

Tracking Based Motion Segmentation under Relaxed Statistical

Assumptions

King Yuen Wong

Minas E. Spetsakis

Technical Report CS-2003-09

Oct. 14 2003

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada

Tracking Based Motion Segmentation under
Relaxed Statistical Assumptions

King Yuen Wong, Minas E. Spetsakis

Department of Computer Science, Centre of Vision Research, York University,
4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada

Abstract
Many Computer Vision algorithms employ the sum of pixel-wise squared differences between two patches as

a statistical measure of similarity. This silently assumes that the noise in every pixel is independent. We present a
method that involves a much more general noise model with relaxed independence assumptions but without sig-
nificant increase in the computational requirements. We apply this technique to the problem of motion segmenta-
tion that uses tracking to estimate the motion of each region and then we employ our statistic to classify every
pixel as part of a segment or the background. We tested several versions of the algorithm on a variety of image
sequences (indoor and outdoor, real and synthetic, constant and varying lighting, stationary and moving camera,
one of them with known ground truth) with very good results.

Ke ywords: Motion Segmentation, Tracking, Varying Light, Optical Flow, Hypothesis Testing, Mahalanobis.

1. Introduction
Motion segmentation refers to the partition of pixels having similar optical flow into groups such that each

group corresponds to the motion of the projection of an independently moving object. Motion segmentation
could be done solely using optical flow but this is a chicken and egg problem. Accurate optical flow computation
requires precise knowledge of the motion boundaries and motion boundaries require segmentation.

Previous motion segmentation techniques [30, 7, 33] assume either that the flow is precomputed usually by
dividing the image into regions, computing flow in each region and then merging the regions with similar flow.
The goodness of the segments produced is limited by the accuracy of the initial optical flow computation step.
An extension to these methods is to use Expectation Maximization (EM) for merging optical flow into regions
[5, 32, 14] but the number of segments which is required as input to the EM algorithm cannot be obtained easily.
Another category of motion segmentation techniques [8, 17, 20] perform motion segmentation by iteratively esti-
mating optical flow, warping the images according to flow and building up a model of the moving object.

A tracking algorithm measures and predicts the motion of a moving object over time. Contours [18, 28] corre-
sponding to the silhouette of moving objects are commonly used feature for tracking. The coherence of a moving
region [12, 6] corresponding to the projection of a surface of the moving object is another good basis for track-
ing. Color [9, 19] of a moving object is also frequently used in tracking. Instead of tracking attributes belonging

Fax: (416) 736-5872.

E-mail addresses: kywong@cs.yorku.ca (K. Y. Wong), minas@cs.yorku.ca (M. E. Spetsakis).

The support of NSERC (App. No. OGP0046645) and CITO is gratefully acknowledged.

2

to the moving object, an orthogonal tracking approach is to find the moving objects in a dynamic scene by per-
forming image difference on the image frames with known background [35]. In all of the above approaches, an
initial representation of the to-be-tracked object or its background is given to the tracker as input and the role of
the tracker is to measure and predict the motion of the moving object representation over time.

Meyer and Bouthemy [24] tracked the motion of regions computed by a motion segmentation algorithm over
time assuming a model for the motion and change of shape of the regions. They used Kalman filtering to merge
the prediction of the model with the actual measurements from the motion segmentation algorithm. This model
can be best described as tracking based on motion segmentation whereas ours is best described as motion seg-
mentation based on tracking.

In this paper, we present a novel and efficient motion segmentation and tracking algorithm that segments an
image sequence into regions corresponding to the motion of projection of independent moving objects. The algo-
rithm can work with manually or automatically selected features for tracking and warps one image frame
towards the next using the computed optical flow on the features. Pixels moving consistently with the features
have small difference between the two frames and vice versa. The major contribution of the paper is that we
come up with fairly accurate and efficient statistics (pixel-wise and patch-wise) that model the noise between the
aligned frames. A pixel-wise statistic assumes the independence of noise between the neighboring pixels and is
an appropriate model under many circumstances. But in reality, the noise in neighboring pixels is correlated.
This effect is prominent when an image sequence is taken under varying lighting conditions. We dev elop a patch-
wise statistic to model such dependence. We are able to compute the patch-wise statistic efficiently by introduc-
ing to Computer Vision the Sherman-Morrison-Woodbury identity which is a little used numerical analysis tech-
nique for inversion of the covariance matrix involved in the patch-wise statistic. By applying the identity, we are
able to reduce the cost of computation fromO(k6) to constant time where the size of the patch isk × k. As an
added advantage, the Sherman-Morrison-Woodbury identity could have applications to other Computer Vision
problems. We present the results of running our algorithm using a variety of image sequences (indoor and out-
door, real and synthetic, constant and varying lighting, stationary and moving background).

2. Overview of the Approach
The basic idea for tracking based segmentation is to select a feature point (we do it both manually and auto-

matically) that belongs to a particular object and track a small seed region around it. The tracking will give us the
affine flow ua between imagesI N and I N−1. If we warp I N−1 by ua we obtain imageua I N−1. The segmentation is
now seemingly easy. We take the difference betweenI N andua I N−1 and pixels whose difference is small should
belong to the object and the rest should not. Unfortunately this kind of classifier cannot be as simple as this for
many reasons:

• There are several kinds of random noise that corrupt the images.

• While many kinds of motion seem to be affine, in practice they are only approximately affine.

• Two different parts of the image might have identical color or texture and be aligned accidentally.

• Effects like lack of texture or change in illumination.

The problem with all the above isthat they lead to a complex and expensive noise model. The most important
contribution of this paper is that we explicitly model most of these forms of noise and propose a statistic for this
model that is computationally efficient. We also developed a Maximum Likelihood Estimator (MLE) that fits the
model parameters and tested our algorithm using both the MLE fitted parameters and a set of empirical parame-
ters that were common to all sequences.

The experiments were done on a wide variety of sequences that included real and synthetic sequences, indoor
and outdoor, with and without change in illumination, with stationary and hand-held cameras, short and long
sequences, etc. We went as far as using our algorithm to facilitate the solution of the optical flow problem (by
detecting the motion boundaries and incorporating the tracking information to reduce inter-frame motion) to
compare our results with the ground truth of a standard sequence (Yosemite sequence).

In the rest of this section, we describe the major components of the algorithm:

3

(1) Feature (seed region) selection.

(2) Tracking by fitting of successively more refined flow models to the seed region.

(3) Elaborate but eff icient noise model for motion segmentation. We provide both a pixel-wise model and a
patch-wise model.

(4) Application of the algorithm to the computation of optical flow.

2.1. Feature Selection
In most cases, the initial tracking region, which we call seed region in this paper, is provided to the tracking

module by the user or by another module. Since we might be interested in complete segmentation, we need to be
able to identify enough seed regions to segment most of the image.

In the feature selection step, if we are doing it automatically, we extract potential features for tracking by
identifying “corners” in an image frame. In most literature, the term “corner” means features that can be tracked
reliably from frame to frame and not only points of maximal curvature. Unfortunately many points that have
rich enough texture to be corners are not suitable because they straddle a motion boundary.

We detect corners in an image frame by the corner detection algorithm proposed by Tomasi and Kanade [31]
with some speed-up modifications made by Benedetti and Perona [3]. The corner detection algorithm finds fea-
ture points that have good localization in all directions. Tomasi and Kanade argue that these are pixels whose
smallest eigenvalue of the matrixM [22] is bigger than a thresholdλ t where

M =




Exx

Exy

Exy

Eyy





,

Exx = ∫ I 2
x, Exy = ∫ I x I y, Eyy = ∫ I 2

y over a small region andI x, I y are the spatial derivatives of the image.

