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ABSTRACT

This report provides an review of Clustering using Mixture Models and the Expecta-
tion Maximization method[1] and then extends these concepts to the problem of cluster-
ing of unobserved data where we cluster a set of veatds i = 1. .N for which we
only know the probability distribution. This problem has several applications in Com-
puter Vision where we want to cluster noisy data.
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1. Clustering

Data clustering is an important statistical technique, closely related to unsupervised
learning. Clustering is the process of grouping the samples into clusters, so that samples
with similar properties belong to the same cluster. A cluster is just a set whose members
are similar but are different from the members of other clusters. For example, samples in
a particular space where the distances between two samples in a cluster is less than mini-
mal.

One of the most popular clustering techniques is based on Expectation Maximiza-
tion (EM). EM is a method for estimating parameters using partially observed data[2, 3].
Since the clustering problem would be trivial if we already knew the membership of
every sample to a particular cluster, we treat this membership information as the unob-
served part of the data and apply EM. In this report we develop a clustering method that
treats not only the membership of the data as unobserved but the data as well.

Edge grouping is a potential application for clustering. Edges can be considered as
the sets of many edgels (edge elements) and these edgels can be detected in an image
using any of the standard edge detection techniques.

If we happen to know that our edgels belong to straight lines and we have an esti-
mate of the slope of the lines then we can group the edgels into straight line edges using a
clustering technique. One of the problems is that some of the information is not very
accurate and we can only assume that we know the probability distribution of the data,
but not the data itself. So we essentially have partially observed data.

2. Mixture Model

The underlying model of EM clustering is the Mixture Model[4]. This model
assumes that each sample comes from a clustevherej =1, ... K. The way to gen-
erate samples form the mixture model is as follows. We select one of the alystetis
probability P(w;) = 77; and then generate a sampleout of a probability distribution

O 0

P(X|w;, 8) or p(x|9;) whered =[¥;,j=1,... Kgand g, is the vector of parameters
O 0

associated with the cluster;, which in our case contains the meap the covariance

matrix C; and the mixture probability;. One should notice thai(x|6;) and p(x|w;, 6)

are the same. The first one denotes the probability denskygiven the parameteis;

of the clustew; and the other denotes the probability density given the parametes

of all the clusters and the fact that we have selected clusterhe densityp(x|g;) is
called component density. The probability density function of a sample x from the mix-
ture model is then

p(x]6) = Jz p(Xle;, 6)71. (2.2)

For the mixture probabilities;, the following is true
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=
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3. Maximum-Likelihood Estimation

The Maximume-Likelihood (ML) method can be used for parameter estimation from
a set of sampleg;,i = 1..N. We assume thai(x|¢;) is of known parametric form with
parameter vectord; which are unknown. The mixture probabilitigsare also unknown.
The maximum-likelihood estimate of the parametérsrelated to a set of data
D =x,i=1,...,N is obtained by maximizing the log likelihood of the parameters. The
likelihood of the parameters is the probability of the data given the parameters

N
L(6) = p(Dl6) = E p(xi16)

assuming the data is independent. By substituting the probability density function Eq.
(2.1), we get

p(DI) = ﬁ J% p(x, |, )1

The reason to take the log-likelihood of the parameters isp(iip) involves a product

of N terms. To simplify the calculation, we use log-likelihood to change products to
sums. We will use the Gaussian distribution[5] as our parametric form(fojg;). For
multidimensional datx it takes the form

1 _(X—#j)TCj_l(X—#j)
o e e e
V(Zm)™[C)|

wherem is the number of dimensions of vectarC; is the covariance matrix andg is
the mean for the clustes;. The mixture probabilities, the covariance and the mean are

l (]
bundled in the parameter vec®yr= w;,C;, 7,3
0 H

p(x|6;) = (3.1)

Im most applications of ML the next step is to maximize the likelihood function (or
more often the log-likelihood). Usually the result is a simple analytic expression which
along with a host of other nice properties explains the popularity of ML. But in this case
we have a product of sums and it is impossible to get a simple expression.

The problem would become very simple if we knew the membership of every sam-
ple. Then we would only have to solve the Gaussian parameter estimation problem for
every cluster. But lacking this membership information we can use Expectation Maxi-
mization.

