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Abstract

An approach to recognizing human hand gestures from a monocular temporal
sequence of colour images is presented. Of particular concern in this report is the
representation and recognition of hand movements that are used in single handed
American Sign Language (ASL). The approach presented exploits previous lin-
guistic analysis of manual languages that decompose dynamic gestures into their
static and dynamic components. The first level of decomposition is in terms of
three sets of primitives, hand shape, location and movement. Further levels of
decomposition involve the lexical and sentence levels and are part of our plan for
future work. We propose and subsequently demonstrate that given a monocular
gesture sequence, kinematic features can be recovered from the apparent motion
that provide distinctive signatures for 14 single-handed rigid movements of ASL.
The approach has been implemented in software and evaluated on a database of

592 gesture sequences with an overall recognition rate of 97.13%.
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Chapter 1

Introduction

1.1 Motivation

Interest in automated gesture recognition stems from the potentially powerful
interface that can be forged between man and his artefacts, given that those
artefacts have the ability to record and interpret his gestures. In this regard,
computer vision-based approaches may provide particularly attractive methods
as they have the potential to acquire and interpret gesture information while
being minimally obtrusive to the human participant (e.g., without requiring the
user to don special devices or otherwise take special actions). In any case, for
developed methods to be useful they must be accurate in recognition with rapid
execution to support natural interaction with a human. Furthermore, scalability
to encompass a sizable vocabulary of gestures is of importance.

In this regard, currently we are particularly focused on the representation
and recovery of the movement primitives of hand gestures, specifically single-

handed movements derived from American Sign Language (ASL). Motivated by



the preceding observations, this report presents an approach to recognizing hand
gestures that leverages both linguistic theory and computer vision methods in
response to the challenges at hand. Following a path that has been taken in the
speech recognition community for the interpretation of vocal data [61], we appeal
to linguistics to define a finite set of contrastive primitives, termed phonemes, that
can be combined to represent an arbitrary number of gestures. This approach
ensures that the developed approach is scalable (see Section 2.3 for details).

To affect the recovery of these primitives, we make use of robust, parametric
motion estimation techniques from computer vision to extract signatures that
uniquely identify each movement from an input video sequence. Here, it is in-
teresting to note that human observers are capable of recovering the primitive
movements of ASL based on motion information alone [60]. For our case, empiri-
cal evaluation suggests that algorithmic instantiation of these ideas has sufficient
accuracy to distinguish the target set of ASL movement primitives. Further,
since the input to our approach is a monocular video sequence and processing
demands are reasonably modest, there is potential to deploy our methods with
minimal invasiveness to signers while using simply a general purpose, off the shelf,

computer equipped with a single video camera.

1.2 Related research

Recently, significant effort in computer vision has been marshalled in the inves-

tigation of human gesture recognition (see, e.g., [2, 58, 68| for general reviews).



Here, we highlight several representative approaches. (See Tables 1.1 and 1.2 for
a condensed summary of various hand gesture related work.) For the specific
problem of gesture recognition, the basic approach taken consists of a feature
extractor unit feeding into a recognition unit. In terms of feature extraction,
several approaches have been introduced that explicitly attempt to match a rich
stored representation of a hand, namely, a 3D model of the hand [63, 71] or an
appearance based model [12], with the image (or images in the case of a multi-
camera setup, e.g. [63]) for the purposes of tracking. These approaches have met
limited success due to self-occlusion of the hand, convergence difficulties due to
the non-linearity of the model to image feature mappings and the high degrees
of freedom of the hand (i.e. 27 total degrees of freedom, 21 for the finger joint
angles plus 6 for global movement of the hand).

Rather than use rich stored models to track the hand the following approaches
have used coarser but real-time extractable features such as colour blobs and
optical flow. These contributions are mainly differentiated by their approach to
recognition. State-space models have been used to capture the sequential nature
of gestures by requiring that a temporal series of states estimated from visual
data must match the order in time of a model of states [14, 23, 31, 35, 52, 86].
In [22, 89] this problem has been formulated as a pattern recognition problem,
where the dynamic time warping (DTW) method is used to temporally align (i.e.
match) an input pattern (i.e. series of states) to a stored pattern. An alternative

approach has appealed to the use of statistical factored sampling in conjunction



with a model of parameterized gestures to affect recognition [13]; this approach
can be seen as an application and extension of the CONDENSATION approach
to visual tracking [39]. A main strength of the approach is that it can be adapted
to recognize a sequence of gestures without the need of an explicit temporal
segmentation. Additionally, it may be possible to leverage the temporal models
as constraints on the object tracking. A main limitation in the approach lies
in the factored sampling step, which is very computationally expensive, making
real-time implementation a challenge.

Rule-based approaches have also been applied to the problem of hand gesture
recognition [21, 53]. Rule-based approaches in general contain a set of encoded
predicates that when satisfied indicate that the desired event (gesture) has oc-
curred. As an example, in [21] real-time, view-based gesture recognition is pre-
sented for interactive environments. Optical flow is extracted using a feature
based (correlation) approach. Following a subsequent segmentation stage, ges-
tures are recognized using a rule-based approach based on characteristics of the
segmented blobs. For each gesture a unique predicate is defined. A gesture is
recognized when its predicate is satisfied over N consecutive frames.

Neural networks and their extensions, time-delay neural networks (TDNN),
have also been applied to the gesture recognition problem [25, 79, 85]. A TDNN,
like a standard neural network, is a multilayer feedforward network with the
addition of delay units between all layers. The addition of the delay units allow
the TDNN to represent temporal relationships between events in the sequence.

4



The input layer is a set of features extracted from the video ordered in time,
where the time is a fixed length. A main limitation of the approach is that to
date, only isolated gestures can be recognized (i.e. temporally segmented).
Further, numerous approaches have made use of the Hidden Markov Model
(HMM) [6, 8, 24, 30, 37, 48, 49, 56, 67, 70, 74, 78, 81] which had been previously
successfully applied to the problem of speech recognition; for an excellent tutorial
on the topic of HMMs see [62]. Hidden Markov Models are a statistical method
that relies on the assumption that the output can be well approximated by a
sequence of unobservable (hidden) states where the observation is a probabilistic
function of the state. In order to instantiate the model parameters, numerous
exemplars of the observation sequence are used to train the model. A standard
application of HMMSs to the problem of gesture recognition is to have each gesture
associated with an HMM, the observation sequence (extracted features from the
image) is fed into each HMM and the model returning the highest score (prob-
ability) is returned as the match. Advantages afforded by using an HMM is its
non-linear time scaling invariance property resulting from recurrent states in the
hidden state topology and HMMs can handle a continuous input stream without
it being explicitly temporally segmented. Disadvantages of HMMs include the
following: possibilities that the underlying Markov assumption (i.e. hidden state
topology) does not hold, the training stage may overfit the HMM to the training
data and the HMM not capturing the essential aspects of the underlying process
caused by insufficient training data and/or unrepresentative training data.

bt



A number of the cited approaches have been able to achieve interesting recog-
nition rates, albeit often with limited vocabularies. Interestingly, many of these
approaches analyze gestures without breaking them into their constituent prim-
itives, which could be used to represent a large vocabulary from a small set of
generative elements. Instead, gestures tend to be dealt with as wholes, with
parameters learned from training sets. This tack may limit the ability of such
approaches to generalize to large vocabularies as the training task becomes in-
ordinately difficult from the perspective of model building. Also of note is the
fact that several of these approaches make use of special purpose devices (e.g.,
coloured markers, data gloves, electromagnetic trackers) to assist in data acqui-
sition.

In [5, 75], two of the earliest efforts of using linguistic concepts in the descrip-
tion and recognition of both general and domain specific motion are presented.
More recently, in [46] it was shown how “motion verbs” can be associated with
image motion patterns. For the problem of gesture recognition, at least two pre-
vious lines of investigations have appealed to linguistic theory as an attack on
issues in scaling gesture recognition to sizable vocabularies [49, 78]. Based on
the ASL linguistics literature, the authors promote a phoneme based modelling
of gestures. In [49] the authors use a data glove as the input to their system.
Each phoneme from the parameters, hand shape, location, orientation and move-
ment, is modelled by an HMM based on a variety of features extracted from
the input stream. The authors report an 80.4% sentence accuracy rate. In [78],

6



to affect recovery, 3D motion is extracted from the scene by fitting a 3D model
of an arm with the aid of three cameras in an orthogonal configuration (used
interchangeably with a electromagnetic tracker). The motion is then fed into
parallel HMMs representing the individual phonemes. The authors report that
by modelling gestures by phonemes, the word recognition rate was not severely
diminished, 91.19% word accuracy with phonemes versus 91.82% word accuracy
using word-level modelling. The results thus lend credence to modelling words
by phonemes in vision-based gesture recognition. Here, it is interesting to note
that in [54] the authors report on the most extensive video database of ASL to

date based on capturing the phonemic elements of ASL!.

IThis database was not used in our experiments since to date, the database has not been
released publicly due to logistical issues.



‘Work

Features

Feature Extraction

| Recognition Method |

Application Domain

Bauer et. al. [6] hand location, shape coloured glove HMM German Sign Language
orientation, 2D
movement
Becker [8] hand location colour marker tracker HMM T’ai Chi
Black et. al. [13] 2D hand trajectory colour marker tracker CONDENSATION white board manipulation
Bobick et. al. [14] sequence of appearances eigenspace finite state machine generic
Braffort [16] location, hand shape and data glove not addressed French Sign Language

movement

Cutler et. al. [21]

2D hand trajectory

optical flow (correlation)

rule-based

interface for children

Darrell et. al. [22]

sequence of hand views

correlation scores

dynamic time warpintg generic
Davis et. al. [23] 2D finger trajectories marker based finger-tip finite state machine generic
tracking
Fang et. al. [24] location, hand shape data glove HMM Chinese Sign Language
orientation, movement
Fels et. al. [25] 3D hand movement data glove neural network generic
Freeman et. al. [28] static hand pose edge map orientation histogram generic

Grobel et. al. [30]

location, hand shape

coloured glove

HMM

Sign Language of

orientation the Netherlands
Gupta et. al. [31] sequence of hand eigenspace finite state machine generic
appearances
Holden et. al. [34] hand shape, movement data glove fuzzy expert system Australian Sign Language

Hong et. al. [35]

2D hand trajectory

skin colour

finite state machine

interface for children

Huang et. al. [37]

2D trajectory, hand shape

edge extraction

HMM

generic

Table 1.1: Summary of automated hand gesture recognition work.




‘Work

Features

Feature Extraction

Recognition Method | Application Domain |

Lee et. al. [48]

2D hand trajectory

skin colour tracker

HMM

generic

Liang et. al. [49]

hand shape, orientation,
movement

data glove

HMM

Taiwanese Sign Language
(phonemic based)

Maclean et. al. [52]

sequence of hand shapes

skeletonization of skin
coloured region

finite state machine

camera control

Mammen et. al. [53]

2D trajectory, hand shape

skin colour

rule-based

telerobotic interface

Nam et. al. [56] hand shape, orientation, data glove HMM generic
movement
Sagawa et. al. [65] location, hand shape, data glove various specialized Japanese Sign Language
movement, algorithms
Schlenzig, et. al. [67] | sequence of appearances image moments HMM telerobotic control
Starner et. al. [70] 2D hand pos, orientation skin colour tracker HMM ASL
Tanibata et. al. [74] hand shape, movement skin colour HMM Japanese Sign Language
Vogler et. al. [78] 3D hand position 3D electromagnetic tracker or HMM

orientation

physics based vision
arm tracker

ASL (phonemic based)

Waldron et. al. [79]

hand shape, location,

data glove neural network ASL
orientation, movement
Wilson et. al. [81] 3D position stereo colour blob HMM generic
Yang et. al. [85] 2D hand trajectory multiscale region matching TDNN ASL

Yeasin et. al. [86]

2D hand trajectory

difference images
and temporal zero crossings

finite state machine

telerobotic control

Zhu et. al. [89]

2D trajectory, hand shape

affine motion parameters

dynamic time warping

generic

Table 1.2: Summary of automated hand gesture recognition work, continued.