Benedetti and Perona speed up the method by evaluating the characteristic polynomialP(λ t) of the above matrix
M .

P(λ t) = (Exx − λ t)(Eyy − λ t) − E2
xy

whereλ t is a parameter specifying the corner strength. All points whoseExx − λ t , Eyy − λ t and P(λ t) positive
are classified as corners, Among the identified corners, we select the theN strongest corners whoseP(λ t) are the
N biggest and randomly pick one of them. This will be the center of the small seed region (10× 10 pixels in our
experiments) used for tracking.

Once a seed region is instantiated from a randomly selected corner feature, we run our tracking and segmenta-
tion algorithm to segment out a region whose pixels move in a way consistent with the seed region. We classify
a corner as good feature for tracking in subsequent frames if

(1) The segment output from motion segmentation/tracking step around the seed region overlaps signifi-
cantly with the seed region itself. In our experiments, we set the overlap threshold to be 75%.

(2) The segment is not very small. We discard segments that are less than 1% of the area of the image.

(3) The segment does not overlap significantly with segments found so far. We discard segments that overlap
more than 90% with the existing segments.

When a good feature and its associated segment is found, we keep track of all the corner features that are within
the segment. For subsequent frames, if the tracked feature generates a segment that does not satisfy all of the
above criteria as a good feature for tracking, we generate seed regions around other corner features inside the
segment in an attempt to continue the tracking/segmentation of the region. In this way, we can still track the
motion of a segment if some of its corner features become occluded during its motion trajectory.

If the seed region was selected manually, we keep track of it without replacing it with any other seed region.

4

2.2. Seed Region Tracking
We track the motion of the seed region by fitting successively a uniform integer flow model, a uniform sub-

pixel flow model and an affine flow model to the tracked region. We compute the integer flow of the seed region
R by minimizing its Sum of Squared Difference (SSD) between theN − 1th, Nth image framesI N−1, I N :

(2.1)SSD(→u,α) =
→x in R
Σ (I N−1[→x] − α I N [→x + →u])2

The role of parameterα is to compensate for the light changes. We minimizeSSD(→u,α) with respect toα ana-
lytically.

∂SSD(→u,α)

∂α
= 0

which leads to

α =
→x in R
Σ I N−1[→x] I N [→x + →u]

→x in R
Σ I N [→x + →u] I N [→x + →u]

.

The integer optical flow of the region→uInt is taken to be the→u that gives the minimum SSD givenα in Eq. (2.1).
→uInt =

→u in →umax

min SSD(→u)

where→umax is the maximal inter-frame motion in pixel, and we do this using search.

We compute subpixel flow of the region by first shiftingI N−1 with the integer flow→uInt and then finding the
subpixel displacement→us that yields the minimum Sum of Squared Difference.

SSD(→us | →uInt) =
→us in W
min (

→x in R
Σ (I N−1[→x] − α I N [→x + →uInt + →us]))

2

We apply subpixel shifts→us = (us,x, us,y) in 9 directions, namely NW, N, NE, W, E, SW, S, SE, (0,0) and compute
their SSDs. For example, in the NW direction,us,x = − subpixel, us,y = − subpixel. After that, we shiftI N−1 by
the subpixel flow that yields the minimal SSD using cubic interpolation. The above procedure is repeated for
successively smaller amount of subpixel shifts. We found empirically the best sequence of values forsubpixelis
0. 75, 0. 752, 0. 753 Many other algorithms like variants of the gradient method, can do at least as good a job
but this one gives us a bound on subpixel accuracy.

If the region for computing affine flow is too small, small linear deformation such as shrinkage or rotation
would be indiscernible. Conversely, if the region for computing affine flow is too big, we have a higher possibil-
ity of inclusion of a motion boundary. Therefore, we compute affine flow in a regionRa that is larger than the
initial seed regionR and it is equal to the seed regionR expanded several times (4 in our experiments) but
excluding pixels that were not part of the same segment in previous frames to avoid inclusion of discontinuities.
The affine flow→ua for a regionRa is defined by six parametersux, uy, vx, vy, u0, v0

(2.2)→ua =




ux

vx

uy

vy





→x +




u0

v0




.

Plugging Eq. (2.2) into the optical flow equation and forming the SSD we get

(2.3)
all →x inRa

Σ 

∆

→
I [→x] + ∇I [→x] ⋅ →ua




2

where

∆
→
I [→x] = I N−1[→x] − α I N [→x + →uInt + →us]

5

and∇I [→x] is the gradient of the average ofI N and I N−1 [16]. We apply standard least squares to compute the six
affine parameters by solving the normal equation from Eq. (2.3). We do least squares on theRa instead of the
seed regionR alone becauseRa encodes information from motion history of the tracked object. This way we can
have a larger amount of data on which to do least squares without including pixels that are unlikely to belong to
the object.

One of the hardest problems related to the differential technique is taking spatial and temporal derivatives. We
did not have many difficulties in this case because we have already shifted the images so the residual flow is
small. Then we apply the method to the segmented area of the image which is consistent with small flow and do
least squares on a rather large area. The process can be repeated to increase the accuracy. In our experiments we
repeated it twice.

2.3. Motion Segmentation
After obtaining the affine motion between the last two frames we can warpI N−1 towardsI N and then subtract

them and square the difference. It can be seen that the parts of the image (presumably the tracked object) that
move in a way consistent with the computed affine motion will have small squared difference and the rest of the
image will have mostly large squared difference so a simple thresholding should be sufficient. Unfortunately,
there are many reasons that this is not always true:

(1) There is a certain amount of noise in any image like digitization noise, random white noise, noise due to
resampling or down-sampling (aliasing) etc. In our experiments these forms of noise had a combined
standard deviation as high as 4.5, which is substantial.

(2) We approximate a rather complex optical flow with affine flow. While the approximation is quite good,
the standard deviation of the error in flow is around 0.2 pixels, this can induce substantial error in the
sum of squared difference and give rise to false negatives.

(3) When we warp imageI N−1 using the affine flow we might align two totally different regions that happen
to have identical texture or color. This can give rise to a large number of false positives.

(4) While we compensate for the change of illumination in the tracking and correct it, this change of illumi-
nation we compute is the “average” over the seed region and might not be appropriate for pixels outside
the seed region. The situation is even worse when the change of illumination is not uniform (as when the
object goes behind a shadow).

We dev elop two different statistics for the image model. A pixel statistic that measures how well each pixel in
the image model̂I N predicts the motion of the tracked object in theNth frame. A patch statistic that measures
how well a small image patch centered at each pixel predicts the motion of the tracked object in theNth frame.
The pixel statistic is simple and hence fast. The patch statistic is slower than the pixel statistic but can account
for light illumination change across successive frames.