4. Expectation Maximization Applied to Clustering

Expectation Maximization (EM) is an iterative algorithm that alternates between
two steps: the Expectation step and the Maximization step. In the Expectation step, we
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first derive the log-likelihood of the unknown parameters as a function of the unobserved
data and then we compute the expected value of this likelihood using the probability den-
sity of the unobserved data. Since the density of the unobserved data involves the parame-
ters we want to estimate we use a guess. In the Maximization step, we obtain the parame-
ters that maximize the expected value of the likelihood. This new parameter will become
the guess to be used in the next iteration. This iteration goes on until convergence or satis-
faction of the termination conditions. The unknown parameter v@atontains informa-

tion appropriate for the mixture model we use. Since we will use the Gaussian distribu-
tion over the mixture model, normally the parameter vector contains three components
which are the mean and the variance for each cluster and the mixture probability. These
are usually the unknowns of our problem. After we know the mean, variance and the mix-
ture probabilities of each cluster, we are able to group samples. The number of Blusters

is known, but we can augment the algorithm with BIC or AIC (see below) anckhase
unknown too.

The straight application of ML to our clustering problem is extremely difficult
because it involves logarithms of sums and many complicated functions. Luckily, it can
be easily put in a form where we can apply EM. We do this as follows[6].z st a
vector of lengthK (the number of clusters) and th& element of the vector is 1, if the
samplex; was generated by clust¢rand zero otherwise. Obviously there is exactly one
“1” in the vector and the rest are zero so

g Zij =1 (41)
j=1

wherez; is the j™ element ofz,. Since we do not know the membership of every sample,
z is the unobserved part of the data. Dgt=vy;,i =1,...,N be the complete data set
wherey;, :{(xi,zi)}, D,=x,i=1,... Nisobserved data setabd = z,i =1,---,N

be the unobserved data set.

In the expectation step, the expression for expectation is
Q6,6 = Ep { In p(D,|6)|D,. 6'} .

Although it looks intimidating at first, it can be tamed in a few simple steps. The first step
is to derive the form of Ip(D,|6) which is a function oD,, D, andg. Once we simplify

the Inp(D,|6), we can get its expected value by applying the standard rules. The sub-
script D, in Ep, means that the random variables are the elemerids ahd the proba-

bility of D, is conditioned orD, and8', whered' is just a guess, but it is usually the
result of thet™ (or previous) iteration. The result is a functiordpthe unknown mixture
parametersg' the guess fog and the observed dam,, but for simplicity we dropD,

from Q(6, 8").

Using the rule of joint probabilities and assuming thatytise the elements dd,,
are independent, we can rewrfigD, |6) as follows:
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mmw=ﬂmmm

Since we have, = { (X, zi)} , P(Yi|6) can be written as

P(Yil6) = p(x;, z6)

Based on the properties of conditional probabiti€y;, z |¢) has the following probability
density expression.

P(xi, z|0) = p(xi|z, 8) p(z|6)

As we mentioned above, is the vector, whos¢" element is 1 if the sample was gen-
erated by the cluster. Therefore, the probability af given the parameter vectér is
equal to the mixture probability;, i,e. the probability to select clusteamong the clus-
ters of the mixture model.

The probability ofx; givenz andé, p(x;|z, 8) has an alternative form which [Xx;|9;),

whereg; is the vector whose parameters associated with the ctust8o we have
p(Xi, z6) = p(xi|6;) ;.

Thus p(y;|6) can be written as

p(Yyi18) = p(xil8;)m; 4.2)

This equation only presents the correspondeng® »fo) to the parameter vector of the
jm clusterg;. Recalling thatz vector,z; =1 andz, =0 for k # j, we have the follow-
ing new expression fop(y;|0):

mwm=ﬂwuwmw“

The term ((x;|6,) )% is equal top(x;|¢;)r; whenz; =1, and it is 1 whel # j. Thus,
the product terms of all K clusters is the same as Eq. (4.2). By collecting all the samples
yi in D, the probability density function of tHe, set giverg is:

p(D,16) = 1 [1(p(x 16 m)*

i=1 k=1
Then we should obtain Ip(D|6) by simply taking the logarithm on the @le equation:

