
MARVIN: a Mobile Automatic Realtime Visual and INertial tracking system

Andrew Hogue

Technical Report CSE-2003-13

May 15, 2003

Department of Computer Science and Engineering

4700 Keele Street Toronto, Ontario M3J 1P3 Canada

MARVIN: a Mobile Automatic Realtime Visual

and INertial tracking system

Andrew Hogue

A thesis submitted to the Faculty of Graduate Studies

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Graduate Program in Computer Science

York University

Toronto, Ontario, Canada

May, 2003

Abstract

Six-sided fully-enclosed projective displays present complex and novel problems for track-

ing systems. The fully-enclosed nature of these displays limits the use of existing tracking

technologies which typically require a tether or a line-of-sight to the user which is unavail-

able in this context. This thesis presents a hybrid Inertial/Optical tracking system for fully-

enclosed projective displays. The inertial system uses linear acceleration measurements to

estimate relative head motion but the estimate is subject to drift due to sensor misalignment

and calibration errors. To compensate for this drift, a vision-based tracking technology is

used to estimate the absolute pose of the operator’s head. The optical tracking technology

relies on the operator wearing a set of laser diodes arranged in a specific configuration and

then tracking the projection of these lasers on the external walls of the immersive display.

This approach places minimal hardware on the user and no visible tracking equipment is

placed within the immersive environment. The inertial and vision-based pose estimates

may be combined via a recursive least-squares filter to provide the pose of the operator.

iv

ACKNOWLEDGEMENTS

Throughout the development of this thesis, many people have helped me through the time I

was stuck or needed some insight. Many of them offered their technical support, advice, or

let me bounce ideas off of them. Without them, this thesis could never have been finished.

I wish to thank my primary supervisor Dr. Michael Jenkin. Without his tremendous

help and guidance this thesis would never have been completed. The respect I have for him

as a researcher, supervisor, and person cannot be expressed deeply enough in words. I also

wish to thank Dr. Robert Allison, my co-supervisor, for all of his help and support. He

has always been available and has made time to answer all of my questions, no matter how

small or large.

A huge thanks goes to Matt Robinson, co-worker and friend, who has helped me

tremendously throughout the span of this thesis. He has always been available and willing

to give advice and help out technically (even when he was busy with other things he would

still make time). Our discussions on many different aspects of this thesis were extremely

helpful, and his amazing problem-solving skills were necessary to point me in the right

direction many times.

I thank my good friend Gilles Pouliquen for helping me strengthen my mathematical

background. His engineering background was a large wealth of knowledge that helped me

when I was stuck in derivations. Thanks to Sergey Parilov who was also very helpful during

our lengthy late-night discussions that put me on the right track at times.

Others that I would like to thank are Wolfgang Stuerzlinger, Kosta Derpanis, Jeff Lau-

rence, James Zacher, Andrew German, and of course my parents Rene and Carolee Hogue.

Last, but certainly not least, I thank Urszula, my love, for always being there for me.

She has given me more emotional support and help than I could ever imagine, without her

this thesis would never have been possible.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Why build an immersive environment at York? 6

1.2 Head-Tracking in Fully-Enclosed Displays 10

1.3 Problem Statement . 11

1.4 Structure of this Thesis . 13

2 Virtual Reality Tracking Technology 14

2.1 Transformations . 15

2.2 Tracking Applications . 20

2.3 Ultrasonic Tracking Systems . 22

2.4 Mechanical Tracking Systems . 25

2.5 Optical Tracking Systems . 29

2.6 Electromagnetic Tracking Systems . 32

2.7 Inertial Navigation Systems . 35

2.7.1 Inertial Sensor Errors . 38

2.8 Summary of Existing Tracking Technology 39

2.9 Hybrid Tracking Systems . 39

2.9.1 Data Fusion . 42

2.10 Tracking in other domains . 45

2.11 Summary . 46

vi

3 The MARVIN Tracking System 47

3.1 Overview . 49

4 The Inertial System 54

4.0.1 Accelerometers . 55

4.0.2 Rigid Body Motion . 57

4.0.3 Rigid Body Dynamics in the MARVIN tracking system 65

4.1 MARVIN Inertial System Configuration 65

4.2 Alternate Solution . 72

4.3 Determining Pose . 74

4.3.1 Orientation Estimation . 75

4.3.2 Position Estimation . 76

4.4 Calibration . 78

4.4.1 Multiple Sensor Model . 79

4.4.2 MARVIN Inertial Calibration . 81

4.5 Inertial System Simulator . 85

4.6 Simulation Results . 87

4.6.1 Translation . 88

4.6.2 Ideal Rotation . 92

4.6.3 Ideal Rotation with Misalignment 97

4.7 Summary . 97

5 The Optical System 102

5.1 Basic Approach . 103

5.2 Tracking Laser Projections . 105

5.2.1 Grouping and Locating Laser Dots 106

5.3 Estimating Position and Orientation . 112

5.3.1 Discarding Invalid Configurations 117

vii

5.3.2 Optical System Simulator . 119

5.4 Calibration . 121

5.4.1 Calibration Method . 121

5.4.2 Extrinsic Calibration 2: the Laser Wavelength Filter Transformation 135

5.4.3 Extrinsic Calibration 3: Screen to World Transformation 137

5.5 Evaluation . 138

5.5.1 Orientation . 138

5.5.2 X-Z Position . 144

5.5.3 Y Position . 148

5.6 Summary . 149

6 System Integration 151

6.1 The Wearable System . 152

6.2 Data Fusion . 156

6.2.1 Kalman Filter Devlopment for MARVIN 157

7 Conclusions and Future Improvements 164

7.1 Conclusion . 164

7.2 Future Work . 164

7.2.1 Improving the Optical System . 165

7.2.2 Improving the Inertial System . 167

7.2.3 Other Improvements . 167

A Quaternions and Rotation Sequences 169

A.1 Euler Angles . 169

A.2 Rotation Matrices . 170

A.3 Quaternions . 171

A.3.1 Quaternion Algebra . 172

A.3.2 Quaternions as Rotations . 177

viii

A.3.3 Quaternion Rates . 178

A.3.4 Quaternion Integration . 180

A.3.5 Computing the angular velocity between two frames 180

A.3.6 Error Quaternion or Estimating the Rotation between Two Frames . 181

A.3.7 Quaternions and other representations 182

B The Kalman Filter 187

B.1 The Discrete Linear Kalman Filter . 189

B.1.1 An Example . 190

B.2 The Extended Kalman Filter . 195

B.3 The SCAAT Kalman Filter . 198

C Hardware Details 203

C.1 Inertial Device . 203

C.1.1 Acceleromter Details . 203

C.1.2 A/D Converter Details . 206

C.2 Laser Device . 207

C.2.1 Laser Details . 207

C.2.2 Laser Optical Filter . 207

C.3 Camera Details . 209

C.4 Wearable Computer Details . 211

D Company Information 213

ix

Chapter 1

Introduction

Immersive displays have become a popular technology for scientific visualization, psy-

chological research, tele-operation, task training/rehearsal, and entertainment. Advances

in projection technology have facilitated the development of immersive displays ranging

from large single wall projections (e.g. the PowerWall[54]), three-wall displays (e.g. the

Immersion Square[34]), four-wall displays (e.g. the CAVETM[16]), five-wall displays (e.g.

the CABIN[55]), and more recently six-sided displays (e.g. the Immersive Visual environ-

ment at York – IVY[65]). The technology is beginning to move out of the lab into the

commercial arena, and vendors such as FakespaceTM Systems and TAN Projektionstech-

nologie GmbH have begun to design and build immersive projective displays.

Currently, most existing projective immersive displays are not fully-enclosed and are

designed with relatively small numbers of walls. Although there are various reasons why

the non-fully-enclosed immersive environments have been constructed, the lack of “full

enclosure” simplifies a number of design and construction details. As the number of walls

increases, many of the problems that can be solved “easily” in immersive projective dis-

plays with small numbers of walls become much more complex. Entry/egress, projector

placement and perhaps most importantly, head tracking, become very complex issues. The

limiting case of a fully-enclosed (six-sided) environment is certainly the most challenging

1

(see [65] for an examination of some of the details associated with the construction of a

fully-enclosed immersive environment).

To date, at least seven fully-enclosed immersive environments have been developed:

1. COSMOS[81, 25]. COSMOS (Cosmic Multimedia of Six Screens) was perhaps the

first 6-sided projective VR environment. Built in 1998 at the VR Techno Centre in

Gifu, Japan, COSMOS (see Figure 1.1(a)) was constructed in an extremely large

space that provided considerable simplifications in terms of construction. The throw

distance to the walls was sufficiently large that the wall surfaces could be projected

directly. Given the tall height of the physical enclosure, ceiling and floor were pro-

jected via a single reflected mirror. Each projection surface consisted of a 9m2 vinyl

film, with the floor supported by a sandwich of three acrylic panels. Each projection

surface was projected by two projectors in order to enhance the brightness of the dis-

play. Video was generated at 1024x768 at 96Hz, and stereo viewing was available

through CrystalEyes LCD shutter glasses. Head tracking was performed via a Polhe-

mus head tracker. Given the sensitivity of this tracker to the presence of metal, much

of the construction was of wood.

2. VR-CUBE[21]. At almost the same time as COSMOS was being built in Japan, the

VR-CUBE (see Figure 1.1(c)) was constructed at the Centre for Parallel Computers

at the Royal Institute of Technology in Stockholm, Sweden. The VR-CUBE was built

by TAN Projektionstechnolgie and is 3m(w) x 3m(d) x 2.25m(h). Fabric projection

2

surfaces were used, with a 40mm acrylic glass surface used to provide structural

support on the floor. The fabric projection surface was stretched above this glass

surface. As with COSMOS, the PDC VR-CUBE was also built in an extremely large

physical space, and this provides a number of simplifications in terms of construction

and video projection. A large wooden structure provides physical support for the

screens and mirrors. Most surfaces are projected via mirrors in order to reduce the

total physical volume of the device. The wooden structure permits the use of standard

magnetic tracking technology to track the user within the display. The floor and

ceiling were configured to run with a resolution of 1024x1024 at 96Hz. The walls

are projected at a resolution of 1024x856 pixels to keep the pixels square. An SGI

Onyx2 was used to generate content and Barco projectors provided the video. The

door to the VR-CUBE used a hinge on one side, unlike the sliding door in COSMOS.

3. ALICE[71]. ALICE (see Figure 1.1(d)) is a VR cube constructed at the Beckman’s

Integrated Systems Laboratory, University of Illinois at Urbana Champaign. As with

the VR-CUBE, ALICE was built by TAN Projektionstechnolgie. Mirrors were used

to display the video onto the solid screen material to reduce the overall physical size.

The construction of ALICE used non-metal materials permitting the use of standard

magnetic trackers within the virtual environment.

4. HyPi-6[38, 62]. The HyPi-6, installed at the Fraunhofer Institute for Industrial En-

gineering IAO, was the first six walled projective environment to work with standard

3

PC’s. Completed in May 2001 (see Figure 1.1(e)), HyPi-6 operates in one of two

modes. Using 12 Barco 909 projectors, and driven by 12 PC’s, a passive stereo

system using polarization filters is used. An active stereo system driven by an SGI

Onyx2 is also available. The environment is 2.9m(w) x 2.9m(d) x 2.7m(h).

5. C6[39]. The C6 (see Figure 1.1(f)) at Iowa State University’s Virtual Reality Ap-

plications Center (VRAC) became operational in 2000. The C6 relies on Barco 909

projectors at 1024x1024 resolution at 96Hz. Ascension Technology’s MotionStar R©

Wireless system is used for head and body tracking.

6. VR-CAVE[70]. The VR-CAVE (see Figure 1.1(b)) at the VR-CENTER NORD at

Aalborg University is a six-sided cube measuring 2.5m x 2.5m x 2.5m. Electromag-

netic tracking is used to maintain the user’s viewpoint, and video is generated using

an SGI Onyx2. The VR-CAVE was built to study the interplay between a user and

their 3D environment.

7. IVY[65]. The Immersive Visual environment at York University (IVY, Figure 1.2) in

Toronto, Ontario, Canada, became operational in September 2002. IVY was built as

a tool to aid in the investigation of human perception. A detailed description of IVY

can be found in [65].

Although these fully-enclosed environments were built for different reasons, and under

different environmental conditions, the goal of each is to build a compelling immersive

visual environment.

4

(a) COSMOS (b) VR-CAVE

(c) PDC-VRCUBE (d) ALICE

(e) HyPi-6 (f) C6

Figure 1.1: Fully-Enclosed Immersive Projective Displays.

5

Figure 1.2: IVY at York University

1.1 Why build an immersive environment at York?

When we move within an environment, we are presented with a range of multi-modal cues

to our motion within it. Our visual system provides optic flow, perspective, occulsion and

other cues. Our vestibular system provides cues to the actual motion of our head, and the di-

rection of gravity. Knowledge of our intent to move, feedback from our muscles, and many

other direct and indirect cues are also present. Presenting self-motion cues in isolation or

in unusual combinations has been used to assess their contribution to our overall sensation

of self-motion (see [28, 63]). Presenting conflicting visual and vestibular cues to a subject

is a common strategy for exploring the roles of these sensory systems. At York Univer-

sity, specifially at the Center for Vision Research (CVR), many different devices have been

built to generate specific perceptual cue conflicts. The York “Tumbling Room” (see [3] and

6

Figure 1.3(a)) has been shown to be extremely effective at modifying an observer’s per-

ception of the direction of gravity. The Tumbling Room is a large physical room capable

of rotating about a horizontal axis. Since the visual display is isolated from the outside

world (and rotates with the user), the user experiences no visual changes while the room

rotates. The resulting visual/vestibular cue conflict provides insight into the mechanisms

behind the perception of our body orientation with respect to gravity (see [2, 41, 36, 37]).

A static version of the Tumbling Room (known as the “Tilted Room” due to its perma-

nent 90 degree tilted axis) has also been developed at York (see Figure 1.3(b)). Various

experiments conducted within these rooms have demonstrated that subjects’ perception of

the direction of “up” can be manipulated within these rooms by presenting subjects with

appropriately polarized visual displays. The Tumbling and Tilted Rooms have proven to

be useful tools for studying human perception of self-orientation but are not without their

problems. Since the Tumbling Room rotates to generate different vestibular sensations,

powerful motors are employed which are loud and can even be dangerous. Also, since the

Tumbling and Tilted rooms are physical rooms, it is very time consuming to change the

visual displays; real objects and wall panels must be removed and replaced. These difficul-

ties have inspired researchers to find more malleable large-scale tools that can be used to

study human perception of self-motion/orientation. VR Technology has been found to be

an effective alternative for generating perceptual cue conflicts and presenting combinations

of proprioceptive, visual, and vestibular cues to the subject[28, 63, 1].

In order to be able to explore fundamental questions related to human perception in

7

(a) The Tumbling Room (b) The Tilted Room

Figure 1.3: Physical Immersive Displays. Here the outside of the Tumbling room (a) is
shown. The motors are used to rotate the room along a horizontal axis. Also, the inside of
the Tilted Room (b) is shown with subject lying on his side.

real and virtual environments, a fully-enclosed six-sided projective display named IVY

(the Immersive Visual environment at York, see [65]), has been constructed. IVY is a six-

sided, eight-foot fully-enclosed cube in which every surface including the floor and ceiling

displays a rear-projected stereoscopic visual image to the observer inside of the cube. The

construction of IVY posed interesting challenges including screen/projector calibration,

usable input devices for interaction and operator tracking in a fully-enclosed volume. IVY

itself is situated within the two-story Vision, Graphics and Robotics Laboratory (VGR Lab)

at York University. Total effective ceiling height is approximately 16’. Given the limited

horizontal physical space for IVY, three of the four walls are projected using mirrors to

bend the light path within the available footprint in the VGR Lab. IVY’s floor is located

8

four feet above the ground. This means that the mirrors, projectors, and wall surfaces

are positioned well above the ground. The wall projectors are mounted approximately 8’

above the surface of the floor of the lab (in line with the centre of the wall surfaces) with

mirrors mounted in a similar fashion. In order to simplify construction, the wall projectors

are mounted on separate “projector mounts” that locate the projectors 8’ in the air. Each

projector is mounted on an adjustable table that permits fine adjustment of the projector

orientation.

Fabric rear-projection screens are hung in aluminum frames attached to IVY’s floor

outside of the projective environment. The same material is used for the floor and ceiling,

although different techniques were required in order to deal with the need for physical

support (floor) and for the limited spacing above the ceiling and below the floor.

Entry and exit to IVY is via one of the walls that can be slid back away from the interior

of the cube. With this wall slid back, people and equipment can enter and exit IVY. With

this wall in place, a user within IVY cannot distinguish between the opening/closing wall

and the other three fixed walls. Stereo imagery is presented on IVY’s six walls and decoded

using CrystalEyes glasses. Four long range emitters have been found to be sufficiently

powerful to provide full infrared coverage anywhere within IVY. Applications for IVY can

be written in any graphical software package that runs on the SGI Onyx2 used to drive the

displays. In order to simplify software development, a package has been built that abstracts

the various display and input technologies required by applications to make full use of the

tracking and display systems. This software package, known as VE, is described in [65].

9

1.2 Head-Tracking in Fully-Enclosed Displays

In a VR environment, if the view of the scene does not correspond to a given head po-

sition and orientation (pose), the generated image is incorrect for the user’s viewpoint:

stereo, perspective, vection, and motion parallax cues are incorrect, and the subject is more

likely to experience discomfort (headaches, nausea, disorientation, collectively known as

cybersickness[74]). In non-fully-enclosed environments, it is straightforward to use com-

mercial head-tracking systems to obtain this pose information since the tracking equipment

can be positioned in such a way that it does not interfere with the user’s view of the scene

(i.e. behind the user). However, six-sided displays impose a unique constraint: in a fully-

enclosed volume there is no reasonable place for the tracking equipment except outside the

working volume.

Since the user is fully-enclosed, state-of-the-art optical trackers and acoustical track-

ers which require a line-of-sight to the user are inappropriate unless the tracker is po-

sitioned within the working volume where it can be seen by the user thereby inhibiting

the user’s sense of presence. Currently, magnetic tracking is the technology of choice

for fully-enclosed displays. The COSMOS, PDC VR-CUBE and the VR-CAVE all use

the Polhemus FASTRAK R© magnetic tracker while the C6 and ALICE both employ As-

cension Technology’s MotionStar R© Wireless magnetic tracking system. The Polhemus

FASTRAK R© requires the user to be tethered to equipment used to compute the pose of the

sensor, requiring long visible cables, while the MotionStar R©Wireless system uses a mag-

10

netic field emitter outside of the working volume with an extended range of influence and

wireless/wearable computer technology to eliminate the need for a tether. Unfortunately,

magnetic tracking systems have a number of disadvantages (see [44] and also Chapter 2).

They suffer from a large amount of latency due to the need for noise filtering. They are

dependent on the local ambient electromagnetic environment and thus are subject to dis-

tortion and noise when used in close proximity to metallic objects or stray magnetic fields.

A number of fully-enclosed immersive displays are constructed out of wood to reduce this

interference. The quality of the magnetic tracking measurements is a function of the mag-

netic signal strength. Thus, as the user moves further away from the magnetic field emitter,

the precision decreases. This implies inconsistent tracking throughout the working area

and is illustrated in [45] where a comparison is given between a hybrid inertial-ultrasonic

tracking system and an electromagnetic tracking system.

1.3 Problem Statement

The immersive experience within a VR environment is adversely affected by generating

improper visual displays. The proper view of the scene is dependent upon the position and

orientation of the user’s head with respect to the display screen which gives rise to the need

for accurate head pose tracking. The “fully-enclosed” nature of six-sided displays reveals

the inherent issues with magnetic trackers and makes them inappropriate for use in this

context. This thesis describes the design, development and evaluation of a 6 DOF head

11

tracking system for fully-enclosed immersive projective environments.

In order to overcome the limitations imposed by existing magnetic trackers, a novel

“outside-in” vision-based tracking system for tracking a user within a fully-enclosed pro-

jective immersive environment is developed. This optical tracker utilizes commercial cam-

eras and computers and is capable of obtaining 6 DOF pose estimates of the user within the

environment at 15Hz. This vision-based tracking system is designed to be used either as a

standalone tracker or as part of a hybrid system with an inertial tracking component.

The optical system is augmented with an inertial system that utilizes six accelerometers

to obtain fast relative pose estimates of the user. It complements the optical system by

providing accurate data between consecutive pose updates and increases the performance

of the tracking system as a whole.

Combining the relative inertial information with the absolute pose data recovered from

the vision-based system provides more reliable tracking results than either system alone.

The hybrid tracking system is wireless, freeing the user from a physical tether which allows

them to roam freely within the immersive display. The tracking system is named “MAR-

VIN” which is an acronym for a Mobile Automatic Realtime Visual and INertial tracking

system.

12

1.4 Structure of this Thesis

The remainder of this thesis is organized as follows. Chapter 2 surveys existing tracking

technology and related work on tracking in virtual environments. Chapter 3 provides an

overview of the MARVIN tracking system. Chapters 4 and 5 describe in detail the inertial

and vision-based tracking subsystems and provide a discussion and evaluation of each sys-

tem respectively. Chapter 6 shows how both systems are integrated into one wearable unit.

Finally Chapter 7 provides a discussion and possible directions for future work. Overviews

of the recursive least-squares filtering techniques used, and hardware specifications per-

taining to the system can be found in the Appendices.

13

Chapter 2

Virtual Reality Tracking Technology

There have been several recent in-depth surveys of tracking technology published in the

literature (see [23, 66]). These surveys discuss different types of tracking technology, ex-

plaining briefly the mechanisms behind each method, and their applicability in VR. How-

ever, since fully-enclosed projective displays are a recent development, these surveys focus

primarily on tracking systems applicable only to HMDs, personal computer systems, or

non-fully-enclosed immersive projective displays. Each survey fails to address the unique

constraints related to fully-enclosed environments. This chapter describes VR related track-

ing technology in general and the technology presented in these earlier surveys from the

unique perspective of applying them in fully-enclosed immersive projective displays. The

advantages and disadvantages of each technology are described and examples of applica-

tion areas for these technologies are given. Further details on VR tracking for HMD’s and

more simple projective environments can be found in [23] and [65].

For the purposes of this thesis, tracking is defined as the process of estimating human

body motion, or motion of individual body parts for the purpose of interacting with 3D

computer generated environments. A valid representation of orientation and position is

needed. Any free-floating 3D object has six degrees-of-freedom (6DOF), enabling it to

rotate about either of the 3 axes (X̂ ,Ŷ , Ẑ) as well as translating along these axes. This in

14

turn requires a mathematical representation of orientation and linear translation. This thesis

will focus on rigid body motion as this representation normally proves sufficient for virtual

environments.

2.1 Transformations

A translation vector, T3×1 = [tx, ty, tz]T in three-dimensional space defines a simple transfor-

mation that when applied to a point, P3×1 = [px, py, pz]
T , moves the point along a straight

line the distance denoted by this vector. The new translated point

P′
3×1 = [p′x, p′y, p′z]

T (2.1)

is defined as

p′x = px + tx (2.2)

p′y = py + ty (2.3)

p′z = pz + tz (2.4)

This can be stated in vector notation as P′
3×1 = P3×1 +T3×1.

A rotation is a transformation that when applied to a vector will produce a new vector

rotated by an angle, θ, about a given axis. A simple 2D example is shown in Figure 2.1.

In this two-dimensional rotation, the point P2×1 = [px, py]
T is rotated by angle θ about the

15

v2

v1
Θ

X

Y

Figure 2.1: Example of 2D rotation. Vector ~v1 is rotated by angle θ around the Z-axis to
obtain vector~v2

origin to compute a new point P′
2×1 = [p′x, p′y]

T . The transformation is easily determined:

p′x = px cos(θ)+ py sin(θ) (2.5)

p′y =−px sin(θ)+ py cos(θ) (2.6)

which can be written in matrix notation as

R2×2 =




cos(θ) sin(θ)

−sin(θ) cos(θ)


 (2.7)

and the full transformation can be denoted by

P′
2×1 = R2×2P2×1 (2.8)

Even though this is enough to transform a two-dimensional vector, we exist in a three-

16

dimensional world and must generalize the above to 3D. The above rotation can also be

thought of as a rotation of a point around a vector that is perpendicular to this paper. Thus,

R2×2 actually denotes a rotation on a plane around the plane normal,~n = [0,0,1]T . In order

to perform the transformation of a 3D point on this plane, let P3×1 = [px, py, pz]
T , and the

rotation is now specified by a 3× 3 rotation matrix P′
3×1 = R3×3P3×1. Since this rotation

matrix is a rotation on the X-Y plane about the Z-axis, let it be denoted by RZ(θ). Rotation

matrices around the X,Y, and Z axes can be determined and are summarized below:

RX(ψ) =




1 0 0

0 cos(ψ) sin(ψ)

0 −sin(ψ) cos(ψ)




(2.9)

RY (θ) =




cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)




(2.10)

RZ(φ) =




cos(φ) sin(φ) 0

−sin(φ) cos(φ) 0

0 0 1




(2.11)

In order to rotate a 3D point concurrently about all three axis, care must be taken as to the

order in which the rotations are applied. The typical Euler angle rotation sequence used

in aerospace applications is the Z-Y-X sequence[46]. This means that the vector is rotated

17

first by the Z-axis by angle φ, then around the Y-axis by angle θ, and finally rotated around

the X-axis by angle ψ. The final 3×3 rotation matrix is written as

R3×3 = RX(ψ)RY (θ)RZ(φ) (2.12)

The Z-axis points downward towards the earth and the other two orthonormal axes are de-

fined using the right-hand rule. This sequence is also called Yaw-Pitch-Roll which denotes

the deviations of the heading and attitude of an aircraft.

In three-dimensional space, a transformation of vectors through rotation and translation

can be written as:

P′
3×1 = R3×3P3×1 +T3×1 (2.13)

This approach is rather cumbersome. By using homogenous coordinates[31, 14], this trans-

formation can be expressed as a single 4×4 matrix multiplication. By denoting the vector

to be transformed as P4×1 = [px, py, pz,1]T , the rotation and translation can be combined

into a single 4 by 4 transformation matrix:

T4×4 =




R3×3 T3×1

01×3 1


 (2.14)

and the final homogeneous transformation is defined as :

P′
4×1 = T4×4P4×1 (2.15)

18

The choice of representing the rotation of a vector in 3D as a matrix is useful since ma-

trix multiplication can be implemented in a straightforward manner on a computer. There

are other representations of rotation that are worth mentioning[46]. Euler angles, or (Yaw,

Pitch, Roll), are very commonly used to represent rotations of frames in 3D. This repre-

sentation has been used in physics and aerospace for many years, however it suffers from

representational issues in certain configurations that compare to “gimbal-lock” in mechan-

ical systems (where a rotation of 90o on one axis makes the other 2 axes coincident, thus

losing a degree of freedom). One way to address this issue is to use the quaternion repre-

sentation: ~q = [s,~v] where s is a scalar defining the magnitude of the quaternion and~v is a

3-vector. It can be shown (see [46]) that a special quaternion can be defined that represents

a rotation, namely [cos(θ
2),sin(θ

2)~v] where θ is the angle by which the frame is rotated and

~v is a unit vector representing the axis of rotation. It is important to note that the quaternion

must be normalized to unit length in order to represent a rotation. This representation is

extensively used in computer graphics and is explained in more detail in Appendix A. An-

other way to represent the orientation of a frame is to express the basis vectors of the frame

directly. Using this, one would define 2 vectors and a position in space, namely ~P the posi-

tion, ~Up (a unit vector in the direction of the Ŷ -axis), and ~Dir (a unit vector in the direction

of the positive Ẑ-axis). This representation is common in the 3D computer graphics field

since it is possible to specify these vectors in OpenGLTM for rendering purposes. There are

methods to convert these different representations to one another (see Appendix A). There

are many different ways of representing the orientation and position, known as pose but

19

since they are fundamentally equivalent in nature, the technologies discussed here do not

confine themselves to one representation.