2.3.1. Pixel statistic
We compute the squared difference between pixels in the image model and an image frame aligned by the

computed optical flow. Pixels following the motion of the tracked image model have small squared difference
and hence can be identified by simple thresholding. However, the image model obtained from a pair of frame is
not very reliable due to noise. We improve the accuracy of the image model by considering the trajectory of the
tracked object over time. Consider the following summation,

(2.4)
N−1

i=1
Σ (N I i − I N)2

whereN I i is thei th image frame aligned with theNth frame using the optical flow derived during tracking. The
summation in Eq. (2.4) is the pixel-wise SSD between the last imageI N and the previous imagesN I i properly
aligned with the last image. All the pixels that are tracked correctly (under reasonable assumptions) should have
the same intensity as in the last image so all their SSDs should be small. The pixels in areas that are not tracked
correctly should have significantly higher SSD. Computing Eq. (2.4) directly is a time consuming task because
we have to keep all the image frames and align all of them using the computed optical flows. Therefore, we need

6

a more efficient way of computing Eq. (2.4). Expanding it we notice,

N−1

i=1
Σ (N I i − I N)2 =

(2.5)
N−1

i=1
Σ N I i

2 − 2(
N−1

i=1
Σ N I i)I N + I 2

N(N − 1)

Dividing equation (2.5) byN − 1 giv es:

(2.6)

N−1

i=1
Σ (N I i − I N)2

N − 1
=

ˆI 2
N − 2 Î N I N + I 2

N = tstat

where Î N =
N−1

i=1
Σ N I i / (N − 1), ˆI 2

N =
N−1

i=1
Σ N I i

2 / (N − 1) are first and second moments of the images aligned with

the Nth image frame. In order to avoid any error in the optical flow computation haunting us forever, we let the
influence of the past images decay exponentially in the computation of the moments. So

(2.7)Î N = h uvÎ N−1 + (1 − h) I N

ˆI 2
N = h uv ˆI 2

N−1 + (1 − h) I 2
N

whereh is the history coefficient, a decimal number between 0. 0 and 1. 0 arbitrating the relative weight between

information from the previous model and theNth frame, Î N−1, uv ˆI 2
N−1 are the first and second moments of the

previous image model aligned to theNth frame.

We use pixel-wise thresholding to identify pixels belonging to the tracked object. The pixels whose tracking
statistics in Eq. (2.6) are less than their threshold values, are classified as belonging to the tracked object. Due to
noise, even pixels that belong to the tracked object, might have the statistic given by Eq. (2.6) significantly differ-
ent from zero. The noise can be attributed to two sources: Noise due to incorrect tracking which we call motion
noise and noise due to the camera that we call camera noise. If the tracking statistic for a pixel is significantly
higher than the noise then this pixel does not belong to the tracked object. We compute the value of the thresh-
old (tvalue) for the track statistics in Eq. (2.6) as follows:

(2.8)tvalue = (σ 2
c + σ 2

f) ⋅ z

whereσ 2
c denotes the variance of the camera noise,σ 2

f gives the variance of the motion noise andz is a constant
parameter that models the “significantly higher”. In all our experiments, we setz = 3. 0. In simple terms, the
quantity tvalue gives us an idea of the variance of the intensity of the aligned images. If the quantity from Eq.
(2.6) is smaller than its threshold value from Eq. (2.8) then we have good reason to believe that the correspond-
ing pixel belongs to the tracked object. If it is higher then most likely does not.

Motion noise models the noise resulting from incorrect computation of optical flow (u andv). The error can
be due to insufficient search (for example, we searched up to 0. 752 pixels only) or due to insufficient modeling
(for example, underlying model is more complex than affine). According to the optical flow equation:

I N−1, x ⋅ ∆u + I N−1, y ⋅ ∆v + I N−1, t = 0

where I N−1, x and I N−1, y are thex and y derivatives ofI N−1 and I N−1, t = I N−1 − I N . Hence, the variance of the
intensity difference becomes:

(2.9)
Var(I N−1, t) = Var(I N−1, x ⋅ ∆u + I N−1, y ⋅ ∆v)

= (I 2
N−1, x + I 2

N−1, y) ⋅ σ 2
uv

7

whereσ 2
uv is the variance of∆u and∆v. We assume that the errors∆u and∆v are independent, which is quite rea-

sonable because this is the error in the model and not the uncertainty in the optical flow that is usually very
unisotropic due to the aperture problem. Therefore,

σ 2
f = (I 2

N−1, x + I 2
N−1, y) ⋅ σ 2

uv

The camera noise models the white Gaussian noise generated by electronic circuit of a camera or by other
means not directly related to motion. We assumed random noise only, which we calculated empirically to be of
zero mean and of varianceσ 2

c equal to 1 for our 8 bit webcam quality camera.

Intuitively, as the tracking algorithm runs for more frames, the moving object being tracked should be kept
aligned by the optical flow computed in each successive pair of frames. So, we classify those pixels whose track-
ing statisticststat (from Eq. (2.6)) are less than their corresponding threshold valuestvalue (from Eq. (2.8)) as
belonging to the tracked object and vice versa.

(2.10)(N) I track =




1 if tstat ≤ tvalue

0 otherwise

2.3.2. Patch statistic
The drawback of the pixel-wise squared difference is that it implicitly assumes noise in neighboring pixels is

independent which is often not true. However, the pixel-wise statistic is sufficient in many situation where the
correlation between neighboring pixels is small and hence the noise can be considered safely as independent.
One situation where the independence assumption is inadequate is when the lighting conditions change from
frame to frame. Then the noise in neighboring pixels becomes correlated assuming the pixels within a patch are
under the same lighting conditions. Another situation where noise is correlated is when the tracking is uniformly
inaccurate such that pixels within the same patch drift by the same amount. In what follows, we describe a model
that addresses both situations.

So we identify pixels that follow the same motion model as the seed region by evaluating a statistic on∆I the
image difference between theNth image frame and an image model of the tracked regionÎ aligned by the optical
flow by examining smallk × k image patches. The image model is the same as in Eq. (2.7). We rearrange the
pixels of each image patch into a vector and we take the difference between corresponding vector patches in the
image model and the current image

(2.11)∆I = uv
→

Î N−1 −
→
I N

where the left superscriptuv denotes warping byuv, uv
→

Î N−1 is a vector formed from a patch of the aligned image
model Î N−1 and

→
I N is a vector from a patch extracted from image frameI N . If the tracking was perfect, the noise

was absent and the illumination did not change,∆I would be zero. But instead it is

(2.12)
∆I = ∆→n + Diag(uvÎ N−1, x) ∆→uα + Diag(uvÎ N−1, y) ∆→vα + uvÎ N−1, x ∆u +

uvÎ N−1, y ∆v + uv
→

Î N−1 ∆l + ∆ f

where∆→n is the pixel-wise noise, ak2 vector of random independent variables,Diag(uvÎ N−1, x), Diag(uvÎ N−1, y)
are diagonal matrices whose diagonals contain the elements of the vectoruvÎ N−1, x, uvÎ N−1, y respectively.
uvÎ N−1, x anduvÎ N−1, y are vectors from a patch of thex andy derivatives ofuv

→

Î N−1 and∆→uα , ∆→vα are the random
vectors denoting the pixel-wise error in flow in the image frames. Up till now, the random vectors are pixel-wise
measures and are of nature similar to the camera and motion noise in the pixel statistic. Next, we are going to
describe the random variables defined for patches.∆u, ∆v are random variables representing the residual flow in
patches∆l , ∆ f are random variables that model respectively the percentage and absolute change of light inten-
sity [25] over patches between the image framesI N−1 and I N .

In other words, we model seven kinds of noise in this image patch. A white noise∆→n that is attributed to digi-
tization and electronic noise in camera and anything that can be considered independent and identically

8

distributed (i.i.d). This is the same as the camera noise in the pixel case. Two components of pixel-wise motion
noise∆→uα , ∆→vα that come from either independent motion of image details within an image patch (for example,
the motion of individual blowing leaves of a tree) or more commonly the result of aliasing in images. Again this
is similar to the motion noise in the pixel case but does not include the motion noise that is common to the whole
patch and in our experience is dominated by aliasing noise which may be due to resampling of the images or
warping and we found empirically to be proportional to the derivatives of the images. On the other hand, we also
model two components of patch-wise motion noise∆u, ∆v that arises from the error in the tracking within an
image patch which can be attributed to the fact that real-world objects only moves with an approximately affine
motion model. Also, there are two patch-wise noise components∆l , ∆ f that come from the change of illumina-
tion that we model as affine [25]. Of the seven random variables,∆→n, ∆→uα , ∆→vα are vectors, the rest being scalar.