INp(D,16) = 3 5 7 In(P(x18)7m)

i=1k=1

and by applying the logarithm rule once more

INp(D,I0) = 3 3 2 IN(p(418) + 3 3 7 In(7) 4.3)

i=1k=1 i=1 k=1
Eq. (4.3) is our form for Ip(D,|6) and we can now calculate the expected value of it to
conclude the Expectation Step. Since the form qi([D,|6) is the sum of two terms, the
expected value should be the sum of the expected values of those two terms. We also
need to keep in mind that the random variables are the unobserveg, datly. The
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other terms of the equation should be treated as the constants in this situation. The
expected values of constants are themselves.

E{ In p(D,6)|D,. 6} = Z Z E{ zID,, 6'} In(p(x16,)) +
=1kl (4.4)

N K ‘
Z Z Ez{ ZileXl 0} ln(ﬂk)
Let's renameE { Z|Dy, et} asz,, then we have

e np(D,0ID.6F = 3 3 zcin(pixlo) + 2 3 2in(m) (49

i=1k=1

Based on the definition of thg, vector, we notice that, takes two values only: zero
and one. So

2 = E,{ 2Dy, 8} = 0P(z, = 0D, 6') + 1 (P(2 = 1|Dy, 8") = P(z = 1Dy, 6")

is the probability ofz, to be 1. This is the same B§w,|x;, D, 8") the probability the
samplex; to be generated by tHé" cluster among all the clusters. Applying the Bayes
rule, we hae z, responding to the whole model:

p(Xi |Dx1 gt’ wk) P(wleX’ Ht)

Zi = E{ z4ID4 6'} = P(wilx;, 6Y) = v

5 p(x[Dy. 6, @;)P(a;Dy, &) "~ (48)
j=1

p(Xi|6", w)P(wx|Dx, 8") _  p(Xi|6k')P(ax|Dy, 6')

K K
_Zl P(xi|6", w;)P(w;|Dy, 6') Zl p(xi|6;")P(w;|Dy, 6')
= =

Since we use a known parametric form for the probability, Gaussian in this case, we can
computep(x;|6') and so compute,, from Eqg. (4.6) and the we can plug theue ofz,

into EqQ. (4.4), to get the final result of the Expectation Step.

In the Maximization Step, we are supposed to maximize theeadpectation func-
tion values in order to get the optimal solution for the unknéwvhich can be used in
the next round ag' to estimate a new expectation function and from this to get the new
6. There is one constraint in our mixture model, which is

j=1

Therefore, we maximize the expectation funct@(@, 8') subject to this constraint. We
define a newQ'(6, 8') which takes into account the constraint of Eq. (4.7) by using the
Lagrange multiplier.

N K N K K
Q(6,6") = X X zi In(p(xi|6)) + § kZ Zy In(m) + A(1 - g ;)

i=1 k=1

Using standard calculus procedures, we can find the maximum value of a function subject
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to the constraint by taking derivatives over the unknowns of the function aset the
derivatives to zero, and solve the resulting equations to find the value of the unknowns
and /A that maximize the function. In the our case the unknovérti® vector containing

all the parameters of the mixture moae) 1/; andC; for j = 1..K.

First, we take the partial derivative with respectrtoln Q'(6, 6'), only the last two
terms involve the variabler; so the first term will give zero. Since we only take
derivatives of the whol€' term with respect to one particulay term, only thej™ ele-
ment of the whol&)' term will have non zero value. So we can get rid of the summation
overj=1,---,K, and we have

0Q" N
= =0
6”1 gl T
N 1
A= Z z|k —_
N _Ik
i=

If we take the summation from 1 # on both sides we can use Eq. (4.7) to eliminate
and have

j:1|:17 a
from which we get
K N B
A=2 2 2%
j=1i=1

So we plug thel into Eq. (4.8), and get

N =
2 Zi
_ =l
LN
2 Z
k=1i=1
We notice that the denominator in theved expression is

