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Abstract

We focus on mechanically generating object oriented code for semantic analysis. As an example, we
consider scope checking of a compiler of which the source language is Pict and of which the target and
implementation language is Java.

1 Introduction

A compiler generator mechanically generates a compiler from a series of specifications. This requires devel-
oping small specification languages for each major compilation phase. The purpose of such languages is to
allow a compiler writer to specify each phase in a manner that is lucid and precise. Accompanying each
such specification language is a tool that can mechanically convert a specification into code. The ability to
transform high level specifications into implementation level code eliminates a large amount of tedious man-
ual coding. This consequently enhances maintainability since changes to the definition of the language only
need to be reflected in the easily modifiable specifications. This approach is common practice to generate
lexers and parsers. Here, we focus on the semantic analysis phase. For a more detailed discussion about
compiler generators, we refer the reader to, for example, Tofte’s text [Tof90].

In the development of our compiler we want that both the code we write by hand, and the code we
mechanically generate be highly object oriented, that is, we try to leverage core object oriented concepts
including encapsulation, inheritance and polymorphism as much we can. In several object oriented compiler
frameworks, these concepts are not considered in the interest of programmer convenience. In our work we aim
to steadfastly adhere to the object oriented paradigm, while at the same time retain, or possibly even enhance,
programmer convenience. It is a well documented fact that object oriented code is easily maintainable (see,
for example, [GHJV94]). However, the main advantage of the mechanically generated code being object
oriented is robustness. Encapsulation, for example, limits the scope of what the generated code is capable
of doing. Often times, errors in the generation process, which would otherwise have gone unnoticed, show
up as encapsulation violations in the resulting object oriented code. Polymorphism eliminates the need for
case analysis, contributing not only to robustness, but also to the overall ease of generating the code.

Using Java as the target and implementation language allows us to experiment with object oriented
compiler generation techniques. Another reason for choosing Java as our implementation language is that
our compiler is capable of running on all major platforms. Additionally, the current popularity of Java makes
the inner workings of our compiler accessible to a larger audience. Considering that our compiler can run
on numerous different platforms, it behooves us to have our compiled code run on those platforms too. We
therefore chose the target language of our compiler to be Java as well. The widespread availability of Java
makes our compiler and the code it produces potentially platform independent.

As an example, we consider part of the semantic analysis of Pict. This language was introduced by
Pierce and Turner. For an overview of the language we refer the reader to [PT98b, PT00]. Pict was built on
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top of the π-calculus. This calculus extends the Calculus of Communicating Systems, also known as CCS,
with mobility. For a detailed account of the π-calculus we refer the reader to [Mil99]. The main reasons
for choosing Pict are the facts that the semantic analysis of Pict is far from trivial and that most parts of
the semantic analysis are defined formally (see [PT98a] for more details). In particular, we concentrate on
scope checking, that is, checking the scoping constraints. These constraints are formally defined in terms of
a proof system. We present some of the scoping rules in Section 3.1. As we will see in Section 3.4, these
high-level rules can be mechanically translated into low-level Java code.

To carry out semantic analyses like scope checking, a program is usually represented as a syntax tree.
In Section 2 we discuss different ways of implementing syntax trees in Java. We consider two different
contemporary approaches to syntax tree representation. In particular, we compare the approaches taken by
ANTLR [Mag] and JavaCC [MS] with those taken by SableCC [Gag98, GH98] and Zephyr ASDL [WAKS97].
Roughly, in the former approach all the nodes of a syntax tree are instances of one and the same class, whereas
the latter approach utilizes a different class for every kind of node of a syntax tree. Clearly, in the latter
approach a large number of classes need to be introduced. A number of tools have been developed to
mechanically generate these classes which form large inheritance hierarchies. In our compiler, we often deal
with more than 200 such classes at the same time. Clearly, in such a situation type conversions are frequent
and may lead to runtime failures. We try to minimize the use of downcasting, which is supported by our
implementation language. For example, our code for scope checking does not use downcasting at all. In
other phases of our compiler where we are forced to use downcasting, we are able to ensure that such casts
never fail at runtime.

Semantic analysis entails traversing the syntax tree, that is, visiting the nodes of the tree in a suitable
order. Different analyses may well visit the nodes in different orders. This is, for example, the case for scope
checking and kinding (checking if type expressions are well-formed) of Pict programs. In Section 3, we present
different ways of implementing syntax tree traversals in Java. In particular, we consider implementing scope
checking of Pict using the visitor design pattern in Section 3.2, SableCC’s tree walker in Section 3.3, and
pure object oriented techniques in Section 3.4.

