S ⊂ R), by the definition of stable
skyline set. Thus, consider s ∈ (S−R) and r ∈ (R−S).
By S’s definition, s �F r. By R’s definition, r �F s.
Contradiction. 2

Definition 6 Define the stable skyline operator, ‘∇’,
with respect to filter F and table T as

∇F (T) = lfp(SF ,T)

Theorem 3 ∇F (T) is equivalent to the unique stable
skyline set.
Proof. Follows from Theorem 2, Lemma 2, and Def-
initions 4 (for stable skyline set) and 5 (for SF ,T). 2

Definition 7 The soundness property of stable sky-
line sets states that

∀s ∈ ∇F(T). ¬∃r ∈ ∇F(T). r �F s

That ‘∇’ satisfies the soundness property of Defini-
tion 7 is a direct consequence of the definition of SF ,T

(Definition 5).
Stable skyline semantics has the following advan-

tages over the original (crown) skyline semantics when
DAG preference relations are permitted.
• It preserves completeness of the skyline set (Defi-

nition 2).
• It has a stability property (Definition 4), which is

epistemically appealing.
• It is seemingly easier to compute than is the crown

skyline set. (This is discussed in Section 4.3).
• It enables skyline operations to be composed in

semantically sound ways.
When the preference relation is a partial order, sta-

ble skyline semantics and the original (crown) skyline
semantics concur.

4.3 Computing Stable Skyline

can one hold the sky
within the palms of one’s hands

in its completeness

The stable skyline set, ∇F (T), is more straightforward

than its formal definition via S
i
F ,T might suggest. It

includes the crown skyline tuples (∇F (T)), as these
are not trumped by any tuples. However, there may
be tuples in (T − ∇F(T)) not trumped by any tuples
in ∇F(T). So ∇F (T) also includes the (crown) skyline
of these. And so forth.
Definition 8 Define the untrumped set at stage i,
N

i
F ,T, as follows.

N
i
F ,T = {r ∈ (T − S

i
F ,T) | ¬∃s ∈ S

i
F ,T. s �F r}
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Then

S
2i+1
F ,T = S

2i
F ,T ∪ N

2i
F ,T for i ≥ 0

S
2i+2
F ,T = S

2i
F ,T ∪∇F (N2i

F ,T) for i ≥ 0

∇F (T) =

ω⋃

i=0

∇F(N2i
F ,T)

Thus the iterations S
i
F ,T alternate, adding all

presently untrumped tuples in the odd cycles, and re-
ducing these by only retaining the crown of the newly
added tuples in the even cycles.5

This seems to indicate that we should be able to de-
vise an algorithm in which each tuple is considered just
once, with respect to the accumulated skyline tuples
so far, and either is discarded or added to the skyline
set. We do this next.

sfs (array T) {
// T: The input tuples, topologically sorted.
array S; // For collecting the stable skyline set.

// Initialized empty.
for (i = 0; i < T.length; i++;) {

trumped := false;
j := 0;
while ((j < S.length) ∧ !trumped) {

if (S[j] �F T[i]) trumped := true;
j++;

}
if (!trumped) S.add(T[i]);

}
return S;

}

Figure 11: Sort-Filter-Skyline algorithm to compute
the stable skyline.

The algorithm sort-filter-skyline (SFS) in Figure 11
computes the stable skyline set, ∇F(T). This algo-
rithm is a main-memory simplification of the external
SFS algorithm we presented in [12]. Before the sfs
procedure is called, the input tuples are sorted in an
order that represents a linear extension of the “partial
order” induced by the filter F ; that is, a total order
that is compatible with the partial order. Of course,
F may be a DAG filter.

Consider F> from Definition 3. Then ‘�F> ’ over T

is a partial order. That partial order is an extension of
‘�F ’ over T which is a DAG. So any topological sort
with respect to ‘�F> ’ suffices. (In [12], we show it is
straightforward to find a suitable topological sort.)

Once the input table T has been sorted into array
T, then skyline tuples are accumulated into array S.
Note that a tuple t in array T cannot be trumped with
respect to F by any tuple after it in the array, since
the array is topologically sorted with respect to ‘�F ’.

5Consequently, N
2i+1

F,T
= 0, for i ≥ 0.