2.2 Tracking Applications

Accurate tracking technology has become a requirement in many research and industrial

fields. There exist a wide range of different applications that require the body, parts of the

body, or other objects, to be tracked accurately for a given period of time. Applications

range from military use (training, missile guidance, on-board navigation, etc.) to the en-

tertainment industry (tracking hockey pucks, digital characters in movies and games, etc.).

The review provided in this chapter focuses mainly on applications in Virtual Reality (VR)

and Augmented Reality (AR) which require accurate tracking of human body parts, and

the user’s head in particular.

The entertainment industry has shown a significant interest in human body tracking.

It has become commonplace for movies and games to showcase fully digital characters.

Instead of animating every motion a single frame at a time, more recent systems require

an actor to perform in front of a camera while several parts of their body are tracked. The

resulting captured body motion is then applied to a 3D model already prepared for the final

rendering (e.g. Gollum in Lord of the Rings, Jar Jar Binks in Star Wars Episode I, etc.)[72].

Typically, the data is recorded and processed off-line since the focus is on obtaining smooth

and accurate motion instead of real-time interaction.

20

The sport therapy, biomechanics and gait analysis fields also require accurate mo-

tion capture and tracking technologies[51, 67]. The quantification and analysis of hu-

man/animal body movement requires significant amounts of data and data analysis in order

to assess physical rehabilitation processes and methodologies. Motion capture systems pro-

vide medical doctors with insight into the progress of a patient’s rehabilitation. Athletes

also utilize motion information to monitor and maximize their performance and efficiency.

Here, the data is processed off-line since the focus is on obtaining highly accurate motion

data for analysis.

Ergonomics and human-computer interaction researchers are also interested in the mo-

tion of humans. Studying the pose and motion of different body parts while using existing

input devices may help researchers to develop more efficient techniques for interaction with

computer systems.

Virtual Reality applications require accurate knowledge of the user’s head pose in order

to generate the proper visual view of the world. Tracking systems for VR must be able to

provide head pose information in real-time as opposed to the primarily off-line data needed

for motion analysis described above. A VR display, whether it be an HMD, LCD screen,

CRT display or an IPT (Immersive Projection Technology) display can be thought of as a

window looking into the virtual world. In a real window, different parts of the world should

become visible as the user moves relative to the window. In a VR display, head tracking

is required to generate the proper view “through” this window. Appropriate head pose

information ensures that the geometry of the display is correct. Correct geometry permits

21

the presentation of correct perceptual cues in the simulated display. Perspective, parallax,

and stereo cues are critically dependent upon the simulated scene geometry and vantage

point. Parallax cues are important since they enable the user to judge distances according

to the relative motion of objects in the scene. Perspective is dependent on head pose as

well, and incorrect pose estimates may provide clues to the fact that the user is looking at

a “virtual” world rather than a “real” one. Many VR systems require stereo information to

be present, which requires different left eye and right eye views to be properly presented

to the user. The disparities must be correct and correspond to the orientation of the user’s

head. If not, the 3D effect is lost due to the inability to fuse the two views, eye strain may

occur, and the user is more likely to experience cybersickness.

Current tracking technology can be divided into several categories according to the

sensing principle employed: mechanical, electro-magnetic, ultrasonic, inertial, optical, and

hybrid tracking systems. Each of these systems has their advantages and disadvantages

which are discussed below.

2.3 Ultrasonic Tracking Systems

Ultrasonic (Acoustic) Tracking was possibly one of the earliest attempts at tracking in

VR[68]. There are mainly two different methods of using ultrasound to track users, “phase-

coherent” and “time-of-flight”. Phase-coherent methods utilize a continuous wave source

that emits a sinusoid of known wavelength. When the microphone receives the sound, the

22

���
�

M2

M1
3M

d1 d3

d2

� �� �� �� �� �� �

� �� �� �� �� �� �

� �� �

��
��

��
�� � �	 	

Tracked Object

Figure 2.2: The Time of Flight Principle. Attached to the tracked object is an ultrasonic
emitter which pulses an acoustical chirp at a known time, t. Stationary microphones, M1,
M2 and M3 placed in the environment receive these signals at times t1, t2, and t3 respectively.
The distance travelled by the ultrasonic chirp can be determined using the known speed of
sound, vs, by di = vs ∗ (ti− t) (vs = speed of sound, di =distance to ith microphone, and
ti = time Mi received the chirp). Since we can accurately calibrate the 3D locations of the
stationary microphones, the distance travelled by the chirp can be thought of as the radius
of a sphere centered around each microphone. Using at least 3 microphones allows us to
calculate a unique intersection point which is precisely the desired position of the emitter
attached to the tracked object (2D case shown above).

signal will have a phase-shift that is proportional to the distance of the sound source and

thus position can be determined by phase detection. However, this method only allows

the changes in distance to be determined within a cycle. A more common approach in

acoustical tracking systems (and all commercially available ultrasonic trackers) is to use

the “time-of-flight” principle to determine the position and orientation of a sensor worn by

the user (see Figure 2.2).

By emitting a known ultrasonic frequency at a specified time, it is possible to measure

the time it takes for the sound chirp to reach the sensor. This time delay is proportional to

23

(a) Logitech 6DOF Tracker (b) Mattel/Nintendo PowerGlove

Figure 2.3: Common Acoustic Tracking Systems

the distance travelled from the emitter to the receiver. Using an estimate of the speed of

sound, the position of the sensor can be determined using triangulation techniques. Mul-

tiple emitters allows for orientation to be computed as well. The time-of-flight approach

is used by the Logitech 2D/6D mouse (Figure 2.3(a)), the Mattel/Nintendo Powerglove

(Figure 2.3(b)) and by the acoustic component of the Intersense trackers. Although time-

of-flight systems are relatively inexpensive, the approach has many problems. The speed

of sound is dependent on the known room temperature and air pressure thus increasing the

error if these are not known accurately. Since the system must wait until at least 3 micro-

phones receive the chirp, there are latency issues. The update rate is typically low, and

can be as low at 10Hz. There is a line-of-sight constraint since sound must travel from the

emitter to the microphone. Occlusions are issues to contend with; the tracker will lose the

tracked object if it travels behind another object acoustically. Reflections from surfaces in

24

the environment produce echoes and these may be confused with valid measurements in-

creasing the system error. Background noise is also an issue, jingling keys or running water

produce frequencies in the ultrasonic range that may be mistaken as valid tracker data. Fi-

nally, in fully-enclosed immersive displays, there is no adequate way to place the array of

microphones without compromising the user’s sense of presence. The microphones cannot

be placed outside of the environment since the screen material may occlude, absorb, and

attenuate the ultrasonic signals making this type of system unusable in a fully-enclosed

display.

2.4 Mechanical Tracking Systems

Mechanical tracking systems employ a mechanical armature to track the user’s head or

body. Standard forward kinematics techniques are used to estimate the end-effector pose

from the measured relationships between the mechanical links of the system[14].

The BOOM (Binocular Omni-Orientation Monitor) from Fakespace Labs (see Fig-

ure 2.4) is a prime example of a mechanical head tracker for virtual environments. The

cumbersomeness of this tracking system limits its use to very specific applications.

Several types of mechanical arms and exoskeletons have been developed using this

forward kinematic technique. Commercially available exoskeletons track limb pose relative

to a point on the user’s body and are available from vendors such as Puppetworks and

Metamotion (see Figure 2.5). Exoskeleton trackers have the advantage of being highly

25

(a) BOOM R©3C (b) BOOM R©HF

Figure 2.4: The BOOM (Binocular Omni-Orientation Monitor). Images courtesy of
Fakespace Labs.

accurate, having low latency, and being unaffected by magnetic, acoustic, or light energy

noise sources although their mass can affect subject performance.

Mechanical tracking systems are extremely intrusive to the user and difficult to set up.

They limit the range of motion, induce unnatural motions, and typically require the user

to be tethered to a calibrated reference point to obtain absolute measurements. Another

major problem of mechanical trackers is gimbal lock which occurs in mechanical systems

when the joints align. This creates a situation in which a degree of freedom is lost and the

effector must move in a constrained manner (see Figure 2.6). Obviously, this is undesirable

for head-tracking in a virtual environment. Since a fully-enclosed display does not allow

26

(a) (b)

Figure 2.5: The Gypsy Jr. R© Mechanical Tracking System. Images Courtesy of Meta Mo-
tion, San Fransico, CA

the user to be tethered to a calibrated reference point, mechanical trackers are inappropriate

for use in fully-enclosed immersive displays.

27

�

�

�

�

�

�

�

�

�

�

���
���
���
�

(a)

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��

(b)

Figure 2.6: Gimbal Lock. As can be seen in (a), when the joints align in a kinematic chain,
a degree of freedom is lost and you cannot move the end effector along the direction of the
arrow. (b) shows a valid configuration of the joint angles needed so the end effector can
move in that direction.

28

2.5 Optical Tracking Systems

Optical tracking systems use digital cameras to acquire an image representation of the

scene. The images are then processed to extract features or other known objects and this

information is used to compute the pose of the objects (or of the cameras). There are

essentially two different types of optical tracking systems:

• Outside-In. Outside-In optical trackers use (multiple) static cameras to view a dy-

namically changing scene. The relationship between the cameras is accurately cal-

ibrated, and matching points in the images are used to determine 3D information.

Placing identifiable markers, either active (LEDs flashing in a known constellation)

or passive (retroreflective markers, ping-pong balls, etc.), on the moving object at

known 3D object locations simplifies the tracking process. The 2D locations of each

marker is localized in all of the images and then mapped into the corresponding lo-

cations on the known kinematic structure. This results in the ability to recover the

final 3D pose of the object. Trackers using this principle are commonly found in the

entertainment industry (movies and games) where markers are placed on salient parts

of the actor’s body who is filmed while performing. The image sequence is analysed

off-line to estimate the motion of the performer and this estimated motion is applied

to a digital character, however recently developed systems have emerged [72] which

are able to optically track the user in real-time.

• Inside-Out. Inside-Out tracking is essentially the above algorithm in reverse. Cam-

29

eras are placed on the object to be tracked and static markers are placed at known

locations in the real world. By localizing four or more of the projections of the 3D

points in the images, the accurate pose of the camera can be established. This is

the principle behind the optoelectronic tracking system developed at the University

of North Carolina, and commercially available as the HiBall tracker[77] (see Fig-

ure 2.7(a)). Active markers, flashing infrared LEDs, are embedded in the ceiling of

the area to be tracked(Figure 2.7(b)) and multiple cameras connected to the user’s

head view the scene. By localizing the 2D locations of many of these LEDs, the pose

of the cameras can be computed and used in the VR simulation. This tracking system

has the advantage of being fast, accurate and can cover a wide area (as long as the

ceiling LEDs are in sight).

The LaserBIRD R© tracking system from Ascension Technology (see Figure 2.8) is an

optical inside-out tracking system using fan-shaped laser beams that continuously scan a

conical-like tracking region. A set of optical sensors (photodiodes) are placed on the object

to be tracked and report the arrival of the laser beam back to a central computer to compute

the pose of the sensors. This system has a very fast update rate of 240Hz due to the use of

photodiodes that respond to a specific wavelength (795nm), eliminating all need for image

processing. This system also incurs a low 5.17ms lag. The accuracy approaches 1o RMS

but requires the user to be tethered to the laser scanner making this system unusable in a

fully-enclosed display.

30

(a) The HiBallTM Optical/Inertial Sensor (b) Active LED Ceiling Panel

Figure 2.7: The HiBallTMOptoelectronic Tracking System. Images courtesy of 3rdTechTM,
Inc., Chapel Hill, NC. (http://www.3rdtech.com/)

Optical tracking systems are relatively non-intrusive, usually do not require the user to

be tethered to some base computer, and do not restrict the natural motion of the user. In-

expensive digital cameras can be used to reduce the cost of these trackers and inexpensive

LEDs can be used as landmarks. However, optical systems are not without their problems.

The update rate is limited by the framerate of the cameras (typically 30Hz) and precise

camera calibration is usually necessary. Lens distortions lead to a degradation in the ac-

curacy and dynamically changing illumination is a problem which may result in the loss

of tracking for several frames. If the camera is in motion, then known landmarks must be

placed within the environment for triangulation purposes. Occlusion with other objects in

the environment is also a major concern for optical systems.

31

Figure 2.8: The LaserBIRD R©. LaserBIRD R© Image courtesy of Ascension Technology,
Burlington, VT.

2.6 Electromagnetic Tracking Systems

Sending an electric current through a coil of wire creates a magnetic field to form around

the wire. By using three orthogonal coils, different magnetic fields are produced which can

be sensed by three other orthogonal passive coils placed in the sensor on an object to be

tracked. The strength of the magnetic field can be measured through these passive sensor

coils. The signal strength of each field is proportional to the distance of the receiver from

the emitter and it also changes with the sensor orientation. These signal strengths can then

be used to compute the receiver’s position and orientation with respect to the transmitter(see

[60, 61]).

Ascension Technology’s Flock of Birds R© and the Polhemus FASTRAK R© are the lead-

ing commercial electromagnetic trackers (see Figure 2.9). These systems have the advan-

32

tage that they provide high accuracy pose data (when in close proximity to the emitter),

they are easy to use, and the sensors are small and lightweight. However, they also suffer

from a number of problems. They require the user to be tethered to a base computer system

and have a very limited operational range, typically under one meter. These trackers suf-

fer from magnetic interference from metallic objects and other sources that disrupt or emit

magnetic fields, which causes a large amount of noise to be injected into the pose mea-

surements. In practice it is necessary to filter the measured signal to reduce the noise level

which introduces a slight latency. Ascension Technology has recently introduced a product

called the MotionStar R© Wireless, which is a magnetic tracker with an extended range of

influence and can be completely untethered. However, the user must wear a backpack to

carry the computer and the data is streamed through a wireless 802.11b connection. In [80],

several tests were performed of this system which show an overall average static error of

24.2cm and a 42.18o orientation error. The system’s best performance in these tests were

1.04cm for static position and 0.24o static orientation. In [80], the authors state that the

poor average performance may have been due to the presence of metallic materials in the

test space.

In summary, the main difficulties in using electromagnetic tracking systems in fully-

enclosed immersive displays are the need to tether the user to a base station, their poor

performance in the presence of metallic material, and the decrease in accuracy as a function

of distance.

33

(a) Flock of Birds R© (b) MotionStar R©Wireless

Figure 2.9: Electromagnetic Trackers. Flock of Birds R© and MotionStar R©Wireless Images
Courtesy of Ascension Technology Corporation, Burlington, VT.

34

2.7 Inertial Navigation Systems

Inertial navigation systems (INS) use sensors that exploit Newton’s laws of motion to esti-

mate pose[69]. Newton’s laws state that a moving body will continue to move uniformly in

a straight line unless there is an external force or disturbance acting on the body. The force

applied will produce a proportional acceleration of the body:

F = ma (2.16)

a =
F
m

(2.17)

where m is the mass of the object, F is the force applied to the object, and a is the object’s

acceleration. If it is possible to directly measure this acceleration, then it is possible to esti-

mate accurately the change in position and velocity by performing successive integrations

of the measured acceleration with respect to time since

v(t) =
∫ t

0
α dt (2.18)

r(t) =
∫ t

0
v dt (2.19)

where v(t) is the velocity at time t, r(t) is the position at time t, and α is the linear acceler-

ation of the object.

A device called an accelerometer (see Figure 2.10), is used to measure the acceleration

along the three orthogonal axes. For position estimation in three-space, three accelerome-

35

BA M

Springs

(a) Equlibrium

BA M

Forward Motion

(b) Moving

Figure 2.10: The Principle of a Mass-Spring Accelerometer. A mass, M, is suspended
between two plates, A and B by springs. When the casing moves, the mass will resist owing
to its own inertia moving closer to one of the other plates. The acceleration is proportional
to the distance of M between the two plates. An electronic circuit that follows this principle
can be manufactured which outputs a change in voltage that is proportional to the distance
between the two plates thus measuring the acceleration of the casing.

ters are placed orthogonally to each other at known positions. After integrating the acceler-

ations twice, the vehicle’s position relative to its starting pose can be estimated. Accelerom-

eters measure linear acceleration along their sensitive axes and their measurements are also

affected by acceleration due to rotational motion which cannot easily be decoupled from

the acceleration reported by the sensor. Linear accelerometers cannot distinguish between

a constant acceleration due to motion and the gravitational field (since gravity is a constant

acceleration). A different type of sensor (or multiple sensors) must be used to estimate the

rotational motion to remove this effect from each accelerometer measurement and obtain

usable linear acceleration values. Gyroscopes are sensors that directly measure rotational

36

Figure 2.11: The InertiaCube from Intersense. Images courtesy of Intersense, Burlington,
MA.

velocity. Estimates of rotational velocity can be used to transform accelerometer data into

a reference frame in which the rotational motion is removed, before the integration takes

place.

Inertial systems have the advantage that they are fully self-contained (sourceless) and

are not affected by magnetic interference, radio transmissions or jamming signals, and can

provide data at extremely fast update rates. However, they rely heavily on the accuracy of

the starting pose of the vehicle since the sensors simply report changes in the acceleration

and velocity. They are plagued by drift caused by integration of the signals, errors in

calibration constants for each sensor, and their sensitivity to temperature changes.

37

2.7.1 Inertial Sensor Errors

Since inertial sensors are physical devices, they are prone to errors which must be modelled

accurately in order to provide a usable result[69]. The most common sensor errors for

gyroscopes and accelerometers are:

• Fixed bias. The sensor provides an output even in the absence of motion. Error in

the estimate of the constant bias introduces error and drift after integrating.

• Scale factor errors. Errors in the ratio that transforms the signal output to a usable

angular velocity or linear acceleration provide incorrect measurements.

• Cross-coupling errors. The sensor provides erroneous output resulting from its

sensitivity to motions about an axis normal to the measured axis.

• Noise. Sensor outputs are typically of very small magnitude (usually in the milli-

volt range) and thus must be amplified for most analog-to-digital convertors. The

amplification of the signal also amplifies any noise in the signal making it more pro-

nounced. Noise will undoubtedly affect the integration and estimation process and

standard signal filtering results in a phase shift observed as a latency in the integrated

output.

In order to obtain a usable result from inertial sensors, these errors must be taken into

account and modelled accurately. Even with precise calibration, there may be unpredictable

errors which restrict the use of the device for very short periods of time. In [24], an inertial

38

orientation-only tracking system was developed that minimizes the drift using other sen-

sors (inclinometers and a fluxgate magnetometer) which report absolute orientation. Even

though inertial sensors accumulate error over time, due to sensor errors or miscalibration,

the estimate is accurate for a short period. Since inertial sensors provide a very fast update

rate, they are a logical choice as a secondary tracking system that provides accurate data for

short intervals. Also, the sourceless nature (no tethers or long cables are required) makes

them ideal for use in a fully-enclosed immersive display.

2.8 Summary of Existing Tracking Technology

The specifications of the previously described tracking systems are provided in Table 2.1.

Given that no single perfect tracking system exists, many researchers have developed hy-

brid tracking approaches that use data fusion to combine the estimates of multiple comple-

mentary systems for more robust and accurate pose estimation.

2.9 Hybrid Tracking Systems

Each of the tracking systems discussed above has a host of advantages and disadvantages.

In order to gain accurate and reliable tracking of a user, using one tracking system alone

is generally not enough. Because of this, there has been considerable interest in hybrid

tracking approaches which uses two or more different tracking systems together to solve

the pose estimation/tracking problem. The most common hybrid tracking systems are the

39

Tracking Mfgr. Type Range Accuracy Resolution Latency Update
System Angular Position Angular Position Rate

GPSMAP196 Garmin GPS WIDE n/a < 15m n/a n/a 15sec 1Hz
GPSMAP196 Garmin DGPS WIDE n/a 3-5m n/a n/a 15sec 1Hz

BOOM3C FakeSpace Mechanical 1.8m H 0.038cm 200ns > 70Hz
0.8m V

Flock Ascension Magnetic ±1.2m 0.5o 1.8mm 0.1o 0.5mm 144Hz
of ±180o θ,γ

Birds ±90o φ
MotionStar Ascension Magnetic ±3.05m 0.5o 0.8cm 0.1o 0.8cm 120Hz

Wireless ±180o θ,γ
±90o φ

FASTRAK Polhemus Magnetic 5" 0.15o 0.03" 0.025o 0.0002" 4ms 120Hz
3D Bird Ascension Inertial ±180o θ,γ 2.5o n/a 0.2o n/a 15ms 160Hz

±90o φ n/a
InertiaCube2 Intersense Inertial 360o θ,φ,γ 1o n/a 0.01o n/a 2ms 180Hz
LaserBIRD Ascension Optical ±0.25−1.83m 1o 0.1mm 0.05o 0.1mm 5.17ms 240Hz

±85o θ,φ
±180o γ

HiBall 3rdTECH Hybrid WIDE AREA 0.01o 0.2mm <1ms <2000Hz
±180o θ
0−90o φ

Table 2.1: Commercially Available Tracker Specifications. θ =Azimuth, φ =Elevation, γ =Roll, Manufacturer Specifications,
latency reported without filtering signal.

40

(a) (b)

Figure 2.12: A Hybrid Inertial/Ultrasonic Tracker from Intersense. (a) the emitter that is
worn by the user and (b) the sensor unit in a calibrated position.

combination of inertial sensors with optical or acoustic sensors. Inertial information is fre-

quently used since these systems provide precise data at very fast update rates. However,

inertial systems only provide relative information that must be mathematically integrated

(in practice this is a source of instability), and the estimated pose tends to drift as time

increases. Thus, the starting point of the integration must be reset frequently by a tracking

system that measures absolute position and orientation. Intersense provides inertial track-

ers which use a secondary ultrasonic tracking system to measure the absolute pose of the

tracked device and continually update the parameters of the inertial system.

Using a hybrid system has advantages, merging the “best” attributes of each system

and using information from one system to compensate for deficiencies of the other. In

an Inertial/Ultrasonic hybrid tracker, the inertial data will provide extremely fast updates

but after some time it will drift, thus the Ultrasonic tracker which works at a much lower

update rate is used to compensate for this drift. However, there are still challenges involved

41

in developing a hybrid system. A highly accurate multi-step calibration process must be

developed to calibrate each system independently, as an integrated whole, or both. Since

each tracker uses different types of sensors with much different sensor characteristics, the

data must be “fused” into a single estimate of position and orientation. This is typically

done through the use of a recursive least squares approach such as the Kalman filter[76] or

a SCAAT filter[75] which are discussed in Appendix B.

2.9.1 Data Fusion

Data fusion has been researched extensively in the signals[15] and robotics field[17]. Sen-

sor fusion is a large field and a complete discussion is beyond the scope of this thesis. The

interested reader is directed to [43, 42, 48, 75, 4, 6, 17] and Appendix B for more details.

Typically multiple sensors with different characteristics are used. It is necessary to com-

bine these measurements in some statistically robust way to obtain more information than

from a single sensor alone. Given that it is possible to measure the sensor characteristics

off-line prior to use, the “best” a system can do to maintain an estimate using these sen-

sors is to take a weighted average of the measurements taken up to and including a given

time. As an example, take a static situation where you wish to estimate some variable x̂ and

measurements with equal uncertainty are available from n sensors, then the simplest “best”

estimate of the variable is:

x̂ =
∑xi

n

42

Usually, it is appropriate in these situations to evaluate the “goodness-of-fit” of the confi-

dence in the estimated variable. This can be accomplished by computing the covariance

matrix for the sensor system:

COV =




∑x2
1 ∑x1x2 . . . ∑x1xn

∑x2x1 ∑x2
2 . . . ∑x2xn

. . .

∑xnx1 ∑xnx2 . . . ∑x2
n




In a system where measurements from the sensors have different uncertainties, dif-

ferent approaches must be used. The Kalman filter (see [76] and Appendix B) is set of

equations precisely designed for this purpose. In a Kalman filter, the system to be esti-

mated is described as a set of variables combined into a vector called the state vector. The

technique can fuse measurements from (possibly) multiple sensors with different charac-

teristics (noise levels, certainties, etc.) are available at the same or different times. By

applying the filtering equations, the estimate of the state is updated with every measure-

ment using a Predictor-Corrector feedback loop. The Kalman filter incorporates a known

dynamical model of the system to predict the next state. A measurement model based on

the predicted state is used to predict the sensor measurement. The difference between this

prediction and the actual measurement can be used as an error metric for the model. The

state vector is then updated using this error to evaluate the sensor measurement and weigh it

appropriately limiting its influence on the updated state. The covariance matrix of the sys-

43

tem is also updated at each step. Measurements are combined with the current estimate by

weighing these estimates by their uncertainties. This technique has been employed exten-

sively in almost every field in computer science and engineering and has several extensions

to evaluate non-linear systems(a technique known as the extended Kalman filter, EKF[75]).

A system is said to be observable when the state vector can be fully determined from

a single measurement (i.e. the system can generate a new estimate of the state vector with

every measurement). This is the way most tracking systems employ the Kalman filter. Mul-

tiple sensors give estimates of the postion and orientation of an object and the Kalman filter

is used to keep track of this information appropriately. However, an interesting extension to

this is to use a Kalman filter to estimate a globally observable system from multiple locally

unobservable systems. This modification to the extended Kalman filter was named SCAAT

which stands for single-constraint-at-a-time[75]. This technique was explored in [75] for

the HiBall Optoelectronic tracking system, where each measurement of a single LED in the

ceiling is used to update the state of the system. Each measurement is insufficient to fully

estimate the pose of the HiBall thus leading to a locally unobservable system. However,

SCAAT algorithm allows each individual measurement to contribute to the final estimate

of the system leading to a globally observable state after multiple measurements.

44

2.10 Tracking in other domains

As discussed above, there has been much research and development of technology and

sensors that allow the user to be tracked within virtual environments. Inertial sensor tech-

nology has been used effectively in vehicle tracking and navigation [9, 11, 18, 47, 58].

More recently, inertial sensors have been used to track body parts for inserting humans into

virtual worlds[6]. A hybrid inertial/optical system developed by [82] uses inertial informa-

tion (six accelerometers) to track the fast head motion of the user wearing a see-through

HMD. A camera is also placed on the HMD to track known landmarks in the environment.

By tracking these landmarks, an estimate of the head motion is computed. They use an ex-

tended Kalman filter to fuse this data with the inertial data to obtain a robust estimate of the

head pose. Given the current head-pose, objects may be placed in the scene at the appro-

priate locations. Since the inertial data gives very fast updates, they are able to compensate

very quickly for the head motion so that the 3D object being superimposed on the scene

stays in the same apparent position. A hybrid inertial/vision-based tracking system was

also developed in [84, 83]. They use a differential-based optical-flow calculation to track

the camera motion and use commercially available inertial trackers to predict the motion of

feature vectors in the images. For the inertial/optical HiBall tracking system developed at

the University of North Carolina at Chapel Hill, a Kalman filter-based predictive tracking

algorithm was developed in [4], which was used to track head motions for use in augmented

reality applications. Another hybrid optical/inertial tracker was developed in [52] that used

45

a camera to localize binary coded fiducial marks placed in the environment to compute

the absolute pose of the camera and is then used to compensate for the inertial drift. The

system is placed on the user’s glasses to track their head motion.

2.11 Summary

In a fully-enclosed immersive display, the head tracking system must operate robustly un-

der the constraint that the user is fully-enclosed in the workspace. Since is not desirable

to have any physical mechanism inside the workspace (since it would detract from the im-

mersive experience) the tracking system must be able to provide estimates from outside

the display. Ultrasonic tracking systems are inappropriate for use in a fully-enclosed im-

mersive environment since their acoustic chirps would be absorbed by the screen material

and/or reflected within the environment causing echos. Inertial systems are promising for

fully-enclosed displays since they do not require a tether, minimal processing is required

and can be self-contained in a wearable device. Mechanical trackers are too cumbersome

and inhibit natural motion. Even though electromagnetic trackers have been used in many

fully-enclosed displays, tethering the user inhibits their motion and immersive experience.