N|

z
II
Z

ﬁ.
[y

after taking into account Eq. (4.1). So flnaIIy

m= N Izl Zy. (49)

Second, we take the partial derivative with respect to the unkpgwie mean of
the j™ cluster. It is only involved in the Gaussian distribution for our mixture model, so
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we only need to be concerned with the first term of the expectation function when taking
derivatives. In the first term of the functiog, uses the paramete#5which is the guess

and we consider it independent fralhmand constant. By the same reason as above, we
eliminate one summation fromm=1, ... K by taking derivative with respect to the par-
ticular ;. The definition of the Gaussian density from Eq. (3.1) is

1 (=) TC M x=py)
P(X|6)) = —=g===¢
VEZm)m[C,|
and the log is
In 1 _(Xi_ﬂj)TCj_l(Xi_/Jj)
V@ae,| 2
The derivative then is as follows:
0Q _ o 1 g ) O )
| — |
ou; 0Oy [F1 VEZm)MC;| =1 2 5

T -1
X —=u) C.: X — U
The derivative of the first term equals to zero. The derivativg: 'of A) Gy = wy)

with respect tqu; is Cj'l(xi — uj). The derivative of the second part is

Q _J_ Qe
a—=_ZzikC,- (%= #) =C; 2 Zy (X — ;) =0
M =1 i=1

which results to

N N
Z L X = Z Zi M
i=1 i=1

or

N =
Z Zi X
_i=l
Hi ==
2 Zi
i=1
and using Eq. (4.9) we get
1 N
L= 7 X .
,U] NITJ- igl ik N

It's time to derive the last unknown varialfle of our model in the Maximization
step. The steps of derivation are similar to the derivation;ofVe only work with the
first term of expectation function. The difference begins with the following step:
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oQ' 0 Oy 1 N X — u ) C.Hx — u. [
E:_izikln—__zzik( I :uj) ] ( | /’IJ)D:O
oC; 9Cifm = YZmMC = 2 0
The alove diferentiation involves derivatives of a determinant and a quadratic product
which we can get from the Matrix Reference Manual

(http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/index.html):
0 _ _ -
G_Cj (% = ﬂj)TCj Hx - Hj) = —C; Hx - Hi)(X; ‘/Jj)TCj '
0 _
ac, ICiI=IC;IC;™

and using the chain rule

1 d 1 1
It -2 0%t
aC; V(Zﬁ)m]'(:” aC; a2 O 2
and we get
an B 1N B _ _ - D_
ac; __Ei:zlzikgzj TGO )06~ ) CT 0

After that, we multiplyC; twice on both sides of abe equation to eliminaté:j‘l, and
we get the following:

i% Zy(=Cj + (% = k) (% — 1)) =0

gzc Zzlk(x wi) (% = ;)"

which gives

%zk(xu Hi)(Xi — Hj)T

N

2 Zik

i=1

By using Eq. (4.9), we have tlﬁg for the next iteration.

leuk(x i) (% = ,Uj)T
J |

In conclusion, the alve derivation explains the internal detail steps of EM algo-
rithm. When we run the EM algorithm each time, we can directly use the obtained equa-
tions to calculate the covariance, means and mixture parameters.

K-means clustering is a simple and classical example by applying EM algorithm. It
can be viewed as the problem of estimating the means of K Gaussians Mixture Model.
The special assumption of K-means is that the mixing probabitifiese equal and each
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Gaussian distribution has the same variance.
5. Bayesian Information Criterion Applied to Clustering

The EM clustering algorithm that we outlinedoab assumes a Mixture of Gaus-
sians as the underlying model. After the particular mixture model is defined, the EM
algorithm is be applied to find all the parameters except the number of clusters. So we
have to provide the number of clusters through some other method. The Bayesian Infor-
mation Criterion (BIC) is a widely used method for this purpose[7, 8], and can be applied
in our case to find the number of clusters.