Since we represent the image patches as vectors of lengthk2, Eq. (2.12) can be rewritten in vector and matrix
notation:

(2.13)∆I = →n + U →u

where→n is the sum of the camera and pixel-wise motion noise (∆→n + Diag(uvÎ N−1, x) ∆→uα + Diag(uvÎ N−1, y) ∆→vα),

U is a k2 × 4 matrix whose columns store the threek2 vectorsuvÎ N−1, x, uvÎ N−1, y,
uv

→

Î N−1, from Eq. (2.12) and a
column of 1s and→u is [∆u ∆v ∆l ∆ f]T which we call motion noise. Eq. (2.13) defines a noise model for any
image patch. This model is accurate for patches that are on the tracked object, but very inaccurate if the patch is
not on the object. So we perform aχ 2 test for every patch in the image to decide which pixels belong to the
object.

One issue we have to resolve before the evaluation of theχ 2 statistic, is how to estimate the statistical param-
eters of the seven random variables we introduced in the noise model in Eq. (2.12). We will describe how we
estimate these parameters at the end of this section. Another issue is the high dimensionality of the image patch
vector which makes the computation and inversion of the covariance matrixC∆I of ∆I very time consuming.∆I
is a vector withk2 elements so its covariance matrix hask4 elements and needs aboutk(2) 3 = k6 operations to be
inverted. This is prohibitive for even smallk, because we have to do it on every pixel. In the next paragraphs we
show how to reduce the cost by several orders of magnitude.

The covarianceC∆I of the∆I for each successive pair of frames is

C∆I = Cov(→n + U ⋅ →u)

Assuming independence of camera noise→n and the motion noise→u,

= Cov(→n) + Cov(U ⋅ →u)

= Cov(→n) + U Cov(→u) UT

= Cn + U Cu UT

Cn = Cov(→n) is a k2 × k2 diagonal matrix with each diagonal entry equal to the corresponding element from the

vector
→
1k2σ 2

n + uv
→

Î N−1, dσ 2
a, where

→
1

2
k is ak2 vector of 1s,uv

→

Î N−1, d is a vector from a patch of the sum of squares

of the x andy derivatives ofuv
→

Î N−1 andσ 2
n, σ 2

a are scalar constants representing the variances of the camera and
aliasing noise.

Cu = Cov(→u) =







σ 2
u

0

0

0

0

σ 2
v

0

0

0

0

σ 2
l

0

0

0

0

σ 2
f







where the scalarsσ 2
u, σ 2

v , σ 2,
l σ 2

f denote the variance of random variables∆u, ∆v, ∆l , ∆ f . If we had a different
model for the motion noise thenCu might not be diagonal but this would have only a minimal effect in the total
cost of computation.

9

The ∆I for pixels undergoing small displacement with light intensity change across successive frames as
described by Eq. (2.11), should be small. We could use a Weighted Sum of Squared Differences, which properly
done is a straightχ 2 statistic, but this does not take into account the interdependence between the pixels in the
same patch. So we have to identify those pixels whose motion follows the computed flow model by computing
their Mahalanobis distance [11, 23] which is defined as

(2.14)D2
m = (uv

→

Î N−1 −
→
I N)T C∆I

−1 (uv
→

Î N−1 −
→
I N)

whereC∆I = Cn + U Cu UT . The Mahalanobis distance takes into account of the inter-dependence between the
parameters and standardizes each parameter to unit variance by using the covariance matrix. For an image patch
of k × k pixels, using any standard matrix inversion algorithm takesO((k2)3) = O(k6) to inv ertC∆I . The Sher-
man-Morrison-Woodbury (SMW) identity, a little known numerical analysis tool becomes extremely useful in
our problem [13, 27, 34]. It can be used when we have a low rank update on a matrix that we can easily invert. In
this problem matrixCn is a diagonal matrix andU Cu UT is a rank-4 update toCn. Applying the SMW we get

(2.15)C∆I
−1 = Cn

−1 − Cn
−1U(Cu

−1 + UTCn
−1U)−1UTCn

−1

We note thatCs = (Cu
−1 + UTCn

−1U) is a 4× 4 matrix, hence the time required for its inversion is justO(43), a
constant, and the cost of computing the inverseCn

−1 of the diagonal matrixCn is O(k2) which as we will see can
be amortized over neighboring patches. If we use simpler notation for the columns of the matrixU and denote
them by the vectors

→
I x,

→
I y,

→
I ,

→
1 thenCs can be written as:

Cs =










1

σ 2
u

0

0

0

0
1

σ 2
v

0

0

0

0
1

σ 2
l

0

0

0

0
1

σ 2
f










+








→
I x Cn

−1 →
I x

→
I x Cn

−1 →
I y

→
I Cn

−1 →
I x

Σ →
I x Cn

−1

→
I x Cn

−1 →
I y

→
I y Cn

−1 →
I y

→
I Cn

−1 →
I y

Σ →
I y Cn

−1

→
I x Cn

−1 →
I

→
I y Cn

−1 →
I

→
I Cn

−1 →
I

Σ →
I Cn

−1

Σ →
I x Cn

−1

Σ →
I y Cn

−1

Σ →
I Cn

−1

Σ Cn
−1








For each pixel, we need to evaluate product such as
→
I x Cn

−1 →
I x or

→
I x Cn

−1 →
I y. Direct evaluation of these products

is quite expensive even for smallk because it requires 2k2 multiplications andk2 − 1 additions per patch but we
can reduce the cost by reusing the computation from adjacent patches. We demonstrate the procedure using
→
I x Cn

−1 →
I y as example. We store thex, y derivatives ofI in imagesI x, I y. respectively.

In the following, we show how to compute the product of
→
I x Cn

−1 →
I y in more detail. We assume the patches

are centered at a point [x, y] and each patch is of sizek which is usually an odd number. SinceCn is diagonal

Cn[i , j] = 0 if i ≠ j

and

Cn[i , i] = σ 2
n +

σ 2
a


I x

2

y − k/2 + i /k, x − k/2 + i%k


+ I y

2

y − k/2 + i /k, x − k/2 + i%k





assuming the patch is arranged on the diagonal in row-major order. If we set the imageI n

I n = σ 2
n + σ 2

a(I x
2 + I y

2)

10

whereI x
2, I y

2 are the pixel-wise squares of thex, y derivatives of the imageI , then

Cn[i , i] = I n


y − k/2 + i /k, x − k/2 + i%k



and

Cn
−1[i , i] =

1

I n


y − k/2 + i /k, x − k/2 + i%k



.