1.3 Contributions

In the light of previous research, the main contributions of this report are as

follows.

e Our approach makes use of linguistic theory to model gestures in terms
of their phonemic elements to yield an algorithm that recognizes gesture

movement primitives given data captured with a single video camera.

e We analytically derive the mappings for a subset of single handed move-
ments to a kinematic feature space describing the visual motion field; this

analysis is then leveraged in our classification scheme.

e Our approach uses the apparent motion of an unmarked hand as input as
opposed to fitting a model of a hand (arm) or using a mechanical device

(e.g. data glove, electromagnetic tracker).

e Our recognition scheme is based on a nearest neighbour match to prototype
signatures, where each of the movement primitives of ASL under consid-
eration is found to have a distinctive prototype signature in a kinematic

feature space.

e We have evaluated our approach empirically with 592 video sequences taken
from 15 volunteers situated with a frontoparallel attitude with respect to
the camera and find that our algorithm is capable of reliably recognizing
movement primitives, 97.13% phoneme accuracy rate, even as other aspects

10



of the gesture vary, namely, hand shape and location. Additionally, we
have conducted a preliminary study on the robustness of our algorithm to

changes of the attitude of the signer with respect to the camera.
1.4 QOutline of report

This report is subdivided into four main chapters. This first chapter has provided
motivation for modelling gestures at the phoneme level. Chapter 2 describes the
linguistic-basis of our representation, presents an analysis of the mappings be-
tween the phonemic movements and kinematic quantities describing the apparent
motion, as well as the algorithmic aspects of the approach. Chapter 3 documents
experimental evaluation of a software implementation of our algorithm. Finally,

chapter 4 provides a summary of our work, as well as possible future directions.
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Chapter 2

Technical Approach

2.1 General technical framework

Our approach to gesture recognition centres around two motivating ideas. First,
linguistic theory can be used to define a representational substrate that system-
atically decomposes complex gestures into primitive components. Second, it is
desirable to recover the primitives from data that is acquired in as minimally
constrained a fashion as possible, e.g., with a standard video camera. The first
level of the decomposition is in terms of three sets of primitives, hand shapes,
location and movement. Of present concern in this report is the recovery of lin-
guistically defined single hand movement primitives of American Sign Language
(ASL). Further levels of decomposition involve the lexical and sentence levels and
are part of our plan for future work. For a pictorial overview of our work in a
broader perspective see Fig. 2.1.

We take the input to our system to be a temporal sequence of images that

depicts a single movement phoneme taken from a roughly frontoparallel view of

12



the signer with respect to the camera. Currently, we also assume that the region
corresponding to the hand in the first frame has been delineated manually. (For
a proposed fully automated localization method see Appendix B.) The output
of our system is a classification of the depicted gesture as arising from one of
the primitive movements, irrespective of other considerations (e.g., irrespective
of hand location, hand shape and signer). To affect the recognition, a robust,
affine motion estimator is applied to regions of interest defined by skin colour on
a frame-to-frame basis. Though skin colour segmentation is not strictly required
given the fact that the hands are currently manually outlined, the inclusion of
skin colour segmentation will play an important future role with the inclusion of
an automated hand localization scheme which may oversegment the hand region.
The resulting time series of affine parameters is mapped to a kinematic time series
that is in turn individually accumulated across the sequence to yield a signature
that is used for classification of the depicted gesture.

The remainder of this chapter consists of the following: details of the phonemic
movement vocabulary (Section 2.2), the strategy pertaining to exploiting ASL
linguistics for the problem of vision based hand gesture recognition (Section 2.3),
an analytic derivation of mappings of the phonemic movements to kinematic
quantities describing their apparent motion (Section 2.4) and details of the various
processing stages of a phonemic movement classifier algorithm exploiting the

findings of our analytic derivation (Section 2.5, 2.6, 2.7 and 2.8).

13
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Figure 2.1: System framework
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2.2 Linguistics basis

Webster’s dictionary [1] defines linguistics as “the study of the nature, structure,
and variation of language, including phonetics, phonology, morphology, syntax,
semantics, sociolinguistics, and pragmatics”. In the current context we leverage
the linguistic structure of ASL to yield a scalable framework for sizable gesture
vocabularies.

Prior to William Stokoe’s seminal work in ASL [72], it was assumed that lin-
guistics was exclusive to the study of human speech. Sign language was regarded
by linguists as a series of pictorial gestures with no linguistic structure. Stokoe
demonstrated that signing was indeed a rich, linguistically complex language. A
fundamental contribution of his work was redefining the basic unit of a sign to
units he termed cheremes! as opposed to the sign as a whole, these units are
analogous to speech phonemes: minimally contrastive patterns that distinguish
the symbolic vocabulary of a language. Stokoe’s work culminated in the first true
dictionary of ASL [73]; the dictionary described over 2000 signs.

Stokoe’s system consists of three parameters that are executed simultaneously
and sequentially to define a gesture, see Fig. 2.2. The three parameters capture
location (“Where on the body or in space is the sign being made?”), hand shape

(“How are the fingers extended and bent in this particular sign?”) and movement

!The word chereme is derived from the Greek word “yeot”, the hand. Most linguists today,
tend to use the term phoneme rather than chereme, in order to highlight the similarities between
speech and signing.

15



(“How does the hand(s) move?”). Extensions to the basic Stokoe system include
the orientation of the palm and non-manual gestures (e.g. facial expressions).
These additions are not considered in this report.

In terms of location, there are 12 elemental locations defined by Stokoe. The
locations reside in a volume in front of the signer termed the signing space.
The signing space is defined as extending from just above the head to the hip
area in the vertical direction and extending close to the extents of the signer’s
body in the horizontal direction. As for hand shapes, there are 19 possible hand
shapes in the Stokoe system. Other authors (e.g. [50]) have indicated that the
actual hand shape space may be quite larger, for the most part the additional
hand shapes cited in the ASL linguistics literature represent subtle differences
from Stokoe’s hand shape phonemes. While Stokoe’s complete vocabulary of
movements consists of 24 primitives (i.e. single and two-handed movements),
here, as a starting point, we restrict consideration to 14 single handed movements,
shown in Fig. 2.2. Current ASL linguistic theories still recognize Stokoe system’s
three basic parameters but differ in their definition of the constituent elements
of the parameters [76].

In ASL each hand has a distinct role. The dominant hand is the hand that
performs the one-handed signs and the major component of two-handed signs.
The non-dominant hand is the opposite of the dominant hand. For right-handed
signers, the dominant hand is typically the signer’s right hand the non-dominant
hand is the signer’s left hand.

16



We use Stokoe’s definition of the parameters for this study as they are well
defined by the author, are generally agreed to represent an important approxi-
mation to the somewhat wider and finer grained space that might be required to
capture all the subtleties of all manual languages and they provide the basis for
many more recent developments in manual language linguistics. It is interesting
to note that this same linguistic analysis has also been applied to other manual
languages.

In the remainder of this , we show how to automatically recognize Stokoe’s 14
single handed movements irrespective of signer, hand shape and location. Ability
to recognize each parameter (shape, location and movement) independently of
each other is key to being able to leverage combinatorics for application to sizeable

vocabularies.

17
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Figure 2.2: Stokoe’s Phonemic Analysis of ASL. The left panel depicts the signing
space in which the locations reside. Shaded regions indicate locations used in our
experiments. The upper right panel depicts possible hand shapes. Circled shapes
indicate shapes used in our experiments. The lower right panel depicts possible
single handed movements from a frontoparallel pose of the signer with respect
to the viewer (i.e. camera) (a) upward (b) downward (c¢) rightward (d) leftward
(e) toward signer (f) away signer (g) nod (h) supinate (i) pronate (j) up and
down (k) side to side (1) twist wrist (m) circular (n) to and fro. The solid ellipse
represents the initial hand location, the dashed ellipse represents the final location
and the dashed arrow represents the path taken. Our experiments investigate the
recognition of movement independent of location and shape.
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2.3 Strategy

In this section we outline our motivation for selecting a phonemic modelling of
gestures.

Basing a recognition system on phonemes keeps the problem of ASL recog-
nition tractable (i.e. scalable to sizable vocabularies), because there is a small
number of phonemes as compared to the unlimited number of lexical gestures
that can be formed from the phonemes [78]. Specifically, the tractability problem
is related to the impracticality of building individual models, either by train-
ing examples (e.g. [78]) or analytically constructing models (as is done in this
report), when the gestures are modelled as wholes. On the other hand construct-
ing a recognition system by modelling and recognizing a limited small number of
phonemes that in turn can be used to recognize lexical gestures is a feasible task.
For instance using the Stokoe model, there are 24 (movements) + 19 (shapes)
+ 12 (locations) = 55 phonemes. Even using a more current ASL model which
include finer phonemic descriptions, the number of phonemes is still quite small
numbering approximately 150-200 phonemes as compared to the roughly 4500
signs documented in a recent ASL dictionary [20].

Unlike speech where phonemes are realized in series, in ASL, phonemes are
realized both in parallel and in series within a gesture. The number of possible
combinations of phonemes formed simultaneously using Stokoe’s parameter def-

initions equals 24 (movements, both single and two handed) x 19 (shapes) x 12

19



(locations) = 5472 combinations. The Stokoe definitions can be thought of as
the minimum required to describe ASL, some authors have proposed far richer
phonemic descriptions that have brought the number of combinations to as many
as 1.5 x 10? number of phonemic combinations [50]. Modelling all the phonemic
combinations brings us back to the initial practicality problem of modelling the
gestures. To make the problem tractable we assume that each of the parameters
can be recognized irrespective of the others. In terms of linguistics this is a fair
assumption since the phonemes are realized from independent parameters, in re-
ality the kinematic structure of the body introduces slight coarticulation affects.
For instance, when the hand begins at the upper arm location, the natural ten-
dency is to have the wrist rotated such that the hand is at a slight angle away
from the body; as the hand moves towards the right side, a slight rotation is
introduced to bring the hand roughly parallel with the camera. We will show
that our approach is highly robust to these coarticulation effects.

Faced with noisy input, a portion of which is the non-dominant structured
noise due to coarticulation effects, we present in the following sections a qualita-
tive approach to recognizing dominant structures (signatures) related to each of

the 14 single handed movements under consideration.
2.4 Idealized gesture executions

From a purely geometric point of view, the movement of an object from the van-

tage point of a camera produces a moving image on the camera’s image plane.