Also, the noise characteristics in the presence of metallic objects and the accuracy falloff

with distance makes these systems unusable within IVY. Perhaps the most promising ap-

proach for tracking a user within fully-enclosed projective displays is to consider a hybrid

tracking approach based on visual and inertial sensors.

46

Chapter 3

The MARVIN Tracking System

There are several different criteria to evaluate a tracking technology for virtual reality. In

[23] the following possible criteria are introduced:

• User feels present in the virtual world.

• Perceptual stability: fixed virtual objects appear stationary, even during head motion.

• No simulator sickness occurs.

• Task performance is unaffected by any tracking artifacts.

• Tracking artifacts are below the detection threshold of a user who is looking for them.

These criteria are extremely relevant to keep in mind when choosing or developing a

tracking technology for VR. If the tracking technology is insufficient under any of these

metrics, the immersive experience of the user will be degraded.

In Chapter 2 different technologies available for human body motion tracking were

discussed, placing emphasis on each system’s advantages and disadvantages. Currently, no

single system is sufficient for general tracking, nor does there currently exist a non-invasive

tracking system for fully-enclosed projective environments.

47

A tracking system for use in a fully-enclosed projective display must satisfy the follow-

ing constraints:

• It must be tetherless. The user must be able to roam freely within the environment.

• It must have low latency. The user’s actions should trigger the appropriate change in

the display immediately, or within a sufficiently short period of time that the lag is

unnoticeable.

• It must have a high update rate. The system must update at least as fast as the fram-

erate of the presented visual display.

• Sensors attached to the body must be small and lightweight and must not affect the

user’s natural motions.

• It must have high rotational accuracy. Rotation is extremely important to generate

the proper stereo vision cues.

• It must be jitter/glitch free.

With these constraints and the above criteria in mind, a wireless hybrid inertial/optical

tracking system has been developed for use in a fully-enclosed immersive projective en-

vironment. This system is named MARVIN: a Mobile Automatic Realtime Visual and

INertial tracking system. The framework developed here has been implemented for the

IVY environment at York University but is general enough to use in any fully-enclosed

immersive projective display.

48

3.1 Overview

A hybrid tracking system has the potential to be extremely robust and accurate for VR

systems and in particular for fully immersive displays. The use of inertial information

for fast updates and a slower optical system to provide accurate absolute data is proba-

bly the best candidate for tracking in fully immersive displays. The hybrid system devel-

oped in this thesis satisfies the unique constraints imposed by fully-enclosed immersive

environments. MARVIN allows the user to roam freely within the display without being

physically tethered or being encumbered by a large device, and the accuracy acheived is

consistent throughout the physical range as well as being resistant to external interference.

Using recursive least squares filtering techniques, MARVIN provides smooth, jitter-free

pose estimates with a high rotational and positional accuracy throughout the entire work-

ing volume.

MARVIN’s inertial component, builds on the inertial tracking system developed in [82],

and uses acceleration information to compute relative position and orientation of the user

at a very fast update rate (greater than 200Hz). By imposing geometric constraints on the

placement of six accelerometers, the inertial device is able to provide relative motion infor-

mation on all axes (as discussed in Chapter 4). The recovered accelerations are integrated

twice to recover angular and linear displacements. This lightweight device is mounted on

a bicycle helmet that is worn by the user. Calibration of the sensors is of utmost con-

cern since any bias in the accelerations will produce a quadratically increasing error in our

49

Figure 3.1: The optical tracking system hardware. A lightweight acrylic housing holds the
4 laser diodes used to determine the user’s head pose.

computed displacements. These errors, and other unpredictable sensor errors, subject the

inertial pose estimate to drift rapidly. To compensate for the drift, a novel "outside-in" opti-

cal tracker was developed[35] to provide absolute pose data at a reliable but slower update

rate(15-20Hz).

MARVIN’s optical tracking component consists of a lightweight acrylic housing for

four low-power visible light laser diodes. The diodes are mounted in a known geometric

configuration such that the projections of the laser beams emitted from the device provides

geometric constraints on the pose of the device (See Figure 3.1). Ensuring that the lasers

point behind the user’s viewing direction keeps the tracking system from interfering with

the user’s visual experience. Cameras situated outside of IVY aimed at the rear-projection

screens provides tracking of the visible laser projections using standard computer vision

50

Inertial System EKF

Vision System

Accelerometer data

Absolute Pose

Final Pose

Figure 3.2: Overview of the MARVIN system. An extended Kalman filter (EKF) is used
to fuse the accelerometer and vision data into a single pose estimate. The EKF continually
estimates the pose from the inertial system and the vision system provides absolute pose
data as a control input to the filter.

techniques. The optical component complements the inertial system by providing absolute

pose data at a slower but reliable update rate. As with the inertial system, calibration of

the optical system is extremely important. The cameras must be fully calibrated in order to

provide an accurate description of the scene. Moreover, since the cameras are not perfectly

aligned with the screen, a transformation from image space to screen space is required.

This transformation is modeled using a planar projective homography[29] that maps image

coordinates into screen coordinates. Finally, the transformation from the coordinate system

defined by the laser device to the user’s head must be determined for the system to be used.

A major constraint imposed by existing magnetic tracking systems is the need for the

user to be physically tethered. MARVIN requires no physical tether through the use of

802.11b standard wireless ethernet technology in conjunction with a lightweight PC/104

wearable computer. PC/104 technology was chosen since it is very popular in the wearable

51

Wearable PC
(ivymate.cs.yorku.ca)

PC
(shaft.cs.yorku.ca)

(bigiron.cs.yorku.ca)
Rendering System

Graphical
Wireless Ethernet

802.11b

Dedicated Ethernet

Projector Projector

Fully−Enclosed Display (IVY)

Video

Video

Figure 3.3: Layout of current implementation of MARVIN. The wearable PC is connected
to the input PC via a wireless ethernet link to send input events and accelerometer data.
The input PC computes the pose and relays the events off to the calling program on the
rendering machine which generates the appropriate video sent to the projectors.

computer realm (see [64]) and there is a significant hardware and software infrastructure

available. Using this standard provides a straightforward upgrade path when new function-

ality is needed in the future. Standard USB and serial ports are also available which makes

it possible to connect many different readily available input devices for the user. Even

though PC/104 devices are small and lightweight, they are sufficiently powerful to collect

and transmit inertial data from the user to a base station, while providing some local data

analysis. Data is transmitted through the wireless network to a base computer outside of

IVY, where it is integrated and filtered to maintain an estimate of the user’s relative pose.

The MARVIN software infrastructure was built as a driver for use with the VE library

52

(see http://www.cs.yorku.ca/∼ivy/ve and also [65]). The decision to use VE as the software

infrastructure permits any program written in VE to take advantage of this tracking system

with minimal additional effort. In order to use the MARVIN system, a single line of code

is added to the program’s device file: “use marvin”. This initializes the tracking system

when VE is initialized and routes the generated tracking events to the calling application.

A typical device file for VE that uses the MARVIN tracking system is shown below:

use keyboard
use marvin
use gamepad { optional 1 }

filter keyboard.q { exit }
filter marvin.pose { rename tracker.frame }
filter *.* { dump }

The driver acquires images of all projective surfaces, performs some image processing

to localize the laser dots, and performs the pose calculation. A separate thread in the driver

acquires inertial data from the wireless network and combines this information with the

absolute pose estimate using an extended Kalman filter. At each update of the Kalman

Filter, an event is triggered with the network input device layer (NID) of VE and the pose

data is delivered to the appropriate calling program.

The following chapters discuss the details of each of MARVIN’s subsystems, describ-

ing the theory behind each, issues addressed in developing these systems, performance

characteristics, and the calibration processes employed.

53

Chapter 4

The Inertial System

The ability of inertial sensors to provide accurate relative motion data within short time

intervals at a high update rate is invaluable for a tracking system in virtual reality. Since

these types of sensors are able to operate without a physical tether to a calibrated reference

point, they are ideal candidates for tracking in fully-enclosed immersive projective displays.

Linear accelerometers sense the linear acceleration of a moving body. By attaching

multiple accelerometers in a specific configuration, it is possible to use the differential

measurements from the sensors to also estimate the angular acceleration[51, 50]. This

chapter provides the mathematics and theory behind the configuration of accelerometers

used in the MARVIN tracking system. First, the mathematics of rigid body dynamics

will be reviewed providing insight into the use of acceleration to estimate the position and

orientation of a moving body. These equations are then applied to the six accelerometer

configuration used in MARVIN followed by a discussion on the calibration of the device.

A method to estimate the pose of the device is described and results from a simulation

undergoing rotation and translation will be shown. Finally, an evaluation of the inertial

tracking system will be presented.

In 1686-87, Sir Isaac Newton published his Principia Mathematica[53] which defined

the concepts of mass, momentum, inertial forces, centripetal forces and proposed the three

54

laws of motion. An exhaustive review of these concepts is beyond the scope of this thesis

and the reader is directed to [78] for more detail. However, the equations of motion that are

relevant to the development of this thesis are developed in this chapter.

4.0.1 Accelerometers

Accelerometers transduce the specific force acting on an accelerating body. Since the ac-

celeration output from the sensor is a change in voltage, this is directed into an analog-

to-digital (A/D) converter and analyzed by a digital computer. The changes in voltage

are directly proportional to the force applied to the body. From Newton’s second law of

motion, this output is therefore directly proportional to the acceleration of the body. The

sensor output must then be converted into a usable acceleration value.

Sensors do not provide perfect data. The output is corrupted by random noise, nonlin-

earity, and cross-coupling errors due to sensitivity on transverse axes. Calibration data such

as biases, and scalings also influence the measurements and must be modelled in order to

transform the voltage output into the proper acceleration.

55

In [69], the output of the accelerometer, âx, along its sensitive axis, x, is modelled as

âx = (1+Sx)ax +Myay +Mzaz +B f +Bvaxay +nx (4.1)

where Sx = scale factor error

My,Mz = cross-coupling factors along perpendicular axes

B f = measurement bias

Bv = vibro-pendulous error-coefficient

nx = random noise bias

This model can be simplified by using the calibration results from the manufacturer.

The cross-coupling factors are negligable and the vibro-pendulous error-coefficient is in-

approprate for use in a mass-spring accelerometer. Under these simplifications, Equa-

tion 4.0.1 becomes

âx = (1+Sx)ax +B f +nx (4.2)

Note however that this only provides the proper acceleration measurement of a single ac-

celerometer. In a typical inertial navigation system, multiple accelerometers are used to

provide acceleration along each of the axes in 3D Euclidean space and the calibration pa-

rameters for each must be estimated. Also, it is practically impossible to build a housing

that ensures the sensors are perfectly orthogonal, the misalignments between the sensors

must be taken into account. The calibration of a multiple accelerometer tracking system

56

will be discussed later.

4.0.2 Rigid Body Motion

Rigid body dynamics is a long studied field and an exhaustive review is beyond the scope

of this thesis, however the concepts that are key to this thesis will be discussed and the

reader is urged to see [14, 78] and Appendix A for more details.

For the following discussion on rigid body dynamics, a few key concepts need to be

defined;

• Frame of Reference.

• Inertial frame of reference.

• Linear acceleration of a reference frame.

• Angular acceleration of a reference frame.

• Angular velocity of a reference frame.

Frame of Reference

A frame of reference is an orthogonal set of unit vectors with a common origin (see Fig-

ure 4.1) that constitutes a coordinate system used to describe the position, velocity and ac-

celeration of an object. In the context of this thesis, a frame of reference A will be denoted

57

ΣA

j

k

i

Figure 4.1: Frame of Reference. The frame of reference denoted as ∑A is composed of
three unit vectors i, j,k which are orthogonal to each other and constitute an orthonormal
basis.

as ∑A. Any vector within the frame of reference can be expressed as a linear combination

of the basis vectors of the frame.

Inertial Frame of Reference

An inertial frame of reference (∑I) is a non-accelerating reference frame. It is also typically

described as a reference frame in which Newton’s laws of motion hold, or as a reference

frame with constant velocity. As an example, take an accelerating car that has its own

reference frame attached to it (Figure 4.2). That is to say that any object within the car

can be expressed in this reference frame as a linear combination of the basis vectors of the

frame. However since this reference frame is accelerating, it cannot be considered as an

inertial frame. A good choice for the inertial frame in this scenario would be one that is

attached to a stationary observer looking onto the accelerating vehicle, or the center of the

earth since each of these are moving at a constant velocity.

58

ΣI

ΣC

Direction of Moving Vehicle

Figure 4.2: Inertial Frame of Reference.

Linear Motion of a Reference Frame

Let ∑I denote the inertial frame of reference, and let ∑A denote a second frame of reference

attached to object A (see Figure 4.3). Here the object is moving with respect to the inertial

frame but not rotating. The origin of ∑A can be expressed as a vector in the inertial frame;

let the origin of frame ∑A be denoted by vector ~R. The motion of the frame can be described

by how the vector ~R changes over time. Thus, the velocity of ∑A can be described as the

change of ~R with respect to the inertial frame over time:

~v =
Id~R
dt

(4.3)

where the superscripted I denotes the frame in which the derivative is taken with respect

to.

Similarly the linear acceleration, α, of the frame is the change in velocity over time, or

59

rather the second derivative of the position vector:

~α =
Id2~R
dt2 (4.4)

Now, let~r denote an object expressed within the moving reference frame (i.e. imagine

a passenger within the moving car in the example above). The total linear acceleration of

this object is the linear acceleration of the object itself with respect to the moving frame

added to the linear acceleration of the frame itself. Likewise for the velocity of the object.

Note however in the following that~r is expressed in the inertial frame as is the origin of its

associated moving reference frame.

~v =
Id~R
dt

+
Id~r
dt

=
Id
dt

(~R+~r) (4.5)

~α =
Id2~R
dt2 +

Id2~r
dt2 =

Id2

dt2 (~R+~r) (4.6)

Angular Motion of a reference frame

When a body rotates about a given axis, the angular velocity can be computed and ex-

pressed as a vector, ~ω. As seen in Figure 4.4, if ω is a scalar and ~v = [0,1,0]T is a unit

vector around the Y-axis, then the angular velocity about this axis can be described as

~ω = ω~v = [0,ωy,0]T . The axis of rotation is perpendicular to the rotating vector. This gives

60

ΣI

ΣA

R

(a)

ΣI

Σ

R

A

r

(b)

Figure 4.3: Linear Motion of a Reference Frame. (a) shows that the motion of the origin
of frame ∑A can be described as a vector ~R in an inertial frame of reference. (b) shows that
the motion of the vector~r within the non-inertial frame is described as the motion of itself
in addition to the motion of the entire frame with respect to the inertial frame.

an important result, the axis of rotation is perpendicular to the differential change of the

vector.

Figure 4.5 shows a vector ~r undergoing a rotation around a vector ~ω. The radius of

the circle illustrated has a magnitude of |~ω|sin(θ). The change in a vector~r undergoing a

rotation about a unit vector ~v = ω̂
|ω̂| with angular velocity |~ω| can be expressed in terms of

the cross product of the vector~r with the angular velocity vector ~ω = |~ω|~v,

d~r
dt

=~ω×~r (4.7)

Note however that this describes the rotational change of the vector only.

61

Y

(a) Initial Pose

ω

Y

(b) Rotating about Y-axis with
angular velocity ω

Figure 4.4: Angular Velocity Example. As a person rotates about their body axis (Y-axis),
they induce a rotational velocity ω about the axis of rotation.

Final Motion of a Rigid Body

Both the linear and rotational change of a vector must be accounted for in order to ac-

curately describe the motion of the vector with respect to another frame of reference. In

general, to describe the motion of a vector expressed in reference frame ∑A as it changes

with respect to reference frame ∑B, the following relationship can now be defined[78]

which accounts for all linear and rotational motion of the vector:

Bd~r
dt

=
Ad~r
dt

+ B~ωA×~r (4.8)

where~r is the vector describing the particle in frame A, B~ωA is the angular-velocity vector

of frame A with respect to frame B, and
Ad
dt~r describes the change of the vector itself in

62

ω

r∆(t+∆ t)r

r (t)

∆ tω
|r|

θ

θsin

Figure 4.5: Angular velocity of a vector.

frame A. Note that this relationship only accunts more a moving particle in a stationary

reference frame, i.e the reference frame is not rotating and moving itself. However, the

motion of the reference frame can be taken into account in the same fashion as will be seen

later.

This rule can be used to transform derivatives in one frame of reference into derivatives

with respect to a different frame of reference. The general rule is written as (following the

notation in [78]):
Bd
dt

() =
Ad
dt

()+ B~ωA× () (4.9)

Using this equation, it is possible to derive the acceleration of a point with respect to

another frame of reference, in particular the inertial frame. Applying Equation 4.9 twice,

and explicitly representing the motion of the reference frame as well, results in:

Bd2

dt2

(
~R+~r

)
=

Bd2

dt2
~R+

Bd
dt

(Ad
dt

~r+ B~ωA×~r
)

(4.10)

63

R

r

ω

Β

Α

Figure 4.6: Transformation between two frames.

Where ~R is the displacement between the two frames (see 4.6).

Equation 4.10 can be expanded into

Bd2

dt2

(
~R+~r

)
=

Bd2

dt2
~R+

Ad2

dt2~r+2
(

B~ωA×
Ad
dt

~r
)

+

(Ad
dt

B~ωA

)
×~r+

(B~ωA×
(B~ωA×~r

))

(4.11)

Let ~̇a denote the first derivative of a vector ~a and let ~̈a denote the second derivative.

Using this shorthand to simplify the above relation, the acceleration of a vector~r expressed

in an inertial frame B is defined as:

Bd2

dt2

(
~R+~r

)
= B~̈R+ A~̈r+2

(
B~ωA×~̇r

)
+(B~̇ωA×~r)+ B~ωA× (B~ωA×~r) (4.12)

For the rest of the discussion, the superscripts to denote the reference frames are dropped

for convenience since the transformations discussed will always be in reference to an iner-

tial reference frame.

64

4.0.3 Rigid Body Dynamics in the MARVIN tracking system

In the MARVIN tracking system, the aluminum housing that holds all of the accelerome-

ters constitutes the sensor frame housing coordinate system. The accelerometers are held

rigid in place and do not move with respect to this origin, thus d~r
dt = 0. This removes the

Coriolis force term, 2
(
~ω×~̇r

)
, from Equation 4.12. Finally, the acceleration of point~r in

the MARVIN tracking system is described as

~Ar =~α+(~̇ω×~r)+~ω× (~ω×~r) (4.13)

where ~̇ω denotes the angular acceleration vector between the two frames of reference, and

~α denotes the total linear acceleration of the vector.

4.1 MARVIN Inertial System Configuration

To describe the motion of the user’s head, MARVIN utilizes six accelerometers in the

geometric configuration shown in Figure 4.7. The accelerometers transduce the applied

force along the axes specified, and each sensor has an associated frame of reference. The

device is rigidly attached to the operator’s head. To estimate the motion of the user’s head

it is necessary to describe the angular and linear acceleration of the entire device (not just

the acceleration of the sensor positions). The acceleration required is of the origin of the

device frame O positioned at the center of the device.

65

6

3

1

2

4

5

XA
6

XA
5

YA
3

Z A
1

YA
4

Z A
2

Z

X

Y

A1

A2

A3
A4

A5

A6

O

Figure 4.7: The Inertial System Labeled with Sensing Axes. The reference frame origin
is denoted by O in the centre of the device with its associated orthogonal axes. Each
accelerometer senses acceleration along the specified axis.

To determine the relationships between what is sensed by the accelerometers and the

motion of the entire device, Equation 4.13 is applied to each accelerometer frame. Let Ai

denote the reference frame of the ith accelerometer.

For the following derivation, define the 3D position vector of an accelerometer as

~r = [rx,ry,rz]
T , its 3D angular acceleration vector as ~ω = [ωx,ωy,ωz]

T , and its 3D linear

acceleration vector as α = [ẍ, ÿ, z̈]T .

66

Expanding ~ω× (~ω×~r) into its vector components results in:

~ω× (~ω×~r) =




ωy(ωxry−ωyrx)−ωz(ωzrx−ωxrz)

ωz(ωyrz−ωzry)−ωx(ωxry−ωyrx)

ωx(ωzrx−ωxrz)−ωy(ωyrz−ωzry)




(4.14)

Expanding ~̇ω×~r:

~̇ω×~r =




ω̇yrz− ω̇zry

ω̇zrx− ω̇xrz

ω̇xry− ω̇yrx




(4.15)

These equations can now be applied to each accelerometer in its associated frame. The

accelerometer positions (from Figure 4.7) are:

Accelerometer Position

A1 r1 = [0,−δ1,0]T

A2 r2 = [0,δ2,0]T

A3 r3 = [δ3,0,0]T

A4 r4 = [−δ4,0,0]T

A5 r5 = [0,0,−δ5]
T

A6 r6 = [0,0,δ6]
T

These positions are used in Equation 4.14 and Equation 4.15 which results in three

equations per accelerometer, one for each axis of the accelerometer frame. After some

67

simplification, the acceleration of each accelerometer frame is described as:

A1 =




ẍ−ωyωxδ1 + ω̇zδ1

ÿ+ω2
z δ1 +ω2

xδ1

†z̈−ωyωzδ1− ω̇xδ1




A2 =




ẍ+ωyωxδ2− ω̇zδ2

ÿ−ω2
z δ2−ω2

xδ2

†z̈+ωyωzδ2 + ω̇xδ2




(4.16)

A3 =




ẍ−ω2
yδ3−ω2

z δ3

†ÿ+ωxωyδ3 + ω̇zδ3

z̈+ωxωzδ3− ω̇yδ3




A4 =




ẍ+ω2
yδ4 +ω2

z δ4

†ÿ−ωxωyδ4− ω̇zδ4

z̈−ωxωzδ4 + ω̇yδ4




(4.17)

A5 =




†ẍ−ωzωxδ5− ω̇yδ5

ÿ−ωzωyδ5 + ω̇xδ5

z̈+ω2
xδ5 +ω2

yδ5




A6 =




†ẍ+ωzωxδ6 + ω̇yδ6

ÿ+ωzωyδ6− ω̇xδ6

z̈−ω2
xδ6−ω2

yδ6




(4.18)

(4.19)

However, the accelerometers sense acceleration along a single axis only (specified by †) in

Equations 4.16 to 4.18 resulting in a single equation per accelerometer.

68

The equations simplify to:

A1 = z̈−ωyωzδ1− ω̇xδ1 (4.20)

A2 = z̈+ωyωzδ2 + ω̇xδ2 (4.21)

A3 = ÿ+ωxωyδ3 + ω̇zδ3 (4.22)

A4 = ÿ−ωxωyδ4− ω̇zδ4 (4.23)

A5 = ẍ−ωzωxδ5− ω̇yδ5 (4.24)

A6 = ẍ+ωzωxδ6 + ω̇yδ6 (4.25)

The equations can be simplified further by ensuring that δ = δ1 = δ2 = δ3 = δ4 = δ5 =

δ6 through accurate manufacturing of the sensor housing. Simplifying these equations

under the condition that each accelerometer is δ length away from the origin:

A1 = z̈−ωyωzδ− ω̇xδ (4.26)

A2 = z̈+ωyωzδ+ ω̇xδ (4.27)

A3 = ÿ+ωxωyδ+ ω̇zδ (4.28)

A4 = ÿ−ωxωyδ− ω̇zδ (4.29)

A5 = ẍ−ωzωxδ− ω̇yδ (4.30)

A6 = ẍ+ωzωxδ+ ω̇yδ (4.31)

69

By adding pairs of accelerometers (from Equation 4.26 to 4.31) together, the linear

acceleration of the sensor frame can be estimated as:

A1 +A2

2
= z̈

A3 +A4

2
= ÿ

A5 +A6

2
= ẍ

(4.32)

Note that the linear acceleration estimated in Equation 4.32 is biased by gravity. It

is impossible to distinguish between a linear acceleration applied to the device from the

acceleration induced by the earth’s gravitational field. In order to subtract the gravity vector

from the linear acceleration measurements, an estimate of the orientation of the frame is

needed.

Subtracting pairs of acceleration measurements (from Equation 4.26 through 4.31) re-

sults in:
A2−A1

2
= ωyωzδ+ ω̇xδ

A3−A4

2
= ωxωyδ+ ω̇zδ

A6−A5

2
= ωzωxδ+ ω̇yδ

(4.33)

70

(a) (b)

Figure 4.8: The Inertial Hardware and Calibration equipment.

and solving for the angular accelerations:

ω̇x =
A2−A1

2δ
−ωyωz

ω̇z =
A3−A4

2δ
−ωxωy

ω̇y =
A6−A5

2δ
−ωzωx

(4.34)

As can be seen by Equation 4.34 the angular acceleration can be estimated by subtracting

the outputs of the accelerometers as long as the angular velocity is estimated (or measured).

The six accelerometer configuration has been designed, developed and implemented.

The hardware device is shown in Figure 4.8 and the specifications of the device is given in

Appendix C.

71

4.2 Alternate Solution

The above calculations are correct only for the configuration of six accelerometers de-

scribed above, however a more general approach can be developed. Given that the acceler-

ation of a point is described by

~Ar =~α+(~̇ω×~r)+~ω× (~ω×~r) (4.35)

the jth accelerometer senses only along a specified axis, ~n j. Thus the output of the ac-

celerometer can be described as

~a j = ~n j · (~α+(~̇ω×~r j)+~ω× (~ω×~r j)) (4.36)

Given that this equation has nine unknowns, ~α,~ω,~̇ω are 3×1 vectors, nine accelerom-

eter estimates can be used (as in [50]) to solve this system of equations using standard

techniques. More than nine would allow the use of least-squares methods[7] leading to a

more robust solution. However, in the MARVIN configuration only six accelerometers are

used which makes this problem underconstrained. Given that ~ω and ~̇ω are related through

time-integration, ~ω can be estimated at each time step and “removed” from the system of

equations leading to a system of six equations with six unknowns.

72

Expanding Equation 4.36

~a j = ~n j ·~α+ ~n j · (~̇ω×~r j)+ ~n j · (~ω× (~ω×~r j)) (4.37)

Now, by moving the terms containing ~ω to the left hand side of the equation

~a j− ~n j · (~ω× (~ω×~r j)) = ~n j ·~α+ ~n j · (~̇ω×~r j) (4.38)

Let Ω j denote ~n j · (~ω× (~ω×~r)) for simplicity

~a j−Ω j = ~n j ·~α+ ~n j · (~̇ω×~r j) (4.39)

Given the relation

a · (b× c) = (c×a) ·b (4.40)

Equation 4.39 becomes

~a j−Ω j = ~n j ·~α+(~r j× ~n j) ·~̇ω (4.41)

which can be expressed in matrix form as

[
~a j−Ω j

]
=

[
~n j

T (~r j× ~n j)
T

]



~α

~̇ω


 (4.42)

73

Since Equation 4.42 is a linear system of equations, standard techniques for inverting

matrices or solving systems of equations can be used. Note that for an appropriate choice

of sensor positions ~n j the matrix

[
~n j

T (~r× ~n j)
T

]
(4.43)

is a 6× 6 invertible matrix and the system is solvable provided that the measurements

provide acceleration information on all orthogonal axes.

4.3 Determining Pose

Assuming that the calibration constants are known, the acceleration data is computed from

the raw digitized sensor outputs. This is discussed later in Section 4.4. The following

algorithm to determine the pose of the device assumes that the sensor outputs have already

been transformed into raw acceleration measurements.

In the following, the pose is defined as having two components:

1. A quaternion, q̂, describing the orientation of the sensor frame.

2. A vector, ~p, describing the position of the sensor frame with respect to an inertial

world frame.