2 Constructing Syntax Trees

When developing a representation of syntax trees in Java we have to address the following two fundamental
questions. Should the nodes of the syntax tree be typed based on the semantic constructs they represent or
should we use one and the same type for all nodes? What kind of methods should the nodes of the syntax
tree provide?

2.1 Homogeneous versus Heterogeneous Trees

On the one hand, in a homogeneous syntax tree all the nodes are instance of one and the same class, say
Node. On the other hand, a heterogeneous syntax tree utilizes a different type for every kind of node that it
contains. This terminology is used in [Par]. Consider, for instance, the following fragment of the grammar
of Pict.

declaration → def definition-list

definition-list → identifier abstraction

identifier abstraction and definition-list

abstraction → identifier = process

The parse tree of the Pict program

def x a = () and y b = (),
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where a, b, x and y are identifiers and () is a process, would look like

declaration

definition-list

nnnnnn

SSSSSSS

identifier abstraction

nnnnnn
definition-list

RRRRRRR

identifier process identifier abstraction

lllllll

identifier process

On the one hand, if the above tree was represented by a homogeneous syntax tree, each node of the above
tree would be represented by an instance of the class Node. On the other hand, if the tree was represented by
a heterogeneous syntax tree, nodes of different kinds would be represented by instances of different classes.
For example, the identifier nodes are represented by instances of the class Id and abstraction nodes by
instances of the class Abs.

The main advantage of heterogeneous syntax trees over homogeneous syntax trees is the fact that the
former are more robust than the latter. First of all, the type system of the implementation language can be
exploited to constrain the shape of these syntax trees. For example, in the heterogeneous representation it is
impossible to have an abstraction node with three children, simply because the class Abs would be defined to
have only two instance variables, one of type Id and one of type Proc. Secondly, in the heterogeneous setting
it is impossible to create a syntax tree that does not correspond to a parse tree. This is clearly not the case
in the homogeneous setting. Thirdly, not every node implements the same interface. That is, different kinds
of nodes may allow different kinds of operations to be performed on them. For example, an input-channel

node can be checked to be well-kinded whereas an abstraction node cannot. Hence, the method kindCheck

should be applicable to an object representing an input-channel node but not to an object representing an
abstraction node. As we will see below, this can easily be accommodated in the heterogeneous approach.
Finally, when traversing a syntax tree different kinds of nodes may need to be treated differently. More
details about traversing heterogeneous syntax trees will be provided in Section 3.

In the heterogeneous setting we introduce a class for every kind of node. This large number of classes
which need to be introduced—in the homogeneous setting we only need to introduce the class Node—may, at
first, be viewed as a disadvantage of the heterogeneous approach. The syntax trees for our target language
Pict, which is a relatively small language, utilize in excess of 100 classes. A typical implementation for Java
would utilize over 500 such classes. However, as we will see in the next section, these classes can be generated
mechanically.

We believe that heterogeneous syntax trees provide a far superior alternative to the homogeneous variant.
SableCC [Gag98, GH98] and Zephyr ASDL [WAKS97] also use heterogeneous syntax trees. In JJTree, which
is part of JavaCC [MS], homogeneous trees are the norm. ANTLR [Mag] is quite flexible on the matter and
makes provisions for either kind of syntax tree.

2.2 Mechanically Generating Classes

The classes of heterogeneous syntax trees can be mechanically generated from the specification of its syntax.
Part of our specification of the syntax corresponding to the grammar presented in the previous section is
given below.

% Declaration %

Dec ::= % defList : list of definitions %

DefList

% List of definitions %

DefList ::= % List of one definition %
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ShortDefList

% id : name of abstraction,

abs : body of abstraction %

Id Abs

| % List of more than one definition %

LongDefList

% id : name of first abstraction,

abs : body of first abstraction,

tail : tail of the list %

Id Abs DefList

% Abstraction %

Abs ::= % id : name of parameter,

proc : process %

Id Proc

From the above specification the classes Dec, Abs, DefList, ShortDefList and LongDefList can be me-
chanically extracted. These classes are part of the following inheritance hierarchy.