20



The resulting visual motion field contains valuable information about the move-
ment of the object in the world. In this section we derive the ideal mappings
between the phonemic movements as described by Stokoe and the kinematic de-
scription of the visual motion field on the imaging plane. This will provide us

with a principled approach to recognizing movement phonemes.

|
O

Figure 2.3: Camera coordinate system. Depicted is the camera coordinate sys-
tem, with an image plane II located at Z = 1. Perspective projection maps a
point (X,Y, Z) to (z,y). The parameters ¢,, ¢, and t, represent the translational
velocities in the X, Y and Z directions respectively, w,, w, and w, represent
the infinitesimal angle of rotation about X, Y and Z conducted about the point
Q = (0,0,0)7 (i.e. camera origin).

The 3D movement of a point in space is modelled in terms of instantaneous
translation, T’ = (tzyty, t.) ", and instantaneous rotation, Q = (w,, w,,w,) ", about

the X, Y and Z Euclidean axes respectively, with the origin defined at the camera’s

centre of projection (see Fig. 2.3). Additionally, we define Q = (qes Gyr qz) " as
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the origin in space where the rotation is conducted about (e.g. Q= (0,0,0)T
for rotation about the camera coordinate system origin). Under a perspective
projection imaging model [36], the 2D visual motion field, 7 = (u,v)" that arises

as a 3D point (X, Y, Z) undergoes motion given by f, Q and @ can be written

as,
tm + z Yz x tz T x
u = )y — WaY — WaTy + wy T Qyw: — qowy + (qyw qzwy)
t Wy — Wz Wy — tz — qgW

see [36] and Appendices A.1, A.2 and A.2 for this standard derivation.
We model the hand as a planar surface. Given the relatively small depth
deviations of the fingers as compared to the distance of the hand relative to the

camera such a model is not unreasonable. Formally,
aX+pBY +vZ2 =1 (2.2)

where

nx
a = —

d

ny

ch (2.3)

T d
d = Ny Xo + ny)/() + nzZ07
i = (ng,ny,n,)" corresponds to the normal of the plane and (X,, Yy, Zo)" rep-
resents a point in the plane. Given the planar model of a hand the apparent

motion, (u,v), is modelled through first-order in image coordinates by an affine
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transformation, formally,

u(z,y) = ap + a1 + agy

(2.4)
v(x,y) = as + asx + azy
where
ag = Wy + (waqy +ty — wyq.)y
ar = (wzqy + tz - waz)a + (wa;Qy - waz - tz)7
Ay = —Ww, + (wqu/ + ta: - waz)B
ay = w, + (chqz + ty - WzQ:r>a

as = (w:rqz + ty - wsz)ﬁ + (chqy — WyGr — tz)7

for the derivation see Appendix A.1, A.2 and A.3.

The selection of truncating the analytically correct quadratic flow after the
first-order terms is necessitated by the fact that the second-order coefficients
become sensitive to image noise and cannot be estimated accurately given a
small region of support [57]. Fortunately, this does not pose a problem since
the contributions from the second-order terms are small, particularly near the
image centre (z,y << f = 1) [57]; also in Appendix A.4 we present an analytic
study as well as a simulation of the contribution of the second-order terms and
conclude that indeed the contributions of the second-order terms are negligible
for our situation. Moreover, it will be subsequently shown in this section that the

zeroth and first-order terms are sufficient in providing unique signatures for each
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of the movements under consideration. The affine model for apparent motion has
been successfully applied to a variety of applications, examples include general
optical flow [7], 2D tracking [55, 82|, image registration [9], 3D structure and/or
motion estimation [18, 45, 47, 59, 69], video partitioning [15] and hand gesture
recognition [89].

Owing to their descriptive power in the current context, we rewrite the affine
parameters in terms of kinematic quantities corresponding to horizontal (hor) and
vertical (ver) translation, divergence (div), curl (curl) and deformation (def) (see

44, 51, 80] and Appendix A.5).

hor = Qo
= wy + (Waqy +ts — wyq: )Y

ver = as
= —Wy + (qu,z + ty - wzQx>7

div = ay + as
= (wzqy +t, — Wsz>04 + Q(Wa:qy — Wylqx — tz)7 (26)

curl = —as + ay
= 2w, — (wzQy + 1, — waz)ﬂ + (wqu + ty - wqu)a

def = ([ar — as)? + [ag + ay)?)/?
- ([(quz/ + tm - quZ)a - (quZ + ty - qum)ﬂ]
+[(WZQy + tx - qu:a)ﬁ + (wzq:c + ty - wzQx)a]2)1/2

2

We now show that the kinematic quantities are sufficient for describing the

phonemic movements. For the leftward, rightward, side to side, upward, down-
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ward, up and down, toward signer, away signer, to and fro and circular move-
ments (depicted in Fig. 2.2) we assume that the plane (i.e. hand) is kept parallel
to the image plane throughout the execution of the movement, this is reflected
by the surface normal 7 = (0,0,—1)", the plane initially contains the point
(0,0,c) where ¢ > 0, the movements are executed with a constant velocity and

(¢z, Gy, q2)" = (0,0,0)T (i.e. rotation is about the origin).

leftward /rightward consist of a constant valued ¢, throughout the gesture se-
quence, positive for leftward and negative for rightward, all other world
velocities are zero, formally, ¢,(t) = k, where time instant t = 1... N, N
represents the total length of the gesture sequence, k is a constant, k£ > 0 for
leftward, k < 0 for rightward and ¢, (t) = ¢.(t) = w,(t) = wy(t) = w,(t) = 0.
In kinematic space this maps to hor(t) = t.(t)vy throughout the gesture,
hor(t) < 0 for rightward and hor(t) > 0 for leftward; all other quantities

are zero, i.e. ver = div = curl = def = 0.

side to side movement ¢, has a constant magnitude velocity with its sign
changing mid-gesture, all other world velocities are zero. This maps in kine-
matic space to hor(t) = t,(t)y < 0 while t < N/2 and hor(t) = t,(t)y > 0
while ¢ > N/2 or alternatively hor(t) = t,(t)y > 0 while ¢ < N/2 and

hor(t) = t,(t)y < 0 while t > N/2; all other quantities are zero.

upward/downward consists of a constant value for t,, positive for upward,
negative for downward, all other world velocities are zero. This maps in
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kinematic space to ver(t) = t,(t)y, ver(t) > 0 for upward and ver(t) < 0

for downward; all other quantities are zero.

up and down ¢, has a constant magnitude velocity with its sign changing mid-
gesture, all other world velocities are zero. This maps in kinematic space to
ver(t) = t,(t)y > 0 while ¢ < N/2 and ver(t) = t,(t)y < 0 while ¢t > N/2
or alternatively ver(t) = t,(t)y < 0 while ¢t < N/2 and ver(t) = t,(t)y > 0

while t > N/2; all other quantities are zero.

toward/away signer consists of a constant value for t¢,, positive for toward
signer, negative for away, all other world velocities are zero. This maps in
kinematic space to div(t) = —2t,v, div(t) > 0 for away signer, div(t) < 0
for toward signer; all other quantities are zero. Note that the magnitude of
the div(t) changes throughout the gesture execution since the point defining

plane changes (reflected by the v parameter).

to and fro t. has a constant magnitude velocity with its sign changing mid-
gesture, all other world velocities are zero. This maps in kinematic space
to div(t) = 2t,(t)y > 0, for t < N/2 and div(t) = 2t,(t)y < 0, for t > N/2
or alternatively div(t) = 2t,(t)y <0, for t < N/2 and div(t) = 2t,(t)y > 0,

for t > N/2; all other quantities are zero.

circular consists of the plane tracing a circular path parallel to the image plane.

The path can be described by the parameterization (sin(w * t), cos(w *
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t)) where w represents the frequency. The actual velocity of the plane is
described by (t.(t),t,(t)) = (wcos(w * t), —wsin(w * t)), all other world
velocities zero. This movement maps directly to both hor(t) = ywcos(w *t)

and ver(t) = —ywsin(w * t); all other quantities are zero.

Unlike the previous movements described, the orientation of the plane (i.e.
hand) for the supinate, pronate and twist wrist movements (depicted in Fig. 2.2)
is not assumed strictly parallel to the imaging plane throughout the execution of
the gesture. The normal of the plane is assumed initially to be pointing roughly
parallel with the Y-axis, towards the negative direction for supinate and posi-
tive for pronate. Strictly speaking, Stokoe’s description of the supinate/pronate
movements, dictate a normal exactly parallel with the Y-axis (i.e. palm facing
initially down for supinate and up for pronate), but under this current analysis
such configurations of the hand result in singularities in the kinematic quantities

throughout the gesture execution (i.e. viewing plane on edge).

supinate/pronate consist of a constant value for w, throughout the gesture,
where w, is positive for supinating and negative for pronating, all other
world velocities are zero. In kinematic space this maps to a constant
curl(t) = 2w,, positive for supinate and negative for pronating; all other

quantities are zero.

twist wrist w, is constant valued while all other world velocities are zero. This
maps in kinematic space to curl(t) = 2w, > 0 for t < N/2, otherwise
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curl(t) = 2w, < 0 or alternatively curl(t) = 2w, < 0 for t < N/2, otherwise

curl(t) = 2w, > 0; all other quantities are zero.

Finally, for the nod movement, initially the surface normal 7 = (0,0, —1)T,
although this changes throughout the execution of the gesture as the palm rotates.
The movement consists of a constant rotation w, < 0 about the point (¢, ¢, ¢.) =
(0,0, c) where ¢ > 0, all other world velocities are zero. In kinematic space the
nod consists of div(t) = fq,w, < 0 and def(t) = |Bq.w.|, where |-| represents the
absolute value operator; all other kinematic quantities are zero.

For a summary of the mappings for each of the phonemic movements to the
kinematic quantities see Tables (2.1) and (2.2). Significantly in this section, we
have shown that the considered phonemic movements exhibit distinctive patterns
as projected on the kinematic quantities. In the following sections we will present
a specific approach to tracking and classifying the movement of a hand that

exploit the findings of this section.
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63

Non-Periodic Gestures

kinematic || rightward | leftward up down toward away supinate | pronate nod
quantity signer signer
hor(t) tzy <0 | tzy>0 0 0 0 0 0 0 0
ver(t) 0 0 tyy >0 |ty <0 0 0 0 0 0
div(t) 0 0 0 0 —2t,y< 0| —2t,y>0 0 0 Bq,w, <0
curl(t) 0 0 0 0 0 0 2w, >0 | 2w, <0 0
def(t) 0 0 0 0 0 0 0 0 |Bq.wy]

Table 2.1: Mappings of the non-periodic movements in the world space to kinematic quantities in the image space. ||

represents the absolute value operator.




0¢

Periodic Gestures

kinematic side- up to and twist circular
quantity side down fro wrist
tyy<0and t < N/2
t,y > 0 otherwise
hor(t) or 0 0 0 Ywcos(w * t)
tyy <0and t < N/2
tyy > 0 otherwise
tyy>0and t < N/2
tyy < 0 otherwise
ver(t) 0 or 0 0 —ywsin(w * t)
tyy <0and t < N/2
tyy > 0 otherwise
—2t,y>0and t < N/2
—2t,v < 0 otherwise
div(t) 0 0 or 0 0
—2t,y <0 and t < N/2
—2t,7v > 0 otherwise
2w, >0and t < N/2
2w, < 0 otherwise
curl(t) 0 0 0 or 0
2w, <0andt < N/2
2w, > 0 otherwise
def(t) 0 0 0 0 0

Table 2.2: Mappings of the periodic movements in the world space to kinematic quantities in the image space.