Theorem 4 Algorithm SFS in Figure 11 computes the
stable skyline set, ∇F (T).
Proof. Let S be the set of tuples returned by procedure
sfs (via array S). Let

R = {t ∈ T | ¬∃s ∈ S. s �F t}

Does R = S? Assume not.
∃t ∈ (S − R). Since t 6∈ R, ∃s ∈ S. s �F t. Tuple

s must appear before t then in the topological sort of
array T. So it will be in array S when t is compared
against the tuples of array S. However, t would then be
eliminated by procedure sfs, and so it would not appear
in S itself. Contradiction.

∃t ∈ (R − S). Since t ∈ R, ¬∃s ∈ S. s �F t. So
procedure sfs would have added t to array S. Contra-
diction.

Thus, R = S, and procedure sfs finds a stable skyline
set by Definition 4. By Lemma 2, this stable skyline
set is unique. By Theorem 3, it follows that procedure
sfs computes ∇F (T). 2

None of proposed algorithms for skyline—besides
SFS—will work to compute the (crown) skyline set,
∇F (T), once the preference relation, ‘�F ’ over T, is
no longer transitive. To the best of our knowledge,
none could be modified easily to accomplish this. Cer-
tainly none computes the stable skyline set, ∇F (T).
The algorithms rely inherently on transitivity of the
preference relation.

The stable skyline set appears easier to compute
than the crown skyline set. An inadvertent advantage
of the stable skyline semantics—if skyline has been ex-
tended with maxeq and equal—then is that it is easier
to evaluate.

A skyline query under the original skyline defini-
tion can be written as a regular, albeit awkward, SQL
query. Interestingly, it does not appear that a stable
skyline query can be written in SQL. From this per-
spective, an extension to SQL to support stable skyline
would constitute a real increase in query expressive-
ness.6

4.4 BY: Cyclic Preferences

don’t know what you want
going around in circles

straighten up sail straight

The introduction of by (‘±’) allows one to strengthen
a criterion: tuple r is deemed better than s on criterion
F only if F(r) exceeds F(s) by a given amount (ε). For
instance, when house hunting, one might not feel a
price difference of less than $5,000 between two houses
is that important. Thus one house should not trump

6Within programming extensions of SQL such as Oracle’s
PL/SQL, of course it could be. Also under a full implementation
of recursion in the SQL-4 standards, it could be expressed as
well.
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a second house on price unless it is at least $5,000 less
expensive.

It might seem that a simple “solution” to this “by-
so-much” issue (without adding by) would be to bin
the house prices into 5000-wide buckets; e.g., P =
round(Price/5000). Then we would use criterion <P in
the query rather than Price. This does not work as ex-
pected. In [20], we showed that the number of skyline
tuples will be reduced by binning. The intention here
is to increase the number of skyline tuples by mak-
ing it harder for one house to trump another. Thus,
counter-intuitively perhaps, binning offers no solution
for “by-so-much”. The by modifier does give us the
behavior we intend. Thus it provides a true increase
in expressiveness for skyline.

The introduction of by—as well as certain other ex-
tensions we would like to make—has a worse effect
on our semantics than before. Not only can the pref-
erence relation lose transitivity, as with the addition
of ‘=’ comparators, cycles may be introduced to the
preference relation.

select Address, Price, #bdrm, Cond
from HouseListing
skyline of Price min by 5000, #bdrm max by 1,

Cond max by 1

Figure 12: Query with by.

HouseListing

# Address Price #bdrm Cond
r 32 Elm $356k 4 4
s 13 Oak $353k 2 5
t 27 Pine $350k 3 3

Figure 13: Table for example with cyclic preferences.

Example 3 Consider the query in Figure 12 and the
table HouseListing from Figure 13. Thus F = {<P ±
5000, >B ± 1, >C ± 1}. Note that r �F s, s �F t, and
t �F r.

While we are able to accommodate DAG preference
relations with the stable skyline semantics, we do not
believe that there is a suitable semantics for prefer-
ence relations with cycles. There is a natural way that
cyclic filters (those that induce cyclic preference rela-
tions) can be “repaired”, though, to be DAG filters.

Namely, any skyline filter that contains a ‘≥’ com-
parator (with ε = 0) is guaranteed to produce a cycle-
free preference relation.

Definition 9 Call any comparator ≥G without a ‘±’
modifier (or equivalently, with ε = 0) a ground com-
parator. Call any skyline filter which contains a ground
comparator a ground filter.