The vectors
→
I x and

→
I y

→
I x[i] = I x



y − k/2 + i /k, x − k/2 + i%k



→
I y[i] = I y



y − k/2 + i /k, x − k/2 + i%k



are patches of the imagesI x, I y respectively, again in row-major order. Then
→
I xCn

−1→
I y =

i
Σ

j
Σ I x[i] Cn

−1[i , j] I y[j] =
i
Σ →

I x[i] Cn
−1[i , i]

→
I y[i]

=
k2

i=1
Σ I x



y − k/2 + i /k, x − k/2 + i%k


I n

−1

y − k/2 + i /k, x − k/2 + i%k



I y


y − k/2 + i /k, x − k/2 + i%k



=
k

m=0
Σ

k

n=0
Σ I x



yo − m, xo − n


I n

−1

yo − m, xo − n


I y



yo − m, xo − n



wherem = k/2 − i /k, n = k/2 − i%k. Therefore,

→
I x Cn

−1 →
I y =

k

m=0
Σ

k

n=0
Σ I x



yo − m, xo − n


I n

−1

yo − m, xo − n


I y



yo − m, xo − n


=

k

m=0
Σ

k

n=0
Σ I xny



yo − m, xo − n



where I xny =
I x I y

I n
. So the whole computation involves the pixel-wise multiplication of the imagesI x, I y and

I n
−1 and convolution with ak × k uniform kernel. The result is an image every pixel of which is the

→
I x Cn

−1 →
I y

for the patch centered on the pixel. The uniform convolution kernel is separable and if we implement it as a run-
ning sum it requires only fiv e operations per patch: two additions and two subtractions and one multiplication.
The same can be done with the other dot products and calculate the elements of matrixCs. Since we use multiple
overlapping patches centered at every pixel of the image, we have as many 4× 4 matrices as pixels and we per-
form a constant amount of computation per pixel independent of patch size.

From Eq. (2.14) and Eq. (2.15), we have:

D2
m = (∆I)T (Cn

−1 − Cn
−1 U Cs

−1 UT Cn
−1)(∆I)

We apply Cholesky factorization and getCs
−1 = L−T L−1 whereL is a 4× 4 upper triangular matrix which is easy

to invert so

D2
m = ∆I T Cn

−1 ∆I − (∆I TCn
−1 U L−T) (L−1 UT Cn

−1∆I)

(2.16)= ∆I Cn
−1 ∆I − || L−1 UT Cn

−1 ∆I ||2

The productUT Cn
−1 ∆I results in a vector of length 4

11








→
I x
→
I y
→
I
→
1








Cn
−1 ∆I =








→
I x Cn

−1 ∆I
→
I y Cn

−1 ∆I
→
I Cn

−1 ∆I

Cn
−1 ∆I








and we use the same technique to reduce it to 4 convolutions. Hence, following Eq. (2.16), the computation of
the inverse of the covariance matrix needs a constant number of operations per pixel, independent ofk. The cost
could increase if we used a motion noise model that has more than four components. The main change in the cost
is associated with the construction and inversion of matricesCs andU .

The Mahalanobis distance should be small for pixels that are following the motion of the seed region but we
have to define how small is small and we do it in a probabilistic way. The sum of the squares ofk2 independent
and identically distributed normal variablesN(0, 1) is a Chi-Square distribution with meank2 and variance 2k2

[29]. The Mahalanobis distance can be thought of (after proper change of coordinates) as a sum of the squares of
independent normal variables. Therefore, the Mahalanobis distance between twok × k image patches follows a
Chi-Square distribution withk2 degrees of freedom, meank2 and variance 2k2 for appropriately estimated
parameters ofσ 2

u, σ 2
v , σ 2

l , σ 2
f , σ 2

n, σ 2
a.

The Mahalanobis distance is a good measure of the consistency of the tracking but its variance can be higher
than expected if the image noise is not Gaussian and in most real images it is only approximately Gaussian. We
can reduce the effect of non-Gaussianity considerably by performing temporal smoothing of Mahalanobis

dt,N = h N dt,N−1 + (1 − h) D2
m

where N dt,N−1 is the previous smoothed Mahalanobis distance aligned with the currentNth frame, D2
m is the

Mahalanobis distance from the current (Nth, N − 1th) frames andh is a decimal coefficient between 0. 0 and 1. 0
arbitrating the relative importance of history information. As more frames are temporally integrated,dt,N

becomes more Gaussian-like according to the Central Limit Theorem. Therefore, the segmentation result
improves as information from more frames is temporally integrated.

So, we can segment out pixels that move consistently with the seed region by thresholding withdt,N to obtain
the binary image(N) I track needed in

(2.17)(N) I track =




1 if dt,N ≤ cvalue

0 otherwise

The value ofcvalue can be taken from a Chi-Square table [29]. For example, fork2 = 25, the degree of freedom is
25 and using the level of confidence 0. 995, thentstat = 46. 9. We prefer higher levels of confidence to reduce the
number of false negatives.

2.4. Estimation of the Model Parameters
We estimate the model parameters by using a Maximum Likelihood Estimator (MLE). We select manually a

few seed regions (κ = 5 was enough for all our experiments) that fall within the projection of an independently
moving object. For each selected seed region, we compute its uniform integer flow using straight search. For
properly aligned patches around these seed regions, we assume that they follow a multidimensional Gaussian
distribution of mean equal to 0 and covariance equal toCk

N(∆I ; 0,Ck) =
1

(2Π)k/2|Ck|1/2
e

−∆I TCk
−1∆I

2 .

The covariance matrixCk is a function of the model parameters:

Ck = Ck(σ 2
n,σ 2

a,σ 2
u,σ 2

v ,σ 2
l ,σ 2

f) = σ 2
n1 + σ 2

aDk + Uk Cu Uk
T

where1 is the identity matrix,Dk = Diag(uv
→

Î N−1, d) is a k2 × k2 diagonal matrix with each diagonal element

equal to the corresponding element from the vectoruv
→

Î N−1, d which is formed by a patch equal to
→
I x

2
+

→
I y

2
and

12

Uk = [
→
I x

→
I y

→
I

→
1]. The likelihood L is a compound functionL(Ck(σ 2

n,σ 2
a,σ 2

u,σ 2
v ,σ 2

l ,σ 2
f)). We compute the

maximum likelihood estimator of these parameters using Davidon-Fletcher-Powell (DFP) [26] algorithm given
an initial guess of the value of these variances. DFP is a variable metric method for finding the minimum of the
negative of the log likelihood and we use the following derivative formulae:

∂L

∂σ 2
n

=
1

2 all κ
Σ tr (Ck

−1) − (Ck
−1∆I k)2

∂L

∂σ 2
a

=
1

2 all κ
Σ tr (Ck

−1Dk − Ck
−1∆I k∆I T

k Ck
−1Dk)

Forσ 2
u = Cu[1, 1], σ 2

v = Cu[2, 2], σ 2
l = Cu[3, 3], σ 2

f = Cu[4, 4],

∂L

∂Cu[i , i]
=

1

2 all κ
Σ tr (Uk

T [*, i]Ck
−1Uk[*, i]) − (Uk

T [*, i]Ck
−1∆I k)2

whereUk[*, i] is the i th column ofUk. One of the reasons that we prefer the analytical computation of the
derivatives is that we have higher accuracy and do not need to worry about the step for the numerical derivatives.

Estimating the parameters is extremely important because it removes one degree of uncertainty from the
design and evaluation of the algorithm. In the experimental section we perform experiments using both the MLE
estimate we just described and a set of empirically derived parameters that were common to all experiments. The
empirically derived parameters worked well for most image sequences in our experiments that included experi-
ments with different cameras, different lighting, etc. The MLE estimates worked very well for all sequences.

2.5. Postprocessing
We apply postprocessing to(N) I track in Eq. (2.10) or Eq. (2.17) to reduce the number of incorrectly identified
moving regions. Such false positives are usually very small, disconnected, have little or no texture or even not
moving. Any form of flow computation is very problematic in such regions and we perform postprocessing to
alleviate noise in these regions.

In the following three figures, we show the input image frames, the tracked regions before and after this post-
processing step.