2.5 Colour segmentation

A number of gesture recognition and more generally people tracking systems
employ skin colour detection as an approximate segmentation step due to its
attainable real-time performance and orientation invariant processing under a
Lambertian surface reflectance assumption ([10, 26, 41, 70, 85]). In our case,
a rough segmentation is crucial because of the motion estimator’s requirement
that the region of support used (i.e. the hand), exhibit the same 3D motion. In
this section we provide a brief introduction to colour theory as it relates to the
colour appearance of human skin and provide a description of our approach to
skin colour segmentation.

Of particular concern in this report is the colour of human hands (i.e. skin
colour). The distribution of skin colour in the visible spectrum depends primarily
on the concentration of melanin and hemoglobin in human skin [77]. Numerous
studies have reported that skin colour amongst different ethnic groups has a
compact distribution in chromaticity space (i.e. a definition of colour omitting
brightness) while widely differing in intensity (e.g. [41]), see Fig. 2.5 for an
example skin distribution. Given this result various attempts have been made to
quantify this distribution for the purpose of skin segmentation.

Existing skin colour labelling methods are generally differentiated by the se-
lected colour space, such as HSV [33, 42, 43, 88], YUV [19, 83], RGB [41], and

normalized RG [66, 84] and the selected classification method, which includes
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Figure 2.4: Skin colour distribution in normalized RG space. The distribution
was constructed from a total of 241,835 pixels obtained by sampling hand regions
in our experimental video sequences.

methods such as delineating regions of the colour space associated with the ob-
ject (i.e. thresholding) [27], histogramming methods [43, 66, 84] and utilizing
Bayes’ rule to return the likelihood of a pixel being skin by using stored priors of
the distribution of skin colour and non-skin colour (approximated by histograms
for the respective categories) in the selected colour space [33, 41, 42, 88]. In
our present work we have selected the normalized RG colour space since it af-
fords some degree of colour constancy in the case of changes in scene brightness,

though not under illuminant changes. In terms of classification we have selected
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a Bayesian method due to its computational efficiency and reliable discrimination
ability [41, 87].
The normalized RG representation is characterized by the chromaticity tuple

(r, g) where each component is defined as,

r=R/(R+ G+ B)
(2.7)
g=G/(R+ G+ B)
The normalized blue channel b = B/(R + G + B) is rendered redundant under
the constraint r + g + b = 1. Brightness change is characterized as ¢(R, G, B)
where ¢ > 0 is a scalar representing change in brightness. It can be seen that the
normalized RG model results in the cancellation of the brightness scalar ¢, thus
leaving behind the chroma component of the colour.

In order to utilize the Bayesian approach the priors P((r, g)|skin) and P((r, g)|-skin)

are estimated off-line by using a set of skin and non-skin histograms as follows,

nuMgskin ((1, 9))

Pl g)lskin) & =04 okin) 28)
P((r, g)|~skin) ~ "?g;;ig;;” (2.9)

where numg, ((r, g)) represents the pixel count in bin (r, g) in the skin histogram
and likewise num_gin((r, g)) represents the pixel count in bin (r, ¢) in the non-
skin histograms, total(skin) and total(—skin) represent the total number of data
points in the skin and non-skin histograms respectively. The histograms were con-

structed by manually extracting skin and non-skin regions from a set of exemplar
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images taken from video sequences used in our experiments. The skin classifier is
also a function of the size of the histogram (i.e number of bins in the histogram).
In [41] it was reported that too few bins result in significant oversegmentation,
while too many bins leads to significant undersegmentation due to over-fitting.
To alleviate this problem the authors experimented with different quantization
levels (ranging from 16 to 256 bins) and found a histogram of 32 bins returning
the best performance. Given that colour segmentation is not the main emphasis
of this report only informal experimentation was done on the optimal bin size of

the histogram; 32 was found qualitatively to return the best results.

Skin Binary Map
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Figure 2.5: Binary skin map. Depicted is the quantized 64 x 64 normalized RG
space. Black denotes bins that when indexed are to be labelled as skin, while
white denotes non-skin toned regions in the colour space

Given that we have no prior knowledge of the probability of a pixel containing
skin colour, for classification we assume that the probability of a pixel containing
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skin colour and the probability of non-skin are equal (i.e. maximum likelihood
assumption). This assumption has been evaluated in [87] and found to return
reasonable segmentation results. The classification reduces to evaluating the ratio
given in (2.10) for each pixel [29]. If the ratio is greater than one the pixel is

classified as skin, otherwise the pixel is classified as non-skin.

P(skin|(r, g)) _ P((r,g)|skin)P(skin)/P(r,g) _ P((r, g)|skin) (2.10)
P(=skin|(r,g))  P((r,g)|nskin)P(—skin)/P(r,g)  P((r,g)|—~skin)

During an offline stage a binary map of (2.10), depicted in Fig. 2.5, is instantiated

and stored, to be indexed during the skin segmentation stage.

2.6 Affine motion estimation

In Section 2.4 we demonstrated that the visual motion field of a hand undergoing
each of 14 single handed Stokoe movements can theoretically be described by an
affine transformation. In this section we present a robust approach to extracting
the affine motion (frame to frame) of the hand from a video sequence.

Rather than resort to estimating motion by looking for correspondences of
features, many have analyzed the instantaneous temporal change in the spatial
structure of the image over time. This approach is commonly referred to as
the gradient approach to finding the optical flow, i.e., apparent motion seen in
the image. This is the approach that we have selected given the lack of strong
persistent features present on the hand which precludes the use of feature-based

methods. Though the optical flow and the visual motion field do not strictly
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correspond [36], given the qualitative nature of our approach this does not pose
a problem.

The initial assumption made is the brightness constancy constraint [36], which
assumes that the brightness structures of local-time varying image regions are

unchanging under motion for a short period of time. Formally, this is defined as,
I(Z,t) = I(Z+ bz, t + t) (2.11)

where Z = (z,y)" represents image position in pixel coordinates, 6z = (dz, dy)T
represents motion at image position Z over the time 0t and [(Z,t) represents the
image brightness at position & and time t. The Taylor series expansion of the

right hand side of (2.11) results in,
I(Zt) = I(Z,t) + V I6x + 8tI, + O (2.12)

where, VI = (I,,I,) and I, are the first order partial derivatives of the im-
age sequence and O? denotes the second and higher order terms. Subtracting
I(Z,t) from both sides of (2.12), assuming the second and higher order terms
to be negligible and dividing through by 6t results in the optical flow constraint
equation,

Vii+1,=0 (2.13)

where @ = (u,v)" is the apparent velocity.

In accordance with our analysis of idealized gesture movements (2.4) we model
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the optical flow parametrically as an affine tranformation,

u(z,y) = ag + a1 + azy

(2.14)
v(7,y) = az + asT + asy.
Substituting (2.14) into (2.13) yields the affine constraint,
I.(ap + a1z + asy) + I, (a3 + asx + asy) + I = 0 (2.15)

Given one image point, the affine flow constraint (2.15) is incapable of fully
capturing the motion since the linear constraint involves six unknowns; six in-
dependent constraints are required to fully solve for the motion, yet only one
constraint equation is given at a point. This problem is commonly referred to
as the “aperture problem”. Assuming a single motion is present within a lo-
cal region, a solution is commonly found by taking the least squares solution
of the affine flow constraints of each point (at least six points). This approach
can be thought of as finding the intersection of the hyper-planes defined by each
point constraint. With the presence of Gaussian noise the least squares solution
is guaranteed to return the best solution (in the least squares sense), given a
largely overdetermined system of equations and sufficient image texture within
the region, so that spatiotemporal gradients are well defined. When outlying mo-
tions are present the least squares solution performs poorly since the contribution

by outliers is not bounded.
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Figure 2.6: Diagram of the hierarchical motion estimation framework. Given
two temporally ordered images, the first step consists of constructing Gaussian
pyramids ([17, 40] and Appendix B) of each image to level 2, denoted by I(t —1)
and [(t) respectively, this is accomplished by a series of convolutions (asterisk
symbol) by the kernel G and downsampling by 2 (represented by the symbol with
an arrow point down and the number 2). Starting from level 2, each level i €
{0, 1,2} of pyramid I(t—1) is warped (represented by symbol W) by the previous
estimate of the affine motion (warp) p;_; plus the residual motion estimate Ap;.
This is followed by the estimation (represented by M) of the residual motion
Api+1 between the warped image and level i of I(t). This diagram is adapted
from [9].
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To affect the recovery of the affine parameters we make use of a robust estima-
tor embedded within a hierarchical framework [11]. For an illustrative overview
of the robust hierarchical motion estimator framework see Fig. 2.6. Benefits
afforded by the hierarchical portion of the estimator are, greater capture range
(handle motion larger than one pixel), avoids local minima, and computational
efficiency.

We use skin colour to restrict the region of support to image data that arises
from the hand. A binary skin segmentation map of I(t — 1) at level 1 is instanti-
ated and a Gaussian pyramid of the binary map is created up to the same level
of the image pyramid. During the motion estimation stage only pixels whose
value exceeds a predefined threshold at the corresponding level and position of
the binary map pyramid are used in the motion estimation step.

For further robustness, we make use of an M-estimator [38] to allow for op-
eration in the presence of non-Gaussian distributed outlying data in the form
of non-hand pixels due skin-color oversegmentation, pixels that grossly violate
the surface planarity approximation as well as points that violate brightness con-
stancy. The particular error norm we choose is the Geman-McClure, defined

as,

52

p(§,0) = popy

with £ the quantity whose magnitude is to be minimized (in our case departure

from brightness constancy, (2.11)) and o the scale parameter that determines the
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Figure 2.7: Depicted are the family of plots of the Geman-McClure error function
with several different instantiations of o, where o € {0.3,0.5,0.7,0.9}.

extent to which the effects of outliers are diminished, see Fig. 2.7.

The minimization problem is formulated as follows:

min Z p(VTIi(x) + 1y, 0) (2.16)

{a0.....as} £—

where H represents the set of skin coloured image points, p represents the error
norm function and o is a scale parameter defining the point in which the effect of
outliers on the estimation begins to diminish. The minimization of (2.16) requires
an iterative approach. A standard gradient descent approach was found sufficient
for our purposes.

The motion estimator is applied to adjacent frames across an input image
sequence. As an initial seed, the hand region in the first frame of the sequence

is coarsely outlined manually to define a window for analysis; affine parameters
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are initialized identically to zero. Upon recovering the motion between a pair of
frames, the analysis window is moved based on the affine parameters found, the
affine parameters are used as the initial parameters for the motion estimation of
the next pair of images and the motion estimation process is repeated. When
the motion estimator reaches the end of the image sequence, six time series, each
representing an affine parameter (ay, ...,as;) over the length of the sequence, are

realized.