Node

mmmmmmm

QQQQQQQ

Dec DefList

mmmmmmm

PPPPPP
Abs

ShortDefList LongDefList

The class Node is a superclass of all the generated classes. This class contains information general to all the
classes like the position within the original source file of the characters from which this Node of the syntax
tree is derived (see, for example, [App98, page 101]). Note that the classes Id and Proc have not been defined
in the above specification nor have they been included in the above inheritance diagram. A generated class
is abstract if and only if it is not a leaf in the inheritance diagram (see, for example, [WB99, Section 4.4.1]).
These classes correspond to the nonterminals in the grammar. By making these classes abstract—recall that
abstract classes cannot be instantiated—we disallow creation of syntax trees corresponding to incomplete
parse trees. The class DefList is abstract.

/**

List of definitions.

@see Node

*/

abstract class DefList extends Node {}

This abstract class has concrete subclasses ShortDefList and LongDefList.

/**

List of more than one definition

@see DefList

*/

class LongDefList extends DefList

{

private Id id;

private Abs abs;

private DefList tail;
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/**

List of more than one definition

@param pos position within the source file of the characters from which this node is derived

@param id name of first abstraction

@param abs body of first abstraction

@param tail tail of the list

*/

LongDefList(int pos, Id id, Abs abs, DefList tail)

{

super(pos);

this.id = id;

this.abs = abs;

this.tail = tail;

}

}

Given a fragment of the Pict grammar, we constructed a syntax specification from which we mechanically
extracted a hierarchy of Java classes. Not every grammar immediately gives rise to such an inheritance
hierarchy. However, as we will discuss next, each grammar can be transformed into a grammar which does.
A context-free grammar is in inheritance normal form if whenever there are multiple productions with the
same left-hand-side then the right-hand-sides of those productions consist of a single nonterminal or terminal.
Hence, given a nonterminal A of the grammar, we either have one production of the form A → α1 . . . αn or we
have one or more productions A → α1, . . . , A → αn, where αi is either a nonterminal or a terminal. In the
former case, the class corresponding to A has instance variables of types corresponding to α1, . . . , αn. The
latter case, the class corresponding to A has subclasses corresponding to α1, . . . , αn. Note that the grammar
presented in the previous section is not in this format. However, each grammar can be transformed into a
grammar in inheritance normal form. If we encounter multiple productions of the form A → α1 . . . αn with
the same left-hand-side, we introduce for each such production a fresh nonterminal, say A′, and we replace
the production A → α1 . . . αn with the productions A → A′ and A′

→ α1 . . . αn. When transforming the
grammar of the previous section we introduce the nonterminals short-definition-list and long-definition-list.
An important property of the transformation is that the derivation trees obtained from the grammar before
transformation are similar to those obtained after transformation. A collapse of the latter gives rise to the
former. For example, the derivation tree

declaration

definition-list

long-definition-list

lllllll

VVVVVVVVV

identifier abstraction

kkkkkkk
short-definition-list

identifier process definition-list

hhhhhhhhh

identifier abstraction

hhhhhhhhh

identifier process

can be collapsed to the one presented in Section 2.1.
It may be argued that the inheritance normal form is merely a special case of Chomsky normal form, and

hence our transformation is redundant. However, a transformation to Chomsky normal form could easily
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result in a grammar whose derivation trees bear no resemblance to those in the original grammar. The
notion of similar derivation trees is very important to us since a grammar is structured the way it is for a
purpose, and significantly altering its structure defeats that purpose.

Since Java does not support multiple inheritance, we may need to apply another transformation to the
grammar. A context-free grammar is in single inheritance normal form if no nonterminal appears all by itself
as the right-hand-side of more than one production. Each grammar can be transformed into a grammar in
single inheritance normal form. This transformation is similar to the one presented in the previous paragraph.
The details of both transformations can be found in the first author’s thesis [Ant].

Java does support interfaces, which can be used to roughly emulate multiple inheritance. It is therefore
possible to represent a grammar in inheritance normal form using interfaces. However, we chose not to use
interfaces, since they do not allow for as much code sharing as abstract superclasses do.

SableCC and Zephyr asdlGen also produce hierarchies of Java classes very similar to the ones we produce.
Our syntax specification is more verbose than the ones used by SableCC and Zephyr asdlGen. The addi-
tional nomenclature and annotations present in our specification allows us to generate code with meaningful
identifier names and JavaDoc comments. We agree with Wang et al. [WAKS97] that generated code should
not only be understood by other tools but also by programmers.