Figure 2.1: Input image frames

Figure 2.2: Before postprocessing

13

Figure 2.3: After postprocessing

Postprocessing involves two major steps. First, we compute pixels that are moving using image frame differ-
ence and store the result in∆ Im. Second, we extend the conjunction (∆ Im AND (N) I track) by adding to it those
positive pixels in(N) I track that are in the direct connected neighborhood of the conjunction.

2.5.1. Finding the moving regions
For each successive pair of image frames (lets say ImN−1 and ImN), we compute the image difference as follows:

(2.18)ImDiff = ImN − ImN−1

If there is no motion of any kind in successive frames, thenImDiff should be bounded by a multiple of the cam-
era white noise. The mean of the noise distribution is 0.0 and the variance equals toσ 2

c . From the theory of
hypothesis testing in statistics [21], a sample from a normal distributionN(µ,σ 2) has a probability of 0.9978
belonging in the rangeµ − 3σ to µ + 3σ .

∆ Im =




1 if ImDiff < −3σ c or ImDiff > 3σ c

0 otherwise

After that, we perform size filtering on∆ Im. We keep only those blobs of connected regions in∆ Im of size
bigger than a thresholdTs. We set the sizeTs = 20 pixels in our experiments.

2.5.2. Region growing
∆ Im contains patches for all independently moving objects in a pair of successive image frames. Since we are
interested in tracking the motion of the moving object whose projection contains the seed region, we need to
eliminate all moving patches unrelated to the tracked object. We perform this motion filtering by a bitwise con-
junction between∆ Im and(N) I track and save the result as(N) I filter .

(N) I filter = ∆ Im and(N) I track

One drawback of image difference technique in the detection of moving objects is that it can only capture
moving regions with large image frame difference. However, a region can have a smallImDiff ev en if it is the
projection of a moving object due to the aperture problem [15] or flat intensity. We address this shortcoming by
extending(N) I filter with (N) I track using region growing and use the merged image(N) I merge as the output of our
tracking system.

if ((N) I filter (x, y) ≡ 1 or
(N) I filter (x, y) ≡ 0 and(N) I track(xn, yn) ≡ 1)

then(N) I merge(x, y) = 1

else(N) I merge(x, y) = 0

where (xn, yn) is any of the four direct neighbors (NW, N, NE, W) of (x, y).

2.6. Optical Flow
One application and test-bed of our motion segmentation and tracking algorithm is the computation of optical

flow. Two difficult issues in optical flow are motion boundaries and large inter-frame motion. By warping the

14

image using the affine flow derived from our tracking algorithm and computing optical flow within a segment,
we avoid the motion discontinuities. Although big inter-frame motion could be handled by following a hierarchi-
cal scheme [1], optical flow computation in an image pyramid has strengths and limitations that make it comple-
mentary to our tracking and segmentation method. For example, a finely textured object which is conspicuous at
full image resolution might be indiscernible at a lower image resolution. A more serious issue is that a hierarchi-
cal approach would not work well for tracking objects that are of size comparable to the inter-frame motion.
Consider for instance an object that is about 60 pixels in each dimension and moves by about 10 pixels per
frame. If we use a three or four level pyramid to reduce the flow to about one pixel the size of the object will be 4
or 8 pixels in each dimension which is comparable to the size of the Lucas and Kanade [22] regions. Such an
object might be missed by a hierarchical scheme. Luckily the hierarchical scheme can be relatively easily incor-
porated into our method if one wants to take advantage of its proven record.

To compute optical flow, we warpI N−1 with the computed affine motion parameters to bring it close toI N

and then apply the standard Lucas and Kanade algorithm [22] with temporal support of two frames to compute
the residual flow. After that we combine residual flow with the affine flow to compute the total flow. The Lucas
and Kanade algorithm works really well in this situation because the residual flow is small (around 1 pixel per
frame) and there is no discernible motion boundary within the region. We report one experiment on a synthetic
image using this technique.

3. Experiments
In this section, we present the results of running the segmentation and tracking algorithm on several real and

synthetic image sequences, some with moving background. We show the results of segmentation using both the
pixel and patch statistic.

In some experiments we generate several random seed regions, and then we track and segment the objects
around the seed regions. We highlight the seed regions in the output segments. During tracking, if the segment
obtained from tracking of the seed region containing the feature point is inappropriate, the algorithm tries to con-
tinue the tracking/segmentation using another seed region derived from other feature points that fall on the origi-
nal segment. Depending on the number of seed regions that we maintain in the sequence and the complexity of
the scene we can cover substantial portion of the image. We show a few input frames, one from the beginning,
one from the middle and one from the end of the sequence, then we show one or more segments from the same
frames.

In other experiments we manually select the seed regions for tracking and segmentation. If the seed region
does not span a motion boundary then the tracking was very accurate for all the sequences we tried with 25 to
115 frames. We need the experiments with manually selected seed regions to perform empirical analysis of the
algorithm decoupled from the seed region selection method.

3.1. Pixel statistic
In the first experiment, we show the result of running our algorithm on the “zoo animal” sequence. The ani-

mals are on a large piece of paper, the camera is stationary and the paper is moved by hand. Some of the animals
shake. We show the result of two segments generated from randomly selected corner features: One segment cor-
responds to the moving hippopotamus and the other shows the moving paper/background. The seed regions used
for tracking are relocated by the algorithm in later frames in order to track the motion of the segment as long as
possible.

Fr ames 5, 15, 27 of the zoo animal sequence.

15

Segment corresponding to the hippopotamus.

Segment corresponding to the background.
Figure 3.1: The toy animals sequence.

In the second experiment, we show the result of running our algorithm on the truck image sequence which
shows a turning toy truck in a moving background. The image sequence is taken by a hand-held camera that
attempts to follow the motion of the toy truck. We show two segments output by our algorithm corresponding to
the turning truck and moving background. The seed regions used for tracking are generated randomly. For the
truck segment, the seed region used in the first frame is replaced by another seed region within the same segment
in later frames because the original seed region does not satisfy the criteria for tracking in later frame. We show
the residual horizontal, vertical flow as a gray scale image. The residual flow computed is small and never
exceeded 2 pixels, and the mean square average is rarely above 0.5 pixels. We do not use needlemaps to display
flow because they provide rather little accuracy for so small regions. The reason is simple. A typical segment is
50-80 pixels in each dimension and the needles in the needlemap cannot be more than 3-4 pixels, which provide
little resolution. After that, we show stabilized versions of the image, where the object that is associated with a
segment appears stationary. We superimpose a reference grid on the stabilized image. We measured the drift on
the stabilized image with the mouse and it was less than 1 pixel in 28 frames in the center of the initial seed
region. The purpose of showing the stabilized image with a reference grid superimposed is to quantify the accu-
racy of the tracking.

Fr ames 1, 15, 28 of the turning truck sequence.

Segment corresponding to the turning truck with seed region highlighted.

16

Residual horizontal flow as gray scale image.

Residual ver tical flow as gray scale image.

Motion stabilized frames with grid.

Segment corresponding to the moving background.

Figure 3.2: The input image frames show a toy truck with a hippopotamus on it taken from a hand-
held camera that attempts to follow the toy truck.

In the third experiment, we show the result of running our algorithm on the approaching train sequence. The
toy train is moving towards the stationary camera. We show that our algorithm is able to find a seed region that
segments out the approaching train. The seed region is relocated in later frames of the sequence. In addition, we
show the residual flow as a gray scale images.

Image sequence at frame 1, 14, 26.

17

Segment corresponding to the train.

Residual horizontal flow as gray scale image.