2.7 Kinematic features

Given the analysis done in Section 2.4 we rewrite the affine parameters realized
from the affine tracker (described in Section 2.6) in terms of kinematic quantities
corresponding to horizontal and vertical translation, divergence, curl and defor-
mation. In particular, from the coefficients in the affine transformation (2.14) we

calculate the following time series,

hor(t) = ao (t)
ver(t) = as(t)

div(t) = a1 (t) + as(t) (2.17)
curl(t) = —as(t) + as(t)

def(t) = /(ai(t) — as(t))? + (az(t) + au(t))?
The resulting time series tend to be quite noisy. Since we are interested in the

general trends of the time series in the subsequent qualitative analysis step, a
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median filter is applied across ¢ time steps followed by a 5-tap binomial filter (i.e.
low-pass filter, 1—16[1 46 4 1]) is applied.

Each of the kinematic time series (2.17) has an associated unit of measurement
(e.g. horizontal and vertical motion are in pixel units) that may differ amongst
each other. In order to facilitate comparisons across the time series for the pur-
poses of recognition, a rescaling of responses is appropriate. Here, we make use

of min-max rescaling [32], defined as,

5 (M) X (maxe — ming) + ming (2.18)
maxry — ming

with m2n, and max; the minimum and maximum values respectively in the input
data z, while miny and mazs specifying the desired range of the rescaled data
taken over the entire population sample. For scaling ranges, we select [—1, 1] for
the elements of (2.17) that range symmetrically about the origin and [0, 1] for
those with one sided responses, i.e., def.

To complete the definition of our kinematic feature set, we accumulate pa-
rameter values across each of the five rescaled time series, hor(t), ver(t), div(t),
cdrl(t), de f (t) and express each resulting value as a proportion. The accumula-
tion procedure is motivated by the observation that there are two fundamentally
different kinds of movements in the vocabulary defined in Fig. 2.2: those that
entail constant sign movements, i.e., movements (a-i), which are unidirectional;
those that entail periodic motions, i.e., movements (j-n), which move “back and

forth”. To distinguish these differences, we accumulate our parameter values in
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two ways.
First, to distinguish constant sign movements, we introduce the summed re-
sponse, SR;,
T
SRZ' = me (219)
j=1
where 7 € {har, ver, d%v, curl , de f} indexes a time series, T represents the number
of frames a gesture spans and p;; represents the value of time series 7 at time
j. Constant sign movements should yield non-zero magnitude SR;, for some 1;
whereas, periodic movements will not as their changing sign responses will tend
to cancel across time.
Second, to distinguish periodic movements, we introduce the summed absolute

response, SAR;,

T
SAR; = Y |l (2.20)
j=1
bij = Dij — mean;

where mean; represents the mean value of (rescaled) time series i. Now, constant
sign movements will have relatively small SAR;, for all ¢ (given removal of the
mean, assuming a relatively constant velocity); whereas, periodic movements will
have significantly non-zero responses as the subtracted mean should be near zero
(assuming approximate symmetry in the underlying periodic pattern) and the
absolute responses now sum to a positive quantity.

Due to the min-max rescaling (2.18), the SR; and SAR; calculated for any
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given gesture sequence are expressed in comparable ranges on an absolute scale
established from consideration of all available data (i.e., min; and max; are set
based on scanning across the entire experimental set). For the evaluation of
any given gesture sequence, we need to represent the amount of each kinematic
quantity observed relative to the others in that particular sequence. For example,
a (e.g., very slow) vertical motion in the absence of any other motion should be
taken as significant irrespective of the speed. To capture this notion, we convert
the accumulated SR; and SAR; values to proportions by dividing each computed
value by the sum of its consort, formally,
SRP; = SRi/(>_|SRyl)
g (2.21)
SARP, = SAR;/() _ SARy)
k
with £ ranging over h&r,vér, d%v, cdrl, de f. Here, SRP; represents the summed
response proportion of SR parameter ¢ and SARP; represents the summed abso-
lute response proportion of SAR parameter 7.

Notice that the min-max rescaling accomplished through (2.18) and the con-
version to proportions via (2.21) accomplish different goals, both of which are nec-
essary: The former brings all the kinematic variables into generally comparable
units and the latter adapts the quantities to a given gesture sequence. In the end,
we have a 10 component feature set SRP; and SARP;, i € {har, ver, d%v, curl , de f}

that encapsulates the kinematics of the imaged gesture.
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2.8 Prototype gesture signatures

Given our kinematic feature set derived in the previous section, each of the prim-
itive movements for ASL, shown in Fig 2.2. has a distinctive idealized signature
based on (separate) consideration of the SRP; and SARP; values, see Table 2.3.
These signatures exactly parallel the idealized gesture executions derived in Sec-

tion 2.4 and summarized in Tables 2.1 and 2.2.

SRP SARP
) S
I % 3 )
'@ -~
§ = § § 3 ) '*S 3 L'E“ C§ S
S /s |B |2 |8 |3 I =R S
hor 0 0 -1 |4+1] 0 0 0 0 0 0 1 0 0 .
ver || +1 | -1 0 0 0 0 0 0 0 1 0 0 0 .0
div 0 0 0 0 -1 ] +1 0 0 ) 0 0 1 0 0
curl 0 0 0 0 0 0 | +1] -1 0 0 0 0 1 0
def 0 0 0 0 0 0 0 0 |+.5 0 0 0 0 0

Table 2.3: Gesture signatures. Each movement phoneme has a distinctive proto-
type signature defined in terms of our kinematic feature set. Kinematic features
and movement phonemes are plotted along vertical and horizontal axes, resp.
The SRP and SARP values are defined with respect to formula (2.21).

Distinctive signatures for the constant sign movements (i.e., movements a-i in

Fig. 2.2) are defined with reference to the SRP; values.

upward/downward result in responses to ver(t) alone; hence, of all the SR;,
only SR, should have a nonzero value in (2.21), leading to a signature of

|SRP,er| = 1 while |[SRP;| = 0,7 # veér, where |-| denotes the absolute value



operator. In order to distiguish between upward and downward movements,
the sign of SRP,;, is taken into account, positive sign for upward and

negative for downward.

rightward /leftward result in significant response to hor(t) alone, with the re-
sulting signature of |[SRP,; | = 1 while |[SRF;| = 0,7 # hor and positive
and negative signed SRP,. corresponding to leftward and rightward move-

ments, respectively.

toward/away signer manifest as significant responses in div(t) alone. Corre-
spondingly, |SRP; | = 1 while other values are zero. For this case, positive

sign on SRP};, is indicative of away, while negative sign indicates toward.

supinate/pronate map to significant responses in curl(t) alone. Here, |[SRP., . /|

1 while other values are zero with positively and negatively signed SRP,_:

indicating supinate and pronate, respectively.

nod has two significant kinematic quantities which have constant signed re-
sponses throughout the gesture, namely def(t) and div(t). The sign of
def(t) should be positive, while the sign of div(t) should be negative, i.e.,
contraction. Further, the magnitudes of these two nonzero quantities should
be equal. Therefore, we have [SRPj | = SRP;;; = 0.5 with all other re-
sponses zero. (Note that an additional feature that has not been leveraged

is the orientation of the deformation.)
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For periodic movements (i.e., movements j-n in Fig. 2.2) distinctive signa-
tures are defined with reference to the SARP; values. The definitions unfold
analogously to those for the constant sign movements, albeit sign now plays no

role as the SARP; are all positive by construction.

up and down directly maps to ver(t), resulting in a value of SARP,;, equal to

1 with other summed absolute response proportions zero.

side to side directly maps to hor(t), resulting in a value of SARP,:  equal to

1 while other values are zero.

to and fro directly maps to div(t), resulting in a value of SARP,; equal to 1

while other values are zero.

twist wrist directly maps to curl(t), resulting in a value of SARP, ., equal to

1 with other values zero.

circular has two prominent kinematic quantities, hor(t) and ver(t). As the
hand traces a circular trajectory, these two quantities will oscillate out
of phase with each other, see Fig. 3.2. Across a complete gesture the

two summed absolute responses are equal. The overall signature is thus

SARP,. = SARPy, = 0.5, with all other values zero.

For classification, comparing the input stream to the prototype signatures
is not sufficient, since it presupposes that we know whether the classification
is to be done with respect to the SRP; (constant sign cases) or the SARP,
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(periodic cases). This ambiguity can be resolved through consideration of the
relative difference between the SR and SAR measures. By construction, only
a subset of the SR; or SAR; measures will have a significant magnitude at any
given time. The determination between a constant sign or periodic movement is
done by comparing the magnitudes of the vectors comprising the SR elements
and the SAR elements. The vector with the largest L?-norm determines the
type of movement: If the norm of the SR elements is greater than that of the
SAR elements, then the movement is constant sign, otherwise the movement is
periodic.

Upon determining the type of movement the distance (Euclidean) is computed
only amongst the movement signatures of the particular type found. The move-
ment whose signature returns the smallest distance to the input is returned as the
classification of the movement. Finally, for movements classified by distance as
nod, we explicitly check to make sure |[SRP; | =~ S RP., if not we take the next
closest movement. Similarly, for circular we enforce that SARP,: ~ SARP,,.
These explicit checks arising from our idealized analysis serve to reject misclassi-

fications when noise happens to artificially push estimated feature value patterns

toward the nod and circular signatures.
2.9 Recapitulation

This chapter has outlined our theoretical and algorithmic approach to gesture

recognition from a single view (i.e., single video camera). The approach makes
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use of the linguistic analysis of manual languages to represent complex gestures
in terms of a finite set of primitive components corresponding to hand movement,
location and shape. Given a temporal sequence of images that depict a single
gesture, our algorithm extracts a set of kinematic features that define distinc-
tive signatures for the primitive movements of ASL. These signatures are used
in a simple nearest neighbour classifier that identifies the phonemic movement,

irrespective of hand location and shape.
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Chapter 3

Experimental Evaluation

3.1 Frontoparallel experiment

3.1.1 Experimental design

In order to test the viability of our approach, we have tested a software realization
of our algorithm on a set of video sequences each of which depicts a human
volunteer executing a single movement phoneme. Here, our goal was to test the
ability of our algorithm to correctly recognize movement and to do so irrespective
of the volunteer, hand location and hand shape of the complete gesture while the
volunteer was seated in a frontoparallel attitude with respect to the camera.
Owing to the descriptive power of the phonemic decomposition of gestures
into movement, location and shape primitives, consideration of all possible com-
binations would lead to an experiment that is not feasible.! Instead, we have
chosen to subsample the hand shape and location dimensions by exploiting sim-

ilarities in their respective configurations. For location we have selected whole

1Using Stokoe’s parameter definitions there would be 14 (movements) x 19 (shapes) x 12
(locations) = 3192 combinations for each volunteer.
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head, torso and upper arm (left side), see Fig. 2.2. These choices allow a range
of locations to be considered and also introduce interesting constraints on how
movements are executed. For instance, when the hand begins at the upper arm
location, the natural tendency is to have the wrist rotated such that the hand
is at a slight angle away from the body; as the hand moves towards the right
side, a slight rotation is introduced to bring the hand roughly parallel with the
camera. For hand shape, we have selected A, B5, K and C, see Fig. 2.2. The
rationale for selecting hand shapes A, B5 and K is as follows: A (i.e. fist) and
B5 (i.e. open flat hand) represent the two extremes of the hand shape space,
whereas K (i.e. victory sign) represents an approximate midpoint of the space.
Hand shape C has been included since it is a clear example of a hand shape being
non-planar. This sampling leaves us with a total possible number of test cases
equal to 14 (movements) x 3 (locations) x 4 (shapes) = 168. However, several of
these possibilities are difficult to realize (e.g., pronating movement at the upper
arm location); so, dropping these leaves us with a total of 148 cases.

