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Abstract

In this report, motivated by large margin classifiers in machine learning, we pro-
pose a new discriminative training criterion for estimating CDHMM (continuous
density hidden Markov model) in speech recognition based on the principle of max-
imizing the minimum multi-class separation margin. In this report, we first show
that this maximum margin model estimation problem can be formulated as a stan-
dard constrained minimax optimization problem. Alternatively, we also show that
the estimation problem can be solved by a GPD (generalized probabilistic descent)
algorithm if we approximate the objective function by a continuous and differen-
tiable function, such as summation of exponential functions. In this report, we also
propose a method to handle classification errors in training set in maximum margin
estimation by using them to optimize a separate objective function which is similar

to that in the MCE (minimum classification error) formulation.
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1 Introduction

The most successful modeling approach to automatic speech recognition (ASR) is to use
a set of HMMs as the acoustic models of subword or whole-word speech units and to
use the statistical N-gram model as language models for words and/or word classes. All
the model parameters, including HMMs and N-gram models, are estimated from a large
amount of training data. As for HMM-based acoustic models, the dominant estimation
method is the Baum-Welch algorithm based on the maximum likelihood (ML) criterion.
The ML estimation methods of HMM parameters have been developed for a variety of
HMM types in the last two decades, e.g., in [6, 19, 14] and many others. As an al-
ternative to the standard Maximum Likelihood (ML) estimation, discriminative training
has also been extensively studied for HMM-based automatic speech recognition (ASR).
Some discriminative training methods aim to improve model separation among all models,
such as maximum mutual information (MMI) training [4], conditional maximum likeli-
hood estimation (CMLE) [21] and H-criteria[8]. Other methods try to directly reduce the
recognition error rate on training data, such as corrective training [5], minimum empiri-
cal error rate training [20] and MCE (minimum classification error) training [15, 16, 17].
Among these approaches, the MCE formulation has been regarded as one of the most suc-
cessful methods. In the MCE, the empirical error rate on training data is approximated
by a smoothed and differentiable objective function and then the GPD (generalized prob-
abilistic descend) algorithm [17] is used to minimize the objective function with respect
to all HMM parameters.

Discriminative training has been found quite effective to improve ASR performance
over the ML method in small or medium vocabulary ASR tasks (see [22, 16]). However, no
significant gain in performance had been demonstrated in any large-scale ASR tasks until
very recently. In [25], the MMI method was applied to the switchboard task and some
moderate but consistent improvements over the conventional ML method were observed in

their experiments while in [11, 12] the MCE method was extended to a large-scale contin-
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uous speech recognition task, e.g., the DARPA communicator task, and similarly a slight
gain was achieved over the best ML-trained HMMs. Despite of these significant progresses,
many issues related to discriminative training still remain unsolved. For instance, as re-
ported by many researchers (see [25, 12| and others), all discriminative training methods
for HMM-based speech recognition suffer the problem of poor generalization capability.
In other words, the discriminative training can significantly improve HMMSs and leads to
a dramatic error reduction on training data but such a significant performance gain can
hardly be maintained or generalized in any new unseen test set. Usually only a marginal
gain can be achieved over the ML method in a new data set even after discriminative
training method is carefully handcrafted for the test set, especially in large-scale tasks.
So far, the two major discriminative training criteria, namely maximum mutual informa-
tion (MMI) and minimum classification error (MCE), have been extensively studied for
speech recognition. Intuitively, a better discriminative training criterion will lead to a
better generalization capability. Motivated by some recent advances in machine learning
about large margin classifiers, in this report, I propose to estimate HMMs discriminatively
based on a new criterion, such as maximum separation margin, as in other large margin
classifiers. Based on the theoretical results in machine learning, a large margin classifier
implies a good generalization power and generally yields much lower generalization errors
in new test data as shown in support vector machine (SVM) and boosting method.