As seen in Figure 4.9, the method is decomposed into several parts. Here, the orienta-

tion and position estimation will be dealt with separately.

74

A 1..6

Extract

Acceleration
Linear

v
p

Extract
Angular

Acceleration dt
dq̂ 1

2 q̂ω̂= dt
dq̂

g

ω0

q̂

q̂,ω

dω
dt

~A α

ω

~α=Α−

Figure 4.9: Determining pose from accelerometers. This illustrates an algorithm of how to
estimate the pose of the sensor frame in MARVIN using inertial data. The pose is com-
posed of a position vector ~p and a quaternion q̂ representing the orientation. To estimate
q̂, first the angular acceleration values are extracted from the sensor data. Then this an-
gular acceleration is integrated into the angular velocity of the sensor frame. This is then
converted into a rate quaternion and integrated to obtain the final orientation. The position
estimation is also straightforward, the linear acceleration of the sensor frame is extracted
from the sensor data. This is biased by gravity. The real linear acceleration must be com-
puted by subtracting the gravity vector expressed in the inertial frame. Next, the linear
acceleration is integrated to obtain the velocity ~v which in turn is integrated to obtain the
final position vector, ~p.

4.3.1 Orientation Estimation

In order to estimate the orientation of the device, the following must be performed:

1. Angular Acceleration Extraction

2. Angular Velocity Estimation

3. Rate Quaternion Estimation

4. Final Quaternion Estimation

Given the raw acceleration data from the six accelerometers, it is possible to simply

use Equation 4.34 and use differential pairs of the accelerometers to extract the angular

75

acceleration of the sensor frame.

Equation 4.34 requires an initial estimate of the angular velocity. A reasonable assump-

tion would be to set the initial angular velocity to zero.

The subsequent angular velocity can then be estimated using the relationship:

~ω =
∫ t

0
~̇ωdt (4.44)

Since a quaternion representation is desired for the orientation, a rate quaternion can

be computed using the relationship derived in Appendix A for the quaternion derivative,

namely

˙̂q =
1
2

q̂⊗ ω̂ (4.45)

Once the rate quaternion has been computed, it is then possible to integrate the quater-

nion into a final orientation estimate, q̂.

Using this algorithm, the orientation of the sensor frame can be estimated assuming that

the sensors are properly calibrated. Now, the second component of the pose estimate must

be computed, namely the position vector.

4.3.2 Position Estimation

To estimate the position of the sensor frame, four steps are followed:

1. Linear Acceleration Extraction

76

2. Gravity Compensation

3. Linear Velocity Estimation

4. Final Position Estimation

The position vector of the sensor frame is entirely dependent on the linear accelera-

tion of the sensor frame. However, the effect of gravity can not be decoupled from the

accelerometer measurements. Thus the effects of gravity must be compensated for in the

position estimation. Since the estimated linear acceleration vector is expressed in the iner-

tial frame, the gravity vector may be subtracted from the acceleration estimate directly.

First, to compute the linear acceleration of the sensor frame, Equation 4.32 is applied

to the pairs of accelerometer outputs. Then, the effect of gravity is compensated for by

subtracting the gravity vector from the linear acceleration vector. The gravity compensation

can be defined as

α = ~A−~g (4.46)

where ~A is the output determined with Equation 4.32 and ~g = [0,−9.81,0] is the constant

gravity vector pointing along the negative Y-axis.

Once the linear acceleration of the sensor frame is estimated, the linear velocity, ~v can

be computed using the relationship

~v =
∫ t

0
αdt (4.47)

77

The position vector, ~p, can then be computed using a second integral and a second-order

Runge-Kutta technique[59],

~p =
∫ t

0
~vdt (4.48)

4.4 Calibration

The previous sections showed how to estimate the pose of the inertial device in theory. In

practice, however, there are many other concerns that need to be addressed. In order for the

above to work, the sensors should be positioned at exactly the same distance, δ, away from

the origin. Each pair of accelerometer’s sensitive axes must be aligned and orthogonal to

the other pairs of accelerometers’ sensitive axes, i.e. there must not be any misalignment

between the accelerometers. Real-world sensors output their values in voltages which must

be converted to the proper acceleration values using biases and scale factors. Any error in

these biases and scales will quickly corrupt the displacement estimate after two numerical

integrations. Noise characteristics of the sensors must be taken into account as well.

In order to accomplish the difficult task of compensating for misalignment and error, a

calibration routine must be developed to estimate these parameters. Since multiple sensors

are used and each have their own calibration constants, they must be calibrated separately

followed calibration of the entire device with respect to the sensor frame origin.

78

4.4.1 Multiple Sensor Model

In [73], a method for calibrating an inertial pose estimation system for use in robotic sys-

tems is presented. The model presented uses 3 orthogonal rate gyroscopes and 3 orthogonal

linear accelerometers to compute the pose of the robot.

Briefly, an accelerometer can be modelled as

Ai = Bi +(1+Si)·<~α(ri)+~g,~ni >

where Ai is the output of the ith accelerometer, Bi,Si are the bias and scales respectively,~ni is

the axis the accelerometer senses upon,~α(ri) is the linear acceleration at the accelerometer

position ri, and ~g is the gravity vector in the inertial frame.

In a static situation (when no motion is present), the linear acceleration term, α(ri),

becomes zero and the sensor output is modelled as:

Ai = Bi +(1+Si)·<~g,~ni >

Note that Ai provides a maximum output when ~g is aligned with ~ni and is in the same

direction. Ai is also at a minimum when~g is aligned with ~ni and is in the opposite direction.

Let A j+
i denote the acceleration on axis i when A j is maximal, and A j−

i as the acceleration

79

on axis i when A j is minimal,

A j+
i = Bi +(1+Si) · ||~g||·< ~n j,~ni >

A j−
i = Bi− (1+Si) · ||~g||·< ~n j,~ni >

In the above model, the calibration parameters needed to be estimated are

1. Scale factors and biases of each accelerometer, Si,Bi.

2. Inner products < ~n j,~ni > i 6= j which represent the misalignment of the accelerome-

ters.

These are the intrinsic parameters of the sensor and can be estimated as:

Bi =
A j+

i +A j−
i

2
for j = 1,2,3

1+Si =
Ai+

i −Ai−
i

2 · ||~g||

< ~n j,~ni >=< ~ni, ~n j > =
A j+

i −A j−
i

Ai+
i −Ai−

i
=

Ai+
j −Ai−

j

A j+
j −A j−

j

Thus, it is possible to find the calibration parameters if one is able to precisely position each

accelerometer in such a way to observe maximum and minimum values on each sensor. In

[73], an autocalibration routine using a robotic arm is employed to iteratively re-estimate

the calibration parameters converging on a final solution.

80

4.4.2 MARVIN Inertial Calibration

The calibration method described above and in [73] assumes that three orthogonal ac-

celerometers are used and are co-located. This is not the case in the MARVIN system

where six-accelerometers are used. The technique must be adapted for use in MARVIN,

however much of the ideas presented in [73] can be directly applied on a per accelerometer

basis.

The calibration technique developed for the MARVIN system needs to perform the

following:

1. Find biases and scaling factors to convert voltage output into usable acceleration

values.

2. Determine the direction of each accelerometer sensing axis.

These two steps can be solved for using four measurements (the minimum number

of measurements needed). Due to physical constraints of the sensor housing, these four

measurements can be described as

1. Place sensor housing so the +X axis is aligned with the gravity vector.

2. Place sensor housing so the -X axis is aligned with the gravity vector.

3. Place sensor housing so the +Y axis is aligned with the gravity vector.

4. Place sensor housing so the -Z axis is aligned with the gravity vector.

81

Measurements from all accelerometers are taken simultaneously for each orientation.

The bias and scaling of each accelerometer can be found by taking four specific measure-

ments from each accelerometer.

Let the output of the jth accelerometer be a j and let the ith calibration measurement for

this accelerometer be denoted as ia j. Also let B j,S j denote the bias and scale respectively

of the jth accelerometer and let the gravity vector be ~g = [gx,gy,gz]
T and the sensitive axis

of this accelerometer be~n j = [nx,ny,nz]
T . Each calibration orientation can be described by:

1a j = B j +S jgxnx (4.49)

2a j = B j−S jgxnx (4.50)

3a j = B j +S jgyny (4.51)

4a j = B j−S jgznz (4.52)

The bias for each accelerometer can be computed as

B j =
1a j +

2a j

2
(4.53)

82

Now, applying the computed bias to three independent measurements

2a′j =−(2a j−B j) = S jgxnx (4.54)

3a′j = 3a j−B j = S jgyny (4.55)

4a′j =−(4a j−B j) = S jgznz (4.56)

Note that this can be described simply as

~a′j = S j~g ·~n (4.57)

and also note that the following is also true

|~a′j|=−S j|~g||~n| (4.58)

Thus, the scaling can be computed as

S j =−
|~a′j|
|~g||~n| (4.59)

Note that |~n| = 1 since it is a unit vector, thus the scaling for this accelerometer can be

determined by

S j =−
|~a′j|
|~g| (4.60)

83

Once the bias and scales are determined for each accelerometer, the sensing direction

vector for each sensor must also be computed. This is accomplished by creating a system

of equations and solving for the components of~n j.

~ia j = B j +S jA~n j~g (4.61)

where A is defined as

A =




1 0 0

−1 0 0

0 1 0

0 0 −1




(4.62)

and ~ia j = [1a′j,
2 a′j,

3 a′j,
4 a′j]

T is the measurement vector.

This system can be solved by using the normal equations[7] of the matrix A and com-

puting

~n j = (AT A)−1AT
~ia j−B j

S j|~g|
(4.63)

This method is capable of computing the biases and scales of each accelerometer as

well as the direction of the sensing axis by placing the sensor housing in four or more

orientations with one of its axes aligned with the gravity vector. By modeling the directions

of the sensing axes of each accelerometer, the misalignments are unneeded since this is

inherent in the representation.

84

4.5 Inertial System Simulator

In order to verify that the above discussed method for determining position and orientation

of the inertial device is correct, a software simulator was developed. A screenshot of the

simulator can be seen in Figure 4.10. The simulator places six “virtual” accelerometers in

the same configuration as the real device and positions it within a “virtual” IVY. The pose of

the virtual device can be modified and moved interactively. The simulation timer callback

is programmed to update the simulation at a known update rate and at each step computes

the output of each accelerometer. The orientation of the virtual device is maintained as a

quaternion, q̂, and a position vector, ~p, and each is updated appropriately. At each step of

the simulation, the angular velocity, ~ω, is computed by

dq̂
dt

=
1
2

q̂⊗ ω̂ (4.64)

ω̂ = 2q̂−1 dq̂
dt

(4.65)

where ω̂ = [0,~ω]T and a first order approximation to the quaternion derivative is used

dq̂
dt
≈ q̂t− q̂t−1

∆t
(4.66)

Next, the angular acceleration, linear velocity, and finally linear acceleration is com-

85

puted using is computed using a first order approximation to the derivative, namely

~̇ω =
d~ω
dt
≈ ~ωt−~ωt−1

∆t
(4.67)

~v =
d~p
dt
≈ ~pt−~pt−1

∆t
(4.68)

~α0 =
d~v
dt
≈ ~vt−~vt−1

∆t
(4.69)

(4.70)

The linear acceleration is biased by gravity to simulate real-world processes as

~α =~α0 +~g (4.71)

Now, to compute what each accelerometer senses,

a j =~n j · (~α+(~̇ω×~r j)+(~ω× (~ω×~r j)) (4.72)

is evaluated where a j is the output of the jth accelerometer, ~n j is the direction of the sen-

sitive axis of the jth accelerometer,~r j is the position of the jth accelerometer. Note that~n j

and~r j are expressed in the inertial frame and change with the orientation of the device.

86

Figure 4.10: Screenshot of the Inertial Simulator. This shows the “virtual” inertial device
with its six accelerometers at the appropriate positions. The red lines denote the direction
of the sensitive axes of each accelerometer. The surrounding cube denotes the “virtual”
IVY display and the red sphere in the centre of the device shows the position of the device.

4.6 Simulation Results

The inertial simulator is able to provide perfect data in order to verify that the method is

correct. Also, the simulator is capable of simulating data from accelerometers that have

misaligned axes as in the actual device. Several tests were performed which illustrate the

correctness of the integration loop. For the following, results from purely translational

motion and purely rotational motion will be shown. In each, the estimated data is shown

with the ground truth data output from the simulation. Also, it is important to note that

the Euler integration[59] method is used causing some numerical errors to occur in the

resulting data.

87

4.6.1 Translation

Two tests are shown that illustrate the correctness of the system during a purely translational

movement. Data from ideal and perfectly aligned accelerometers are shown followed by a

test with misaligned axes in order to illustrate the effects of accelerometer misalignment.

(a) Start Position (b) End Position

Figure 4.11: Inertial Simulator Translation. This illustrates the motion involved in the
performed tests on translation. The device is moved from one side of the virtual IVY to the
other side of the virtual IVY at constant velocity.

For this test, the device was oscillated sinusoidally along the X-axis. Figure 4.12(a)

shows the raw data output from the inertial simulator. The integrated output shows a relative

translation from the origin and no orientation change. The translation computed from the

raw accelerometer data can be seen in Figure 4.12(b) plotted with ground truth data.

88

(a) Raw Accelerometer Data (b) Estimated Translational Motion (dot-
ted black line is ground truth, red line is
estimated translation)

(c) Estimated Angular Motion

Figure 4.12: Simulation Results with Purely Translational Movement and Ideal Sensing
Axes

89

Ideal Translation with Misalignment

For this test, the accelerometer sensing axes were determined using the calibration results

from the actual device. The sensing directions are defined in Table 4.1.

Accelerometer X Y Z
1 0.004454 -0.025742 -0.999659
2 0.012620 0.000073 -0.999920
3 -0.016351 -0.999858 0.004054
4 0.000157 -0.999978 -0.006581
5 -0.999843 0.009090 -0.015183
6 -0.999651 -0.013739 -0.022575

Table 4.1: Accelerometer sensing directions with calibration from actual device (~n j).

The previous test was repeated incorporating the misalignment of the accelerometers.

The raw data produced from the simulator can be see in Figure 4.13(a) and computing

the final pose from the raw data using the described method takes the misalignments into

account to produce the proper result. The computed results can be seen in Figure 4.13(b).

Numerical integration and roundoff errors occur and are accentuated by the use of Euler’s

method of integration. Since the system is tightly coupled, this error accumulates and

biases the angular acceleration that is extracted resulting in a small error in angular motion

over several seconds.

90

(a) Raw Accelerometer Data (b) Estimated Translational Motion (dotted
black line is ground truth, red line is esti-
mated translation)

(c) Estimated Angular Motion (dotted black
line is ground truth, red, green, and blue cor-
respond to yaw, pitch and roll angle respec-
tively)

Figure 4.13: Simulation Results with Purely Translational Movement and Misaligned Sens-
ing Axes

91

X

Y

Z
roll

pitch

yaw

(a)

Figure 4.14: Inertial Simulator Rotation. This figure illustrates the axes of rotation per-
formed with the inertial simulator.

4.6.2 Ideal Rotation

To test rotation, first the ideal sensing axes are simulated and the virtual device is rotated

about each of its three axes; Yaw, Pitch and Roll. The device is rotated ±90o over several

seconds on each axis and the accelerometer output is recorded.

As shown in Figure 4.14, the yaw rotation is about the world Y-axis of the inertial

device. As can be seen during the movement, the computed angular motion follows the

absolute motion curve precisely with small roundoff errors accumulating. The raw ac-

celerometer data is shown in Figure 4.15(a) and the extracted angular acceleration can be

seen in Figure 4.15(b). Through integration of the acceleration, the angular velocity is com-

puted and plotted in Figure 4.15(c) which is also integrated to estimate the angular motion

92

shown in Figure 4.15(d) and 4.16(c). For completeness the extracted linear acceleration

is shown in Figure 4.16(a) which by double integration results in the translation shown

in Figure 4.16(b). The same experiments were also conducted on the other two rotations

(Pitch and Roll) and the results are summarized in Figure 4.17.

93

(a) Raw Accelerometer Data (all 6 ac-
celerometers)

(b) Estimated Omegadot

(c) Estimated Omega (d) Estimated Theta (black dotted line is
ground truth, green line is estimated Yaw
angle)

Figure 4.15: Simulation Results with Ideal Yaw Rotation

94

(a) Estimated Alpha (b) Estimated Translational Movement

(c) Estimated Yaw Rotation Closeup (black
dotted line is ground truth, green line is es-
timated Yaw angle)

Figure 4.16: Simulation Results with Ideal Yaw Rotation (continued)

95

(a) Pitch:Raw Accelerometer Data (of all 6
accelerometers)

(b) Pitch:Estimated Theta (dotted black line
is ground truth, red line is estimated Pitch
angle)

(c) Roll:Raw Accelerometer Data (of all 6
accelerometers)

(d) Roll:Estimated Theta (dotted black line
is ground truth, blue line is estimated Roll
angle)

Figure 4.17: Simulation Results with Ideal Pitch and Roll Rotation Experiments

96

4.6.3 Ideal Rotation with Misalignment

The previously described rotation experiments were repeated with the calibration data from

the physical device. The system is shown to work properly but with a slight increase in

accumulative error due to the misalignments. The results for Yaw are shown in Figures 4.18

and 4.19 and the results from the Pitch and Roll experiments are summarized in Figure 4.20.

4.7 Summary

In this chapter, the theory behind an inertial pose estimation system was described that

utilizes six accelerometers in a known geometry. The mathematics was developed for the

acceleration of rigid bodies and was applied to the MARVIN inertial hardware. An inertial

simulator was described which is an interactive program capable of simulating the acceler-

ation that each accelerometer senses during a given motion of the virtual inertial device. It

was shown that the system works in simulation with ideal data and that the misalignments

of the accelerometer sensing directions can be compensated for through accurate calibra-

tion. The calibration method used in the MARVIN system was described and results were

shown that illustrate the correctness of the pose estimation method. The math has shown

to be extremely sensitive to noise in the raw data and misalignment of the accelerometer

pairs. The system quickly diverges when noise is present, however with smoothing and fil-

tering of the data the system can provide reliable pose estimates a small number of seconds.

This indicates that a secondary system is needed that runs at an update rate of greater than

97

1Hz to reset the inertial system pose estimation loop. As discussed in Chapter 2, a hybrid

tracking approach is desired.

98

(a) Raw Accelerometer Data (of all 6 ac-
celerometers)

(b) Estimated Omegadot

(c) Estimated Omega (d) Estimated Theta (black dotted line is
ground truth, green line is estimated Yaw
angle)

Figure 4.18: Simulation Results with Yaw Rotation and Misaligned Sensing Axes

99

(a) Estimated Alpha (red, green, blue are
linear accelerations allong the X,Y,Z axes
respectively)

(b) Estimated Translational Movement (red,
green, blue are linear translations allong the
X,Y,Z axes respectively)

Figure 4.19: Simulation Results with Yaw Rotation and Misaligned Sensing Axes

100

(a) Pitch:Raw Accelerometer Data (of all 6
accelerometers)

(b) Pitch:Estimated Theta (dotted black line
is ground truth, red, green and blue are the
Pitch, Yaw and Roll angles respectively)

(c) Roll:Raw Accelerometer Data (of all 6
accelerometers)

(d) Roll:Estimated Theta (dotted black line
is ground truth, red, green and blue are the
Pitch, Yaw and Roll angles respectively)

Figure 4.20: Simulation Results with Pitch and Roll Rotation and Misaligned Sensing Axes

101

Chapter 5

The Optical System

No current optical head-tracking solution is suitable for use in fully-enclosed immersive

projective displays. Commercially available optical head tracking systems require a line-

of-sight to the user or the placement of known landmarks in the scene. In fully-enclosed

environments, known landmarks cannot be placed in the environment as they will interfere

with the user’s visual experience. The line-of-sight constraint for these trackers is violated

since the user is within a fully-enclosed volume. The optical component of the MARVIN

tracking system uses this line-of-sight restriction to its advantage. This chapter develops

the theory and implementation behind the optical tracking component of MARVIN.

MARVIN utilizes digital video cameras placed outside of the immersive display, posi-

tioned to view the rear-projection screens. By attaching a group of low-power laser diodes

to a helmet worn by the user, the user’s head motion can be tracked. The lasers project

onto the screen surfaces of the immersive display and since the screen surface is translu-

cent, the laser light is visible from the projector/camera side of the display. By tracking

the laser projections in camera space and positioning the lasers in a known geometry, it is

possible to obtain strong constraints on the position and orientation of the tracking device.

These constraints allow for the computation of the correct head pose from four tracked

laser projections. Figure 5.1 illustrates the basic approach.

102

Camera

Fully−enclosed display (IVY)

Laser Projection

Figure 5.1: Optical tracking system basic approach. Cameras are located outside of the
display and track the projections of laser emitters attached to the user’s head on the display
surfaces.

5.1 Basic Approach

MARVIN utilizes a novel outside-in optical technique to track the user’s head motion.

Digital FireWire R© (IEEE 1394) cameras are placed outside of the fully-enclosed display

and each is positioned to view one of the rear-projection screen surfaces that make up

IVY. In the current implementation, eight cameras are used since the floor and ceiling of

IVY required two projectors (and thus two cameras) for each surface due to physical space

constraints. A group of low power laser diodes are attached to the user’s head, positioned so

that the emitted laser beams (and more importantly the projections of these beams onto the

surfaces of IVY) cannot be seen by the user. Each camera is equipped with a wavelength

notch filter with a peak response at the laser diode wavelength (650nm). This simplifies

image processing and enables real-time performance. The image from each camera is

analyzed to determine the centroid of the laser projections on the screen surfaces. When

103

Extract Laser Dots

Transformation
Camera to Screen Space

(without laser filter)

Transformation
Image to Camera Space

Transformation
Screen to Laser Filter Space

(with laser filter)

Transformation
(Filter to World Coordinates)

Compute Error
Function

Acquire Images

3D Laser Dots x 4 Estimate Pose

Final Pose

Figure 5.2: Optical tracker algorithm. Each step is explained in detail throughout this
chapter.

four laser projections are found, they are transformed into world-coordinates (determined

through an offline calibration routine) and are used to estimate the pose of the tracking

device. By imposing constraints based on the known geometry of the laser diode housing,

the position and orientation is computed from the tracked laser projections. A recursive

least-squares (extended Kalman) filter is used to smooth, gate, and maintain the final pose

of the user. The entire algorithm is summarized in Figure 5.2 and each component is

explained in detail in this chapter.

The optical tracking method is decomposed into parts as

• Calibration of the system (performed once and discussed later this chapter).

• Laser dot localization in camera images. Note that more than one laser projection

can exist on a single wall.

104

• Pose estimation using the tracked laser dots and geometrical constraints.

• Maintain pose estimate via temporal coherence.

5.2 Tracking Laser Projections

Tracking a laser projection within an image has been used before in the human-computer-

interaction field[57, 79, 12, 56]. Techniques used to identify the lasers in the images include

pattern recognition techniques and convolution filters, colour identification, brightest peak

detection, and fitting mathematical functions to areas containing bright pixels to compute

the subpixel coordinates of the centroid (as in [20]). In practice, convolution techniques

can be optimized to run in real-time (or implemented in hardware) for a single image.

MARVIN requires the use of eight digital cameras. Thus, a computationally inexpen-

sive image processing routine is needed. An algorithm that requires a single pass through

each grayscale image is preferred over a colour-based approach for two reasons. First,

colour images require three times the amount of data to be transferred over the computer’s

PCI bus quickly exhausting the bandwidth of standard PCs. A second issue is that the pro-

jected laser point is bright enough to saturate the CCD and washes out the colour of the

imaged laser dot. In order to simplify the required image processing, a wavelength notch

filter on each camera is used to ensure that only laser light (650nm wavelength) is visible

in the camera image even in the presence of bright imagery being projected on the screens.

This was employed for robustness, to ensure that no false positives due to bright light emit-

105

ted from the projectors are mistaken as laser dots, and to reduce the amount of data that

needs to be acquired and transmitted by the camera. Since the cameras acquire 640x480

resolution images, the 2.29m screen is imaged at approximately 500 pixels, making 1 cam-

era pixel correspond to approximately 0.5cm on the screen surface. This suggests that a

highly accurate technique is required to find and track the laser projections throughout the

images, obtaining subpixel precision whenever possible.

5.2.1 Grouping and Locating Laser Dots

First, a single-pass pseudo-propagation algorithm is performed on a per image basis to

find and label pixels associated with potential laser dots. It is assumed that potential laser

illuminated pixels cannot be closer than δx pixels from the illuminated pixels associated

with a different laser emitter. This is a reasonable assumption due to the physical geometry

of the laser diodes; two lasers are always a minimum of 30 pixels apart, thus setting δx < 30

is sufficient. For a laser illuminated pixel at image point (u,v), a neighbouring region of

δx pixels in a labelling array is examined (i.e. the region u−δx . . .u+δx,v−δx . . .v+δx is

examined) to determine if the laser illuminated pixel should be associated with an already

identified laser dot. If no such association is found, the pixel is associated with a new laser

emitter identifier (id).

106

Given the id of a found laser dot, compute

uid =
i+δx, j+δx

∑
i−δx, j−δx

i∗ I(i, j) (5.1)

vid =
i+δx, j+δx

∑
i−δx, j−δx

j ∗ I(i, j) (5.2)

Iid =
i+δx, j+δx

∑
i−δx, j−δx

I(i, j) (5.3)

Alternatively, this computation could be implemented as in [20] by fitting an exponential

(Gaussian) function to the intensities to acquire the subpixel peak of the laser spot, however

due to the size of the laser dot in the images (sometimes down to a very small number of

pixels) it was found that an intensity-weighted geometric centroid computation is sufficient.

Performing this calculation for the entire image, an array of potential laser dots is pro-

duced and their respective (u,v) locations are weighted by their intensities. The estimate

(ûid, v̂id) is computed using the values in Equations5.1 to 5.3 as

ûid =
uid

Iid
(5.4)

v̂id =
vid

Iid
(5.5)

Note that if the intensities are uniform throughout the analysed image region, the computed

laser centre is the geometric centroid of the region. It is possible that spurious “novel”

points will be identified by this process. To eliminate such false positives, the distance be-

107

Listing 5.1: Algorithm to find the laser dots in all 8 images

f u n c t i o n f i n d L a s e r s I n I V Y (Image Images [8])
/ ∗ r e t u r n s LASER_DOTS a r r a y o f 2D p o i n t s ∗ /
f o r ALL img← 1 . . .8

LASER_DOTS[img] = g e t L a s e r D o t s (Images (img)) ;

re turn LASER_DOTS ;
end f u n c t i o n

tween laser dot clusters are computed. If the squared distance is beneath some empirically

found threshold, then the estimates are merged. This is reasonable since there are a small

number of potential laser dots at any given time, typically a list of less than ten potential

candidates. Listings 5.1 through 5.4 summarize the approach.

The labelling/merging algorithm finds multiple laser dots in each image with subpixel

estimation. The method is quite robust and requires only one pass through the image.

Figure 5.3 shows a screenshot of the algorithm tracking 3 laser dots.