Theorem 5 For any input table T, a ground skyline
filter F is guaranteed to induce a cycle-free preference
relation, ‘�F ’ over T.

Proof. Assume not. Thus, ∃r1, . . . , rk ∈ T. ri �F

ri+1, for i = 1, . . . , k − 1, and rk �F r1. ∃(≥G) ∈ F .
For any r and s such that r �F s, G(r) > G(s). There-
fore, G(r1) > . . . > G(rk) > G(r1). Contradiction. 2

For any skyline query that one might compose for
which the induced preference relation is not certain to
be cycle-free, one can guarantee it cycle-free by making
the skyline filter ground. This can be done by adding
a judiciously chosen ground comparator to the filter.

If we add a ground to the filter to ensure it is cycle-
free, we would like that the ground perturb the original
preference relation induced by the filter over the table
as little as possible. It should, in essence, only affect
the cycles. The ground ≥G should reflect the prefer-
ence relation of F over T.
Definition 10 Recall filter F>, the partial-order sim-
plification of filter F , from Definition 3. ‘�F> ’ over
T (for any T) is a partial order.

A ground comparator is proper with respect to filter
F iff ∀r, s. r �F> s → G(r) > G(s).7

Thus a proper ground changes the filter in a “min-
imal” way, needed to make it cycle-free. For any filter
F , one proper ground ≥G is

G(t) =
∑

>F∈F>

F(t)

This G is not unique, however. Any monotone
weighted linear equation over the functions in F>

would work. In essence, G is a utility function. The
preference relation is not defined by G though, just in-
fluenced by it. One can think of the addition of G as
approximating the user’s intended preference relation
by a cycle-free (well-behaved) preference relation.

Ground comparators are a means to ensure that
the preference criteria taken together are, in essence,
consistent (i.e., no cycles). Note that this would not
be possible without the addition of ‘≥’ to skyline. A
skyline filter without a ground comparator may still
be cycle-free. A ground comparator is a sufficient, but
not a necessary, condition for a filter to be cycle-free.

4.5 Other Extensions

where to go from here
we need our priorities
to say where to next

With our skyline formalism (Section 3) in place, the
stable skyline semantics (Section 4.2) for accommodat-
ing DAG preference relations, and a means for recti-
fying cycles in preference relations (Section 4.4), there
are many further extensions to skyline that we are now
equipped to explore.

We have discussed the skyline filter as a set of com-
parators. However, there is no reason to insist that
the only allowed element of a filter be a comparator;

7Note that this is with respect to all possible r and s, and
not just with respect to a given table T.
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we might allow skyline filters as elements of filters. In
other words, nested skyline filters can be considered.
Note that the compare procedure in Figure 7, which
evaluates two tuples with respect to a skyline filter,
is written generally enough already to accommodate
this.

Procedure compare(r, s,F), in which F is a filter,
may return one of three values: t (true) if r �F s, f
(false) if s �F r, and ⊥ (bottom) if r ∼F s. It never
returns >. Top, >, is employed as a return value from
a comparator to override essentially the return values
from the other comparators in the filter.

Nested filters can be used to mitigate the results
of comparators. Say that price (P) and condition (C)
are highly correlated. (Let B be #bdrm.) The query
∇{<P,>C,>B}(H) then would return most all of the

houses.8 Consider the query ∇{{<P,>C},>B}(H) in-
stead. Because the conditions <P and >C are placed
together in a sub-filter, this no longer happens. If one
house is better on price, and the other is in better con-
dition, when {<P, >C} is evaluated, it will return ⊥.
In this case, whether the first house trumps the second
will then be decided by >B.
Example 4 Consider again the query Q from Exam-
ple 1, but with ‘∇’ replaced by ‘∇’. Define the tuple
function R as follows.

R(t) = t.yr built if t.style = ’modern’
−1 · t.yr built if t.style = ’bungalow’
0 otherwise

Again, let

H = σstyle=’bungalow’ ∨ style=’modern’(HouseListing)

Define query R as follows.