Residual ver tical flow as gray scale image.
Figure 3.3: The input image frames show a toy train moving towards the camera.

In the fourth experiment, we show the result of running our algorithm on the Hamburg taxi sequence. We
show the segment corresponding to the turning taxi from a randomly generated seed region.

Input sequence at frames 0, 9, 18.

Segment corresponding to the turning taxi.
Figure 3.4: The input image frames show the Hamburg taxi sequence.

In the fifth experiment, we show the result of running our algorithm on the Yosemite sequence which is a syn-
thetic fly through sequence from the Yosemite valley by Lynn Quann at SRI. We show various segments output
by our algorithm from randomly selected seed regions. We compute the optical flow on these segments and show
the mean square flow error and the mean angular error [2] for one of the segments between the optical flow com-
puted by our algorithm and the ground truth of the Yosemite sequence. For comparison, we also show the mean

18

square error and the mean angular error between the optical flow computed using the pure Lucas and Kanade
[22] without segmentation and alignment method and the ground truth. The error on both algorithms is com-
puted on the same region and both use the same parameters (same derivatives, etc) for the Lucas and Kanade
algorithm.

The Lucas and Kanade algorithm does not produce good results on this sequence because the images have
areas of rather little texture and have large inter-frame motion. Our algorithm is not affected by the large inter-
frame motion and is minimally affected by the areas of no texture since they are deemed to move consistently
with the tracked feature.

Input sequences at frames 2, 8, 15.

Segment corresponding to the distant mountain slope.

Segment corresponding to the left cliff.

Segment corresponding to the middle valley.

19

Needle maps of our algorithm, Lucas & Kanade and the ground truth.

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frame

N
or

m
al

iz
ed

 e
rr

or
 (

u)
 o

n
tr

ac
ke

d
re

gi
on

Normalized flow errors (u) compared with ground truth

Tracking, Segmentation, Optical Flow
Lucas Kanade

Mean square flow error (u) on the left cliff segment compared with the ground truth.

20

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 e
rr

or
 (

v)
 o

n
tr

ac
ke

d
re

gi
on

Frame

Normalized flow errors (v) compared with ground truth

Tracking, Segmentation, Optical Flow
Lucas Kanade

Mean square flow error (v) on the left cliff segment compared with the ground truth.

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frame

N
or

m
al

iz
ed

 a
ng

ul
ar

 e
rr

or
 (

ra
di

an
)

on
 tr

ac
ke

d
re

gi
on

Normalized angular error (radian) compared with ground truth

Tracking, Segmentation, Optical Flow
Lucas and Kanade

Mean angular error (radian) on the left cliff segment compared with the ground truth.
Figure 3.5: The input image frames show the Yosemite sequence. Mean square/angular error of flow
estimated by our algorithm and the Lucas and Kanade algorithm on the left cliff segment shown above .
The ground truth is from Black’s [4] web site.

21

In all experiments, the segmentation result improves over time because the algorithm needs a few frames to
build the model of the tracked object. We run our experiments on a Linux PC with a 3.0 GHz Pentium IV CPU
that delivers 1164 SPEC CINT2000 [10]. For input image frames of size 320× 240, our motion segmentation
and tracking algorithm using pixel statistic takes 0.28 seconds per frame on on the Pentium IV.

3.2. Patch statistic
For the image model using patch statistic, the image patch size is 5× 5 pixels. We highlight the seed region in

the output segmented images. The default (empirical) standard deviation→σ def of the various kind of noises used
in the individual experiments are:σ n = 2. 75, σ a = 0. 08, σ u = σ v = 0. 2, σ l = 0. 001, σ f = 0. 5. These→σ def

parameters are determined empirically. We also compute an optimized parameters→σ o for each sequence. These
→σ o parameters are estimated by using a Maximum Likelihood Estimator (MLE) for a few number of seed regions
within the tracked region of an image sequence.

In the sixth experiment, we repeat the first experiment using the patch statistic. The output segments are very
similar to the segment obtained using pixel statistic. We show the result of tracking on the hippopotamus for
comparison.

Fr ame 5 and its output from tracker using default →σdef and optimized →σo .

Fr ame 15 and its output from tracker using default →σdef and optimized →σo .

Fr ame 27 and its output from tracker using default →σdef and optimized →σo .
Figure 3.6: The toy animals sequence. The optimized →σo parameters are: σn = 0. 97, σa = 0. 0002,
σu = 0. 32, σv = 0. 05, σ l = 0. 01, σ f = 1. 03.

In the seventh experiment, we repeat the second experiment using the patch statistic. The output segments are
very similar to the segment obtained using pixel statistic. We show the result of tracking on the truck for compar-
ison.

22

Fr ame 1 and its output from tracker using default →σdef and optimized →σo .

Fr ame 13 and its output from tracker using default →σdef and optimized →σo .

Fr ame 28 and its output from tracker using default →σdef and optimized →σo .
Figure 3.7: Turning truck in a moving background under constant lighting condition. The truck and the
hippopotamus on top of it are segmented out. The wheels and the highly specular “engine block” of
the truck are not segmented. The optimized →σo parameters are: σn = 1. 18, σa = 0. 055, σu = 0. 26,
σv = 0. 24, σ l = 0. 05, σ f = 6. 45.

In the next experiment, we run the algorithm on the Flower Garden sequence [4] that has a tree in the fore-
ground and a flower garden and houses in the background.

Fr ame 1 and its output from tracker using default →σdef and optimized →σo .

Fr ame 18 and its output from tracker using default →σdef and optimized →σo .

23

Fr ame 29 and its output from tracker using default →σdef and optimized →σo .
Figure 3.8: Flower Garden image sequence. The moving tree in the foreground of the flower garden is
segmented out by tracking a seed region on the tree trunk. The optimized →σo parameters are:
σn = 1. 28, σa = 0. 23, σu = 0. 128, σv = 0. 359, σ l = 0. 0078, σ f = 0. 45.

In the next experiment, the same toy truck is moving diagonally from the lower left hand corner to the upper
right hand corner and is taken by a panning camera. A table lamp is placed near the right hand side of the images
so that the truck goes from dark areas to bright areas. The biggest illumination change is between frames 9 and
10 where the seed region at the side of the truck undergoes up to about 40% change in intensity. The average
change is roughly 10%.

Close-up of frame 9

Close-up of frame 10

Close-up of frame 12

Output from tracker for frame 9 and 10.

24

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200

In
te

ns
ity

Scan lines across seed region

Scan lines across seed region in frame 9 and 10
Figure 3.9: Close-up for frame 9 and 10 to illustrate the change in light intensity. The highly specular
engine is not part of the segment.

The side panel of the truck is relatively dark in frame 1 whereas it is much brighter in frame 41. The image
sequence shows a moving truck in a non-stationary background under varying lighting conditions.

Fr ame 1 and its output from tracker using default →σdef and optimized →σo .

Fr ame 11 and its output from tracker using default →σdef and optimized →σo .

Fr ame 21 and its output from tracker using default →σdef and optimized →σo .

25

Fr ame 31 and its output from tracker using default →σdef and optimized →σo .

Fr ame 41 and its output from tracker using default →σdef and optimized →σo .
Figure 3.10: Moving truck in a dynamic background under var ying lighting conditions. The optimized
→σo parameters are: σn = 2. 585, σa = 0. 0437, σu = 0. 397, σv = 0. 268, σ l = 0. 000002, σ f = 2. 245.