108

Listing 5.2: Algorithm to find the laser dots in a single image

f u n c t i o n g e t L a s e r D o t s (Image I , i n t T h r e s h o l d , i n t Neighbourhood)
/ ∗ r e t u r n s LASERS a r r a y o f 2D p o i n t s ∗ /
/ ∗ f i n d a l l p o t e n t i a l l a s e r s i n t h e image ∗ /
f o r ALL u← 1 . . . Iwidth , v← 1 . . . Iheight

i f I (u , v) > T h r e s h o l d
/ ∗ we have a p o t e n t i a l l a s e r ∗ /
/ ∗ l e t s s t o r e i t s ID and i n f o ∗ /
ID = g e t L a s e r I D (u , v , Neighbourhood) ;
ID = s e t L a s e r I D (u , v , ID) ;

LASERS(ID) . x + = I (u , v)∗ u ;
LASERS(ID) . y + = I (u , v)∗ v ;
LASERS(ID) . w e i g h t + = I (u , v) ;

/ ∗ use w e i g h t i n g t o compute p r o p e r c e n t r o i d ∗ /
f o r ALL ID ← 1 . . .NUM_IDS

LASERS(ID) . x / = LASERS(ID) . w e i g h t ;
LASERS(ID) . y / = LASERS(ID) . w e i g h t ;

/ ∗ merge a l l c a n d i d a t e s w i t h i n δx p i x e l s o f each l a s e r ∗ /
f o r ALL i← 1 . . .NUM_IDS ,

f o r each j← i+1 . . . NUM_IDS
i f (DISTANCE(LASERS(i) , LASERS(j)) < δx)

LASERS(i) . x + = LASERS(j) . x ;
LASERS(i) . y + = LASERS(j) . y ;
LASERS(i) . x / = 2 ;
LASERS(i) . y / = 2 ;
REMOVE(LASERS(j)) ;

RESET_IDS () ;
re turn LASERS ;

end f u n c t i o n

109

Listing 5.3: Algorithm to return a valid ID from the labelling array

f u n c t i o n g e t L a s e r I D (i n t u , i n t v , i n t N)
/ ∗ r e t u r n s MAXID ∗ /
/ ∗ t h e maximum ID found i n t h e ne ighbou rhood ∗ /

MAXID = −1 ;
ID = 0 ;
f o r ALL U ←u−N/2 . . .u+N/2 , V ←v−N/2 . . .v+N/2

i f (IDS (U,V) ! = 0)
ID = IDS (U,V) ;
i f (ID > MAXID)

ID = IDS (U,V)
re turn MAXID;

end f u n c t i o n

Listing 5.4: Algorithm to set the ID in the labelling array

f u n c t i o n s e t L a s e r I d (i n t u , i n t v , i n t ID)
/ ∗ r e t u r n s ID2 t h e c u r r e n t i d ∗ /
ID2 = ID ;
i f (ID2 == −1)

IDS (u , v) = NEXT_ID ;
ID2 = NEXT_ID ;
NEXT_ID++;

e l s e
IDS (u , v) = ID2 ;

re turn ID2 ;
end f u n c t i o n

110

(a) Raw intensity image of 3 laser dots

(b) System tracking the lasers online

Figure 5.3: Multiple Laser Dot Tracking. (a) shows the raw image taken with 3 lasers in
the image and (b) shows the system finding the centroid. The red square surrounding the
tracked dot denotes the tracking region (enlarged for viewing purposes).

111

5.3 Estimating Position and Orientation

Given that all four lasers are tracked accurately on the screen surfaces, it is possible to

compute the position and orientation of the tracking device. Each laser diode in the tracking

device is identical in specifications (see Appendix C) and all are connected to a common

constant battery power source. Since each laser dot is the same color, intensity, and shape

it is not possible to distinguish between them (identify the laser diode that emitted the

beam) with image processing techniques. It is possible to distinguish the laser dots using

frequency modulation, wavelength differences, or using optical filters that create patterns

from a laser dot, however, exploiting the known geometry of the lasers is strong enough to

determine the pose of the device.

Various configurations of laser diodes could be used to localize the user. MARVIN

uses a simple arrangement of four laser diodes in the geometric configuration shown in

Figure 5.4. Two of the laser diodes are arranged so they project in opposite directions

along a line, and the other two diodes are arranged so they project orthogonal to each other

and orthogonal to this line. The projection directions of all four laser diodes intersect at a

single point, P0. Given the projections of the four laser diodes on the exterior walls of the

environment it is possible to obtain strong constraints on P0 and to define a 3D coordinate

frame aligned with this point.

To demonstrate this, the problem is broken down into two parts. The first is to determine

P0 and the coordinate system with origin P0 given four laser points and the second is to

112

Figure 5.4: Basic laser geometry. The four lasers are established so that lines drawn through
their beams would intersect at a common point P0, and ~P3P0 · ~P1P2 = ~P4P0 · ~P1P2 = ~P3P0 ·
~P4P0 = 0.

determine a mapping between laser projections and laser emitters (i.e. a proper labelling of

projections and emitters) to ensure that the computed pose is correct.

For the remainder of this discussion, let P1...P4 be the 3D positions at which the laser

beams from the respective laser diodes strike the walls of the environment (i.e. P1 is the

location at which the beam from laser 1 struck the wall of IVY, P2 is the location of laser

2, etc.). Also let
−→
ab denote a vector through points a and b determined by

−→
ab =~b−~a.

P0 lies at the intersection of
−−→
P1P2 with a perpendicular line that passes through point P3

(see Figure 5.4). This point can be found by noting that P0 lies along the line defined by

P1 +λ(P2−P1) and
−−→
P1P2 ·

−−→
P0P3 = 0. Solving these equations for P0 yields

P0 = P1 +
(P3−P1) · (P2−P1)

||P2−P1||2
(P2−P1)

This defines the origin of the frame,
−−→
P0P3 defines the direction vector for the frame, and

113

the normal of the plane defined by points {P1,P2,P3}, ~n =
−−→
P0P1×

−−→
P0P3, determines the

direction of the “up” vector. Although P4 is not required in order to compute this frame

(provided that the assignment of laser spots to diodes is known), P4 will prove useful by

providing an additional constraint for resolving pose ambiguities. In terms of the geometry

it is important to note that
−−→
P0P4 is perpendicular to the plane defined by {P1,P2,P3} and

that~n · (−−→P0P1×
−−→
P0P3) > 0.

These calculations require that the correspondence between each laser diode and each

laser projection are known. In practice this may be accomplished using different wave-

lengths, or pulsing the lasers at known times. In the current implementation, the geometry

is used to place constraints on the finite number of possible mappings between emitters

and points. The mapping that minimizes an error function is chosen as the correct config-

uration. The appropriate labelings of the tracked laser projections Pi, Pj, Pk, and Pl with

the actual laser points P1, P2, P3, and P4 must be determined. There are 24 (4!) possible

assignments of the laser points to the emitters. Of all 24 possible assignments, only four

are consistent with the geometry of the emitters. Figure 5.6 shows examples of the possible

labelings and the impact this has on the pose computation.

Although there are four configurations that are consistent with the geometry of the laser

diodes, two of these incorrect assignments only occur in extreme conditions and all are eas-

ily disambiguated using temporal coherence. If the correct assignment is (Pi,Pj,Pk,Pl)→

(P1,P2,P3,P4), then the three incorrect assignments are

1. (Pi,Pj,Pk,Pl)→ (P2,P1,P4,P3). This configuration has the same P0 as the correct

114

configuration, but is a reflection of the correct configuration. With a 15Hz sampling

rate, the user is unable to perform the required head rotation between the two config-

urations and temporal coherence constraints can be used.

2. (Pi,Pj,Pk,Pl)→ (P3,P4,P2,P1). This incorrect assignment and the final remaining

assignment have a different P0, and an orientation change of at least 90 degrees.

This configuration, like the following configuration, is extremely unstable and can

only occur under extremely unusual conditions. With a 15Hz sampling rate, the user

would have to rotate at roughly 675 deg/sec before this configuration can be confused

with the correct one.

3. (Pi,Pj,Pk,Pl)→ (P4,P3,P1,P2). This incorrect assignment is similar to the one above.

It has a different P0 as well as at least a 90 degree orientation change.

A simple temporal tracking system coupled with gating is used to discard these incor-

rect assignments. Although enforcing these constraints maintains a consistent pose, there

is still an issue of estimating the initial pose. In practice, this is accomplished by having the

user move to an approximately known pose during system initialization (knowing that the

user is upright and looking towards a given wall is sufficient to disambiguate the correct

pose from the other potential distractors).

115

n

P3

P2

P1

P4

P0

(a)

n

P3

P2

P1

P4

P0

(b)

n

P3

P2

P1

P4

P0

O

(c)

n

P3

P2

P1

P4

P0

O

(d)

Figure 5.5: These are the four assignments that satisfy the static constraints. (a) is the cor-
rect assignment while (b),(c), and (d) show the pose computed from incorrectly assigned
laser projections. The blue square labelled P0 is the estimated position from the laser pro-
jections and the actual laser diode directions are shown using solid lines with arrows. The
dotted lines with arrows illustrate the laser beams and the red circles are the intersections
of the laser beams with the walls of the immersive display. The shaded polygon illustrates
which points were used in this labelling to compute the plane normal, the computed~n also
shown here. The dotted line emanating from P0 parallel to ~n is the computed ~Up vec-
tor. (c) and (d) are extremely unstable conditions and only occur when |OP4| = |OP3| and
|OP1|= |OP2| which cannot occur due in practice due to numerical precision.

116

5.3.1 Discarding Invalid Configurations

Once the four tracked 2D laser points are available, it is possible to determine the pose of

the person being tracked. To choose among the 24 possible labelings of the 4 laser dots,

geometric constraints are imposed on the solution and an error function, ε(i), is computed to

determine the goodness-of-fit of the labeling. Using three constraints, the correct solution

(up to a reflection, see Figure 5.6(b)) that corresponds properly to the pose of the device

can be determined.

The error function is defined as

ε(i) = ε⊥(i)+D(i)+F(i) (5.6)

where i is the current permutation of laser points, ε⊥(i) (the perpendicular error) is the

sum of the dot products of vectors that should be perpendicular in this configuration (the

absolute value of each dot product ensures an increasing function), and D(i) is the shortest

distance between the computed position Pi
0 and Pi′

0 where Pi′
0 is computed using Pi

4Pi
2Pi

1

rather than Pi
3Pi

2Pi
1. This will eliminate many of the incorrect labelings since Pi

0 and Pi′
0 will

not coincide if the plane normal is computed with the incorrect points. F(i) is a binary

function that returns 1 only when the computed plane normal is not in the same direction

117

as Pi
4. The perpendicular error, ε⊥(i) is defined as

ε⊥(i) =|(Pi
0Pi

4 ·Pi
0Pi

1)|+ |(Pi
0Pi

4 ·Pi
0Pi

2)|+

|(Pi
0Pi

4 ·Pi
0Pi

3)|+ |(Pi
0Pi

1 ·Pi
0Pi

3)|+

|(Pi
0Pi

2 ·Pi
0Pi

3)|

(5.7)

D(i) is defined as

D(i) = ||Pi
0−Pi′

0 ||2 (5.8)

and

F(i) =




0 ~n · (Pi
4−Pi

0) > 0

1 otherwise


 (5.9)

After evaluating ε(i) for each possible labeling, the results are sorted in ascending order

according to this error function and the first 2 solutions are taken as the correct pose and its

reflection. Given a correct mapping at the previous time step, distinguishing between the

two stable solutions is accomplished by noting that to confuse the correct mapping with

the incorrect one, the user would have to rotate over 180o. Given a 15Hz update rate, it

is sufficient to check the angle between the normal in the previous computations and the

normals computed in the two remaining labellings.

Since quaternions are used to represent the orientation of the user, an error quaternion

can be computed (see Appendix A) between the previous time step and the two possible

orientations at the current time step. Given the correct quaternion at the previous time step,

118

q̂t−1, and the two possible orientations q̂1, q̂2, the error quaternions can be computed by

q̂ε1 = q̂t−1q̂−1
1 (5.10)

q̂ε2 = q̂t−1q̂−1
2 (5.11)

(5.12)

and the correct orientation is determined as the error quaternion with the smallest associated

rotation angle, i.e. take the orientation with the smallest cos−1(q̂εi[0]).

5.3.2 Optical System Simulator

To verify that this method worked in practice, a simulation environment was developed that

simulates the tracking device with known orientation inside the fully-enclosed display. The

simulator intersects the simulated rays of each laser with each wall and draws the 2D pro-

jection point on the wall. The simulator then re-computes the orientation using only these

points with the above calculation. A plane representing the device’s orientation, the esti-

mated position, the estimated up vector, and the estimated direction vector are displayed.

Different techniques for computing the pose of the device could be easily tested without

having to set up the entire physical system every time an adjustment is made. Several con-

figurations of the laser diodes could be tested without building a new physical hardware

prototype for every adjustment. The same code library was used in the simulator as in the

tracking driver, allowing the software prototype to be ported to the working system easily.

119

(a) (b) (c)

(d) (e) (f)

Figure 5.6: Examples of the 24 possible labelings and their associated computed pose.
Shown here are screenshots from a simulator designed to test the configuration constraints
on the laser geometry. The surrounding cube is an analogue of IVY while the smaller
dots on the sides of the cube are the associated laser projections. The thick line (shown
in yellow) is the computed Up vector, and the computed position is the large dot (shown
in red). The connecting lines between laser points indicate which lasers were used to
compute the plane for orientation. Each image is labeled with the text “CORRECT POSE”
or “INCORRECT POSE” which is automatically computed using only static constraints.
(a) is the correctly computed pose while (b) is incorrect but cannot be distinguished using
only static constraints. A simple temporal mechanism is used to distinguish between these
two solutions.

120

5.4 Calibration

In order to determine the user’s head pose accurately, the transformations from camera

space to world space must be determined. Due to the large physical area covered by each

camera, it is absolutely essential to be as precise as possible.

The calibration method must:

1. be easy to perform and take a minimal amount of time to recalibrate the entire system

in the event that the mirrors, screens, or cameras are moved.

2. be precise (within 1 pixel error).

5.4.1 Calibration Method

Calibrating the optical tracking system is decomposed into four steps:

1. Find the Intrinsic parameters: Camera Calibration.

2. Find the Extrinsic parameters 1: Camera to Screen Transformation.

3. Find the Extrinsic parameters 2: Screen to Laser Filter Transformation.

4. Find the Extrinsic parameters 3: Filter to World Transformation.

Intrinsic Calibration: Camera Calibration

A complete review of camera models and camera calibration is beyond the scope of this

thesis, see [29, 19, 33, 32, 40] for more details. However, the camera models and calibration

121

Optical Centre

Image Plane

Principal Axis

Z

Y

y

x

P

P’X

Figure 5.7: Basic Pinhole Camera Geometry.

procedures pertaining to this work will be discussed in this section. A camera is a device

that performs a mapping from 3D points in space to 2D points on an image plane. There

are many different ways this mapping can be modelled (see [29, 19]). The basic pinhole

camera model (Figure 5.7) maps a point in space X = [x,y,z]T to a 2D point in the image,

(u,v). The 2D point is defined as the intersection between a ray, determined by the center

of projection of the camera and the scene point, and the plane defined by the focal length,

i.e. plane Z = f .

(x,y,z)T → (
f x
z

,
f y
z

)T (5.13)

The center of projection of the camera, where the rays emanate from, is called the optical

center. The line through this point and perpendicular to the image plane is called the prin-

cipal axis and the point at which the principal axis intersects the image plane is called the

principal point.

In order to use this camera model as a tranformation, homogeneous coordinates are

122

often used and the relationship is defined as




x

y

z

1




→




f x

f y

z




=




f 0 0 0

0 f 0 0

0 0 1 0







x

y

z

1




(5.14)

Now, it is possible to incorporate the translation in the image due to the principal point

offset (with respect to the center of the image) by using




x

y

z

1




→




f x+ zpx

f y+ zpy

z




=




f 0 px 0

0 f py 0

0 0 1 0







x

y

z

1




(5.15)

The matrix

K =




f 0 px

0 f py

0 0 1




(5.16)

is commonly referred to as the camera calibration matrix.

For CCD cameras, the pixels are usually not square and sometimes are not even rectan-

gular. This can be accounted for in part by introducing a scaling on each of the focal axes

123

and a skew parameter as in

K =




fx α px 0

0 fy py 0

0 0 1 0




(5.17)

where fx and fy are the focal lengths on each of the axes and α is the skew parameter.

The skew parameter is often set to zero or very insignificant due to advances in CCD

manufacturing.

A general perspective camera can be represented by a 3×4 matrix, P, of rank 3, namely

P =




p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34




(5.18)

For most cameras, it is necessary to model the lens distortion in order to accurately de-

termine points in camera coordinates by observing pixel locations. Thus, an offline camera

calibration was performed by imaging a known target in multiple orientations (see Fig-

ure 5.8). A checkerboard pattern on a flat plane was used as a target. The Camera Cali-

bration Toolbox in Matlab[8] provides a graphical interface to extract grid corners to ap-

proximately 0.1 pixel precision and outputs the camera calibration matrix, radial distortion

coefficients and tangential distortion coefficients.

Although more sophisticated camera models exist[33, 32], the perspective camera model

has proven sufficient for the optical tracking system discussed here.

124

(a) (b)

(c)

Figure 5.8: Intrinsic Camera Calibration Images taken with a Unibrain Fire-i400 camera.
This illustrates the use of the calibration toolbox in Matlab. (a) shows the estimated corners
while (b) shows the extracted subpixel corners. (c) is a mosaic showing all of the calibration
images used for intrinsic calibration of this camera.

125

p1
p2

P

C 1

C 2

Π

H

(a) Plane-to-Plane Homography

Σscreen

Σimage

Σworld

H

Πw

(b) IVY Image to Screen Homography

Figure 5.9: (a) Given a point, P, in world coordinates which lies on a plane determined by
Π, two image planes that image this point can be related through a transformation H. (b)
This illustrates the use of a 2D homography in the MARVIN system for IVY. The image
plane and screens are modeled as planes, with one of their axes aligned. Given measure-
ments in the image, a transformation H must be determined to transform image points
into screen coordinates. In the case of perfect alignment, H simply denotes a scaling factor.
However since the cameras and screens are not perfectly aligned, in general a Homography,
H, must be determined fully.

Extrinsic Calibration 1: Camera to Screen Transformation

The transformation from camera space to screen space is required to transform points on

the image into points on the screen. Since both the screen and image are modeled as planes,

a plane-to-plane 2D homography suffices. The only remaining issue is how to determine

known points on the screen surface to within image resolution (i.e. less than 0.5 cm er-

ror). This is achieved by projecting a pattern onto the screen with the projectors for IVY

and physically measuring 4 extremity points such as the corners of a rectangle. Another

possibility is to ensure that the projectors are calibrated and project a known pattern onto

126

the screen to eliminate the need for manual measurement. A more attractive approach is to

project a known pattern onto the screen using laser light.

Using the Direct Linear Transformation (DLT) algorithm as discussed in [29] at least

four points must be registered to within image resolution (less than 0.5 cm) on the physical

screen relative the screen origin (one of the four screen corners).

Given two sets of matching points, let P and P′ denote these point clouds. First, the

measured point clouds must be normalized by calculating transformations T and T′ that

ensure that the centroid of each point cloud is
[

0 0 1

]T

and the average distance of

these transformed points is
√

2. Let T be the transformation of the first point cloud, iP =

[iPx,
i Py], with mean M = [mx,my]

T and T′ be the transformation of the second point cloud,

iP′ = [iP′
x,

i P′
y], with mean M′ = [m′

x,m
′
y]

T . It is extemely important to normalize the point

clouds for numerical stability[30].

127

The normalization transformations are defined by

T =




√
2

RMS{iP} 0 0

0
√

2
RMS{iP} 0

0 0 1







1 0 −mx

0 1 −my

0 0 1




(5.19)

T′ =




√
2

RMS{iP′} 0 0

0
√

2
RMS{iP′} 0

0 0 1







1 0 −m′
x

0 1 −m′
y

0 0 1




(5.20)

RMS{iP}=
∑n

i
√

(iPx−mx)2 +(iPy−my)2

n
(5.21)

RMS{iP′}=
∑n

i

√
(iP′

x−m′
x)

2 +(iP′
y−m′

y)
2

n
(5.22)

Each point, iP = [iPx,
i Py] and iP′ = [iP′

x,
i P′

y], is transformed by




x

y

1




= T




iPx

iPy


 ,




x′

y′

1




= T′




iP′
x

iP′
y


 (5.23)

which ensures that the centroid of each point cloud is [0,0,1]T and that the average distance

to the points is indeed
√

2.

128

Given any pair of n matching 2D homogeneous points,

Pimage = Pi =

[
xi yi wi

]T

(5.24)

Pscreen = P′
i =

[
x′i y′i w′

i

]T

(5.25)

The linear transformation H (seen in Figure 5.9) can be defined as

P′
i = HPi (5.26)

In projective geometry, there is a duality between points and lines. Thus each point can

also be described as a line. Since Pi and P′
i represent the same 3D point on the world plane,

the lines represented by P′
i and HPi must be parallel in projective space. The cross product

of parallel lines should be exactly zero giving rise to the following relationship:

P′
i ×HPi = 0 (5.27)

Given two vectors ~a = [ax,ay,az]
T and~b = [bx,by,bz]

T , the cross product ~a×~b can be

expressed in matrix form as

~a×~b =




0 −az ay

az 0 −ax

−ay ax 0







bx

by

bz




(5.28)

129

Expanding and Equation 5.27 into its components using Equation 5.28 and denoting

the transformation H as

H =




h1 h2 h3

h4 h5 h6

h7 h8 h9




(5.29)

results in

P′
i ×HPi =




y′i(h7xi +h8yi +h9wi)−w′
i(h4xi +h5yi +h6wi)

w′
i(h1xi +h2yi +h3wi)− x′i(h7xi +h8yi +h9wi)

x′i(h4xi +h5yi +h6wi)− y′i(h1xi +h2yi +h3wi)




(5.30)

This can be simplified by denoting the transformation as a vector

h = [h1,h2,h3,h4,h5,h6,h7,h8,h9]
T (5.31)

and factoring its elements from Equation 5.30. A system of equations, Aih = 0 is then

obtained where

Ai =




0 0 0 −w′
ixi −w′

iyi −w′
iwi y′ixi y′iyi y′iwi

w′
ixi w′

iyi w′
iwi 0 0 0 −x′ixi −x′iyi −x′iwi

−y′ixi −y′iyi −y′iwi x′ixi x′iyi x′iwi 0 0 0




(5.32)

130

or written more compactly as

Ai =




0T −w′
iPi

T y′iPi
T

w′
iPi

T 0T −x′iPi
T

−y′iPi
T x′iPi

T 0T




(5.33)

Note that only two of the three rows in Ai are linearly independent, the third row can be

removed resulting in a 2×9 matrix

Ai =




0T −w′
iPi

T y′iPi
T

w′
iPi

T 0T −x′iPi
T




2×9

(5.34)

Now, in order to solve the system of equations defined in Equation 5.34, at least four

matching points must be found in the two images. This can be generalized to n points

where n≥ 4. For n points, create a 2n×9 matrix

A = A2n×9 =




A0

A1

...

An




(5.35)

and solve Ah = 0 through a singular value decomposition (SVD), A = UDV T . h can be

extracted as the last column of V or rather the column of V that corresponds to the smallest

131

singular value.

Now, the solution h represents the elements of the desired transformation, namely

H =




h1 h2 h3

h4 h5 h6

h7 h8 h9




(5.36)

This corresponds to the transformation between normalized point clouds. The transforma-

tion must then be de-normalized using the previously computed normalizing transforma-

tions T and T′. This is accomplished by

H f inal = T ′T HT (5.37)

H f inal is the final 3×3 homography which relates the two images and can be used to trans-

form points in image (or camera) coordinates to points in IVY screen coordinates. An

illustration of the calibration method is shown in Figure 5.10 and the results of applying

the calibration homographies to overlapping images is shown in Figure 5.11. Typical cali-

bration images for each screen surface are also shown in Figure 5.12.

132

(a) Original Image (b) Four Corners Selected

(c) Grid Corners Estimated (d) Subpixel Corners Extracted

(e) Image warped using computed
Homography

Figure 5.10: Screen Calibration Method. This illustrates the calibration method. (a) first
an image is taken, (b) then four extreme corners are selected which are measured manually
in centimetres. (c) the other grid corners are estimated and (d) extracted. (e) shows the
original image warped using the computed homography for sanity checking.

133

(a) Half of ceiling showing lo-
cation where image from sec-
ond ceiling camera should be
overlaid

(b) Overlay of calibrated ceil-
ing images

Figure 5.11: An image mosaic of the two ceiling camera images after warping by their
associated homographies. Since both cameras were calibrated to a common reference point,
the overlapping regions are registered properly.

(a) WALL NE (b) WALL NW (c) Wall SE (d) Wall SW

(e) Floor 1 (f) Floor 2 (g) Ceiling 1 (h) Ceiling 2

Figure 5.12: Typical images used for calibrating the image to screen transformation. Four
corners of the grid are extracted and manually measured to generate correspondences.

134

5.4.2 Extrinsic Calibration 2: the Laser Wavelength Filter Transfor-

mation

After finding the linear homography that transforms the camera image coordinates into

screen coordinates, the laser wavelength filter must be placed on the camera lenses. This

requires a small physical force to be applied to the camera which could possibly move or

rotate the camera thus invalidating the previously computed transformation. To account

for this, a second transformation is determined that corrects this possible error. A second

planar homography suffices to model the error since the image plane suffers a possible

rotation/translation and this can be modeled as a projective distortion of the image.

In order to compute this homography, at least four points (see [29, 19]) must be regis-

tered between an image acquired before the filter was positioned on the lens and an image

acquired after the lens is in place. Since the wavelength filter suppresses all light outside of

the 650nm range, at least four laser spots must be used to determine the correspondences.

Thus, at least four lasers are positioned in a stationary position within the immersive display

with their beams intersecting the screen for which the transformation is to be determined.

The ambient light is reduced in the room and a before image (Ibefore) is captured. The filter

is then very gently placed on the lens to be calibrated and the after image (Iafter) is captured.

Now, the corresponding points must be extracted from the images. This is performed man-

ually per image with subpixel resolution using Matlab and the image zoom functionality.

It is extremely important to ensure that the laser diodes do not move between the acquisi-

135

tion of the two images otherwise the computed homography will be invalid and it will be

necessary to restart the calibration procedure.

Once the correspondences are known, the previously discussed DLT algorithm is used

to determine the homgraphy between Iafter and Ibefore. Note that the order here is extremely

important. If the wavelength filter is attached gently enough, the camera will not move

and the computed homography will be of zero magnitude. These must be discarded since

multiplying the previous transformation by a zero matrix will result in a transformation that

maps all points to zero. Otherwise the final transformation is computed by:

Hfinal = HnofilterHfilter (5.38)

where Hno f ilter is the homography obtained previously without the wavelength filter in

place and H f ilter is the homography obtained between Iafter and Ibefore.

Finally, to transform camera coordinates
[

u v

]T

to screen coordinates
[

X Y

]T

,

the following calculation is performed:




X

Y

1




= Hfinal




u

v

1




(5.39)

136

Πw

Σscreen

Σworld

Σimage

Σfilter Hfilter

H

T

Figure 5.13: Screen-to-World Transformation. Given that the transformation H is already
known which transforms image points to screen coordinates, a transformation T must be
determined to transform screen points to world coordinates which lie on the plane Πw.

5.4.3 Extrinsic Calibration 3: Screen to World Transformation

After computing the transformation from Camera coordinates to Screen coordinates, the

transformation from screen coordinates to a common World coordinate system must be

determined (see Figure 5.13). This is a rigid-body transformation composed of a rotation,

R, and a translation, T per wall of the display. The origin of the world coordinate system

is the centre of the fully-enclosed display volume.

To transform points on the screen to 3D world coordinates, the following relationship

is defined: 


x

y

z

1




=




Rwall −Twall

0̂ 1







X

Y

Πwall

1




(5.40)

137

Where R and T are defined on a per wall basis as in Table 5.1. The translations were

obtained by manually measuring the distance from the World coordinate origin to each

wall. The rotations are defined by the screen coordinate system and its orientation with

respect to the world coordinate system. Πwall is the distance between the origin and the

plane of the wall which is measured manually.