Three non-native ASL signers volunteers each executed all 148 movements
while their actions were recorded with a video camera to yield an experimental
test set of 3 (volunteers) x 148 (phonemic combinations) = 444. In addition, 12
non-native ASL signer volunteers executed an approximate equal subset of the
subsampled gesture space (approximately 14 gestures each). This allowed us to
test our approach’s robustness to the variability of gesture execution amongst
different volunteers without the associated tedium of collecting the full set of ges-
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tures from each volunteer. It should be noted that the volunteers were fully aware
of the camera and their expected position with respect to it (i.e. frontoparallel),
this allowed precise control of the experimental variables for a systematic em-
pirical test. With an eye toward applications, such control is not unrealistic: A
natural signing conversation consists of directing one’s signing towards the other
signer (in this case a camera). In total our experimental test set consisted of 592
gestures.

During acquisition, standard indoor, overhead fluorescent lighting, was used
and the normal (somewhat cluttered) background in our lab was present as volun-
teers signed in the foreground. Each gesture sequence was captured at a resolution
of 640x480 pixels at 30 frames per second. Volunteers were seated approximately
1.45 meters away and instructed to maintain a frontoparallel attitude with respect
to the camera during the session. See Fig. 3.1 for a view of our experimental
setup.

Typically, the hand region encompasses a region in a frame with dimensions
approximately 100 pixels in both width and height. On average the gesture
sequences spanned 40 frames for constant sign movements and 80 for periodic
movements (note that the initial gesture sequence was subsampled temporally
by two). Prior to conducting the gesture each volunteer was verbally instructed
about the gesture. This was done in order to ensure the capture of naturally oc-
curring extraneous motions which can appear when an unbiased person performs
the movements. Following capture, initial regions of interest for the affine mo-
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Figure 3.1: Depicted above is a side view of our experimental setup.

tion estimator were manually selected for the first frame of each sequence to seed
the automated processing. See Fig. 3.2 for an example sequence; for example

sequences of all the movements see Appendix C.
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Figure 3.2: Circular movement example. (a)-(d) Four frames of a circular move-
ment image sequence (e) Plots of the normalized kinematic time series spanning
the length of the gesture. The frame numbers marked on the graphs correspond
to the frame numbers of the image sequence.
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3.1.2 Results

The results of the recognition process are shown in Tables 3.1 and 3.2. Over-
all 97.13% of the 592 test cases were properly identified. Of the failures, three
cases arose from failure of the affine motion estimator to correctly track the ges-
ture (quantified by the bounding box about the hand region, as transformed
by the affine transformation having more that 95% of its region not occupied
by the hand). We deal with these as “failure to acquire”; they were not pro-
cessed further. Of the cases where the motion estimator correctly tracked the
gesture throughout the sequence, the initial classification between constant sign
and periodic movements performed without error, and at the subsequent phone-
mic classification step 97.62% were identified correctly. Additionally, it was found
that for 99.49% of the sequences the correct classification was within the top two
candidate movements (see Table 3.1 for the classification results considering the
top two candidates). In terms of execution speed, the tracking speed using a
Pentium 4 2.1 GHz processor and unoptimized C code averaged 8 frames/second
across all gestures sequences; the time consumed by all other components was

negligible.
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| Movement || Top 1 | Top 2 |

up 100 100

down, 100 100

up and down 100 100
rightward 100 100
leftward 97 100

side to side 100 100
toward signer 96 100
away signer 98 100
to and fro 92 100
supinate 97 100
pronate 100 100
twist wrist 100 100
nod 84 91

circular 100 100

Table 3.1: The table depicts the percentage of image sequences of a particular
movement that were correctly classified by the first candidate (first column) and
the the percentage of sequences that were correctly classified by either of the top
two candidates (second column).
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3.1.3 Discussion

In terms of tracking, two types of failures may occur, gross errors in the frame-
to-frame motion estimate and the drifting of the tracked region away from the
hand region due to accumulated tracking errors. The three failed tracking cases
encountered were caused by gross colour under-segmentation (region of motion
support rendered too small for motion analysis) in a frame, over-segmentation
(region of motion support includes substantial non-hand regions that the robust
estimator cannot subsequently handle) in a frame or fast movements of the hand
that lead to frame-to-frame displacement beyond the capture range of our affine
motion estimator. Note that colour segmentation errors substantial enough to
cause such breakdowns are rare in our experiments. We did not observe any
significant drift, this is due to our use of skin colour to define the region of
support and a robust motion estimator to further reject gross outliers, including
outliers that skin segmentation admitted.

Given acceptable tracking, problems in the classification per se arose from non-
intentional but significant motions accompanying the intended movement. For
instance, when conducting the “away signer” movement, some of the volunteers,
would rotate the palm of their hand about the camera axis as they were moving
their hand forward. Systematic analysis of such cases may make it possible to
improve our feature signatures to encompass such variations.

Overall, the results demonstrate the ability of our algorithm to recognize
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correctly the 14 gesture movements that comprise the single handed movement
phonemes of ASL, even while hand location and shape vary widely. This ability to
decouple the primitive components of gestures is key to our overall framework, as
complex gestures are analyzed in terms of their linguistically defined constituent

elements.

3.2 Attitude experiment

3.2.1 Experimental design

The purpose of this experiment was to test the sensitivity of our phoneme classifier
to non-frontoparallel attitudes of the signer with respect to the camera. In this
experiment 3 volunteers each executed the 14 movements at attitude positions
+15 and +30 degrees; the angle is measured with respect to the frontoparallel
position which is assumed to be at 0 degrees (see Fig. 3.3). Only the torso
location and B5 (open hand) hand shape were used in this experiment. In total
this experiment consisted of 14 (movements) x 4 (attitudes) x 1 (location) x 1
(hand shape) x 3 (volunteers) = 168 test sequences.

As with the previous experiment standard indoor, overhead fluorescent light-
ing, was used with a somewhat cluttered background. Each gesture sequence
again was captured at a resolution of 640x480 at 30 frames per second. Vol-
unteers were seated approximately 1.45 meters away from the camera. Repre-
sentative views of a volunteer at the considered attitudes are shown in Fig. 3.3.

Following capture, we manually segment the hand region within the first frame,
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to seed the ensuing tracking and classification processes.
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3.2.2 Results

In terms of tracking three failed cases occurred. All three occurred during the
twist wrist movement at 30°. The cause of the failures in all three cases was the
hand reaching a parallel configuration with respect to the imaging rays. This
resulted in the tracked surface of the hand being lost. The results of the classi-
fication at each of the attitudes (less the failed tracked cases) is summarized in
Tables 3.3 through 3.7. Inspection of the results reveals that the erroneously clas-
sified gestures are for the most part isolated to those gestures containing a purely
horizontal (translation parallel to imaging plane) or divergence (translation along
the camera axis) component. This is to be expected since the signatures were
derived based on the assumption that the signer was frontoparallel with respect
to the camera. As the signer deviates from the frontoparallel pose, the gesture

containing a purely horizontal or divergence component will consist of both.
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Attitude
Movement 15° —15° 30° —-30°
Top 1| Top2 || Top1l [ Top 2 | Top 1] Top 2 || Top 1| Top 2

up 3 3 3 3 3 3 3 3
down, 2 3 3 3 3 3 3 3
up down 3 3 3 3 3 3 3 3
righward 3 3 3 3 3 3 3 3
leftward 0 2 3 3 0 0 3 3
side to side 3 3 3 3 3 3 1 3
toward signer 3 3 1 2 1 3 0 0
away signer 1 2 1 3 0 2 0 1
to and fro 1 3 0 3 0 3 0 2
supinate 3 3 3 3 3 3 3 3
pronate 3 3 3 3 3 3 3 3
twist wrist 3 3 3 3 * * 3 3
nod 3 3 3 3 3 3 3 3
circular 3 3 3 3 2 2 3 3

Table 3.3: The table depicts the number of image sequences of a particular move-
ment that were correctly classified by the first candidate (i.e. “Top 1”) and the
the number of sequences that were correctly classified by either of the top two
candidates (i.e. “Top 2”) at attitudes 15°, —15°, 30° and —30°. In total there
were three image sequences of each gesture for each of the attitudes used in this
experiment. The asterisk denotes that zero cases were considered for classifica-
tion.
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Table 3.7: Gesture movement recognition results at —30°. The axes of the table represent the actual input gesture
(vertical) versus the classification result. Each cell (i,j) in the table holds the number of test cases that were actually i
but classified as j. The diagonal (i,j) represents the count of the correctly classified gestures.



3.2.3 Discussion

As noted in the previous section, the classification of gestures containing a purely
horizontal or divergence component are affected when the pose of the signer

is greater than a £15° offset from the frontoparallel pose. To ameliorate this

problem future work may include extracting the relative attitude of the signer
with respect to the camera and incorporating it in the classifier. Additionally,
future work may include varying the pose by smaller increments in order to

uncover the breakdown point in classification with respect to the signer’s pose.

3.3 Overall Discussion

In this chapter we have outlined our experimental evaluation of a software real-
ization of our algorithm. The goal of our experimental evaluation was to verify
that our algorithm reliably recognizes the phonemic movements under consider-
ation irrespective of the signer, hand location, hand shape and deviations from
the frontoparallel pose. With a frontoparallel pose (Section 3.1), high recognition
accuracy was achieved, this was imperative since the frontoparallel pose is the
most natural signing pose. In our second experiment (Section 3.2), deviation from
the frontoparallel pose, a subset of the gestures were found to be misclassified in
predictable ways, while all others were classified reliably. The predictability of
the breakdowns suggest extensions that may ameliorate this problem. Finally,

our current experimental evaluation used only non-native ASL signers, given that
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one of the primary users or our system are native ASL signers future work will
include native signer’s in our experimental evaluation. In this direction, a pos-
sible candidate video database is [54], which the author’s report to be the most
extensive video database of ASL database. A key feature of this database is that

special attention was given to capturing the phonemic elements of ASL.
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Chapter 4

Conclusion

4.1 Summary

In this report we have presented a novel approach to vision-based hand ges-
ture recognition. Our approach can be summarized by the following three steps.
First, we appeal to linguistic theory to represent complex gestures in terms of
their primitive (phonemic) components. By working with a finite set of primi-
tives, which can be combined in a wide variety of ways, our approach has the
potential to deal with a large vocabulary of gestures. Second we analytically de-
rive the ideal mappings between each of 14 single handed phonemic movements
and a subset of the kinematic parameters describing the apparent motion of the
hand. Third, using these ideal mappings we define distinctive signatures for the
primitive components that can be recovered from monocular image sequences.
By working with signatures that can be recovered without special purpose equip-
ment, beyond a general purpose computer equipped with a single video camera,

our approach has the potential for use in a wide range of human computer inter-
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faces. Using American Sign Language (ASL) as a test bed application, we have
developed an algorithm for the recognition of the primitive contrastive move-
ments (movement phonemes) from which ASL symbols are built. The algorithm
recovers kinematic features from an input video sequence, based on an affine de-
composition of the apparent motion(s) across the sequence. The recovered feature
values affect movement signatures that are used in a simple nearest neighbour
recognition system. Empirical evaluation of the algorithm suggests its applica-
bility to the analysis of complex gesture videos. Finally, it should be noted that
though the full hierarchy for recognizing continuous ASL has not been addressed
in this report, the movement module we presented may be readily employed in

simple gesture based interfaces (e.g. camera control).