The segmentation result improves over time because the algorithm needs a few frames to build the model of
the tracked object. For input image frames of size 320× 240 and image patch size of 5× 5, our motion segmen-
tation and tracking algorithm using patch statistic takes 1.32 seconds per frame on a Pentium IV 3.0 GHz PC
compared with 0.28 seconds per frame using pixel statistic. Therefore, running our motion segmentation and
tracking algorithm using patch statistic is about 5 times slower than using pixel statistic. However, running the
algorithm using patch statistic can segment and track object in image frames under varying lighting conditions.
Using pixel statistic, the algorithm can only segment and track object in image frames under constant lighting
condition.

4. Conclusion
We describe a novel and efficient algorithm that performs motion segmentation and tracking using corner fea-

tures. The algorithm automatically selects a good feature and segments out a region whose motion is consistent
with the motion of the selected feature. We perform motion segmentation by an integrated segmentation and
tracking process. We fit an affine optical flow model on the tracked region and align the image model represent-
ing the tracked object with the current frame. We segment out those pixels moving consistently with the seed
region by thresholding either a pixel or patch statistic involving the image difference between the aligned image
model and the current frame. In order to account for varying lighting conditions in the image frames, we use an
image flow model that incorporates both percentage change and absolute change in image intensity. We hav e
presented the results of running our algorithm on several real and synthetic image sequences. The method can
obtain clear outlines of objects that undergo approximately affine motion, under many different conditions on
images taken in our laboratory or standard image sequences.

References
[1] P. Anandan, “A Computational Framework and an Algorithm for the Measurement of Visual Motion,”

International Journal of Computer Vision2(1989). pp. 283-310

[2] J. L. Barron, D. J. Fleet, and S. S. Beauchernin, “Performance of Optical Flow Techniques,” inInterna-
tional Journal of Computer Vision, (1994) pp. 43-77.

[3] A. Benedetti and P. Perona, “Real-time 2-D feature detection on a reconfigurable computer,” inProceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition, (1998) pp. 586-593.

26

[4] Black, “Michael J Black: Image Sequences,” inhttp://www.cs.brown.edu/people/black/images.html,
(2002)

[5] M. Black and A. Jepson, “Mixture models for optical flow computation,” inProceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition, (1993) pp. 760-761.

[6] M. Black and A. Jepson, “EigenTracking: Robust Matching and Tracking of Articulated Objects Using a
View-Based Representation,” inInternational Journal of Computer Vision, (1998) pp. 1-29.

[7] G. D. Borshukov, G. Bozdagi, Y. Altunbasak, and A. M. Tekalp, “Motion Segmentation by Multistage
Affine Classification,” inIEEE Transactions on Image Processing, (1997) pp. 1591-1594.

[8] P. Burt, J. R. Bergen, R. Hingorani, R. Kolczynski, W. Lee, A. Leung, J. Lubin, and H. Shvaytser,
“Object Tracking with a Moving Camera,” inProceedings of Workshop on Visual Motion, (1989) pp.
2-12.

[9] D. Comaniciu, V. Ramesh, and P. Meer, “Real-Time Tracking of Non-Rigid Objects using Mean Shift,” in
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (2000) pp. 142-149.

[10] Standard Evaluation Corporation, “Submitted CPU2000 results,” in
http://www.spec.org/osg/cpu2000/results/cint2000.html, (2003)

[11] B. S. Everitt,Cluster Analysis,John Wiley & Sons, New York (1974).

[12] G. Hager and P. Belhumeur, “Efficient Region Tracking with Parametric Models of Geometry and Illumi-
nation,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, (1998) pp. 1025-1039.

[13] William W. Hager, “Updating the Inverse of a Matrix,”SIAM Review31(2)(1989). pp. 221-239

[14] J. Heikkila, P. Sangi, and O. Silven, “Camera Motion Estimation from Non-Stationary Scenes Using EM-
Based Motion Segmentation,” inProceedings of 15th International Conference on Pattern Recognition,
(2000) pp. 370-374.

[15] B. K. P. Horn,Robot Vision,McGraw-Hill Book Company, New York (1986).

[16] B. K. P. Horn and B. G. Schunck, “Determining Optical Flow - a Retrospective,”Artificial Intelligence
59(1993). pp. 81--87

[17] M. Irani, B. Rousso, and S. Peleg, “Computing Occluding and Transparent Motions,”International Jour-
nal of Computer Vision12(1)(1994). pp. 5-16

[18] M. Isard and A. Blake, “Contour tracking by stochastic propagation of condition density,” inProceedings
of European Conference on Computer Vision, (1996) pp. 343-356.

[19] M. Isard and A. Blake, “ICONDENSATION: Unifying low-level and high level tracking in a stochastic
framework,” inProceedings of European Conference on Computer Vision, (1998) pp. 893-909.

[20] A. Jepson, D. Fleet, and T. F. El-Maraghi, “Robust Online Appearance Models for Visual Tracking,” in
IEEE Conference on Computer Vision and Pattern Recognition, (2001) pp. 415-422.

[21] R. Larsen and M. Marx,Introduction to Mathematical Statistics and its Applications,Prentice Hall
(1986).

[22] B. D. Lucas and T. Kanade, “An Iterative Technique of Image Registration and Its Application to Stereo,”
in Proceedings of 7th International Joint Conference on Artificial Intelligence, (1981) pp. 674-679.

[23] P. C. Mahalanobis, “On Tests and Measures of Groups Divergence I,” inJournal of the Asiatic Society of
Benagal, (1930) pp. 541.

[24] F. Meyer and P. Bouthemy, “Region-Based Tracking Using Affine Motion Models in Long Image
Sequences,” inCVGIP:Image Understanding, (1994) pp. 119-140.

[25] S. Negahdaripour and C. M. Yu, “A generalized brightness change model for computing optical flow,” in
Proceedings of Fourth International Conference on Computer Vision, (1993) pp. 2-11.

[26] W. Press,Numerical recipes in C: the art of scientific computing,Cambridge University Press (1992).

27

[27] J. Sherman and W. J. Morrison, “Adjustment of an Inverse Matrix Corresponding to Changes in the Ele-
ments of a Given Column or a Given Row of the Original Matrix.,”Ann. Math. Statist.20(1949).

[28] H. Sidenbladh, M. Black, and D. Fleet, “Stochastic Tracking of 3D Human Figures using 2D Image
Motion,” in Proceedings of European Conference on Computer Vision, (2000) pp. 702-718.

[29] H. Stark and J. W. Woods,Probability and Random Processes with Applications to Signal Processing,
Prentice Hall (2002).

[30] A. Strehl and J. K. Aggarwal, “A New Bayesian Relaxation Framework for the Estimation and Segmenta-
tion of Multiple Motions,” inProceedings of 4th IEEE Symposium on Image Analysis and Interpretation,
(2000)

[31] C. Tomasi and T. Kanade, “Detection and Tracking of Point Features,” inTechnical Report CMU-
CS-91-132, Carnegie Mellon University, (1991)

[32] N. Vasconcelos and A. Lippman, “Empirical Bayesian EM-based Motion Segmentation,” inProceedings
of IEEE Conference on Computer Vision and Pattern Recognition, (1997) pp. 527-532.

[33] J. Y. A. Wang and E. H. Adelson, “Representing moving images with layers,” inIEEE Transactions on
Image Processing, (1994) pp. 625-638.

[34] M. Woodbury, “Inverting Modified Matrices,”Memorandum Rept. 42, Statistical Research Group,
Princeton University, (1950).

[35] Y. Ye, J. Tsotsos, E Harley, and K Bennet, “Tracking a person with pre-recorded image database and a
pan, tilt and zoom camera,” inMachine Vision and Applications, (2000) pp. 32-43.