5.5 Evaluation

To evaluate the accuracy of the optical system, both the errors in the reported position and

orientation must be estimated. Several tests were performed by placing the device in known

locations (measured manually) and the reported positions from the tracking system were

recorded. Also, the device was placed in a static position and rotated on all three of its axes

to determine the accuracy of the reported orientation. This section describes the method for

determining the accuracy of both the orientation and position and the results of each test

performed is reported.

5.5.1 Orientation

In order to evaluate the accuracy of the orientation computed by the optical system, several

tests were performed. The device was placed at a known location and rotated 360o at

5o intervals for the Yaw axis rotation. Then another test was performed per axis where

the device was rotated at 1o intervals for a smaller range and data was recorded at each

138

Wall Rotation Rwall Translation Twall Plane Πwall

NW




0 0 1
0 1 0
1 0 0


 114.3∗

[
0 1 1

]T 114.5cm

NE



−1 0 0
0 1 0
0 0 1


 [

−114.3 121.92 0
]T 115.5cm

SW




1 0 0
0 1 0
0 0 −1


 114.3∗

[
1 1 0

]T 115.4cm

SE




0 0 −1
0 1 0
−1 0 0


 114.3∗

[
0 1 −1

]T 113.9cm

FLOOR1



−1 0 0
0 0 −1
0 −1 0


 [

−122.2375 0 −121.92
]T 114.3cm

FLOOR2



−1 0 0
0 0 −1
0 −1 0


 [

−122.2375 0 −121.92
]T 114.3cm

CEIL1



−1 0 0
0 0 1
0 −1 0


 [

−122.2375 0 −121.92
]T 108.585cm

CEIL2



−1 0 0
0 0 1
0 −1 0


 [

−122.2375 0 −121.92
]T 108.585cm

Table 5.1: Screen to World Coordinate Transformations for IVY’s eight projection surfaces.

139

orientation. Taking the first measurement as the reference orientation, the angles between

the reference orientation and every other orientation was computed to show the error in

orientation. A rotational stage with markings at 1o intervals was used to perform both of

these tests.

Yaw

The laser diode housing was placed in the center of IVY roughly 4’ above the floor on

a rotational stage that allowed the device to rotate at 1o intervals. Figure 5.14 shows the

raw data points for a full 360o rotation on the azimuth at 5o intervals. For each direction

vector, points on the unit circle are drawn at both the measured and correct orientation

in the same colour (note that due to the accuracy of the measurement these points appear

almost coincident). In a cube-shaped immersive display the corners present problems with

tracking: when the lasers shine into the corners, no data can be collected and tracking is

lost until the lasers shine onto the screen. Note that in normal operation these gaps can be

filled in using inertial data.

In a second orientation experiment, rotational data was collected over a 10 degree range

at 1 degree intervals separately on the Yaw, Pitch, and Roll axes. The relative angles, shown

in Table 5.2, were computed between the direction vector and the first reported direction

vector for the Yaw axis, and between the up-vectors for Pitch and Roll. The mean error of

each experiment was 0.1o per axis and the maximum errors were 0.3o, 0.25o, 0.35o for the

Yaw, Pitch, Roll axes respectively.

140

Rotational Stage Yaw Angle Pitch Angle Roll Angle
0o 0.0000o 0.0000o 0.0000o

1o 0.9229o 1.1329o 0.8459o

2o 1.9101o 2.1728o 2.1036o

3o 3.2703o 3.1580o 2.9920o

4o 4.1654o 4.0918o 4.1093o

5o 5.0992o 5.0284o 5.1583o

6o 6.2851o 6.0500o 6.1239o

7o 7.0167o 7.1388o 7.0007o

8o 8.3210o 8.0294o 8.2022o

9o 9.1814o 9.0891o 9.0719o

10o 9.8664o 10.2454o 10.3525o

Table 5.2: Computed angles between the reported direction vectors at 1o increments. Yaw,
Pitch, and Roll data were collected independently in separate experiments.

141

Figure 5.14: 360o Raw Orientation Data (taken at 5o intervals). Unit vectors are plotted,
with the same symbol, in the recovered and measured directions. The plotted X-axis is the
X-coordinate of the unit vector and the plotted Y-axis is the Z-coordinate of the unit vector.
Note: the four large holes indicate positions where the lasers were shining into the corners
of IVY and thus could not be tracked.

142

Absolute Position (X-Z) Reported Position (X-Z) Error X Error Z
(metres) (metres) (metres) (metres)

(0.00, 0.65) (0.0072, 0.6511) 0.0072 0.0011
(-0.81, -0.65) (-0.8167, -0.6527) 0.0067 0.0027
(0.81, 0.30) (0.8504, 0.3016) 0.0404 0.0016
(-0.81, 0.65) (-0.8175, 0.6559) 0.0075 0.0059
(-0.81, 0.30) (-0.8175, 0.3059) 0.0075 0.0059
(0.00, 0.30) (0.0046, 0.3066) 0.0046 0.0066
(0.81, 0.65) (0.8587, 0.6584) 0.0487 0.0084
(0.81, -0.65) 0.8586, -0.6546) 0.0486 0.0046
(0.00, -0.65) (0.0048, -0.6556) 0.0048 0.0056
(0.50, 0.65) (0.5072, 0.6484) 0.0072 0.0016
(0.50, -0.65) (0.5070, -0.6531) 0.0070 0.0031
(0.81, -0.30) (0.8126, -0.3013) 0.0026 0.0013
(-0.81, -0.30) (-0.8120, -0.3038) 0.0020 0.0038
(0.00, -0.30) (-0.0056, -0.3045) 0.0056 0.0045
(0.81, -0.30) (0.8154, -0.3070) 0.0054 0.0070
(-0.50, -0.30) (-0.5045, -0.3080) 0.0045 0.0080
(-0.50, -0.65) (-0.5014, -0.6509) 0.0014 0.0009
(-0.50, 0.30) (-0.5056, 0.3007) 0.0056 0.0007
(-0.50, 0.65) (-0.5041, 0.6542) 0.0041 0.0042
(0.50, -0.65) (0.5051, -0.6534) 0.0051 0.0034
(0.50, -0.30) (0.5040, -0.3026) 0.0040 0.0026
(0.50, 0.30) (0.5063, 0.3042) 0.0063 0.0042
(0.50, 0.65) (0.5070, 0.6512) 0.0070 0.0012

Table 5.3: Error associated with measured and reported tracker positons. All data points
were taken at the same height (Y-coord) of 1.35m.

143

5.5.2 X-Z Position

To estimate the accuracy of the position estimates, the device was placed at 20 known

locations within IVY (See Table 5.3) and recorded the tracker output. The raw data in this

test are illustrated in Figure 5.15. The mean absolute position error was modest at 1.13cm

but there were several cases where the error was nearly 5cm. All errors greater than 1.0cm

occured when X = 81cm. This is due to the placement of one of the ceiling cameras. Due

to space constraints on the physical layout, one camera is placed largely off-axis creating a

large perspective distortion in the image.

The noise covariance of each position estimate was also computed and a typical exam-

ple can be seen in Figure 5.16(a) using a Linear Kalman filter with variance of 1cm2 on

position. The small covariance (approximately 0.5cm) in the position is attributable to the

noise in each laser position estimate due to the limited resolution of the cameras. Since

we are acquiring 640x480 resolution images from the cameras, the 2.29m screen is imaged

at approximately 500 pixels, making 1 camera pixel correspond to approximately 0.5cm

on the screen surface. Using higher resolution images would increase the precision of the

tracking system since it would allow us to make better estimates of the laser positions.

Since the walls of IVY are fabric walls, and thus vibrate and move slightly when in the

presence of large motion within the display, we were concerned how this would affect the

position estimate. We placed the device in a stationary position and recorded data while

violently moving the screen fabric on all walls. The covariance of the estimate can be seen

144

in Figure 5.16(b). The system reacts well with a spread of approximately 1.5cm even in the

presence of large motion of the screen surfaces.

145

Z
−

c
o

o
rd

 o
f

IV
Y

X−coord of IVY

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Figure 5.15: Reported Position of Tracker at known locations in metres. Different symbols
are used only to distinguish different measurements.

146

−7 −6 −5 −4 −3 −2 −1

x 10−3

−0.218

−0.217

−0.216

−0.215

−0.214

−0.213

−0.212
Covariance of X−Z position estimate (filtering with 1cm2 variance)

(a) Typical Noise Covariance of Station-
ary X-Z position in metres (filtering with
1cm2 variance). This shows a spread of
6mm on the Z-axis and 3mm on the X-
axis.

−10 −5 0 5

x 10−3

−0.222

−0.22

−0.218

−0.216

−0.214

−0.212

−0.21

−0.208

Covariance of X−Z position estimate (filtering with 1cm2 variance − vibrating screens)

(b) Typical Noise Covariance of Station-
ary X-Z position in metres (filtering with
1cm2 variance). This shows that even
in the presence of large motion of the
screen surfaces (screen movement due
to fast motion within IVY), the spread
of the measurement is 1.5cm on the X-
Axis and 1cm on the Z-axis.

Figure 5.16: Results from collected data. (a) shows the typical noise covariance of a sta-
tionary position, and (b) shows how the noise increases when the fabric screens vibrate due
to fast motion.

147

Absolute Translation(cm) Error in Reported Measurement(cm)
0.5 0.2737
1.0 0.4648
1.5 0.8857
2.0 0.5881
2.5 0.3169
3.0 0.3250
3.5 0.7313
4.0 0.7701
4.5 0.3009
5.0 0.3114
5.5 0.6956
6.0 0.2003
6.5 0.3395
7.0 0.5343
7.5 0.6190
8.0 0.2418
8.5 0.6824
9.0 0.6757
9.5 0.4169
10.0 0.2038
10.5 0.6852
11.0 0.4477

Table 5.4: Y Translation Error.

5.5.3 Y Position

Here the accuracy of the Y component of the reported position is discussed. The tracking

device was positioned at different heights with a 0.5cm increment at the same location

within IVY and the Y position was recorded. The total translation was 23cm. Tables 5.5 and

5.5 summarize the error. The mean error of this experiment was 0.48cm and the maximum

error is 0.88cm

148

Absolute Translation(cm) Error in Reported Measurement(cm)
11.5 0.5435
12.0 0.7359
12.5 0.3968
13.0 0.5874
13.5 0.1282
14.0 0.4066
14.5 0.3701
15.0 0.4174
15.5 0.3279
16.0 0.3273
16.5 0.4519
17.0 0.7914
17.5 0.5649
18.0 0.0767
18.5 0.7637
19.0 0.4203
19.5 0.6381
20.0 0.5306
20.5 0.5124
21.0 0.6278
21.5 0.4617
22.0 0.6405
22.5 0.6466
23.0 0.3964

Table 5.5: Y Translation Error (continued).

5.6 Summary

This chapter has introduced the optical component of the MARVIN tracking system. The

tracking system discussed uses laser diodes attached to a helmet worn by the user. The

projections of the lasers are tracked from outside of the display. The pose of the user is es-

timated by imposing constraints on the geometry of the laser diode housing and the tracked

projections of the lasers. Imposing constraints on the geometry is sufficient to estimate the

149

pose of the user even though a unique solution is unavailable from the four-laser geometry.

Using a temporal coherence and dynamic gating, the correct pose is maintained once the

initial correct pose is chosen. This system has many advantages over the existing tracking

technologies discussed in Chapter 2: the accuracy achieved is not a function of the dis-

tance of the user from a base station; the system performance is not degraded by metallic

objects or other interference; and the user is untethered and is not required to wear a large

encumbering device which could compromise their immersive experience. Since the laser

diodes are aimed behind the user, their projections do not interfere with the user’s visual

experience. Also, using off-the-shelf FireWire R© digital video cameras allows the tracking

system to evolve with the commercial market making it possible to increase the resolution

and framerate as new camera technology becomes available.

150

Chapter 6

System Integration

In Chapter 4, an inertial pose estimation system was described that is capable of an update

rate of 300Hz. However, the drawback to this system is that due to calibration error, noise

levels, and numerical precision concerns, the estimate is only reliable for approximately

one second. The optical system described in Chapter 5 runs at a slower but reliable update

rate of 15Hz when all of the laser projections are visible in the camera images. The op-

tical system can provide highly accurate absolute pose estimates while the inertial system

provides fast relative motion information. Using a hybrid data fusion technique, the advan-

tages of these two systems can be combined to compensate for the disadvantages of each

individual system.

This chapter discusses the system integration of the inertial pose estimation system with

the optical tracking system described in previous chapters. First, the hardware to physically

integrate these two systems is discussed followed by a discussion on data fusion algorithms

and an explanation of the algorithm used in the MARVIN tracking system.

151

Figure 6.1: The Panther PC/104 Wearable Computer from Versalogic. The dimensions of
the module is 9cm x 9.5cm x 8cm.

6.1 The Wearable System

In general, current tracking systems (magnetic and otherwise) are incapable of tracking a

user within a fully-enclosed display without tethering them to the tracking equipment. As

discussed previously, this imposes constraints on the user’s motion and is undesirable. Thus

the MARVIN tracking system should provide a “tetherless” solution. This is accomplished

by using 802.11b wireless ethernet technology and a small lightweight wearable computer.

The specifications of the wearable computer can be found in Appendix C but essentially it

is a small computer with a standard connection interface for stacking other modules onto

the computer. An image of the computer is shown in Figure 6.1.

In order to convert analog signals produced from the accelerometers into a useable

digital signal, an analog-to-digital converter is needed. The VIPS 10 A/D converter used

in the MARVIN system (shown in Figure 6.2) is a small module connected through the

parallel port of the wearable computer. Using this allows the form factor of the wearable

152

Figure 6.2: The VIPS 10 Analog-to-Digital Converter from TTi. The dimensions of the
module is 8cm x 11cm x 1.5cm.

computer to be reduced since another A/D PC/104 module is unnecessary. Its specifications

are given in Appendix C.

The laser tracking device is completely independent and no external wires are needed.

The only requirement of the laser device is the need for a battery. Lithium batteries are

used for power since the discharge rate is preferable for powering lasers. The laser tracking

device is shown in Figure 6.4.

The inertial device must be connected directly to the VIPS 10 A/D converter in order

for the signal to be acquired. Thus a wire per accelerometer is needed. Moreover, a power

and amplification circuit (shown in Appendix C) is required for the sensors and is shown

in Figure 6.3.

Since MARVIN is a head tracking system, the sensors must be attached to the user’s

153

(a) (b)

Figure 6.3: The amplification circuit for the inertial device. The dimensions of the circuit
are 10cm x 7cm x 3cm.

head. Thus the tracking equipment is placed on a helmet worn by the user at all times while

tracking them. For this prototype, the optical laser tracking device is placed behind the user

so that the lasers shine away from the visible field of view of the user. The inertial system

is placed on top of the helmet and the fully assembled prototype can be seen in Figure 6.4.

154

(a) The helmet with tracking system

Figure 6.4: The Tracking System Helmet Prototype. This shows the helmet alone and with
both the inertial and optical tracking systems attached to it.

155

6.2 Data Fusion

Since different types of sensors with differing characteristics are used to generate pose

estimates for the MARVIN system, a data fusion technique must be employed that merges

and smooths the sensor data into the “best” estimate. The Kalman filter (see Appendix B)

is an optimal, recursive, linear least-squares estimator that uses the noise characteristics of

each type of sensor and the error covariance of the estimated system to update the state

to reflect the change reported by the sensor. An extended Kalman filter is a technique

that sacrifices the “optimality” of the linear Kalman filter, however it works well in many

instances to estimate nonlinear dynamic systems and is used in robotics, computer vision,

and signal and control theory(see [43, 42, 48, 75, 4, 6, 17]).

A typical approach to data fusion is to use a complimentary filter[48, 22]. This type of

filter uses complimentary sensors to maintain the pose of the object to be tracked. Typically

GPS and inertial sensors are used concurrently for vehicle navigation. In this scenario, the

inertial sensors (typically gyroscopes for orientation and a triad of linear accelerometers

for displacement) are integrated into the heading and position of the vehicle. These are

assumed to provide reliable data for extended periods of time, i.e. several minutes, with-

out accumulating too much error. When the GPS position data is available, the error is

estimated between the current inertial estimate and the GPS absolute position data with a

Kalman filter. The Kalman filter employed estimates only the error dynamics of the system

and appropriately updates the inertial system with these errors. This is illustrated in Fig-

156

Inertial System

EKF

Corrections

Absolute PoseErrors
Error Estimator

Final Corrected Pose

Pose from Inertial System

External Sensors

Figure 6.5: Typical Complimentary Indirect Data Fusion Filter for Navigation. The output
of the inertial system is said to be reliable for several minutes (if not hours) and is continu-
ally output as valid pose data. At slower update intervals, an external system provides data
to an error estimator that computes the error between the current inertial pose estimate and
the absolute pose estimate provided. The error dynamics of the system are encapsulated
in the Kalman filter and only the errors are estimated at each time step. The state at each
update is sent to the inertial system which corrects the appropriate terms. This provides
stability and ensures that the inertial system does not drift wildly.

ure 6.5. Foxlin[22] also developed a separate-bias complimentary Kalman filter for a head

tracking scenario where the absolute pose data was provided by acoustic sensors and the

relative motion was provided by gyroscopes and accelerometers.

6.2.1 Kalman Filter Devlopment for MARVIN

In the MARVIN system, the inertial pose estimator is reliable for short periods of approx-

imately one second. The optical system is capable of providing estimates nominally at

15Hz. A complimentary filter framework for this tracking system can be developed that

fuses the optical and inertial estimates appropriately. A Kalman filter estimates the pose

from the inertial system since the integration can be performed within the Kalman frame-

work and the optical pose estimates can be used as a control input to this filter. The control

157

Inertial System EKF

Vision System

Accelerometer data

Absolute Pose

Final Pose

Figure 6.6: Complimentary Data Fusion Filter. An extended Kalman filter (EKF) is used
to fuse the accelerometer and vision data into a single pose estimate. The EKF estimates
the pose using the mathematics described in Chapter 4 and the vision system provides
the absolute pose data at a lower update rate as a control input to the filter, effectively
“resetting” the pose estimate at each update.

input acts as a reset switch that “resets” the state whenever an estimate becomes available.

This allows the inertial system to provide motion data relative to the last pose update of the

optical system. This is illustrated in Figure 6.6. In [4] an extended Kalman filter is devel-

oped that enables estimation of a quaternion for orientation. They utilize a separate linear

Kalman filter to estimate the position of the tracked object. The extended Kalman filter

developed in this chapter uses a quaternion representation for orientation but also estimates

the position of the tracked object.

The state to be estimated

The first issue in developing a Kalman filter for the MARVIN tracking system is to deter-

mine what variables are being estimated in the state. For the purposes of this thesis, the

158

following state was sufficient:

x̂k =

[
q̂ ~ω ~̇ω ~p ~v ~α

]T

(6.1)

For estimating the orientation, a quaternion representation, q̂, is used, and the angular ve-

locity and angular acceleration (~ω,~̇ω) are estimated in the state. The position, linear veloc-

ity, and linear acceleration (~p,~v,~α) are also estimated.

The next step in developing a Kalman filter is to determine the time update equations

and the measurement update equations.

Time update

The time update equations perform the integration of the state from time k− 1 to time k

using a (possibly nonlinear) dynamical model. The time update step predicts the state and

the covariance as

x̂−k = f (x̂k−1,uk,0) (6.2)

P−
k = AkPk−1AT

k +WkQk−1W T
k (6.3)

where f (x̂k−1,uk,0) is a (possibly nonlinear) function that integrates the state using the

control input and the previous state. Qk−1 is the process noise covariance (possibly chang-

ing with time) and Wk is the jacobian matrix of f (·) with respect to x̂k. P−
k is the predicted

159

covariance and Ak is the jacobian matrix of f (·) with respect to x̂k, namely

A[i, j] =
∂ f[i]
∂x[j]

(x̂k−1,uk,0) (6.4)

In MARVIN, f (·) integrates the quaternion by noting that the derivative of a quaternion

is defined as

dq̂
dt

=
1
2

q̂ω̂ (6.5)

Any suitable numerical technique can be used to integrate the quaternion, i.e. a fourth-order

Runge-kutta technique[59]. For the rest of the variables, the derivative of velocity is the

acceleration (angular and linear) and the derivative of acceleration is set to zero.

Measurement update

When a measurement becomes available, the Kalman filter state must be updated accord-

ingly. This is the measurement update step and the following is performed:

Kk = P−
k HT

k (HkP−
k HT

k +VkRkV T
k)−1 (6.6)

x̂k = x̂−k−1 +Kk(zk−h(x̂−k ,0)) (6.7)

Pk = (I−KkHk)P−
k (6.8)

where Kk is the Kalman gain for this time step, zk is the measurement vector, Rk is the

measurement noise covariance (possibly changing with time), and Vk is the jacobian matrix

160

of partial derivatives of h(·) with respect to the measurement noise. h(·) is the (possibly

nonlinear) function that relates the predicted state to the measurement and Hk is the jacobian

matrix of partial derivatives of h(·) with respect to x̂ namely

H[i, j] =
∂h[i]

∂x[j]
(x̂k,0) (6.9)

In MARVIN, the measurement is defined as

zk =

[
~̇ω ~α

]T

(6.10)

Since these are also estimated, the function h(x̂−k ,0) simply extracts the current estimate

of angular acceleration and linear acceleration. Also, the jacobian matrix simply relates the

state to the measurement and is defined as

H =




03×4 03×3 I3×3 03×3 03×3 03×3

03×4 03×3 03×3 03×3 03×3 I3×3


 (6.11)

Fusing with the Optical Data

The described Kalman filter estimates the state using MARVIN’s inertial subsystem. The

optical component must also now be incorporated. There are several ways to incorporate

optical pose data into this framework. Possibly the simplest technique is to use the optical

pose data as ground truth since it provides absolute data. This ground truth data can then

161

be used as a control input to the state, namely as uk in the time update step. Whenever

the optical data provides a pose estimate, the appropriate parameters in the state can be

overwritten or reset. This creates a situation where the inertial data is used only during the

period of time when the optical data is unavailable, i.e. between the 15Hz updates, allowing

the system to keep the state estimated at the inertial system’s update rate of approximately

300Hz. When the optical data is unavailable for slightly longer periods of time, the inertial

data is solely used, i.e. when the lasers are not visible in the images at the corners of the

screens.

The control input is thus defined as

uk =

[
q̂,~ω,~̇ω,~p,~v,~α

]
(6.12)

where the velocities and accelerations are estimated from the optical system using a first-

order approximation.

A second approach would be to use the optical data as another measurement to the

Kalman filter and define a second jacobian matrix to relate the state to this new measure-

ment. Unfortunately, in the MARVIN system since the inertial data drifts rapidly after

one or two seconds, this approach might possibly diverge unrecoverably. If more reliable

inertial data is used, this would be a possibility.

A third approach would be to derive a SCAAT filter (see Appendix B) for the data

fusion. This would take a single accelerometer measurement as the measurement from the

162

inertial system and a single laser position as the measurement from the optical system. The

filter would use the inertial formula

a j =~n j · (~α+~g+~̇ω×~r j +~ω×~ω×~r j) (6.13)

using the current state estimates of~α,~̇ω,~ω and q (to rotate~n j,~r j) to predict the measurement

from the accelerometer. For the optical system the SCAAT, filter poses a problem since it

is impossible to distinguish the laser spots from one another in the current implementation.

However, if the lasers are distinguishable, the SCAAT filter would use the current estimate

of position and orientation and intersect the laser beam with the walls of IVY to determine

the measurement prediction.

163

Chapter 7

Conclusions and Future Improvements

7.1 Conclusion

The optical tracking system developed in this thesis has been shown to be very effective

at tracking the user within a fully-enclosed projective immersive display. The inertial sys-

tem developed shows promising results in simulation and the method has been shown to

estimate the pose of the device for an interval of approximately one second.

The system is fully mobile due to the use of the PC/104 and wireless ethernet tech-

nology. The optical system provides pose estimates at a reliable rate of 15-20Hz and the

inertial data can be streamed at approximately 300Hz allowing real-time tracking perfor-

mance. The tracking system framework presented is flexible and additional functionality

could be implemented in the future.

7.2 Future Work

Several improvements could be made to the MARVIN tracking system to improve robust-

ness. These improvements are beyond the scope of this thesis to implement but could

further improve the performance of the tracking system in the future.

164

The full implementation of the data fusion algorithm remains to be implemented in

the final system and is left for future work. As discussed in Chapter 6 the “best” way to

fuse the inertial data with the optical data is to reset the inertial system parameters at every

optical update. This will have the effect that the inertial system provides relative motion

data between the optical measurements.

7.2.1 Improving the Optical System

The optical component of MARVIN has the capability for becoming a standalone tracking

system in the future. The current limitation is the framerate of the cameras. Cameras with

a higher framerate than the current 30fps would increase the responsiveness of the optical

system making it more reliable as a standalone tracking unit. Higher imaging resolution

would increase the accuracy of the pose estimate as a whole. In an efficient commercial

implementation of this tracker, dedicated image warping boards could be used to eliminate

the radial distortion of the cameras, the laser dot extraction could be performed in hardware

using FPGA’s (field programmable gate arrays). By implementing the entire algorithm in

hardware, it would be possible to achieve extremely high update rates ensuring that the user

is tracked consistently and smoothly.

Further work is needed to develop geometric constraints that would present unique so-

lutions to the pose estimation and eliminate the need for temporal coherence. Another

solution is to build a device that pulses the lasers rapidly as in [56]. By synchronizing the

laser dot acquisition with the lasers, it is possible to distinguish which laser diode produced

165

each spot. Using this information in the SCAAT framework presents a very interesting op-

portunity to track the user even more reliably. This method would also allow the use of laser

diodes in the infrared range where pulsed illumination of the invisible lasers is desirable

to minimize the emitted power and lower the risk of retinal damage[13]. Using infrared

lasers would also allow the lasers to be pointed in any direction since the human eye does

not perceive light energy in the infrared range. This would resolve the possiblity of inhibit-

ing the user’s immersive experience. Another benefit to using this type of method is the

possibility of enabling multiple users to be tracked simultaneously allowing collaboration

within a fully-immersive display setting.

Other Laser Configurations

Alternative configurations of the laser diodes can be used that allow the user to be tracked

within a fully-enclosed environment. During the development of this system, an alternate

configuration in which the laser diode that defines the ~up vector was placed at a 45o angle

to the plane was considered. This configuration was tested in simulation and found that less

constraints needed to be enforced on the solution, however it still did not provide a unique

static solution and thus was not implemented in hardware.

Other methods could be used to identify the laser diodes, including

• Laser diodes with differing wavelengths.

• Time multiplexing of the laser diodes. By pulsing the lasers at known times, the

166

system could measure each laser projection separately. However, the drawbacks to

this method include the need for synchronization between the laser system and the

cameras and the lack of synchronization between measurements (needed for the pose

computation discussed). In the current implementation this solution is not feasible as

the digital cameras used are not equipped with external synchronization capability.

7.2.2 Improving the Inertial System

The inertial system could be augmented with sensors that provide different types of data.

Using gyroscopes would allow the system to measure the rotational velocity allowing a

single integration for rotational displacement. A different approach would involve the use

of nine accelerometers instead of gyroscopes. By using nine accelerometers in total, the

rotational acceleration is directly solvable[50] and could provide more stability in the pose

estimate. An autocalibration routine could be developed to refine the estimates of the cali-

bration parameters.

7.2.3 Other Improvements

An autocalibration method for MARVIN would be an interesting extension to this frame-

work. The homographies from image space to screen space could be calibrated online

allowing higher accuracy for the optical component. This would also reduce the time it

takes to calibrate the system. An initial estimate of the transformation could be provided

167

manually and by tracking the device in multiple known positions and orientation would al-

low an iterative convergence on the proper transformations. Another extension is to employ

a prediction mechanism to predict the total end-to-end system latency of the tracker. The

predicted states could be sent over the network at pre-specified intervals diminishing the

latency and increasing the responsiveness of the entire tracking system. Another interesting

extension to this framework would be to develop an Unscented Kalman Filter that uses the

nonlinear system dynamics directly as in [42].