2.3 Methods of Nodes of Syntax Trees

Next we address the following question. What kind of methods should the nodes of the syntax tree provide?
There are two opposing views on this topic. The predominant view is that a syntax tree is simply a structural
representation of a program, and hence does not need to contain any methods that are unrelated to structural
information. Appel [App98, page 99] refers to this view as syntax separate from interpretation. Such syntax
trees are devoid of any operations that interpret the tree (for example, perform semantic analysis). Therefore,
a node in such a syntax tree may contain only methods such as getChild, but would not contain methods
such as scopeCheck.

Contrasting with the above view is a more object oriented view, in which a syntax tree is viewed as
an encapsulated and self contained entity. Its nodes therefore would be equipped with methods such as
scopeCheck, but not with methods such as getChild. The rational being that we wish to hide structural
details of the object and instead emphasize operations that manipulate it.

As we have seen, a syntax tree contains different kinds of nodes, such as identifier and abstraction.
Furthermore, for each node we have different kinds of interpretations such as scope checking and type
checking. On the one hand, the syntax separate from interpretation approach allows the different kinds of
interpretations to be handled in a modular way. If we were to add for example type checking, we would simply
add a class TypeChecker which handles type checking for all different kinds of nodes. In the object oriented
approach we would need to add a method typeCheck to each class. On the other hand, the object oriented
approach can handle the different kinds of nodes in a modular way. If we were to add for example input-

channel nodes, we would simply add a class InChan. In the syntax separate from interpretation approach we
would need to add code to handle this new node to all the interpretation classes. Note that the two different
directions of modularity are orthogonal (see also [App98, pages 99–101]).

ANTLR, JavaCC and SableCC adopt the syntax separate from interpretation view. Since these tools
are exclusively utilized during the syntactic phase of compilation, it would be infeasible for them to place
methods for semantic analysis in the code that they generate. These tools have no knowledge of which
interpretation methods to provide or how to code them. They could of course, in an attempt to be object
oriented, place abstract methods such as scopeCheck in the classes they create, but that would mean that
users of the syntax trees would have to override a vast number of such methods — possibly several thousand
in the case of a Java compiler. It is therefore reasonable for these tools to generate classes that violate object
oriented principles in the interest of usability.

We have chosen to remain true to the object oriented paradigm in our compiler. As we will see in the
next section, the main reason that we can afford to do so, is that the semantic analysis phase of our compiler
is defined in terms of a number of high-level specifications. These specifications are then subsequently
converted into low-level Java code. The specifications provide modularity with respect to different kinds of
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interpretations. Our framework supports both views: each specification file contains an interpretation for
each kind of node, and each generated Java class contains all interpretations for a given kind of node.

3 Traversing Syntax Trees

Syntax tree traversal seems to present a design dilemma. If encapsulation is to be preserved the syntax tree
must provide its own traversal method. However, this would of course mean that users of the syntax tree
are limited to only those traversal schemes made available by the implementation. On the other hand, if the
structure of the syntax tree is exposed, its users can perform any kind of traversal they desire. It may seem
that a trade off needs to be made between encapsulation and flexibility. Can these seemingly conflicting
alternatives be combined? We address this question in the context of scope checking of the fragment of Pict
we introduced above.

In our compiler, we have chosen to throw an exception if scope checking fails. In this way, we can exploit
the exception handling capabilities of Java to conveniently produce a witness to that failure. This design
decision is orthogonal to all that follows. To simplify the presentation, we will leave out all the exception
handling code from the examples below.

3.1 Scope Checking of Pict

We present part of the scope system of Pict. The complete system can be found in the Pict definition
[PT98a]. In the scoping rules presented below, we use Γ and ∆ to denote environments. Since we neither
consider type definitions nor type checking in this paper, we can simplify environments to just being lists of
identifiers. In the rules we encounter two types of scope resolution judgments. Γ ` con expresses that the
Pict construct con is well-scoped in environment Γ. We use Γ ` con . ∆ to denote that the Pict construct
con is well-scoped in environment Γ and introduces identifiers ∆.

(Dec)
Γ ` def-list . ∆

Γ ` defdef-list . ∆

(Def)
Γ, id1, . . . , idn ` abs i for each i

Γ ` id1 abs1 and · · · and idn absn . id 1, . . . , idn

(Abs)
Γ, id ` proc

Γ ` id = proc

The recursive definition def id 1 abs1 and · · · and idn absn introduces the identifiers id 1, . . . , idn. Each ab-
straction abs i is scoped in the environment Γ extended with the identifiers id 1, . . . , idn, thereby allowing
recursive references to id 1, . . . , idn. In an abstraction id = proc, the identifier id has scope proc.