Since we use EM to find the maximum mixture likelihood after each iteration, we
can get reliable approximation of BIC. The expression of BIC is

BIC = -2L (%, 8) + mylog(N) (5.1)

wherelL (X, ) is the maximized mixture loglikelihood for the mod| m,, is the num-
ber of independent parameters to be estimated in the mod®&l anthe number of sam-
ples. The maximized mixture loglikelihood function is

N N K
Lm(X,6) = |09|_! p(xi|6) = |09|_! Zl P(xi|6;) 7
1= i=1 j=
Recalling the material discussed in the previous sectjaixgg;) is the probability ofx;
given that it belongs to thg" cluster, which is a Gaussian distribution ands the the
mixture probability of the moddil. The smaller the value of BIC, the stronger the evi-
dence for the model.

The BIC can be used not only to determine the number of clusters by comparing
models, but also help avoid local minima in our clustering problem. Since we use ran-
dom starting points, usually by selecting random initial values for parameters
0; = (u;,C;, m;) wherej =1,---,K, we get distinct clustering results when we run the
EM algorithm several times. If it is our lucky day, we get reasonably good initial values
for 6;, and we get desirable results in the first attempt. However, we can’'t control our
luck. To solve this problem, we apply the EM clustering on the same data several times
using random starting points and calculate the BIC to examine the maximum likelihood
for each complete run by applying Eq. (5.1). Then we select the run that has minimum
BIC.

6. Expectation Maximization Clustering Applied on Unobserved Data

In the previous sections, we discussed the EM method and the clustering problem
and applied the EM algorithm on the clustering dfsamples intoK clusters. We
assumed that the underlying model is a Mixture of Gaussians and the coordinates of the
samples are given. Next we study the problem where the coordinates of samples are not
given directly and we only know the probability distributions of the samp(egD;),
whereuy; are the samples arid; is the data where these probabilities are based on. The
union of allD; is D. We will again use EM to cluster these samples. The general proce-
dure of EM algorithm remain the same but we have different assumptions and precondi-
tions.

10
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As before, we have both a set of observed data and a set of unobserved data. We are

given the informatiorD, and we haveN unobserved samples, i = 1,...,N. As before

; is the membership vector of that sample wheng;as 1 if sampleu; was generated by
clusterw; and is equal to zero otherwise. The complete the ylatar each sample is

i = (Di,¢;, ). The complete data set®, = (y;,i =1,...,N) wherey; = (D;,¢;, ) .

The unobserved data i3, = (z,i =1,...,N) wherez = (¢;, ;). Since we assume Mix-

ture of Gaussians, we have to compute the parameter \&et@;, j = 1. .K) where

8; = (u;,C;, ;) is the mean, variance and mixture probabilities of each cluster.

6.1. Expectation

The first step in EM is to derive the expression for expectation. In this problém,
the only given dataD, is the complete data arid, is the unobserved data. The general
expression for the expectation for this problem is

Q8,6 = Ep { In p(D,|6)|D, 6'}

but now D, and D, contain different data sets and we need to deriy#[y|6) under
different assumptions. As before, we write {®,|6) as:

P(D,18) = ] P40 6.)
Sincey; = (D;, ¢;, 4;), we can write
p(yi1€) = p(D;, ¢i, u;6)

and we rewritep(D;, ¢, u;|0) as

P(Di, ¢, ui|6) = p(yi, uild) p(Dil6, ¢, wy)
and p(;, u;|6) as

P, ui|6) = p(wild) p(uile, ¢).

SO

p(Yyil6) = p(w;l6) p(uile, ¢i) p(D; 6, wi, u;)

We now introduce the “quazi-dependence” assumptionDH@at its components) are not
directly related tod (or its components) but only through the correspondingso
P(Dile, i, u;) = p(Dilu;). So thep(y;|¢) becomes

P(Yil6) = p(wil6) p(uil, ¢;) p(Dilu;) (6.2)
The first term in Eq. (6.2) ip(y;|6) andy; is the membership vector for tif& sample.
Then

_ M ifu generatetby w;
Vi = otherwise

and

11
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K
% Wy =1 (6.3)
J:
and we can write
K
p(wi16) = Dl A

The value of the alve pression isr; if the i'" sample is the member ¢ cluster, or
w;y = 1. We can apply the same techniquep(o |9, ¢;) and have