In [1, 2|, the authors proposed the so-called Hidden Markov Support Vector machines
(HMSVM) for label sequence learning problem. In HMSVM, discrete HMMs (DHMMs)
are estimated based on the large margin principle. As shown in [1, 2|, estimation of
DHMMs for large margin turns out to be a quadratic programming problem under some
constraints. The problem can be solved by many standard optimization software tools
similarly as the standard support vector machine (SVM). However, in automatic speech
recognition (ASR), Gaussian mixture continuous density HMM (CDHMM) is the most

popular model for modeling speech signals. In this paper, we study how to estimate
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CDHMM based on the above large margin principle for speech recognition. I will show that
the proposed approach is similar to the standard GPD-based MCE discriminative training
which has been extensively studied for years but it is based on a new discrimination

criterion, namely maximizing the minimum margin of HMMs in classification.

2 Large Margin HMMs for ASR

In ASR, given any speech utterance X, a speech recognizer will choose the word W1 as

output based on the plug-in MAP decision rule [10, 18] as follows:

A

W = argmax p(W[X) = argmax p(W) - p(X|W) (1)

= argmaxp(W) - p(X|Aw) = arg max F (X | \w)

where Ay denotes the HMM representing the word W and F (X |Aw) = p(W)-p(X |Aw)
is called discriminant function. In this work, we are only interested in how to estimate
HMM Ay and assume language model used to calculate p(W) is fixed.

For a speech utterance X;, assuming its true word identity as W, following [1, 2], the

multi-class separation margin for X; is similarly defined as:

d(X;) = F(Xi[Aw;) — e F(XilAw;) (2)

where €2 denotes the set of all possible words. Apparently, the above equation (2) can be

re-arranged into:

d(X;) = Wjeglvi%#wi [F(Xi|Aw,) — F(XilAw,)] (3)

Obviously, if d(X;) < 0, X; will be incorrectly recognized by the current HMM set,
denoted as A; if d(X;) > 0, X; will be correctly recognized by the models A.
Given a set of training data D = {X;, Xs, -+, X7}, we usually know the true word

identities for all utterances in D, denoted as £ = {W;, Wy, --- Wy}, Thus, we can

'Depending on the problem of interest, a word W may be any linguistic unit, e.g., a phoneme, a

syllable, a word, a phrase, a sentence, etc..
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calculate the separation margin (or margin for short hereafter) for every utterance in D
based on the definition in eq.(2) or (3). If we want to estimate the HMM parameters
A, one desirable estimation criterion is to minimize the total number of utterances in
whole training set which have negative margin as in the standard MCE estimation [15,
16]. Furthermore, motivated by the large margin principle in machine learning, even
for those utterances which all have positive margin, we may still want to maximize the
minimum margin among them towards a HMM-based large margin classifier for ASR.
Based on the machine learning theory, a large margin classifier usually leads to much
lower generalization error rate in a new test set and shows a more robust and better
generalization capability. In this work, we will study how to estimate HMMs for speech
recognition based on the above-mentioned principle of maximizing minimum margin.

First of all, from all utterances in D, we need to identify a subset of utterances S as:
S={X;|X;€Dand 0 <d(X;) <¢} (4)

where € > 0 is a pre-set positive number. Analogically, we call S as support vector set
and each utterance in S is called a support token which has relatively small positive
margin among all utterances in training set D. In other words, all utterances in S are
relatively close to the classification boundary even though all of them locate in the right
decision regions. To achieve a better generalization power, it is desirable to adjust decision
boundaries, which are implicitly determined by all models, through optimizing HMM
parameters A to make all support tokens as far from the decision boundaries as possible,
which will result in a robust classifier with better generalization capability. This idea leads
to estimating the HMM models A based on the criterion of maximizing the minimum

margin of all support tokens, which is named as large margin estimation (LME) of HMM.