To formalize the · · · in rule (Def), we replace this rule with the following two rules.

(Def1)
Γ, id ` abs

Γ ` id abs . id

(Def2)
Γ, id ` tail . ∆ Γ, id , ∆ ` abs

Γ ` id abs and tail . id , ∆

One can easily verify that the rule (Def) is equivalent to the rules (Def1) and (Def2). That is, anything
we can prove using the rule (Def) and the other rules of the scope system can also be proved using the rules
(Def1) and (Def2) and the other rules of the scope system, and vice versa.

3.2 The Visitor Design Pattern

The visitor design pattern is quite commonly utilized for the purpose of traversing syntax trees. Below we
present the use of this design pattern, as described by Watt and Brown in [WB99, Section 5.3], applied to
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scope checking of the fragment of Pict presented above. A similar use of the visitor design pattern can be
found, for example, in Barat [BS98] and classgen [Klea].

The idea behind the visitor design pattern is quite simple. For a comprehensive discussion we refer the
reader to Gamma et al. [GHJV94, pages 331–350]. The basic idea is that the traversal code needed to do
scope checking is not stored within the syntax tree itself, but rather is extracted and placed into a Visitor

object instead.
First, we introduce a visitor method for each concrete class. These methods are collected in an interface.

interface Visitor

{

Object visitDec(Dec dec, Object arg);

Object visitShortDefList(ShortDefList list, Object arg);

Object visitLongDefList(LongDefList list, Object arg);

Object visitAbs(Abs abs, Object arg);

}

Each of these visitor methods has an argument that is the root of the subtree to be traversed. It also has an
Object argument which allows us to pass additional information if needed. In the case of scope checking,
we pass an environment, that is, an instance of the class Env. Instances of this class can more or less be
viewed as lists of identifiers. The instantiation new Env(env, id) extends the environment env with the
identifier id, and the creation new Env(id) constructs an environment solely consisting of the identifier id.
Furthermore, each method has an Object result which allows us to return information if needed. In the case
of scope checking, we sometimes return an environment. Note that this interface is very general. It cannot
only be used for scope checking but also for type checking or any other traversal of syntax trees.

Next, we implement this interface to do scope checking.

class ScopeChecker implements Visitor

{

Object visitDec(Dec dec, Object arg);

{

DefList defList = dec.getDefList();

return defList.visit(this, arg);

}

Object visitShortDefList(ShortDefList list, Object arg)

{

Env env = (Env) arg;

Id id = list.getId();

visitAbs(list.getAbs(), new Env(env, id));

return new Env(id);

}

...

}

Note that we need to add accessor methods, like getDefList, to the classes representing the syntax tree.
As a consequence, the visitor design pattern exposes the internal data of the syntax tree. Hence, data
encapsulation is violated. Also notice that the method visitShortDefList uses downcasting, and hence
has the risk of runtime failure.

Finally, we add visit methods to the classes representing the syntax tree. To the class Node we add the
abstract method

abstract Object visit(Visitor vis, Object arg);
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For each concrete class we implement the visit method by simply calling the appropriate visitor method.
For example, for the concrete class Dec this amounts to

Object visit(Visitor vis, Object arg)

{

return vis.visitDec(this, arg);

}

To do type checking, we only have to write a class TypeChecker which implements the interface Visitor.
This interface and the classes representing the syntax tree stay the same.

Essentially the visitor design pattern exposes internal data of syntax trees and increases the risks of
runtime failures in order to be able to provide a very general and flexible means for traversing it. This
approach complements quite well with the syntax separate from interpretation approach, where too the
structure of the syntax tree is exposed.