K
p(uilé, ¢;) = Dl P(U; 6 ).
Then the Eq. (6.2) can be rewritten as
p(yi19) = {1 w11 plule)® ou)
=1 0l =1
By taking the log ofp(y;|6) we get:
K K
log p(y;|6) = kZl‘//ik log 77 + kzll//ik log p(u;|6x) +log p(D;]u;) (6.4)
and from Eq. (6.1)
N
log p(D,|6) = __leog p(yil6)

We substitute Eqg. (6.4) into theake equation, we get the function of IpgD|6)

10g p(D,I6) = 5 3 i log 7+ 3 5 ¢ 10g pluiloi) + z log p(D,lu)  (6.5)

i=1 k=1 i=1 k=1
The final step to derive the expectation function is to take expected value of Eg. (6.5) with

respect to the unobserved d&tagiven the datdD and a guess of the clustering parame-
tersg'. The expectation equation is:

N K
EDZ{ log p(Dy|9)|D, H‘} = i=zl Egl E{ z//iklet, D} log 3 +
K
kgl E{ Wi log p(y; |9k)|9t, D} + (6.6)

E{ log p(D;, ui)|9t, D} E

where we assume that all the expected values are takenDgvele first derive
E{ Wi |6, D} , Which we name,.
@i = E{ u]6', D} = 0P(gy = 016", D) + 1 [P(yy = 116", D)

sincey;, takes only the values 0 and 1. So

12
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g™ = P(yy = 116", D)
Since we need explicit dependenceupwe write
P(yw =1¢",D) =
I P(¢w =1,u6', D)dy, =
I p(ul6', D)P(wy = 116", D, u;)dy,

By invoking again the quazi-dependence assumption we noticg;tltiiesn’t depend on
D, sinceu; is given, so we droP. We also notice thap(u;|6', D) = p(u;|6", D).

I p(uil6', D))P(wi = 116", u;)du :I p(u;|6", Di)P(wyl6', u)du =
J- p(Dil6", u)) p(uil6") p(uil6")P(wil6")

p(Dile") p(uile") T
p(DII6Y, W) Pl
J p(D;l6") '

In p(D;|6", u;), 8' has no direct relationship wi; but only throughu;, so we invoke the
quazi-dependence assumption and d?opo p(D;|6", u;) = p(D;|u;) which is the likeli-
hood ofu; given the datdD and is assumed known. Sinag and p(D;|6') don't contain
theu; variable, we have

p(Dilu) p(u;6y") 7'
-I p(D;le")

m I p(D; 16", u;) p(u;16")du,

dui =

Then we get

! t _
Di= W‘[ P(Dilu) p(uil6)du =
ﬂkt
I p(D;, u;|6")dy,

t 6.7
T [ PPy = 6.7
I p(Di|u;) p(u;[6Y)du

I p(D;u;) p(u; 6" du; =

' [ P(DiIu) Py 64y
I P(Dilu;) Z it p(u|6;")duy,

and if we exchange the summation and the integral we get

13
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7'['|(t

> [ POl o )cly
j=1

I p(Dilu;) p(u; 6" du, =

! I p(Dilu;) p(uil6y")du

K
2 ﬂth p(D;ilu;) p(u;|6;")du
=1

We defineg,
gi = P(Dil6y") :I p(D; u;) p(u; 16, )duy, =
and we rewrite thexpression ofy, as
t
7T .
Py = k Oik
2 719
=1

(6.8)

We can computg, by evaluating the integral using one of the methods described later
and we can the compugg, . The first term of Eq. (6.6) can be written as follows

K ‘ K
kZl E{ l//ikle s D} |Og T = kzllpik |Og TTy (69)
We now simplify the second term of Eq.(6.6).

K
gl EDZ{ @y log p(uy; |‘9k)|0t’ D} =

K
0+ kzl Eui{ log p(y; |9k)|D, 6', Yy = 1} P(wy = 1ID, ")

The second factd?(y; = 1|D, 8') is the same as thg, that we have derived. We use the
result of Eq. (6.7) directly, and have

Eui{ log p(y; |9k)|D1 6', Yy = 1} P = Eui{ log p(Ui|9k)|D, th} Py =
i I log p(u;|6x) p(w;|D;, 6 du,

All the 8' parameters are given and only lo@;|6,) containsy, andC, which will be
estimated in the Maximization step.