A= in d(X;

argmax min d(X;) (5)
where the above maximization and minimization are performed subject to the constraints
that d(X;) > 0 for all X; € S. The HMM models, A, estimated in this way, are called

large margin HMMs.
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Considering eq.(3), large margin HMMs can be equivalently estimated as follows:

A =arg max

Xies Wyen ji [F(XilAw,) = F(Xi[Aw,)] (6)

subject to

for all X; € S and W; € Q and j # 1.
Finally, the above optimization can be converted into a standard minimax optimization

problem as:

A=argmin  omax [F(Xildw,) = F(XilAw)] (8)

where the minimax optimization is subject to the following constraints:

for all X; € S and W; € Q and W; # W,.
Obviously, the above minimax optimization can be numerically solved by many opti-
mization software tools. In this report, instead we will approximate the objective function

in the above minimax optimization and then derive an iterative optimization approach

for CDHMM based on the GPD algorithm[17].

3 Large Margin Estimation of CDHMM

In this section, let’s describe how to solve the above optimization problem in eq.(8) for
CDHMM in speech recognition based on a GPD iterative optimization algorithm. At
first, we assume each speech unit, e.g., a word W, is modeled by an N-state CDHMM
with parameter vector A = (m, A, #), where 7 is the initial state distribution, A = {a;;|1 <
i,7 < N} is transition matrix, and 6 is parameter vector composed of mixture parameters

0; = {wik. Mik, Tik }k=1,2.... x for each state i, where K denotes number of Gaussian mixtures
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in each state. The state observation p.d.f. is assumed to be a mixture of multivariate
Gaussian distribution:

K
p(x|6;) = Z wik - N (x|mig, Tix)

k=1

K
1
= Z wir - (210) P22 exp —5(33 —mg) i (z — ma) (10)
k=1
where mixture weights w;;’s satisfy the constraint » ?:1 w;r = 1. In many cases, we prefer

to use multivariate Gaussian distribution with diagonal precision matrix. Thus, the above

state observation p.d.f. is simplified as:

K K D
Tikd 1
p(x0;) = Z wirN (X mig, i) = Z wzkH \V 3 - e 3ikd(Ta—mika)” (11)
k=1 k=1 d=1
Given any speech utterance X; = {x;1, X2, -+ ,Xir}, let s = {s1,892, - ,S$r} be the
unobserved state sequence, and 1 = {lj,ls,---,Igr} be the associated sequence of the

unobserved mixture component labels, the discriminant function based on the word model
Aw;, F(Xi|Aw,), can be expressed as:

R

F(X; |)\W] Z Z {Wslwslll (Xi1| sy, sty ) Ha'st_lst Wy, - N (Xt Mgy, Tstlt)}'p(vvj)
- (12)
where the summations are taken over all possible state and mixture component label
sequences. But, if we can use the Viterbi method to approximate the above summation

with the single optimal Viterbi path and assume the optimal Viterbi path is denoted as

s* = {st,s5, -+ ,sp}and I* = {I,03,--- {3}, then we have
R
F(Xildw,) = mgwep N (X [mgs rous) | | as:or - warir - N (Xie|mgee . 75202 ) - p(W;) (13)
t=2

In most cases, it is more convenient to represent the discriminant function JF(X;|Aw,)
in the logarithm scale. Assume we adopt diagonal precision matrices for all Gaussian

mixtures, we have
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R R
F(Xildw,) = logp(W;) +logme + Zlog Agr_sp + l_Ilogwsffl;=
t=1

t=2

| BD
* 2 Z Z [log Tsrird — Tsrizd(Xitd — msfl;d)2:| (14)

t=1 d=1

To construct a differentiable objective function for the large margin optimization in
eq.(8), we need to approximate the maz operation with a continuous and differentiable
function. Usually either exponential or power function can be used for this purpose. Here
assume we use summation of exponential functions to approximate the maximization in

eq(8) as follows:

Xies W0 s F(Xildw,) = F(Xildw)]
1/n

~ log > exp [ F(Xilw,) —n- F(Xi[Aw,)] (15)

X;€8 WEQ ji#i
where > 1. As n — oo, the continuous function in the right hand side of eq.(15)
will approach the maximization in the left hand side. In practice, we can choose 7 as a
constant larger than 1.