168

Appendix A

Quaternions and Rotation Sequences

This appendix provides some necessary background on representing rigid body rotations

in 3D. The focus here is on quaternions since the development of this thesis is dependent

on this representation. The material covered here was accumulated from a selection of

excellent discussions on 3D rotations (see [5, 49, 46, 14]), and the reader is strongly urged

to read these for more in-depth coverage.

A.1 Euler Angles

The Euler angle representation uses three rotations about specfic orthonormal axes of the

current working frame to report orientation. The axes are typically orthogonal body-

fixed, orthogonal earth-fixed, or gimbal axes. These angles are commonly known as Roll-

Elevation-Azimuth or Roll-Pitch-Yaw angles since the order of rotation in an earth-fixed

frame is first about an axis pointing ‘north’ (Roll), followed by an axis pointing ‘east’ (Ele-

vation), then finally by an axis pointing ‘down’ (Azimuth) respectively. These angles have

symbols φ(Roll),θ(Elevation),ψ(Azimuth)

In the Euler angle representation, singularities exist when the rigid body points directly

up or directly down. In this orientation, the roll and azimuth angles are not defined uniquely

169

and only the sum or difference of these angles are uniquely defined. This is commonly

known as a gimbal lock situation (a degree of freedom is lost in this orientation). This is an

unwanted side effect of the representation when dealing with rigid bodies that are capable

of assuming a vertical orientation.

A.2 Rotation Matrices

A rotation in 3D can be defined as a 3×3 matrix, R3×3. Rotation matrices around the X,Y,

and Z axes can be determined and are summarized below:

RX(ψ) =




1 0 0

0 cos(ψ) sin(ψ)

0 −sin(ψ) cos(ψ)




(A.1)

RY (θ) =




cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)




(A.2)

RZ(φ) =




cos(φ) sin(φ) 0

−sin(φ) cos(φ) 0

0 0 1




(A.3)

In order to rotate a vector P = [x,y,z]T by these angles, the following calculation is

170

performed:

P′ = RX(ψ)RY (θ)RZ(φ)P (A.4)

where P′ = [x′,y′,z′]T is the new rotated vector. Typically R = RxRyRz is different than the

euler angle representation; euler angles depend on the body frame axes of the object to be

tracked while in general, rotation matrices use world-fixed axes to define the rotation.

A.3 Quaternions

Using quaternions to represent rotation has been a common practice in the computer graph-

ics, robotics, and aerospace realms. The advantage of using this representation is that all

orientations can be represented without singularities. Here, the basics of quaternions and

their operations will be reviewed.

Quaternions were discovered in 1843 by Sir William R. Hamilton[27]. He described a

set of operations on four-dimensional complex vectors which he named quaternions. The

quaternion was defined as having a real scalar component and an imaginary vector compo-

nent. This representation turned out to have deep impact in three-dimensional geometry by

being able to describe a 3D rotation and operations upon them. There are several different

notations for quaternions that are used extensively, namely

q̂ = w+ xi+ yj+ zk Linear combination

q̂ = (w,x,y,z) 4D vector

q̂ = (w,~v) Scalar with imaginary vector

171

where q is a quaternion, w is the real scalar part, and ~v = (x,y,z) is the imaginary vector

part.

The important relationship defined by Hamilton was particularly

i2 = j2 = k2 = ijk =−1 (A.5)

and thus the following is also true

ij = k =−ji

jk = i =−kj

ki = j =−ik (A.6)

A.3.1 Quaternion Algebra

Operations such as equality, addition, subtraction, scalar multiplication, and quaternion

multiplication can be defined for the quaternion algebra. The following useful forms of

quaternions can also be defined: Norm of the quaternion, normalized unit quaternion,

quaternion conjugate, and quaternion inverse.

172

For the following definitions, let q̂1 and q̂2 be two quaternions such that

q̂1 = w1 + x1i+ y1j+ z1k (A.7)

q̂2 = w2 + x2i+ y2j+ z2k (A.8)

Equality

Two quaternions are said to be equal if and only if all components are identical. Thus,

w1 = w2 (A.9)

x1 = x2 (A.10)

y1 = y2 (A.11)

z1 = z2 (A.12)

Addition

Quaternion addition (and subtraction) is defined simply as the sum(or difference) of the

individual elements of each quaternion. Let q̂3 = w3 + x3i + y3j + z3k be the resulting

173

quaternion of the addition of q̂1 and q̂2,

w3 = w1 +w2 (A.13)

x3 = x1 + x2 (A.14)

y3 = y1 + y2 (A.15)

z3 = z1 + z2 (A.16)

(A.17)

or more compactly

q̂3 = q̂1 + q̂2 = (w1 +w2)+(x1 + x2)i+(y1 + y2)j+(z1 + z2)k (A.18)

Scalar Multiplication

Multiplying a quaternion by a scalar, s, is simply the process of multiplying each element

of the quaternion by s, namely

sq̂1 = sw1 + sx1i+ sy1j+ sz1k (A.19)

Quaternion Multiplication

This is a more complicated operator than multiplying the quaternion by a scalar. The

multiplication of two quaternions is itself a quaternion. Also, in order to define quaternion

174

multiplication the above relationships in Equation A.5 and Equation A.6 must be used to

simplify the equation. For the following let ⊗ denote quaternion multiplication. Thus,

q̂1⊗ q̂2 = (w1 + x1i+ y1j+ z1k)(w2 + x2i+ y2j+ z2k)

= w1w2 + ix1w2 + jy1w2 +kz1w2

+iw1x2 + i2x1x2 + ijy1x2 + ikz1x2

+jw1y2 + jix1y2 + j2y1y2 + jkz1y2

+kw1z2 +kix1z2 +kjy1z2 +k2z1z2

= (w1w2− x1x2− y1y2− z1z2)

+i(x1w1 +w1x2− z1y2 + y1z2)

+j(y1w2 + z1x2 +w1y2− x1z2)

+k(z1w2− y1x2 + x1y2 +w1z2) (A.20)

which can be written more compactly as

q̂1⊗ q̂2 = (w1,~v1)(w2,~v2) = (w1w2− v1 · v2,w1v2 +w2v1 + v1× v2) (A.21)

It is noted that the cross-product of the two vectors makes this operation non-commutative.

175

Quaternion Conjugate

The quaternion conjugate or complex conjugate of a quaternion q̂1 is denoted as q̂∗1 and is

defined as

q̂∗1 = (w1,−~v) = w1− x1i− y1j− z1k (A.22)

Quaternion Norm

It is important to note that the norm of a quaternion, N(q̂) or |q̂| is a scalar value defined as

N(q̂) =
√

q̂∗q̂ =
√

w2 + x2 + y2 + z2 (A.23)

Normalized Unit Quaternion

An important notion is the normalized quaternion which is simply defined as

q̂norm =
q̂

N(q̂)
(A.24)

where q̂norm is the quaternion q̂ normalized to unit length.

Quaternion Inverse

The inverse of quaternion is defined as

q̂−1 =
q̂∗

q̂∗q̂
=

q̂∗

N(q̂)
(A.25)

176

For unit quaternions however, it can be seen that the inverse is identical to the conjugate

namely that q̂−1 = q̂∗.

A.3.2 Quaternions as Rotations

It can be shown (see [46] for a beautiful and intuitive derivation) that there exists a special

quaternion that represents a rotation in three-dimensional space. Also, there exists a special

rotation operator that when used will rotate a vector by the amount represented by the

quaternion.

This representation is sometimes called an axis-angle representation. The following

special quaternion is defined for a rotation of angle θ about a unit vector representing the

axis of rotation~v = (vx,vy,vz):

q̂θ = (cos(
θ
2
),sin(

θ
2
)~v) (A.26)

Note however that this is only true if N2(q̂θ) = |q̂θ|2 = 1, thus the quaternion must be

normalized prior to its usage.

Quaternion Rotation Operator

In order to define a quaternion rotation operator that rotates vectors in 3D, one needs to

define the following notation. A vector in 3D ~v = (vx,vy.vz) can be expressed as a pure

177

quaternion, ~̂v, where the scalar part is set to zero. Thus,

~̂v = (0,~v) = 0+ vxi+ vyj+ vzk (A.27)

The rotation operator to rotate a vector,~v, by the axis and angle represented by a quater-

nion, q̂, can now be defined as :

~̂vr = q̂⊗~̂v⊗ q̂∗ = q̂~̂vq̂∗ = (0,~vr) (A.28)

where vr is the rotated vector.

A.3.3 Quaternion Rates

It is possible to find the derivative of a quaternion, q̂, which is necessary in kinematics and

pose estimation methods. First, it is known that two quaternions, q̂(t) and q̂(t +∆t) can be

related by an incremental transition quaternion. Therefore,

q̂(t +∆t) = q̂(t)∆r(t) (A.29)

where ∆r(t) is the incremental quaternion representing angle α
2 about an axis of rotation~v.

Namely,

∆r(t) = cos(
α
2

)+~vsin(
α
2
) (A.30)

178

Substituting Equation A.30 into Equation A.29 results in

q̂(t +∆t) = q̂(t)(cos(
α
2
)+~vsin(

α
2

)) (A.31)

And using the small angle assumption that cos(∆θ) = 1 and sin(∆θ) = θ

q̂(t +∆t) = q̂(t)(1+~v
α
2
) (A.32)

Simplifying and dividing by ∆t on both sides results in

q̂(t +∆t)− q̂(t) = q̂(t)~v
α
2

(A.33)

dq̂
dt

= lim
∆t→0

q̂(t +∆t)− q̂(t)
∆t

(A.34)

= lim
∆t→0

q̂(t)~vα
2

∆t
(A.35)

= q̂(t)~v
ω(t)

2
(A.36)

=
1
2

q̂(t)ω̂(t) (A.37)

where ω(t) is the scalar angular rate, and ω̂(t) is the angular rate pure quaternion of ∆r(t),

namely the quaternion ω̂(t) = [0,ω(t)].

This is an extremely useful relation since it allows rigid bodies to be tracked without

evaluating trigonometric functions, the only caveat is that the angular rate must be available.

179

A.3.4 Quaternion Integration

Integrating a quaternion in time simply follows the normal rules of integration. An impor-

tant step however after the integration is to enforce the length of the resulting quaternion to

be 1 through normalization. Thus, the Taylor series expansion for integrating a quaternion

is

q̂(t +δt) = q̂(t)+dt ˙̂q(t)+
dt2

2
¨̂q(t)+O(dt3) (A.38)

In [26], a leap-frog integrator is used to perform the integration and this is defined as

q̂(t +dt) = q̂(t)+dt ˙̂q(t +dt/2)+O(dt3) (A.39)

where q̂(t +dt/2) = q̂(t)+
dt
2

˙̂q(t) (A.40)

A.3.5 Computing the angular velocity between two frames

Given two frames representing a rotation in time by the quaternions, q̂(t) and q̂(t−δt), it is

possible to determine the angular velocity between these two frames which may be required

in many instances. This uses the previously discussed quaternion derivative formula and is

180

determined by

˙̂q(t) =
1
2

q̂(t)ω̂(t) (A.41)

q̂(t)−1 ˙̂q(t) =
1
2

q̂(t)−1q̂(t)ω̂(t) (A.42)

2q̂(t)−1 ˙̂q(t) = ω̂(t) (A.43)

Now, in order to compute the above, it is necessary to have an estimate of ˙ˆ (t)q. Given that

in a tracking scenario, the two quaternions to be compared are within a very small time

interval, a first order approximation to the derivative is sufficient. The relationship

˙̂q(t) =
q̂(t)− q̂(t−δt)

δt
(A.44)

is sufficient to compute the angular velocity using ω̂(t) = 2q̂(t)−1 ˙ˆ (t)q.

A.3.6 Error Quaternion or Estimating the Rotation between Two Frames

In order to estimate the rotation, q̂12, between two frames represented by quaternions, q̂1

and q̂2, one computes

q̂12 = q̂2q̂−1
1 (A.45)

where q̂12 is a quaternion that represents a rotation that rotates vectors expressed in frame

1 to vectors expressed in frame 2.

A good application of this in a tracking system is to evaluate the error in an estimated

181

pose given knowledge of the ground truth pose. Thus,

q̂ε = q̂actual q̂−1
estimated (A.46)

A.3.7 Quaternions and other representations

Since all of the discussed representations fundamentally represent the same rotation, it is

possible to convert a rotation described by a quaternion into other representations. It is

also possible to perform the reverse and convert other representations to quaternions if it is

needed. Here, algorithms will be presented to convert between quaternions, euler angles,

and rotation matrices. These are useful if it is desired to use quaternions with efficient

implementations of matrix algebra or in systems where the internal representation is based

on Euler angles but where quaternions would be advantageous to be used, as in graphics or

robotics applications.

Quaternions to Rotation Matrices

It is possible to convert a quaternion, q̂ = (w,x,y,z) into a 3×3 rotation matrix, Rq, using

the following:

Rq =




2w2 +2x2−1 2xy−2wz 2xz+2wy

2xy+2wz 2w2 +2y2−1 2yz−2wx

2xz−2wy 2yz+2wx 2w2 +2z2−1




(A.47)

182

Quaternion to Euler Angles

Since a rotation sequence using Euler angles is defined by

M = M(φ)M(θ)M(ψ)

=




cos(ψ)cos(θ) sin(ψ)cos(θ) −sin(θ)

cos(ψ)sin(θ)sin(φ)

−sin(ψ)cos(φ)

sin(ψ)sin(θ)sin(φ)

+cos(ψ)cos(φ)

cos(θ)sin(φ)

cos(ψ)sin(θ)cos(φ)

+sin(ψ)sin(φ)

sin(ψ)sin(θ)cos(φ)

−cos(ψ)sin(φ)

cos(θ)cos(φ)




(A.48)

=




m11 m12 m13

m21 m22 m23

m31 m32 m33




= Rq

(A.49)

183

It is possible to derive the angles from Rq from the following:

tan(ψ) =
m12

m11
(A.50)

sin(θ) =−m13 (A.51)

tan(φ) =
m23

m33
(A.52)

where q̂ = w+ xi+ yj+ zk and

m11 = 2w2 +2x2−1 (A.53)

m12 = 2xy−2wz (A.54)

m13 = 2xz+2wy (A.55)

m23 = 2yz−2wx (A.56)

m33 = 2w2 +2z2−1 (A.57)

184

Rotation Matrix to Quaternion

To convert a rotation matrix, M, to a quaternion, q̂, it is possible to use Equation A.49 to

write

4wx = m23−m32 (A.58)

4wy = m31−m13 (A.59)

4wz = m12−m21 (A.60)

and trace(M) = 4w2−1.

It follows that

w =

√
m11 +m22 +m33 +1

2
(A.61)

and finally

x =
m23−m32

4w
(A.62)

y =
m31−m13

4w
(A.63)

z =
m12−m21

4w
(A.64)

Euler Angles to Quaternion

It is also possible to convert the Euler angle representation to a quaternion.

Given that ψ is the Azimuth angle, θ is the Elevation angle, and φ is the Roll angle, the

185

quaternion is defined as:

q̂e = q̂zq̂yq̂x = q̂z⊗ q̂y⊗ q̂x (A.65)

and

q̂z = cos
(ψ

2

)
+ cos

(ψ
2

)
k (A.66)

q̂y = cos
(

θ
2

)
+ cos

(
θ
2

)
j (A.67)

q̂x = cos
(

φ
2

)
+ cos

(
φ
2

)
i (A.68)

186

Appendix B

The Kalman Filter

This appendix reviews the Kalman filter. For more detail please see the extensive literature

on this topic, in particular [43, 76, 10, 48, 17] provide a solid review of the Kalman filter.

The Kalman filter is essentially a set of mathematical equations that estimate a linear

process with known dynamics. The computer vision, graphics, and robotics fields have

used this formulation to estimate many processes including target tracking, dead reckon-

ing, robot pose maintenance, and the fusion of information from multiple sensors with

differing characteristics. Even though the true version of the Kalman filter introduced in

[43] was proven to be an “optimal” estimation filter for linear dynamics, there have been

several extensions to the framework including the extended Kalman filter (EKF) which is

a sub-optimal filter linearizing the non-linear system dynamics. However, the EKF is used

extensively since it performs well in many instances. Another extension to this framework

is the Unscented Kalman filter[42] which develops a Kalman filter framework that uses the

non-linear system dynamics directly.

This appendix introduces the discrete linear Kalman filter and extended Kalman filter

followed by a brief overview of other interesting extensions to the Kalman framework.

187

CorrectPredict
(Measurement Update)(Time Update)

Figure B.1: The Predictor-Corrector Feedback mechanism of the Kalman filter.

In general, a linear stochastic process can be described in state vector notation as

xk = Axk−1 +Buk−1 +wk−1 (B.1)

and a measurement of the system is described as

zk = Hxk + vk (B.2)

where wk and vk represent the noise characteristics of the system and measurement pro-

cesses respectively. Kalman assumed that the noise processes of the system and measure-

ment are random, independent, zero-mean and with normal probability distibutions. xk is

the n×1 state vector of n variables to be estimated, A is the n×n system dynamics matrix

relating the system at time step k−1 to the next time step k, uk is the optional control input

to the system and B relates the control input to the state. zk denotes the m×1 measurement

vector and H is a m×n matrix that relates the state to the measurement.

188

B.1 The Discrete Linear Kalman Filter

The Kalman filter estimates the process of n variables using a recursive predictor-corrector

feedback loop formulation (see Figure B.1). Essentially, the filter first predicts what the

state should look like at a given time step, it then obtains a noisy measurement from some

sensor. The measurement is then incorporated into the state using the residual of the pre-

diction and the measurement weighted by a gain factor that is computed with the noise

characteristics of the process and measurement. The notation that is used here follows [76]

and is summarized in Table B.1.

Notation Size Description
x̂k n×1 State vector of variables, estimated at time step k
zk m×1 Measurement vector at time step k
A n×n System dynamics matrix
uk l×1 Optional control input at time step k
B n× l Matrix that relates control input to the state
Pk n×n State covariance matrix at time step k
Q n×n Process noise covariance matrix
R m×m Measurement noise covariance matrix
K n×m Kalman gain matrix
H m×n Matrix relating state to measurement
I n×n Identity matrix

x̂−k n×1 Predicted state
P−

k n×n Predicted covariance

Table B.1: The notation used in the form of the Kalman Filter discussed here.

In order to accomplish the task of recursively estimating the state variables, the Kalman

filter performs a time-update step where it predicts the state vector and the process covari-

189

ance without any additional measurements by

x̂−k = Ax̂k−1 +Buk (B.3)

P−
k = APk−1AT +Q (B.4)

After the time-update step, a measurement is obtained and the state must be updated

appropriately. This is called the measurement-update step. First, the Kalman gain factor is

computed using the predicted state covariance matrix and the sensor noise characteristics.

The residual between the predicted state and the measurement is computed and weighted

by the gain. The state is then updated by incorporating the predicted state and the weighted

residual. The final step is to update the state covariance matrix using the computed gain

and the predicted state covariance.

Kk = P−
k HT (HP−

k HT +R)−1 (B.5)

x̂k = x̂−k +Kk(zk−Hx̂−k) (B.6)

Pk = (I−KkH)P−
k (B.7)

B.1.1 An Example

As an example of using the Kalman filter, a simple process of estimating the position of

a particle in 2D is presented. To demonstrate the use of a linear Kalman filter, imagine

190

Time Update Step

x̂−k = Ax̂k−1 +Buk

P−
k = APk−1AT +Q

Measurement Update Step

Kk = P−
k HT (HP−

k HT +R)−1

x̂k = x̂−k +Kk(zk−Hx̂−k)

Pk = (I−KkH)P−
k

Table B.2: Summary of the Discrete Linear Kalman Filter Equations

a particle that can be modeled to move at constant velocity in a straight line. Thus, the

differential equation governing this motion would be

xk = xk−1 + ẋk−1∆t (B.8)

ẋk = ẋk−1 (B.9)

Using this model, a particle P = [px, py] moves in a straight line with constant velocity

~v = [vx,vy]. Thus the state vector will be

xk = [px, py,vx,vy]
T (B.10)

191

The 4×4 system dynamics matrix, A, would then be defined as

A =




1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1




(B.11)

Now, imagine that a device exists to measure the position of the particle at regular

time intervals and each measurement is independent and has a 2.45cm RMS white noise

covariance on both the X and Y axes. Thus, the measurement noise covariance matrix is

R =




2.452 0

0 2.452


 (B.12)

In order to relate the 4×1 state vector with the 2×1 measurement vector, H needs to

be defined as

H =




1 0 0 0

0 1 0 0


 (B.13)

For simplicity, the process noise covariance will be set as Q = 1e−5 and ∆t = 1.

Finally, to run some experiments on simulated data, Matlab was used to generate ground-

truth data which was then perturbed by a white noise of 2.45cm variance to simulate the

measurements from the fictional device.

The noisy data was then run through the Kalman filter equations recording the state

192

(a) (b)

(c)

Figure B.2: Results of the linear Kalman filter with a position-velocity model.

estimate at each time step (see Figure B.2(a)). Figure B.2(b) shows the state estimation data

with the noisy data alone for clarity and illustration purposes. The error was then computed

between the estimated state and the ground-truth data (shown in Figure B.2(c)) with the

error computed between the ground-truth data and the noisy measurement data. It can be

seen that the filter error decreases as time increases. The Matlab code that implements this

Kalman filter can be seen in Listings B.1 and B.2

193

Listing B.1: Time Update Step of the Kalman Filter

f u n c t i o n [Xp , Pp] = t i m e _ u p d a t e (A,X, P , B , C o n t r o l ,Q)
%% t ime u p d a t e s t e p o f t h e kalman f i l t e r
% r e t u r n s t h e p r e d i c t e d s t a t e X , and c o v a r i a n c e Pp
Xp = A∗X + B∗C o n t r o l ;
Pp = A∗P∗A ’ + Q;

Listing B.2: Measurement Update Step of the Kalman Filter

f u n c t i o n [X, P] = measu remen t_upda te (z , Xp , Pp ,H, I , R)
%% measuremen t_upda te s t e p o f t h e kalman f i l t e r
% r e t u r n s t h e u p d a t e d s t a t e , X and c o v a r i a n c e P

% compute t h e Kalman Gain
temp = H∗Pp∗H ’ + R ;
K = Pp∗H’∗ i n v (temp) ;

% Compute t h e r e s i d u a l o f t h e measurement and
% t h e p r e d i c t e d s t a t e
R e s i d u a l = z − H∗Xp ;

% u p d a t e t h e s t a t e wi th t h e w e i g h t e d r e s i d u a l
X = Xp + K∗R e s i d u a l ;

% u p d a t e t h e C o v a r i a n c e
P = (I − K∗H)∗ Pp ;

194

B.2 The Extended Kalman Filter

The formulation that Kalman derived was proven to be an optimal estimation filter for

discrete linear systems. It is rare in computer vision, graphics and robotics, that the system

dynamics of the process to be estimated is in fact linear. The process or measurement

relationship typically is governed by a non-linear system of equations. In order to use the

Kalman filter framework for these non-linear systems, an extension named the extended

Kalman filter is used which linearizes the system about the current mean and covariance.

The process to be estimated is now governed by a non-linear function, namely

xk = f (xk−1,uk,wk−1) (B.14)

and the measurement now becomes a function as well,

zk = h(xk,vk) (B.15)

The notation used in the extended Kalman filter is summarized in Table B.3.

195

Notation Size Description
x̂k n×1 State vector of variables, estimated at time step k
zk m×1 Measurement vector at time step k
uk l×1 Optional control input at time step k
Pk n×n State covariance matrix at time step k
Q n×n Process noise covariance matrix
R m×m Measurement noise covariance matrix
K n×m Kalman gain matrix
I n×n Identity matrix
A n×n Jacobian Matrix of Partial derivatives of f (·) with respect to x

A[i, j] =
∂ f[i]
∂x[j]

(x̂k−1,uk,0)

W n×n Jacobian Matrix of Partial derivatives of f (·) with respect to noise w

W[i, j] =
∂ f[i]
∂w[j]

(x̂k−1,uk,0)

H m×n Jacobian Matrix of Partial derivatives of h(·) with respect to x

H[i, j] =
∂h[i]
∂x[j]

(x̂k,0)

V m×m Jacobian Matrix of Partial derivatives of h(·) with respect to noise v

H[i, j] =
∂h[i]
∂v[j]

(x̂k,0)

x̂−k n×1 Predicted state
P−

k n×n Predicted Covariance

Table B.3: The notation used in the form of the extended Kalman filter discussed here.

The time-update equations in this framework now become

x̂−k = f (x̂k−1,uk,0) (B.16)

P−
k = AkPk−1AT

k +WkQk−1W T
k (B.17)

196

and the measurement-update equations are now

Kk = P−
k HT

k (HkP−
k HT

k +VkRkV T
k)−1 (B.18)

x̂k = x̂−k−1 +Kk(zk−h(x̂−k ,0)) (B.19)

Pk = (I−KkHk)P−
k (B.20)

Note that the Jacobians A,W,H,V are different at each timestep and must be recalcu-

lated. The Jacobian Hk is important since it propagates only the relevant component of

the measurement information. It magnifies only the portion of the residual that affects the

state.

Time Update Step

x̂−k = f (x̂k−1,uk,0)

P−
k = AkPk−1AT

k +WkQk−1W T
k

Measurement Update Step

Kk = P−
k HT

k (HkP−
k HT

k +VkRkV T
k)−1

x̂k = x̂−k−1 +Kk(zk−h(x̂−k ,0))

Pk = (I−KkHk)P−
k

Table B.4: Summary of the Extended Kalman Filter Equations

197

B.3 The SCAAT Kalman Filter

SCAAT[75], or the single-constraint-at-a-time algorithm, is another important extension

to the Kalman filter framework. It was designed to be used in systems where the sensors

are not synchronized and provide incomplete information about the estimated process. The

basic approach is to change the idea of predicting the state and computing the residual

between the predicted state and the measurement, to predicting the measurement using the

current state estimate and then computing the residual between the predicted measurement

and the actual sensor measurement.

This was implemented for the HiBall R©[75] tracking system which saw a noticeable

decrease in latency and an increase in accuracy. The algorithm also provides a way to

perform autocalibration of the system or sensors which can be very valuable in practice.

The algorithm assumes that the measurement is an incomplete representation of the

world, i.e. use the position of one LED, or output of one accelerometer. This leads to a

locally unobservable system but over time the measurements are able to provide a globally

observable system. Each sensor type, σ, uses a measurement prediction function h(·) that

must be defined relating the state to the measurement obtained by the sensor. This function

takes the current estimate of the state, the sensor-source pair, and computes the measure-

ment that the sensor should report at this time step. The SCAAT algorithm is summarized

below, however the reader is urged to see [75] for more detail, the derivation of the filter,

and experimental results.

198

The process to be estimated is a constant velocity model and the orientation is repre-

sented as three small changes in angles. It is assumed that the measurement update rate is

fast enough and a linear prediction is used for simplicity. The state to be estimated is thus

[x,y,z, ẋ, ẏ, ż,∆φ,∆θ,∆ψ, φ̇, θ̇, ψ̇]T . Also, to avoid gimbal lock scenarios, the global orien-

tation is stored outside of the filter as a quaternion, q̂, and is updated at each step using

the incremental angles estimated in the filter state. Also, an important step is to zero the

incremental angles at the end of the measurement-update.

The time-update step is defined as in the linear Kalman filter, namely

x̂−k = Ax̂k−1 +Buk (B.21)

P−
k = APk−1AT +Q (B.22)

The measurement-update is then performed in several steps discussed below. The next

step is to predict the measurement using the current state, sensor and source information.

The sensor is defined as the device that obtains the measurement (i.e. camera) and the

source is defined as the device that emits the information to be sensed (i.e. a single LED).