Since the third term of Eq. (6.6) doesn’t contain any variables that need to be esti-
mated in the maximization step, it is irrelevant and we can ignore it.
6.2. Maximization

In the Maximization step, we use the same method to get the optimal solution for
K
parameters i®; = { 4, Cj, nj}. We also need to use the constrgntr; = 1. | use the
i=1
defined symbols to substitute some complex terms in Expectation step. By using the
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Lagrange multiplier, we get the maximization function.

Q6,6 =

N K K K (6.10)
2 2 Ty logm + 2 Py I log p(ui|6,) p(ui D;, 6")du g"‘ A E\- -2 ﬂkD
i=1 Lk=1 k=1 k=1

O

We want to take partial derivatives oveX(8, 8') with respect to the components of
6] :{:uj!Cj!nj} andA.

First, we take the partial derivative with respecto Only the first term and the
lagrange term contain the variabie in the Eq. (6.10), so the other terms will vanish.

Since the integral operator and partial derivative are the linear operators, we can inter-
change them

0Q XN 1
— = . —=21=0
N 1
A= —
Ellﬂk ﬂj
and after solving forr
1 N
A i=1

Using the constraint of the mixture probabilities (by taking the derivative with respect to
A)

we get

= (6.12)

Next we take the partial derivatives with respect/faand set it to O to get the opti-
mal value ofu; which only appears in the log-Gaussian ji§y; |6). The other terms will
vanish.

15
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N K
oo 92 Z i [log (il puilDi, 6 )du (6.13)
= =0
0u; 0 1y
The distribution ofp(u;|6y) is a Gaussian with probability density function
1 (i) T C (Ui~ )
p(Uile) = ——————e
V(2r)™MCy|
and
1 - Tc, 1y -
V(2m)™MCy| 2
Then we plug the expression of Ipfy;|6,) into the Eq. (6.13) and we get
N X o 1 (Ui = 24" C U — ) O
0 ko - u|D;, 6,)du
aQ': |§1k§1w J gDV.(.Zﬁyrﬁlel 2 [P( || i k) i o
o, 0 1y

After changing the order of the summation, the integral and the derivative, and ignoring
the term that vanishes we get

Q" _J 1 % (U = )" C M = ) p(wiID;, 6,) O
w [ = u=0
ou; .Zlkzl‘z’kfz Ay, A
C —
As mentioned in the last problem, the derlvatlv\,( of- )’ 2" U ) with respect

to u, is C, *(u; — 1). Thus we get

2 = 3 g [ = )P, B)du =
6uj |kI j i j i1~ Yk i

N
__lepikI p(u|D;, 6")C; tuidy; — _lepik_[ p(u;|D;, 8)C; ™ i dy; = 0.

Sinceu; can be moved out of the integral and siﬁ?c;él Is not singular and can be elimi-
nated, we get

N
'lep.kj' pP(ui|D;, 6 du = y; le.kj' p(ui|D;, 6)dy,

and

Mz

lpikI p(u;|D;, 6" )u;du

Hj =
Di

M=

sinceI p(y;|D;, 8 )dy = 1. Furthermore, we can write

16
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p(Dilu;, 6" p(ui6k")
p(D;il6¢")

and from the quazi-dependence assumption, we pé®du;, 6,') = p(Di|u;). Thus we
rewrite alove expression as

p(u;|D;, 8") =

N ‘plk
Ep@”@ﬁIme)MM&)umh

Z D
i=1

Recall that we denoted p(D;|6') as gx, and similarly we denote
Oi :I p(D; |u;) p(u; |6, )u du. Then we get

N glk
zl e =1 Ok

N~
2 Dy

i=1

Hij =

Finally, we need to derive the last unknown parameéler As before, only
log p(u;|6) containsC;. We start the derivation from the following:

Q.
oC;

N K N
§1 kgllpikj- p(u;|D;, 6;) log T2 du i

9 oC,
A T -1 t
1 _Zlkzllff.k I(Ui = 1) C (U = ) p(w Dy, 6, )du;
27 oC, =0
which is
Q' _
aC;
N K t
1 Zlkzlwikaj(log Ckl)p(u;[Ds, 6" )dy,
2 aC, B
A T -1 t
1 _Zl kzlwikaj(ui = t) Ci (Ui = 1) P(Ui Dy, 6 ) duy
2 aC; =0
Since

17
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dloglcl _ 1
0[Cy] ICxl
and the derivative of a determinant is
0ICy| 4
—— =|C,|C
o, = IcC

the derivative of the logarithm of the determinant is

dlog [Cyl
aC,

= Ck_l.