Therefore, we derive the objective function for large margin estimation (LME) of

CDHMM as following;:

Qy=—tg| S ewly FXDw) -0 FGA)] | (0

" X;€8 WieQ j#i
where 7 > 1 is set as a constant beforehand, and all F(X;|Aw,) are given by eq.(12) or
(14). If we adopt the Viterbi approximation in eq.(12), the above Q1(+) has a relatively
simple form. Usually, a gradient descent iteration method must be used to minimize Q;(A)
with respect to all CDHMM parameters A in order to derive the large margin estimation

of CDHMM as in eq.(8). The minimization is subject to all constraints given in eq.(9).

In practice, all these inequality constraints can be cast as interior penalty functions as in

3].
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Here let’s first consider a simple case, where we only re-estimate mean vectors of
CDHMMs based on the large margin principle while keeping all other CDHMM param-
eters constant during the large margin estimation. For any utterance X; in the support
token set S , if we assume its true model is \;, then we check for other models A; (j # 1)
to include all pairs of the utterance X; (assume its true model is A;) and a hypothesized
incorrect model A; for large margin model estimation as long as they meet the condition
0 < F(Xi|\) — F(X;|Aj) < e, where € is a pre-set threshold. For simplicity, we use the
Viterbi approximation in evaluating both F(X;|);) and F(X;|A;). For F(X;|\;), let’s as-
sume the optimal Viterbi path is 8" = {s],s},--- ,s7.} and ' = {l},1},--- ,1}.}. Similarly,
we assume the optimal path is s = {s}, 8y, ,sp} and I' = {l, 5, -+ ,l;} when evalu-
ating F(X;|);). Since we are only considering to estimate mean vectors of CDHMMs, we

can re-write F(X;|\;) and F(X;|\;) according to eq.(14) as follows:

D
1
F(Xi|\) ~3 erstltd Titd — ms;l;d)2 (17)
t=1 d=1
| D
F(XilAj) = C ~ 5 Z ZTS g a(@ita —mgpa)? (18)
t=1 d=1

where ¢’ and O are two constants independent from mean vectors. In this case,
the discriminant functions F(X;|\;) and F(X;|\;) can be represented as a summation of
some quadratic functions related to mean values of CDHMMs. Then we can represent

the decision margin F(X;|\;) — F(X;|)\;) as

T D
Z Z [ i(Titd — ms’l’d)2 - Ts;’lzd(fcitd - mle;’d)Q] (19)

t=1 d=1

F(XilAi) = F(XilA))

[\D|>—‘

where C = C" — (.
Obviously, we can substitute the above decision margins in eq.(19) for all support
token in the set S (as defined by 0 < F(X;|\;) — F(Xi|A;) < ¢€) into the objective func-

tion in eq.(16) to optimize all HMM parameters. Alternatively, the functions as shown in
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eq.(19) can be viewed as component functions as well as constraints in a minimax opti-
mization problem when using a standard optimization software tool to solve the minimax

optimization problem in eq.(8).

4 Handling Recognition Errors

In case there is any recognition error in training set D, e.g., if an utterance X;(X; € D) is
mis-recognized by the current CDHMM set, A, then the margin of this utterance, d(X;),
is negative. Obviously, the above large margin estimation can only be done for those
utterances with positive margins. It does not make sense to optimize models as above for
any utterance with negative margin value. If d(X;) < 0, X; can not be used to maximize
the objective function @1(A) to optimize the HMM set A as in the above. Here, we
propose to handle these mis-recognized utterances separately from the support tokens
in the set §. Based on the current CDHMM set A, we first identify all mis-recognized

utterances, which all have negative margins, as the error set &:
E=1{X;| X, € Dandd(X;) <0} (20)