R : ∇{<P,>B,{ 6=S,>R}}(H)

Queries Q and R are semantically equivalent.
Theorem 6 For any table HouseListing, queries Q

and R from Example 4 evaluate to the same answer
set under the stable skyline semantics.
Proof. Recall query Q from Example 1, but with ‘∇’
replaced by ‘∇’:

Q: ∇{<P,>B,=S}(
∇{<P,>B,<Y}(σstyle=’bungalow’(H))

∪ ∇{<P,>B,>Y}(σstyle=’modern’(H))
)

We prove by induction over the size of H. Let Q H

refer to query Q applied to table H, and likewise, R H.
base. Clearly Q H = R H when H = ∅.
hypothesis. Assume that Q H = R H for any H such
that |H| < k for some k > 0.

8If P and C are 100% correlated, all of the houses (tuples)
will be returned.

induction. Consider an arbitrary tuple t 6∈ H.
case 1. Q H = Q H∪{t}.
t 6∈ Q H∪{t}, So, if t.style = ’modern’, ∃r ∈ Q H.
((r.style = ’bungalow’ ∧ r �{<P,>B} t) ∨
(r.style = ’modern’ ∧ r �{<P,>B,>Y} t)). If instead
t.style = ’bungalow’, ∃r ∈ Q H. ((r.style = ’modern’
∧ r �{<P,>B} t) ∨ (r.style = ’bungalow’ ∧
r �{<P,>B,<Y} t)). This implies that
r �{<P,>B,{ 6=S,>R}} t. Thus r ∈ R H, by the

hypothesis. Therefore, t 6∈ R H, by completeness.
Q H∪{t} = R H∪{t}.
case 2. Q H ∪ {t} = Q H∪{t}.
∀r ∈ Q H. r ∼{<P,>B,=S} t by soundness and
completeness. Furthermore, ∀r ∈ Q H.
(r.style = ‘modern’ ∧ t.style = ‘modern’ →
r ∼{<P,>B,>Y} t) and ∀r ∈ Q H.
(r.style = ‘bungalow’ ∧ t.style = ‘bungalow’ →
r ∼{<P,>B,<Y} t). This implies that ∀r ∈ Q H.
r �{<P,>B,{ 6=S,>R}} t. Thus, R H∪{t} = R H ∪ {t}.

Q H∪{t} = R H∪{t}.
case 3. t ∈ Q H∪{t}, but Q H ∪ {t} 6= Q H∪{t}.
∃r ∈ Q H. t �{<P,>B,=S} r. Then
Q H∪{t} = Q (H−r)∪{t} by stability.
R (H−r)∪{t} = Q (H−r)∪{t} then by the hypothesis.
t �{<P,>B,{ 6=S,>R}} r, as reasoned in cases 1 and 2,

so R (H−r)∪{t} = R H∪{t}. Q H∪{t} = R H∪{t}.
Thus, Q H = R H, for all H. 2

Nested skyline filters offer a means to combine dif-
ferent partial orders (and DAG’s) resulting from dif-
ferent preference sub-queries.

5 Conclusions

desire is perverse
it is easily confused
is that one better

Skyline is an elegant way to combine preference cri-
teria, but has been limited in the preferences that can
be expressed and how they can be combined. We be-
lieve that our extended skyline—with ‘=’, ‘≥’, and
‘±’—and the stable skyline semantics move us beyond
this impasse, and offer an initial proof-of-concept that
skyline can be used as the basis of an expressive pref-
erence query language.

The advantages of our extended skyline are as fol-
lows: it is a simple, understandable construction; it is
more naturally composed with itself and the relational
operators; it is realizable, as by the SFS algorithm in
Figure 11, with optimizations and improvements pos-
sible; it is expressive, allowing us to write many of
the preference queries studied with winnow and in the
Preference SQL; and the stable skyline semantics is
declarative.

We must next study how adjustable stable skyline
queries are, and how to modify stable skyline queries
with predictable results. We want to understand the
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expressiveness of stable skyline under further exten-
sions and their compositions. These include the nested
skyline filters from Section 4.5 and user-defined partial
orders. A next major goal is to find natural ways that
preference criteria may be prioritized; e.g., Price and
Cond are more important than OceanView. We also
need to understand how to use ground comparators,
how to determine when a skyline filter is cycle-free
already, and how to define what are the best proper
grounds. We plan to continue to study how to evaluate
efficiently skyline queries, with these extensions, and
under new semantics such as the stable skyline, and
how to optimize these queries. Thus, we want to de-
velop more efficient algorithms for stable skyline. We
want also to map semantic equivalences, like queries
Q and R in Example 4. These equivalences may en-
lighten us on how preferences can be composed, and
how they can be used to optimize skyline queries.
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