3.3 SableCC’s Tree Walker

One of the main features of SableCC is the separation of the code which specifies how to traverse the syntax
tree from the code which defines what to do in each node of the tree. This is achieved through the use
of a tree walker. Conceptually a tree walker is rather similar to a visitor, but with two major differences.
First of all, the tree walker code is mechanically generated by SableCC. Secondly, the tree walker object
contains only traversal code. Instead of the code to be executed at the nodes it contains methods with an
empty body which the user needs to override. SableCC takes as input a syntax specification similar to the
one we presented in Section 2.2 (without the comments). For our scope checking example the mechanically
generated code by SableCC would roughly looks as follows.

class DepthFirstAdapter extends AnalysisAdapter

{

void visitDec(Dec node)

{

inDec(node);

node.getDefList().visit(this);

outDec(node);

}

void inDec(Dec node) {}

void outDec(Dec node) {}

void visitShortDefList(ShortDefList node)

{

inShortDefList(node);

node.getId().visit(this);

node.getAbs().visit(this);

outShortDefList(node);

}

void inShortDefList(ShortDefList node) {}

void outShortDefList(ShortDefList node) {}

...

}

Note that we still need accessor methods. DepthFirstAdapter provides a very general traversal scheme
which cannot only be used for scope checking, but also for type checking, code generation, etc. Next, we
add the user specified code by extending the class DepthFirstAdapter and overriding the methods with an
empty body such as inDec.
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class ScopeChecker extends DepthFirstAdapter

{

void inDec(Dec node)

{

setIn(node.getDefList(), getIn(node));

}

void outDec(Dec node)

{

setOut(node, getOut(node.getDefList()));

}

void inShortDefList(ShortDefList node)

{

setIn(node.getAbs(), new Env((Env) getIn(node), node.getId()));

}

void outShortDefList(ShortDefList node)

{

setOut(node, new Env(node.getId());

}

...

}

The class ScopeChecker inherits the methods setIn, setOut, getIn and getOut. The methods setIn and
setOut are used to store information in the global hash tables in and out. To retrieve information from
those hash tables the methods getIn and getOut are used. The use of these methods that manipulate
the global instance variables in and out violates the object oriented encapsulation law. Furthermore, the
specified user code is error prone. For example, if we accidently write node instead of node.getDefList() in
outDec, it still gives rise to code that compiles successfully. Since the hash tables in and out store Objects,
downcasting is needed in the user specified code, and hence the risk of runtime failure exists.

The kind of traversals that can be performed is limited to the kind of tree walkers available. Currently,
only preorder and postorder traversals are supported. There are however situations where the syntax tree
needs to be traversed in an idiosyncratic manner. For instance, consider the scope checking rule (Def2)
which corresponds to the class LongDefList. This class has the instance variables id, abs and tail. The
class DepthFirstAdapter, which implements a preorder traversal, would first visit id, then abs and finally
tail. The postorder traversal is implemented by the class ReversedDepthFirstAdapter first visits tail,
then abs and finally id. However, according to the scoping rule, we should first visit id, then tail and finally
abs. Since the subtree related to id only consists of a single node, this case can still be handled by the class
ReversedDepthFirstAdapter. However, in Pict one is also allowed to use patterns in place of identifiers
in recursive definitions. Because the subtree related to a pattern may consist of multiple nodes, this case
can neither be handled by the class ReversedDepthFirstAdapter nor by the class DepthFirstAdapter.
Idiosyncratic walking may also give rise to a more efficient traversal. Typically when checking for Pict’s
kinding rules, we only need to examine subtrees that are related to typing information. For instance, nodes
corresponding to the fragment of Pict studied in this paper can be safely ignored. However, SableCC’s
predefined tree walkers visit every node of the tree.

Both the limitations described in the previous paragraph can be dealt with by overriding some of the
generated traversal code like the method visitLongDefList. In scope checking of Pict approximately
15% of the methods would need to be overridden. However, overriding these methods reduces the benefits
of mechanically generating the traversal code and also introduces the disadvantages of the visitor design
pattern discussed in the previous section.
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In essence, SableCC’s tree walker provides an elegant way of separating mechanically generated traversal
code from the rest of the code. The SableCC framework provides generality at the cost of exposing the
internal data of the syntax tree and the risk of runtime failures.

3.4 Our Approach

In our compiler, we mechanically generate all the code for scope checking from a high-level specification.
Our decision to do so was based primarily on the following facts. First of all, the number of scoping
rules is considerable. Coding all these rules by hand is a tedious and error prone task. Secondly, there
is no assurance (other than rigorous testing) to ensure that scope checking has been implemented in a
manner consistent with the scope system. Thirdly, the Pict definition [PT98a] presents the scoping rules
in a cogent and programmable manner (see also Section 3.1). The same also applies to the kinding and
typing rules. Mechanically generating code for these rules is merely a matter of translating a high-level
specification language to the implementation language Java. Finally, one of our primary goals was to develop
a maintainable compiler. Thus generating scope checking code from a high-level specification language is a
positive step in that direction.