For utterances in &, following the MCE training [15, 17], we optimize CDHMM pa-
rameters, A, to minimize the total number of utterances in £. However, in practice, the
total number count of utterances in £ must be smoothed by plugging the margin into the

following sigmoid function:

1
T 1+ exply - d(X)]

1(d(X)) (21)

where v > 1 is a constant to control the slope of the sigmoid function. As in the MCE
formulation[15, 16, 17|, the maz in the definition of margin d(X;) in eq.(2) need to be

approximated by summation of exponential functions. Finally, the smoothed count of
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total mis-recognized utterances in £ can be expressed as:

1
Q2(AN) = Z [(d(X:)) = Z 1+ exp[y - d(X;)]

X;e€ X;e€
-3 !
N ] fexp |- {F(Xip\w,-) — n%log (ijeﬂj# exp [72 - f(Xi|AWj)})]]

(22)

The GPD algorithm can be used to minimize the above objective function with respect

to all model parameters, A.

5 A Training Algorithm for Large Margin CDHMM

Given a training set D, we can estimate the whole CDHMM set, A, to minimize the
following new objective function,Q(A), which is a weighed linear combination of Q;(A)

and Q2(A). Thus,

Q(A) = k- Q1(A) + Q2(A) (23)
where £ > 0 is a parameter to make a good balance between Q(A) and Qa(A). The
optimal value for xk can be selected experimentally. Apparently, the objective function,
Q(A), can be optimized by using any gradient descent algorithm, such as generalized
probabilistic descent (GPD) algorithm in [15], with respect to CDHMM parameters A.

Alternatively, we can also optimize the objective function Q;(A) over the set S and
(Q2(A) over the set € separately and iteratively. One algorithm to estimate large margin

CDHMM in such a way is shown as Algorithm 1.

References

[1] Y. Altun and T. Hfomann, ”Large margin methods for label sequence learning,”

Proc. of Eurospeech 2003, pp.993-996, Geneva, Switzerland, Sep. 2003.



Large Margin HMM Training (Hui Jiang) 12

Algorithm 1 GPD-based Estimation Algorithm for Large Margin CDHMM

Model estimation based on maximum likelihood criterion = A©:

set n = 0;

repeat

Identify the error set £ based on the current model A™);

Use GPD to update model to minimize the objective function @y = A+,

n=n+1;
Identify the support set S based on the current model A™:

Use GPD to update model to minimize the objective function Q; = A"*D:

)

n=n+1;

until Some converge conditions are met.

2]

Y. Altun, I. Tsochantaridis and T. Hofmann, ” Hidden Markov Support Vector Ma-
chines,” Proc. of the 20th International Conference on Machine Learning (ICML-
2003), Washington DC, 2003.

M. Avriel, Nonlinear programming: analysis and methods, Prentice-Hall, Inc., 1976.

L.R. Bahl, P.F. Brown, P.V. De Souza and R.L. Mercer, “Maximum mutual informa-
tion estimation of hidden Markov model parameters for speech recognition,” Proc.

of ICASSP-86, pp.49-52, Tokyo, Japan, 1986.

L. R. Baul, P.F. Brown, P.V. De Souza and R.L. Mercer, " Estimating Hidden Markov
model parameters so as to maximize speech recognition accuracy,” IFEFE Trans. on

Speech and Audio Processing, Vol. 1, No. 1, pp.77-83, 1983.

L. E. Baum, T. Petrie, G. Soules and N. Weiss, " A maximimization technique oc-
curring in the statistical analysis of probabilistic functions of Markov chains,” Ann.

Math. Statist., Vol. 41, pp. 164-171, 1970.



Large Margin HMM Training (Hui Jiang) 13

[7]

[10]

[11]

[12]

[13]

, C. J. C. Burges, ” A Tutorial on Support Vector Machine for Pattern Recognition,”
Data Mining and Knowledge Discovery, No. 2, pp.121-167, 1998.