ẑk = hk,σ(x̂−k ,bk,ck) (B.23)

Hk = Hk,σ(x̂−k ,bk,ck) (B.24)

where bk is the sensor parameter vector, ck is the source parameter vector, Hk,σ is a jacobian

199

matrix of partial derivatives of hk(·) with respect to x, namely

Hk,σ(x̂−k ,bk,ck)[i, j] =
∂

∂x[j]
hk,σ(x̂−k ,bk,ck)[i] (B.25)

After predicting the measurement, the Kalman gain is computed

Kk = P−
k HT

k (HkP−
k HT

k +Rk,σ)−1 (B.26)

Then, the residual between the predicted measurement and the obtained measurement

from the sensor-source pair is computed,

∆zk = zk,σ− ẑk (B.27)

The state and covariance are then updated properly,

x̂k = x̂−k +Kk∆zk (B.28)

Pk = (I−KkHk)P−
k (B.29)

Finally, an important update must take place. The external quaternion must be updated

using the estimated small angle changes and then the state vector components of these

angles must be set to zero.

200

∆q̂ = quaternion(x̂k(∆φ), x̂k(∆θ), x̂k(∆ψ)) (B.30)

q̂ = q̂⊗∆q̂ (B.31)

x̂k(∆φ) = x̂k(∆θ) = x̂k(∆ψ) = 0 (B.32)

201

Time Update Step

x̂−k = Ax̂k−1 +Buk

P−
k = APk−1AT +Q

Measurement Update Step
1. Predict the measurement and compute Hk

ẑk = hk,σ(x̂−k ,bk,ck)

Hk = Hk,σ(x̂−k ,bk,ck)

2. Compute the Kalman gain factor

Kk = P−
k HT

k (HkP−
k HT

k +Rk,σ)−1

3. Compute the residual

∆zk = zk,σ− ẑk

4. Update the state and covariance

x̂k = x̂−k +Kk∆zk

Pk = (I−KkHk)P−
k

5. Update external quaternion and incremental angles

∆q̂ = quaternion(x̂k(∆φ), x̂k(∆θ), x̂k(∆ψ))

q̂ = q̂⊗∆q̂

x̂k(∆φ) = x̂k(∆θ) = x̂k(∆ψ) = 0

Table B.5: Summary of the SCAAT algorithm

202

Appendix C

Hardware Details

C.1 Inertial Device

The Inertial device is composed of six accelerometers arranged in pairs such that each pair

of accelerometers are orthogonal to the other pairs. Figure C.1 shows the configuration of

the device and the reference frames attached to each accelerometer.

C.1.1 Acceleromter Details

The AS-5GA accelerometers were purchased from Kyowa Electronic Intstruments Co.,

Ltd. in Tokyo, Japan. The sensors are rated at 5G(49.03m/s2) typically and have charac-

teristics as shown in Table C.1.

Frequency Response: 0∼ 110Hz±5%
Rated Output: 640µV/V

1280×10−6

Nonlinearity: 1.00%RO

Calibration Constant: 0.07660m/s2(0.007812G)/1µV/V
0.03830m/s2(0.003906G)/1×10−6

Input & Output resistance: Input: 122.8Ω
Output: 122.8Ω

Table C.1: Typical Characteristics of Accelerometer AS-5GA S/N:EK4970005

203

6

3

1

2

4

5

XA
6

XA
5

YA
3

Z A
1

YA
4

Z A
2

Z

X

Y

A1

A2

A3
A4

A5

A6

O

(a) Ideal Inertial device with labeled axes

S.A. = Sensitive Axis

 S.A.

��
��

5 cm

1.4 cm

1.4 cm

5 cm

(b) CAD drawing of inertial device

Figure C.1: Accelerometer Configuration

204

Amplification Circuit

The amplification circuit (Figure C.2) was designed by RHC & Associates in Mississauga,

Ontario. If the circuit is provided with an excitation voltage, it will regulate and amplify

the voltage to range between ±2.0V . Thus, 1G = 400mV .

Output
COM

SIG

+V

0V

−V

Power for Circuit

Excitation Voltage (+5V)

COM

C7

VR1

VR2

BV

ZERO

R1

1

2

3

4
7
5
6

11

13
12

H
SC

−1
0B

S,
20

B
S

16

9

C6

C4C3

C5

C1 C2

+BV

−BV

+IN

−IN

TRANSDUCERS

8
C8
C9

L1

L2
15

VR3SPAN

R2

Figure C.2: Amplification Circuit from RHC & Associates for Accelerometers. Capacitors
C1,3,5: 25V 100µF. Capacitors C2,4,6,7,8,9: 0.01µF. L1,L2 are 10µH coils. Fixed Resistor
R1 is 33K ohm and the variable resistor VR1 is 5K ohm. with adjustment range 3.9V to
5.8V. The Excitation voltage used for the transducer is 5V. The power for the circuit is
±15V when using the standalone powersupply and ±5V when using camcorder batteries.

205

C.1.2 A/D Converter Details

In order to convert the analog signal provided by the accelerometer signal conditioning

circuit to a usable digital signal, a VIPS (Virtual Instrument Pod System) Analog to Digital

(A/D) converter was purchased that connects to the standard parallel port of the wearable

computer. See Table C.2 for technical specifications.

Number of Channels: 8 single ended or 4 differential or mixture of both
Resolution: 12 bits
Conversion Time: 10µs
Sampling Rate: 20µs per channel
Input Voltage Range: 0∼ 4.096V (unipolar) ±2.047V (bipolar)
Internal Reference: 4.096V ±3mV (trimmed)
Internal Ref Temp Coefficient: ±50ppm/oCmax.
External Reference Range: 1.5V ∼ 5.0V
Relative Accuracy: ±1LSB max.
Offset Error: ±3LSB max.
Max. Permissible Input Voltage : ±6V

Table C.2: Hardware Specifications for VIPS 10 A/D Convertor

206

C.2 Laser Device

The Laser system device is comprised of four lasers, three of which are orthogonal to each

other and define the orientation plane. The fourth laser lies on the plane and points in the

opposite direction of one of the other lasers for determining position in the plane. A CAD

drawing of the laser device is shown in Figure C.3.

C.2.1 Laser Details

The lasers were purchased from The Laser Guy wholesaler (http://www.thelaserguy.com/)

for $10 USD plus shipping, handling, and importation costs.

Operating Current: 60 mA
Operating Voltage: 2.6 VDC to 4.0 VDC
Spot size: At 5 meters is 6mm diameter
Operating Temperature: -10 C to 40 C
Range: 2600 Feet
Diode: 645 nm, 5 mW industrial grade
Life: rated at 12 000 to 15 000 hours on constant operation

Table C.3: Laser Diode Characteristics

C.2.2 Laser Optical Filter

The optical filters were purchased from Coherent (ph:(530-889-5365)). The filters (id:35-

3961-000) are 25.4mm diameter and have a peak response at 650nm.

207

6.5 cm

o

90

2.0 cm

1.0 cm

4.0 cm

o

904.8 cm

1.0 cm
2.0 cm

Top View

Side View

Figure C.3: The Laser System Hardware

208

C.3 Camera Details

The Firewire R© Fire-i400TM industrial cameras (Figure C.4) were purchased from Uni-

brain. See Figure C.5 for the shutter speeds that these cameras support.

Figure C.4: Unibrain Fire-i400 industrial camera

Figure C.5: Unibrain Fire-i400 Shutter Speeds and associated register values.

209

Interface: IEEE-1394a 400 Mbps, 2ports (6pins)
Camera Type: IIDC-1394 Digital Camera, V1.04 Specifica-

tion compliant
Sensor Type: Sony Wfine* 1/4" CCD Color, progressive

*Wfine CCD is a trademark of Sony Corpo-
ration

Max Resolution: VGA 640x480
Optics: C-Mount
Video Modes: YUV, RGB-24bit, Mono-8bit
Frame Rates: 30,15,7.5,3.75 frames per second
Gain: Auto or Manual 0-30 dB
Shutter: Auto or Manual 1/3400s - 1/31s
Gamma: ON/OFF
White Balance: Automatic or Manual Control
Color Saturation: Adjustable
Backlight Compensation: 6 modes + OFF
Sharpness: Adjustable
Power Supply: 8 to 30 VDC, by 1394 bus Consumption 1W

max, 0.9W typical

Table C.4: Unibrain Fire-i400 Digital Camera Specifications

210

C.4 Wearable Computer Details

The PC/104 computer was purchased from VersaLogic Inc. Note that since the time of

purchasing, AMD has discontinued the CPU line and this EPM-CPU-7 module has been

updated to a Pentium CPU rather than the AMD K6 that is used here.

The PC has an AMD K6 CPU module, and a PCMCIA Module also purchased from

VersaLogic. The specifications of the wearable computer are found in Table C.5 and an

image of the actual hardware is shown in Figure C.6.

Figure C.6: The Panther PC/104 Wearable Computer from Versalogic.

211

Board Size: 3.55" x 3.775" (PC/104 standard).
4.23" x 3.775" including connectors. Two board set.
Height: 1.9"

Storage Temperature: −40o C to +85o C
Operating Temperature: Standard versions: 0o C to +60o C

Extended temperature version: −20o C to +85o C
Power requirements: +5V ±5% @ 3.50A typ. 17.5W (EPM-CPU-6/7c)

+5V ±5% @ 4.25A typ. 21.3W (EPM-CPU-6g)
+5V ±5% @ 1.95A typ. 9.7W (EPM-CPU-7s)
+5V ±5% @ 2.05A typ. 10.3W (EPM-CPU-7t)
3.3V or ś12V required by some expansion modules

Bus Speed: CPU External: 66 MHz
PCI, PC/104-Plus: 33 MHz
PC/104: 8 MHz

System Reset: Vcc sensing, resets below 4.70V typ.
Watchdog timeout

Humidity: Less than 95%, noncondensing
DRAM Interface: One 144-pin SODIMM socket,

8 to 256 MB, EDO (60 ns)
or 3.3V SDRAM (66 MHz or PC-100).

Flash/BBSRAM Interface: One 32-pin JEDEC DIP socket.
Accepts battery-backed static RAM chip
or M-Systems DiskOnChip.

Video Interface: Based on Intel/C&T 69000 chip, 2 MB VRAM standard.
69030 chip with 4 MB VRAM optional.
44-pin flat panel display interface.

IDE Interface: One channel PCI-based. Supports up to two IDE devices.
Supports high speed Mode 4 and Ultra DMA drives.

Floppy Disk Interface: Supports two floppy drives.
Ethernet Interface: Autodetect 10BaseT / 100BaseTX based on AMD 79C973.
COM 1 Interface: RS-232, 16C550 compatible, 115K baud max.
COM 2 Interface: RS-232/422/485, 16C550 compatible, 460K baud max.
LPT Interface: Bi-directional/EPP/ECP compatible.
Connectors: I/O: Two high-density 80-pin

Video: 10-pin .1" CRT connector
44-pin 2mm FPD connector
Power: 10-pin .1"

Compatibility: PC/104 - Full compliance
PC/104-Plus - Full compliance, 3.3V or 5V modules

Table C.5: Specifications of the EPM-CPU-7 PC/104 Computer.

212

Appendix D

Company Information

Table D.1 is a list of companies that manufacture and sell tracking equipment for virtual re-

ality applications. Table D.2 is a list of companies that manufacture hardware components

that was used in the development of this thesis.

213

Company Products Address
Intersense IS-900 1 North Avenue

InertiaCube2 Burlington, MA 01803, USA
ph: (781)270-0090
fax: (781)229-8995
http://www.isense.com/

Ascension Flock of Birds R© P.O. Box 527
Technology MotionStar R©Wireless Burlington, VT 05402, USA
Corporation 3D-Bird R© ph: (802)893-6657

LaserBIRD R© fax: (802)893-6659
http://www.ascension-tech.com/

Polhemus FASTRAK R© 40 Hercules Dr.
Colchester, VT 05446, USA
ph: (802)655-3159
fax: (802)655-1439
http://www.polhemus.com/

3rdTech HiBall R© 119 E. Franlin St., 3rd Floor
Chapel Hill, NC 27514-3620, USA
ph: (919)929-1903
fax: (919)929-2098
http://www.3rdtech.com/

Meta Motion GypsyTMJr. 258 Bush St. #1
San Fransisco, CA 94104, USA
ph: (415)-550-META
fax: (415)-550-6384
http://www.metamotion.com/

Table D.1: Tracking Equipment Companies. These companies sell tracking equipment and
other products mentioned throughout this thesis.

214

Company Products Address
TTi VIPS10 A/D Converter Thurlby Thandar Instruments

Glebe Road, Huntingdon
Cambridgeshire, PE18 7DX
England
http://www.tti-test.com

RHC & Associates Transducer Amplification Circuit RHC & Associates
2180 Dunwin Drive, Unit 4
Mississauga, ON, L5L 5M8
ph:(905) 828-6221
fax:(905)828-6408
Contact: Michel Therrien
http://www.rhctest.com

Unibrain Fire-i400TMDigital Cameras Unibrain Inc.
One Annabel Lane, Suite 109
San Ramon, CA, 94583
ph:(925)-866-3000
fax:(925)-866-3520
http://www.unibrain.com

Coherent Optical Filters Coherent Inc.
2303 Lindbergh Street
Auburn, CA, 95602
ph:(530)889-5365
fax:(530)889-5366
http://www.coherentinc.com

The Laser Guy Laser diodes The Laser Guy
P.O. Box 849
1502 Second Street
Seabrook, Texas, 77586
ph:(281)455-8008 (local)
fax:(603)590-5267
http://www.thelaserguy.com

VersaLogic PC/104 Wearable Computer VersaLogic Corp.
EPM-7 (Panther) 3888 Stewart Rd.

Eugene, Oregon, 97402
ph:(541)485-8575
fax:(541)485-5712
http://www.versalogic.com

Table D.2: Hardware Component Companies. Specific hardware components used in this
thesis were purchased from these companies.

215

Bibliography
[1] R. S. Allison, L. R. Harris, A. Hogue, U. Jasiobedzka, H. Jenkin, M. Jenkin, P. Jaekl, J. Lau-

rence, G. Pentile, F. Redlick, J. Zacher, and D. Zikovitz. Simulating self motion ii: A virtual
reality tricycle. Virtual Reality, 6:86–95, 2002.

[2] R. S. Allison, L. R. Harris, M. Jenkin, U. Jasiobedzka, and J. E. Zacher. Tolerance of temporal
delay in virtual environments. In IEEE Int. Conference on Virtual Reality, volume 3, 2001.

[3] R. S. Allison, I. P. Howard, and J. E. Zacher. Effect of field size, head motion and rotational
velocity on roll vection and illusory self-tilt in a tumbling room. In Perception, volume 28,
pages 299–306, 1999.

[4] R. Azuma. Predictive tracking for augmented reality. Technical Report TR95-007, UNC
Chapel Hill, Dept. of Computer Science, 1995.

[5] E. Bachmann. Inertial and Magnetic Tracking of Limb Segment Orientation for Inserting
Humans into Synthetic Environments. PhD thesis, Naval Postgraduate Institute, Monterey,
CA., 2000.

[6] E. R Bachmann, R. B. McGhee, X. Yun, and M. J. Zyda. Inertial and magnetic posture tracking
for inserting humans into networked virtual environments. In ACM Symposium on Virtual
Reality Software and Technology (VRST), pages 9–16, Banff, Alberta, Canada, November,
15-17 1985. (slides).

[7] A. Bjorck. Numerical Methods for Least Squares Problems. S.I.A.M. Society for Industrial
and Applied Mathematics, 1996.

[8] J. Y. Bouguet. Camera calibration toolbox for matlab.
http://www.vision.caltech.edu/bouguet/calib_doc.

[9] K. R. Britting. Inertial Navigation Systems Analysis. Wiley-Interscience, New York, 1971.

[10] E. Brookner. Tracking and Kalman Filtering Made Easy. John Wiley & Sons Inc., 1998.

[11] C. Broxmeyer. Inertial Navigation Systems. McGraw-Hill, New York, 1964.

[12] X. Chen and J. Davis. Lumipoint, multi-user laser-based interaction on
large tiled displays. Technical Report CS-2000-06, Stanford University, 2000.
http://graphics.stanford.edu/papers/multiuser/.

[13] Ascension Technology Corporation. The laserBIRD. http://www.ascension-
tech.com/products/laserbird.php.

[14] J. J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley, Reading,
Massachusetts, 2nd edition, 1989.

[15] J. L. Crowley and Y. Demazeau. Principles and techniques for sensor data fusion. Signal
Processing, 32(1-2):5–27, 1993.

216

[16] C. Cruz-Neira, D. Sandin, and T. DeFanti. Surround-screen projection based virtual reality:
The design and implementation of the cave. In Proc. SIGGRAPH ’93, pages 135–142, 1993.

[17] G. Dudek and M. Jenkin. Computational Principles of Mobile Robotics. Cambridge University
Press, 2000.

[18] J. L Farrell. Integrated Aircraft Navigation. Academic Press, New York, 1976.

[19] O. Faugeras and Q. T. Luong. The Geometry of Multiple Images. The MIT Press, Cambridge,
MA, 2001.

[20] R. B. Fisher and D. K. Naidu. A Comparison of Algorithms for Subpixel Peak Detection.
Springer-Verlag, Heidelberg, 1996. http://citeseer.nj.nec.com/482699.html.

[21] Center for Parallel Computing. Primeur: Advancing European Technology Frontiers, World’s
first fully immersive VR-CUBE installed at PDC in Sweden, 1998.

[22] E. Foxlin. Inertial head-tracker sensor fusion by a complementary separate-bias kalman fil-
ter. In Proceedings of IEEE Virtual Reality Annual International Symposium, pages 184–194,
1996.

[23] E. Foxlin. Motion Tracking Requirements and Technologies, chapter 8, pages 163–210.
Lawrence Erlbaum Associates, Mahwah, NJ., 2002. Ed. Kay M. Stanney.

[24] Eric Foxlin. Inertial head-tracking. Master’s thesis, Department of Computer Science, Mas-
sachusetts Intitute of Technology, August 1993.

[25] K. Fujii, Y. Asano, N. Kubota, and H. Tanahashi. User interface device for the immersive
6-screens display "cosmos". In Proc. VSMM’00, 2000.

[26] G. Garberoglio. Dynamical properties of H-bonded liquids: A theoretical and computer sim-
ulation study. PhD thesis, Universita degli Studi di Trento, Facolta di Scienze Matematiche
Fisiche e Naturali, 2001.

[27] Sir W. R. Hamilton. On a new species of imaginary quantities connected with a theory
of quaternions. In Proceedings of the Royal Irish Academy, pages 424–434. Royal Irish
Academy, 1843. Vol. 2 (1844).

[28] L. R. Harris, M. Jenkin, and D. C. Zikovitz. Visual and non-visual cues in the perception of
linear self motion. Experimental Brain Research, 135:12–21, 1999.

[29] R. Hartley and A. Zissserman. Multiple View Geometry. Cambridge University Press;
ISBN:0521623049, 2000.

[30] R. I. Hartley. In Defense of the Eight-Point Algorithm. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 19(6), June 1997.

[31] D. Hearn and M. P Baker. Computer Graphics - C version. Prentice Hall Inc., 2nd edition,
1997.

217

[32] J. Heikkila. Geometric camera calibration using circular control points. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, October 2000. vol. 22, no. 10, pp.1066-1077.

[33] J. Heikkila and O. Silven. A four-step camera calibration procedure with implicit image cor-
rection. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1106–1112, 1997. San Juan, Puerto Rico.

[34] F. Hetmann, R. Herpers, and W. Heiden. The Immersion Square – immersive vr with standard
components. In Proc. Virtual Environment on a PC Cluster Workshop, Protvino, Russia, 2002.

[35] A. Hogue, M. Robinson, M. R. Jenkin, and R. S. Allison. A vision-based head tracking system
for fully immersive displays. In J. Deisinger and A. Kunz, editors, 7th International Immersive
Projection Technologies Workshop in conjunction with the 9th Eurographics Workshop on
Virtual Environments, May 22-23 2003. to appear.

[36] I. P. Howard. Human Visual Orientation. John Wiley and Sons, New York, 1982.

[37] I. P. Howard and W. B. Templeton. Human Spatial Orientation. Wiley, London, 1966.

[38] Fraunhofer Institute IAO. http://vr.iao.fhg.de/6-Side-Cave/index.en.html.

[39] Virtual Reality Applications Center Iowa State University.
http://www.vrac.iastate.edu/about/labs/c6.

[40] R. Jain, R. Kasturi, and B. G. Schunck. Machine Vision. McGraw-Hill Inc., New York, 1995.

[41] H. L. Jenkin, R. T. Dyde, M. R. Jenkin, and L. R. Harris. Judging the direction of up in a tilted
room. In Perception, 2002.

[42] S. J. Julier and J. K. Uhlmann. A general method for approximating nonlinear transforma-
tions of probability distributions. Technical report, University of Oxford, Oxford, UK, 1996.
Robotics Research Group, Department of Engineering Science.

[43] R. E. Kalman. A new approach to linear filtering and prediction problems. In Transaction of
the ASME - Journal of Basic Engineering, pages 35–45, 1960. 82(Series D).

[44] V. Kindratenko. A survey of electromagnetic position tracker calibration techniques. In Virtual
Reality: Research, Development, and Applications, 2000. vol.5, no.3, pp. 169-182.

[45] V. Kindratenko. A comparison of the accuracy of an electromagnetic and hybrid ultrasound-
inertia position tracking system. In Presence: Teloperators and Virtual Environments, 2001.
vol.10, no.6, pp. 657-663.

[46] J. B. Kuipers. Quaternions and Rotation Sequences. Princeton University Press, 1999.

[47] A. Lawrence. Modern Inertial Technology. Springer-Verlag, 2nd edition, 1998.

[48] P. S. Maybeck. Stochastic models, estimation, and control, volume 141 of Mathematics in
Science and Engineering. 1979.

218

[49] R. B. McGhee, E. R. Bachmann, and M. J. Zyda. Rigid body dynamics, inertial reference
frames, and graphics coordinate systems: A resolution of conflicting conventions and ter-
minology. Technical Report NPS-MV-01-002, Naval Postgraduate Institute, Monterey, CA,
November 2000.

[50] N. K. Mital and A. I. King. Computation of rigid-body rotation in three-dimensional space
from body-fixed linear acceleration measurements. In Proceedings of the Winter Annual Meet-
ing of the American Society of Mechanical Engineers, Bioengineering Division, San Fransisco,
CA, 1978. Paper 78-WA/Bio-5.

[51] J. R. W. Morris. Accelerometry – a technique for the measurement of human body movements.
Journal of Biomechanics, 6:729–736, 1973.

[52] L. Naimark and E. Foxlin. Circular data matrix fiducial system and robust image processing
for a wearable vision-inertial self-tracker. In IEEE International Symposium on Mixed and
Augmented Reality, Sept 30-Oct.2 2002.

[53] I. Newton. Philisophiae Naturalis Principia Mathematica. 1687.

[54] University of Minnesota. Powerwall. http://www.lcse.umn.edu/research/powerwall/ power-
wall.html.

[55] University of Tokyo. http://www.iml.u-tokyo.ac.jp/facilities/index_e.html.

[56] Ji-Young Oh and Wolfgang Stuerzlinger. Laser Pointers as Collaborative Pointing Devices. In
Proc. Graphics Interface, pages 141–150, May 2002.

[57] D. R. Olsen Jr. and T. Nielsen. Laser pointer interaction. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 17–22. ACM Press, 2001.

[58] R. H. Parvin. Inertial Navigation. Van Nostrand, Princeton, New Jersey, 1962.

[59] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C:
The Art of Scientific Computing. Cambridge University Press, 2nd edition, 1992.

[60] F. Raab. Remote object position locator. US Patent 4054881, October 1977.

[61] F. Raab, E. Bood, O. Steiner, and H. Jones. Magnetic position and orientation tracking system.
IEEE Transactions on Aerospace and Electronics Systems, 15(5):709–717, 1979.

[62] I. Rötzer. Fraunhofer Magazine, Synthetic worlds within six walls 2:2001.

[63] F. P. Redlick, M. Jenkin, and L. R. Harris. Humans can use optic flow to estimate distance of
travel. Vis. Res., 41:213–219, 2001.

[64] Wearable Computing Systems Research. http://www.wear-it.net/.

[65] M. Robinson, J. Laurence, J. Zacher, A. Hogue, R. Allison, L. R. Harris, M. Jenkin, and
W. Stuerzlinger. Ivy: The immersive visual environment at york. In 6th International Immer-
sive Projection Technology Symposium, March 24-25, 2002, Orlando, Fl., 2002.

219

[66] J. P. Rolland, L. Davis, and Y. Baillot. A survey of tracking technology for virtual envi-
ronments. In Barfield and NJ. Caudell, Mahwah, editors, Augmented Reality and Wearable
Computers, 2001.

[67] D. H. Sutherland. The evolution of clinical gait analysis - Part II Kinematics. Gait & Posture,
16(2):159–179, October 2002.

[68] I. E. Sutherland. A head-mounted three-dimensional display. In 1968 Fall Joint Computer
Conference, AFIPS Conference Proceedings, 1968. 33,757-764.

[69] D. H. Titterton and J. L. Weston. Strapdown inertial navigation technology. Peter Peregrinus
Ltd., London, 1997.

[70] Aalborg University. The VRMedialab. http://www.vrmedialab.dk/.

[71] Beckman Institute University of Illinois, Integrated Systems Laboratory. A labora-
tory for immersive conitive experiments. http://www.isl.uiuc.edu/Virtual%20Tour /Tour-
Pages/meet_alice.htm.

[72] VICON. Vicon motion capture. http://www.vicon.com/entertainment/applications/film.html,
2003.

[73] T. Vieville and O. Faugeras. Computation of inertial information on a robot. In Fifth Interna-
tional Symposium on Robotics Research, pages 57–65. MIT-Press, 1989.

[74] Joseph J. La Viola and Jr. A discussion of cybersickness in virtual environments. In SIGCHI
Bulletin, January 2000. vol.32 no.1, pp.47-56.

[75] G. Welch. SCAAT: Incremental Tracking with Incomplete Information. PhD thesis, Chapel
Hill, NC, 1996.

[76] G. Welch and G. Bishop. An introduction to the kalman filter. Technical Report TR95-041,
University of North Carolina at Chapel Hill, 1995.

[77] G. Welch, G. Bishop, L. Vicci, S. Brumback, K. Keller, and D. Colucci. The HiBall tracker:
High-performance wide-area tracking for virtual and augmented environments. pages 1–10.

[78] W. Wiesel. Spaceflight Dynamics. Irwin McGraw-Hill, 2nd edition, 1997.

[79] T. Winograd and F. Guimbretière. Visual instruments for an interactive mural. In Conference
extended abstracts on Human factors in computer systems, pages 234–235. ACM Press, 1999.

[80] M. J. Wurpts, T. L. Swanson, and R. Tapia. Tracking technologies for virtual reality training
applications: A case study. In 22nd I/ITSEC Conference Proceedings, Orlando, Fl., November
2000.

[81] T. Yamada, M. Hirose, and Y. Isda. Development of a complete immersive display: Cosmos.
In Proc. VSMM’98, pages 522–527, 1998.

220

[82] Y. Yokokohji, Y. Sugawara, and T. Yoshikawa. Accurate image overlay on video see-through
hmds using vision and accelerometers. In Proceedings of IEEE Virtual Reality, March 2001.

[83] S. You and U. Neumann. Fusion of vision and gyro tracking for robust augmented reality
registration. In Proceedings of IEEE Virtual Reality, pages 71–78, 2001.

[84] S. You, U. Neumann, and R. Azuma. Hybrid inertial and vision tracking for augmented reality
registration. In Proceedings of IEEE Virtual Reality, pages 260–267, March 1999.

221