4.2 Future work

A logical immediate extension of this report is to remove the following assump-
tions: the initial location of the hand is known and the hand movement has been
temporally segmented. Interestingly, it is common in the gesture recognition lit-
erature to make special accommodations for initialization and segmentation [58].
To relax these assumptions future work may appeal to spatiotemporal conjunc-
tions of temporal change and skin colour (some preliminary work on this approach
is outlined in Appendix B) to automatically isolate the initial hand location and
detecting discontinuities in the kinematic feature time series to temporally seg-

ment the gestures (e.g. [64]).
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Though tracking failure was not found to be unduly problematic under our
experimental conditions, it should be noted that realistic hand speeds of those
signing in ASL far exceed those used in our experiments. Those larger displace-
ments may be accommodated by increasing the number of levels used in the
pyramid up to a point or replacing the gradient-based motion estimator (e.g.,
consideration of a correlation-based, rather than gradient-based method); how-
ever beyond a certain hand speed significant motion blur sets in which in turn
diminishes tracking ability in both the gradient and correlation-based methods.
Possible solutions to the motion blur problem is the use of a higher frame rate
camera to decrease inter-frame motion

The long term goal is to complete the ASL recognition framework depicted
in Fig. 2.1. At the phonemic level, the outstanding problems of location and
hand shape pose basic vision problems. Additionally, the inclusion of two-handed
gestures with possibly occluding (i.e. one hand obscures the other) scenarios
remains to be addressed. As we move up the hierarchy the lexical level will
require dictionary knowledge and the ability to provide the sentence level with
alternative candidates due to misclassifications that may occur at the phonemic
level. Finally, the sentence level will require the incorporation of ASL grammar

in order to further constrain possible candidate sentences.
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Appendix A

Velocity Description

A.1 World velocity description

The mathematical description of a 3D point (world point in camera coordinates)
undergoing a rigid transformation about the camera axes follows.
Let w;, w, and w, represent the angle of rotation about the X, Y and Z axes

respectively (see Fig. 2.3). An arbitrary rotation R is represented as:

1 0 0 cos(wy) 0 sin(wy) cos(w,) —sin(w,) 0
R=10 cos(w,) —sin(w,) 0 1 0 sin(w,) cos(w,) 0
0 sin(w,) cos(w,) —sin(wy) 0 cos(wy) 0 0 1

Assuming infinitesimal rotations, the zeroth order terms of the Taylor series ex-
pansion of the trigonometric functions sin and cos provide the following approx-
imations,

cos(0) ~ 1, sin(fd) ~ 0 (A.2)

Using the approximations in (A.2), R can be approximated as follows in terms

Y
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of angular velocity,

Let the vector T = (tzyty,t.)" represent the translational velocity, where the
elemental components t,, t, and ¢, represent the translational velocities in the
X, Y and Z directions respectively. The velocity V= (X Y. Z )" of a point in
the world P = (X,Y, Z)T with respect to camera coordinates undergoing a rigid
transformation is represented as,
wyd —wY +1,
V=R-DP+T=T+QxP= |y X w7 +t, (A.4)
wyY —w, X +1,
where I represents a 3 by 3 identity matrix.
In the case where the rotation of the object is about an arbitrary point in
space Q = (¢z, Gy, ¢-)" (assuming the coordinate systems are aligned) the trans-

formation is represented by the following,

wy(Z —q.) —w.(Y —q,) + 1,
V=R(P-Q+G+T-P= |0 (X -q) —walZ—q.) +1, (A.5)

wx<Y - Qy) - Wy(X - Qx) +1,
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A.2 Image velocity description I

The mathematical description of the image velocity follows for a rigid trans-
formation about the camera coordinate system as defined in A.1. Assuming a
perspective projection onto a plane parallel the X, Y axes and located at Z = 1
(without loss of generality the focal length f = 1), the relationship between an

image point (z,y) and a scene point (X,Y, 7) is

y - % (A.6)

Differentiating (A.6) with respect to time yields,

. X X7
T = U =—=— —
2

v v (A1)
p=v =g m

Substituting (A.4) and (A.6) into (A.7) results in the following,

t, —t,x

. Zt (A.8)
vo= wyry —w (¥ + 1) fw.r+ ysz

u = —wzy+wy(2?+1) —w,y+

Assuming that the imaged surface is a plane with surface normal @ = (n,,n,,n,)"

and containing the point (Xy, Yo, Zp), provides the following constraint,

aX +B8Y +4Z =1 (A.9)

or equivalently as

1
omc+ﬁy+’y:§ (A.10)
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where

v

d

d (A.11)

= nyXo+n,Yy+n.2

Substituting the planar constraint (A.10) into (A.8) leads to following formulation

for the instantaneous velocities,

where

ap + a1 + axy + arry + agw?

(A.12)
a3 + asx + azy + agry + azy?
ay = tpyt+wy
ar = tpa—tyy
az = lf—w,
BT e (A.13)
ay = lya+tw,
as = t,08—ty
ag = wy—l«
a7 = —t.f—ws

Through first order in image coordinates, we have the following affine model for

the instantaneous velocity,

U = ag+ ax+ ay (A 14)

v = az+ a4x + asy
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A.3 Image velocity description II

The mathematical description of the image velocity for a rigid transformation
consisting of a rotation about an arbitrary point as defined in A.1 follows.

Assuming a perspective projection onto a plane parallel the X, Y axes and
located at Z=1 (without loss of generality the focal length f = 1), the relationship
between an image point (z,y) and a scene point (X, Y, 7) is given by (A.6) and
the velocity of each image point is give by (A.7).

Substituting (A.5) and (A.6) into (A.7) results in the following,
te + Q. — Gy + (que — . — Guwy)T

Z

ty + QWy — QW5 + (Qywx - tz - way)y
Z

U = Wy — WY — Wy + wyr? +

V= —Wi W+ Wy — wey? +

(A.15)
Substituting the planar constraint (A.10) into (A.15) and once again limiting,
consideration through first order terms leads to the following affine model for the

instantaneous velocities,

U = ag+ aT+ ay (A 16)

v = as3+ asx + asy
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where

ay = Wy + (waqy +ty — wyq.)y

a1 = (Way + 1ty —wyde)a + (WaGy — wye — L2)Y

ag = —w; + (Waqy + e — wyq:)B

as = —Wz + (Wa s + by — W2qa)Y (A.17)
ay = w, + (weq, + 1, — w,q,)

as = (W2 + 1y — w.q.)0 + (Way — wygs — L2)7

A.4 First-order accuracy

In this section we summarize the results of analytical as well a numerical inves-
tigation we conducted to compare the accuracy of the first-order visual motion
field description of a planar surface (approximation assumed in this report) to
the analytically globally correct second order representation. Furthermore, we
omit the effects of lens distortion and assume noiseless data, as our concern is
with the residual error between the first and and second-order models.

For this analysis the plane (representing the hand in our model) undergoes
each of the following movements (for detailed descriptions of the movements see
Section 2.4): upward, away signer, nod and supinate. Similar results hold for the
remaining phonemic movements by symmetry. For each of the movements it is
assumed that its constituent 3D instantaneous movements are constant through-

out the sequence. Additionally, the plane is assumed to be located initially at
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a distance of 1.45 meters (taken from our experimental setup) away from the
camera.

The perspective projection camera (depicted in Fig. 2.3) is assumed to have a
focal length f = 6 millimeters, with equal horizontal and vertical scaling factors
of s = 1/(5.6 x 107%)mm. Both the focal length and scaling factors are taken
from our experimental setup.

The following is the second order description of the motion field (in pixel

units) of a planar surface with the inclusion of the focal length f and scale factor

S’
U = g+ a1x + ay + arxry + a6m2
(A.18)
v o= a3+ ax + asy + agry + ary?
where
g = f)/fstx + fswy - stqzwy + ’nyQywz
ap = oty =yt +Yqw, — YGwy — aqw, + aguw,
Ay = 6taz - ﬂq,zwy —w,+ ﬂqywz
az = 'stty - fswa: + stqzwz - 'YfSszz
(A.19)
ay = aty + Qq W, + W, — aguW,

as = ﬁty - ’Vtz + f)/Qywz + 6qzwm - VQIWy - 6qmwz

—at, + aqu; + wy — aqey

ag =
[s
. _ﬁtz — Wy + 6qywm - 6qa:wy
a7 = f

where f; = f xs. For a detailed derivation and definitions of all the terms less the

inclusion of the focal length and scaling factors see Appendix A.1, A.2 and A.3.
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The first-order model consists of truncating the second-order model up to the

first-order terms, thus the associated error (Ueror, vermr)T between the models is,

Uerror = Q72Y + GG.TZ
(A.20)

Verror = QgTY + (l7y2
From (A.19 and A.20) it can be seen that the error associated with the first-
order model (i.e. quadratic terms of second-order model) are independent of ¢, ¢,
and w,, thus the motion of the hand undergoing upward and supinate movements
and their symmetric movements are fully characterized by the affine model (i.e.

zero associated error). Further, note that for rotation about Q = (0,0,¢.) 7,

which occurs for the nod movement, the error is

—TYWw, + way TYwy — YWy

Js ’ Js

||(uerToraUerT0T)|| = ”( )” (A.Ql)

since w, = 0 for all our movements the error reduces to the following,

2
— XYWy —Y W

Uerrory Verror - 3 (A22>
I( )l Ii T T )|l
Taking, ||-|| as the ly-norm we find,
_ o wsl 2, 2112 (A.23)
|| (uer'rora Uerror) || - f |y| [Z’ +y } '

The error thus depends linearly on the magnitude of the rotational velocity w,,
inversely on the scaled focal length f,, modulated by both the magnitude of the
distance of the point (z,y)" from the image origin (i.e. intersection of image

plane and camera axis) and the the magnitude of y.
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Similarly, if (a, ) = (n./d,n,/d) = (0,0), ie., the plane is parallel with
the imaging plane, then ||(Yerror, Verror)|| = 0 for pure t, cases (i.e. away signer,
towards signer and to-fro). From these analytical developments we anticipate
little difficulty in relying on the first-order motion model in our work.

To provide further backing, for out selection of the affine model, we have
conducted a numerical simulation. Given an initial 110 x 180 mm? region of the
planar surface (size of author’s hand) centered about the camera axis in the world
space, we uniformly sample this region by selecting every fifth point and record
the second order components of the visual motion (i.e. affine error as in A.23)
of each point as it undergoes a nod movement, since this is the only movement
with non-zero analytic case. In terms of 3D instantaneous movements this is

accomplished by rotating the plane by the instantaneous rotational velocity,

T , 1 T 1 m .
Wr = <—§7“adzans> (numberofframes) B <_§) (%) B —7—07"adzans/f7"ame

(A.24)
(where a frame equals 1/15 of a second, differs by a factor of 2 from video
rate capture due to temporal subsampling during preprocessing) about the point
Cj = (0,0,q.)" where ¢. = 1450 (distance of plane in millimeters). Note that
the number of frames used in our estimate of the instantaneous rotational ve-
locity was estimated from our experimental image sequences. Figure A.1 shows
a plot of the maximum error versus time (i.e. frame number). In Fig. A.2 the

plots of the magnitude of the velocity of the point with maximum affine error
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(over time) is plotted, under both the affine and quadratic models. Note that
these maximum errors correspond to the extremal points of the planar patch. In
both cases it can be seen that in the worst case (i.e. points furthest from the
origin) the contribution of the second-order terms (i.e. affine error) is negligible.
Thus leading us to the conclusion that the affine model used in this report is a

reasonable approximation for the cases under consideration.