P. S. Gopalakrishnan, D. Kanevsky, A. Nadas, D. Nahamoo and M. A. Picheny,
"Decoder selection based on cross-entropies,” Proc. of [CASSP-88 New York, pp.20-
23, 1988.

B. S. Gottfried, Introduction to optimization theory, Prentice-Hall, Inc., 1973.

H. Jiang, K. Hirose and Q. Huo, "Robust speech recognition based on Bayesian
prediction approach”, IEEE Trans. on Speech and Audio Processing, pp. 426-440,
Vol. 7, No.4, July 1999

H. Jiang, O. Siohan, F. Soong and C.-H. Lee, 7 A dynamic in-search discriminative
training approach for large vocabulary speech recognition,” Proc. of 2002 IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP’2002),
pp-I-113-116, Orlando, Florida, May 2002.

H. Jiang, F. Soong and C.-H. Lee, “A dynamic in-search data selection method with
its applications to acoustic modeling and utterance verification,” to appear in IEEE

Trans. on Speech and Audio Processing, June 2003.

H. Jiang, ” Confidence Measures for Speech Recognition: A Survey”, Technical Report
CS-2003-06, Department of Computer Science, York University, June 2003. (submit-
ted to IEEE Signal Processing Magazine)

B.-H. Juang, S. E. Levinson and M. M. Sondhi, ” Maximum likelihood estimation for
multivariate mixture observations of Markov chains,” IEEE Trans. on Information

Theory, Vol. I'T-32, No. 2, pp.307-309, 1986.



Large Margin HMM Training (Hui Jiang) 14

[15]

[16]

[17]

[18]

[19]

[21]

22]

B.-H. Juang and S. Katagiri, “Discriminative Learning for Minimum Error Training,”
IEEE Trans. on Acoustic, Speech, Signal Processing, Vol. 40, pp.3043-3054, No. 12,
Dec. 1992.

B.-H. Juang, W. Chou and C.-H. Lee, “Minimum Classification Error Rate Methods
for Speech Recognition,” IEEE Trans. on Speech and Audio Processing, pp.257-265,
Vol.5, No.3, May 1997.

S. Katagiri, B.-H. Juang and C.-H. Lee, "Pattern recognition using a generalized
probabilistic descent method,” Proceedings of the IEEE, Vol. 86, No. 11, pp.2345-
2373, Nov. 1998.

C.-H. Lee and Q. Huo, ”On adaptive decision rules and decision parameter adaptation
for automatic speech recognition,” Proc. of the IEFEFE, Vol.88, No. 8, pp.1241-1296,
Aug. 2000.

L. R. Liporace, "Maximum likelihood estimation for multivariate observations of
Markov sources,” IEEE Trans. on Information Theory, Vol. IT-28, No. 5, pp.729-
734, 1982.

A. Ljolje, Y. Ephraim and L. R. Rabiner, 7 Estimation of hidden Markov model
parameters by minimizing empirical error rate,” Proc. of ICASSP-90, pp.709-712,
1990.

A. Nadas, D. Nahamoo and M. A. Picheny, ”On a model-robust training method for
speech recognition,” IEEE Trans. on Acoustic, Speech and Signal Processing, Vol.

36, pp.1432-1436, Sep. 1988.

Y. Normandin, R. Cardin and R. Demori, " High-performance connected digit recog-

nition using maximum mutual information estimation,” IEEE Trans. on Speech and

Audio Processing, Vol. 2, No. 2, Apr. 1994.



Large Margin HMM Training (Hui Jiang) 15

23] A. J. Smola, P. Bartlett, B. Scholkopf and D. Schuurmans (ed.), Advances in Large
Margin Classifiers, the MIT Press.

24] P. Whittle, Optimization under constraints: theory and applications of nonlinear

programming, Wiley-Inter Science, 1971.

125] P.C. Woodland and D. Povey, “Large Scale Discriminative Training of hidden Markov

models for speech recognition,” Computer Speech € Language, pp.25-47, Vol. 16, No.
1, January 2002.