A high-level specification is usually easier and faster to write than Java code. Furthermore, such a
specification is often smaller. Also, the specification is usually easier to read and easier to maintain than
Java code. In the design of our specification language we have made a trade off. On the one hand, we want to
stay close to the original scoping rules. On the other hand, the specification should be easily translatable into
Java code and should not contain redundant information. Below we present the specification corresponding
to the scoping rules given in Section 3.1.

A declaration is well scoped if its constituent list of definitions is well scoped.

G |- defList > D

----------------

G |- Dec > D

A recursive definition such as def id abs introduces the binding id. The abstraction abs

is scoped in the context G extended with the binding id.

G, id |- abs

----------------------

G |- ShortDefList > id

A recursive definition such as def id abs tail introduces the bindings id plus the bindings

introduced by tail. The abstraction abs is scoped in the context G extended with id as

well as the bindings introduced by tail.

G, id |- tail > D G, id, D |- abs

------------------------------------

G |- LongDefList > id, D

In an abstraction such as id = proc, the process proc is scoped in the context G extended

with the binding id. An abstraction itself does not yield any bindings.

G, id |- proc

-------------

G |- Abs

Each rule is preceded by a comment. This comment will be included in the generated Java code. Clearly, the
rules are very similar to the rules presented in Section 3.1. However, there are also a few differences. First
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of all, the conclusion of a rule merely contains the name of the class of a syntax tree node corresponding to
the Pict construct in the original rule. For example, instead of def def-list we use Dec in the specification.
Secondly, in the premises of a rule we use the instance variables of the class used in the conclusion of that
rule. For example, the class Dec only has the instance variable defList which is used in the premise of the
rule.

We use JFlex [Kleb] to lexically analyze the above specification. For example, the JFlex snippet

^[ \t]*---+[ \t]*$ { return new Token(IMPLIES); }

\|\- { return new Token(ENTAILS); }

recognizes ----- and |- and returns the tokens IMPLIES and ENTAILS, respectively. The scoping rules of
the above specification can be generated by the following grammar.

rule → premises IMPLIES conclusion

premises → premise

→ premise premises

premise → environment ENTAILS construct

All of the productions for conclusion, environment and construct and some of the productions for premise

have been left out. We use CUP [Hud] to parse a sequence of tokens produced by JFlex and to generate the
corresponding Java code. The above productions translate into the following CUP snippet.

Rule ::= Premises IMPLIES Conclusion

Premises ::= Premise

| Premise Premises

Premise ::= Environment:env ENTAILS Construct:con

In the above snippet, the action code has been left out. The action code for the last production amounts to
something like

{: RESULT = formatPremise(env, con); :}

where the method formatPremise is defined as

String formatPremise(String env, String con)

{

return con + ".scopeCheck(" + env + ");"

}

The lexer and parser, generated from the above described JFlex and CUP specification, translate each
scoping rule into a scopeCheck method. This generated method is preceded by documentation, which is
extracted from the specification, augmented with @param and @return tags if applicable. The documented
method is subsequently mechanically inserted into the corresponding class of the syntax tree node. To the
class Dec the following documented method is added.

/**

A declaration is well scoped if its constituent list of definitions is well scoped.

@param env context in which to scope check.

@return newly introduced bindings.

*/

Env scopeCheck(Env env)

{

return defList.scopeCheck(env);

}
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Next, we present the generated scopeCheck method of the class ShortDefList.

/**

A recursive definition such as def id abs introduces the binding id. The abstraction abs

is scoped in the context env extended with the binding id.

@param env context in which to scope check.

@return newly introduced bindings.

*/

Env scopeCheck(Env env)

{

abs.scopeCheck(new Env(env, id));

return new Env(id);

}

Our code is object oriented and does not violate the encapsulation law. Furthermore, there is no need for
downcasting in our approach. We believe that our code is more readable than the code presented in the
previous sections and it is also well documented. However, these advantages come at the cost of writing
specification files for JFlex and CUP for each phase of the semantic analysis. For example, to do type
checking we have to specify the typing rules. Furthermore, we have to write JFlex and CUP specifications.
From these specifications we can mechanically extract a Java program that translates typing rules into
typeCheck methods.