82



Affine error: Nod movement
0.25 T T

0.15 1

Magnitude of error (in pixels)

0.05 i

0 ! ! ! ! ! !
0 5 10 15 20 25 30 35

Frame number

Figure A.1: This plot depicts the magnitude of the maximum affine error of the
visual motion field of a 110 x 180 mm? central region of a plane undergoing a
nod movement.
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Affine versus Quadratic flow
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Figure A.2: This plot depicts the magnitude of the velocity of the point exhibiting
maximum affine error over time, under the affine (solid plot) and quadratic models
(dashed plot).

84



A.5 Kinematic parameter definitions

Eq. (2.4) can be rewritten in matrix form as an affine transformation A plus a

translation ¢, formally,

i=AZ+t (A.25)
where
ap az
A= (A.26)
as Qs

@ = (u,v)” represents the 2D displacement, Z = (z,y)” represents the point and
t = (ag, as)” represents the x and y translational components respectively.

In understanding the ramifications of the the transformation embodied in
A it is advantageous to recast it in terms of kinematic quantities that capture
(infinitesimal) rotation (curl), expansion/contraction (divergence), and shear (de-
formation) ([4, 44, 51, 80]). Toward that end A can be rewritten as a sum of a

symmetric and antisymmetric matrix as follows,

A— %[(A +AT) 4 (A — A")] (A.27)

The antisymmetic part can be expressed as,

0 Ao — Q4 0 —1
A — AT = == (—ag —+ CL4) (A28)
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The symmetric part can be further decomposed into two components, the sum

of a scalar multiple of the identity matrix and a symmetric matrix

2@1 as + aq ay + as 0 a1 — Q5 as + aq
A+A" = = +
as + ay 2as5 0 ay + as as +ay —a; +as
A.29)

With the above decompositions, A can be expressed as,

1 0 —1 1 1 0 1
A= §curl + §div + §defS (A.30)
1 0 0 1
where
div = ay + as
curl = —as + ay (A.31)

def = \/(al —as5)? + (ag + ay)?

and S is a traceless matrix defining the direction of the area preserving defor-
mation. It is interesting to note that the divergence, curl and magnitude of the

deformation are invariant to rotations of the image coordinate frame.
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Appendix B

Hand Localization

In our current work it has been assumed that the hand region in the image has
been manually delineated. Such an assumption will have to be removed in order
to achieve the goal of a fully automated hand gesture recognition system. In this
section we describe a possible strategy to automatically localize the hand in the
first frame of a gesture sequence. Key assumptions leveraged in the proposed
approach are, the hand is the dominant moving object in the scene and the hand
can be distinguished from most objects in the scene by its colour.

The basic approach we have selected consists of motion detection via localiz-
ing frequency tuned change energy within a pyramid framework [3]. Specifically,
we isolate the dominant moving region, assumed to be the hand, by detecting sig-
nificant energy within a specific region in the spatio-temporal frequency domain.
As a final step we apply skin detection to refine the segmentation.

The first step consists of localizing the moving region in the temporal fre-
quency domain. This is accomplished by taking a frame to frame difference

image D (crude high pass temporal filter) by subtracting the initial frame 7(0)
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Gaussian
Planes

Laplacian
Planes

Figure B.1: A summary of constructing Laplacian and Gaussian pyramids is
depicted. Let G represent the original image, and G be the result of convolving
(denoted by the asterisk symbol) a low-pass filter w (in our case Gaussian filter
approximated by a 5 x 5 binomial filter) with Gy and downsampling the result
by 2 (denoted by the downward pointing arrow). The first level of the Laplacian
pyramid Lg is given by Lo = Gy — G * w, subsequent levels of the pyramid are
given by L; = G; — G; xw.

from a subsequent frame I(t), formally, D = I(t) — I(0).

Given the difference image D a Laplacian pyramid is constructed [17] (see
Fig. B.1 for details on constructing the Laplacian pyramid); each level of the
Laplacian pyramid represents pass bands in the spatial domain spaced at one
octave intervals (some overlap does occur). A particular level (L) of the Lapla-
cian pyramid is selected for further analysis. The selection of L, is dictated by
the fact that the object of interest, the human hand, is rather textureless, thus
movements over a small number of frames will result in edge structures at the
occlusion boundaries of the hand, these edge structures are most evident in the
high frequencies; Lg is another possible candidate but not considered since a

significant portion of the image noise is captured at this level.
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The next step consists of locally integrating values of the squared result of L
(i.e. L?) to form energy measures. This is accomplished through the construction
a Gaussian pyramid to a height of k£ = 3 (for details on constructing a Gaussian
pyramid see Fig. B.1). We localize the moving region (i.e. the hand region) by
first finding the peak energy within (Gj. This step is extremely computationally
efficient given the reduced resolution. Next we take the weighted average of
each image position (i.e. centroid) within a 40 by 40 region of Gj_; centred
about the peak found at level G; the weight is determined by the energy at
each point divided by the sum of the energy of all points within the region being
examined. The process of finding the centroid is iterated down the pyramid until
Gy is reached. At this point it is assumed that the hand is bounded by the
analysis region. The use of a weighted average is necessitated by the fact that as
we move down the Gaussian pyramid the outline of the hand becomes the only
prominent structure; if the maximum (i.e. peak) response at each level were only
considered then localization may only occur about an outline structure rather
than consuming the whole hand region.

Finally, we apply skin colour segmentation (see Section 2.5 for details) to
refine the localization of the hand.

The general outline of the algorithm is as follows:

1. Form difference image D between initial image and a subsequent image.

2. Decompose the difference image D into a set of spatial frequency bands

89



through the construction of a Laplacian pyramid.

3. Construct a Gaussian pyramid to level k using L? as the base level.

4. Recursively localize energy centroid at each level of the Gaussian pyramid

starting at level k.

5. Apply skin colour segmentation to refine the localization of the hand.

In Fig. B.2 and Fig. B.3 we present representative successful output of the
various stages. In Fig. B.4 we present a failed localization case. The source
of the failure is the violation of our assumption that the hand is the dominant
moving object in the scene. In fact, in Fig. B.4 it can be seen that both the
hand and arm regions contain significant energy, with the arm region containing
slightly more energy. Note that in this case the localized region contains very
little skin tone. In such cases, the region may be discounted as erroneous and the

next largest response in the Gaussian pyramid should be localized.
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Figure B.2: Localization example 1. Example output of localization steps. De-
picted are the outputs of the various stages of the proposed localization scheme
for two gesture sequences. (a) difference image (b) Laplacian pyramid decompo-
sition of difference image D (¢) Gaussian pyramid with L? (pointwise squaring
of pixels of L;) as the base level (for clarity (c¢) is scaled by a factor of 2) (d)
I(0) with white box denoting the foveated motion region. Within the delineated
region skin segmentation is applied, white denoting a skin pixel and black a non-
skin pixel.
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Figure B.3: Localization example 2. Example output of localization steps. De-
picted are the outputs of the various stages of the proposed localization scheme
for two gesture sequences. (a) difference image (b) Laplacian pyramid decompo-
sition of difference image D (¢) Gaussian pyramid with L? (pointwise squaring
of pixels of L;) as the base level (for clarity (c¢) is scaled by a factor of 2) (d)
I(0) with white box denoting the foveated motion region. Within the delineated
region skin segmentation is applied, white denoting a skin pixel and black a non-
skin pixel.
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Figure B.4: Failed localization example. Example output of localization steps.
Depicted are the outputs of the various stages of the proposed localization scheme
for two gesture sequences. (a) difference image (b) Laplacian pyramid decompo-
sition of difference image D (¢) Gaussian pyramid with L? (pointwise squaring
of pixels of L;) as the base level (for clarity (c) is scaled by a factor of 2) (d)
I(0) with white box denoting the foveated motion region. Within the delineated
region skin segmentation is applied, white denoting a skin pixel and black a non-
skin pixel.
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Appendix C

Example Sequences

In this section we provide example sequences taken from our experimental data
set of each of the 14 movements considered in this report with accompanying plots
of each of the kinematic time series. Note that the affine motion estimator that
we employ adopts the convention that the vertical axis points downwards; hence
normalized ver component signs are reversed in the following plots in comparison

to the analysis presented elsewhere in this report.
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(a) Frame 0 (b) Frame 8 (c) Frame 16 (d) Frame 24
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Figure C.1: Upward movement example. (a)-(d) example frames (e) normalized
kinematic time series plots. Note that the vertical axis points downwards in
these plots as opposed to upwards as assumed elsewhere in this report. Thus,
the normalized ver component signs are reversed.
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(a) Frame 0 (b) Frame 11 (c) Frame 22 (d) Frame 33
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Figure C.2: Downward movement example. (a)-(d) example frames (e) normal-
ized kinematic time series plots. Note that the vertical axis points downwards
in these plots as opposed to upwards as assumed elsewhere in this report. Thus,
the normalized ver component signs are reversed.
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(a) Frame 0 (b) Frame 18 (c) Frame 36 (d) Frame 54
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10 20 30 40 50 60 70
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(e)

Figure C.3: Up and down movement example. (a)-(d) example frames (e) nor-
malized kinematic time series plots.
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(a) Frame 0 (b) Frame 7 (c) Frame 14
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Figure C.4: Rightward movement example. (a)-(d) example

ized kinematic time series plots.
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(a) Frame 0 (b) Frame 13 (c) Frame 26 (d) Frame 39
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Figure C.5: Leftward movement example. (a)-(d) example frames (e) normalized
kinematic time series plots.

99



(a) Frame 0 (b) Frame 20 (c) Frame 40 (d) Frame 60
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Figure C.6: Side to side movement example. (a)-(d) example frames (e) normal-
ized kinematic time series plots.
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(a) Frame 0 (b) Frame 10 (c) Frame 20 (d) Frame 30
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Figure C.7: Toward signer movement example. (a)-(d) example frames (e) nor-
malized kinematic time series plots.
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(a) Frame 0 (b) Frame 11 (c) Frame 22 (d) Frame 33
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Figure C.8: Away signer movement example. (a)-(d) example frames (e) normal-
ized kinematic time series plots.
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(a) Frame 0

Normalized Response
o
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Figure C.9: To and fro movement example. (a)-(d) example frames (e) normalized

(b) Frame 29

(c) Frame 58
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(a) Frame 0 (b) Frame 16 (c) Frame 32 (d) Frame 48
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Figure C.10: Supinate movement example. (a)-(d) example frames (e) normalized
kinematic time series plots.
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Figure C.11: Pronate movement example. (a)-(d) example frames (e) normalized
kinematic time series plots.
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Figure C.12: Twist wrist movement example. (a)-(d) example frames (e) nor-
malized kinematic time series plots.
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Figure C.13: Nod movement example. (a)-(d) example frames (e) normalized
kinematic time series plots.
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Figure C.14: Circular movement example. (a)-(d) example frames (e) normalized
kinematic time series plots.
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