Reusing the specification and the JFlex and CUP code, we also mechanically extract a LATEX represen-
tation of the scoping rules. We only need to provide different implementations of methods like

String formatPremise(String env, String con)

{

return env + " \\vdash " + con;

}

In this way, we can easily keep our scope system and our scope checking code synchronized. Palsberg [Pal92]
uses LATEX in a similar way in his Cantor system.

To generate all scope checking code for Pict, we wrote 1748 bytes of specification, 971 bytes of JFlex
code, 2340 bytes of CUP code and 1858 bytes of Java code (methods like formatPremise). From this
data we mechanically generated 12931 bytes of scope checking code. To generate 8096 bytes of LATEX code
(approximately 3 pages of formatted scoping rules) we only need 1524 bytes of Java code (the specification
and the JFlex and CUP code can be reused).

Although scope checking only takes a small fraction of the time needed to compile a program, we compared
the running times of scope checking implemented by means of the visitor design pattern to running times
of our implementation. Both gave rise to very similar running times. In fact our implementation is slightly
faster. We did not have a look at the running times of the implementation of scope checking using the
SableCC tree walker, but we expect them to be very similar to ours as well. The number of lines of Java
code needed to implement the syntax tree traversal for scope checking in the visitor design pattern approach
and in the SableCC tree walker approach is more than twice the number of lines of Java code needed in our
approach.

It may be argued that the additional layer of JFlex and CUP code may lead to a loss of robustness.
However, we have not found this to be the case. Firstly, as we have seen above, this additional layer of code
is small in size and relatively simple. It is therefore not likely to be a source of subtle errors. Secondly, the
code that we generate is highly object oriented and lacks downcasting. In our experience, most errors in
the generation process manifest themselves as compile time type errors or encapsulation violations in the
generated code. Lastly, the extra layer of code can prove advantageous when it comes time to formally verify
the correctness of our compiler. In this scenario, it would suffice to only verify the correctness of our code
generation program, rather than the correctness of an entire phase of compilation.
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There is a similarity between our approach and the approach of using attribute grammars (see, for
example, [Paa95]). In both approaches one creates an association between a grammar’s productions and
the semantic actions that apply to them. However, when using attribute grammars this association is
traditionally achieved by embedding implementation level code into a high level syntax specification (see, for
example [Paa95, page 206]). In our approach, high level semantic rules are specified separate from the syntax
description. By virtue of this difference, attribute grammars are certainly a more general way in which to
specify semantic rules. However, in general attribute grammars tend to be less high level, and consequently
less readable and possibly less maintainable. For an example of the use of attribute grammars, we refer the
reader to [ESL89].

4 Conclusion

Appel [App98], Gagnon [Gag98, GH98], Watt and Brown [WB99] and others have presented representations
of syntax trees in Java which are very similar to the one we present in Section 2. Although it may well
already have been known that every context-free grammar can be represented in such a way in Java, we have
not found this fact in the literature. In Section 2.2 we formalized that this approach to representing syntax
trees is generally applicable.

As we have seen in Section 3, there are several different ways to implement syntax tree traversals in Java.
We considered two different approaches from the literature, one using the visitor design pattern [WB99] and
another based on SableCC’s tree walker [Gag98, GH98]. We also proposed our own way of implementing
traversals of syntax trees in Java. We made a detailed comparison of the different approaches pointing out
their strengths and weaknesses. We believe that our proposal is best suited for the development of our Pict
compiler. However, we do not claim that our approach is always superior. One of the other approaches
may well be better when applied in a different setting. We hope that our detailed comparison of the three
approaches will help implementors pick the one which suits their needs best.

Although we focused on the implementation of syntax trees and syntax tree traversals in Java for the
semantic analysis of Pict, many of the ideas presented in this paper are also applicable to the implementation
of languages different from Pict in an object oriented implementation language different from Java.

Besides scope checking, we have implemented a transformation from concrete to abstract syntax trees
as well as kinding, using the approach described in this paper. For more details, we refer the reader to the
first author’s thesis [Ant]. In the future, we intend to see if our approach can also be applied to the type
checking, the type inference and possibly even the code generation phase of our Pict compiler.

We are also interested to see if we can come up with a more general specification language (and a
corresponding tool) in which we can express scope checking, kinding, type checking and type inference.
Ideally, this generic specification language would not only be applicable to the semantic analysis of Pict but
to that of other languages as well.
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