The differentiation of a quadratic product is

Ou; — ) C (U — ) _ “CM U = (U - )T

oCy
We combine the alve twoequations and get
Q' _ B}
GC le.kICj 'p(u|D;, 8 duy; +

> ,; lZI.kI p(u|D;, 8)C; (U — pj) (Ui — ;) 'C My = 0

After left and right multiplying byC; both sides and omitting non-zero constants, we get
N
leffikcj I p(u;|D;, 6,")duy; —

i%lpik_[ p(W;|D;, ") (U = ;) (u; = /Jj)TdUi =0

and get finally
S t T
2 ‘pikI P(Ui D, G )(u; = p)(U; — ) du

Cj — i=1

N
2 i I p(u[D;, &) dy
i=1

The integral in the denominator is equal to one so we get

N P(Di|u;) p(u; Bk ) (U = ) (U = p4)"
2] o6 ™
C, = F
Ellzfik

As before, we denotg =J’ p(D;|u) p(u; 18 (u; — (e ,uj)Tdui. Then we have

18
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6.3. Computinggi, gi and gi

All the computations described @le are simple summations and averages of the
Oic’S, gi's and gi’s. The only non trivial computation involveg,, gi and g} them-
selves. The reason is that they contain integration.

The actual method used to compute them will depend on the form in wiglu;)
is given. If we are given samples on a regular grid (which can be efficient for low dimen-
sionality u;) we can compute(u;|6,') on the same grid and the integral becomes a dis-
crete summation. Letu; be the discrete sampleswffor m=1..M. We can write then

M
p(Dilu;) = Zl p(Di| "u) S My —uy) =
m=
so the integral

Oik :I p(D;|u;) p(u; 16" duy; =
M
Im%l p(Di| M) Sa Mu; = u;) p(ui 6" )dy =
3 p(DII"u) [ 2", - ) plule, )y

is transformed into a sum of several definite integrals that can be computed analytically.
If we approximate the sampling function with the zero mean Gaussian with vafiance
the integral becomes much simpler

M
Ok = Z_l p(Dilmui)I N(™u; = u;; 0,Cq) p(us 6y )duy; =
M
2 p(Dilmui)I N(™u; = u;; 0,CN(U; ', Cl)du =
m=1 U

M
Zl P(Di| Mu)N(Mu;; ', Cit + Cy)
m=

whereC; is a matrix chosen so that the Gaussian approximates the sampling function. A
diagonal matrix with every member of the diagonal equal to 0.4 is adequate for our pur-
poses if the samples are on integer valueg.oA similar procedure can be followed to
compute the otheg’s

19
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M
Oik = Zl P(Di| ™u)N(Mu;; i, Cit +C) My
m=

M
gk = 2 PO Mu)N(™u; a', Ct + Co)(™Ui = )" (Ui = )

m=1

It is obvious that the aveprocedure is not suitable for high dimensionalitg. An
alternative is thatp(D;|u;) is given in a standard analytic form which would allow the
analytic computation of thg's. There are many good candidate standard forms but one
of the most adaptable is Weighted Sum of Gaussians (similar to Mixture of Gaussians but
without the requirement that the mixture probabilities sum up to one). Let

P(Dilu;) = :Zzil Cim N (Ui Him, Cim)

whereg;, is the mixture weight for Gaussiamfor data point;, and g, andC;,, are the
m" mean and covariance for point As beforep(u;|6," is a Gaussian, which we denote
asN(u;; ¢y, Ci). So we can write

Oik :I p(D;|u;) p(u; 16" duy; =
I mﬂ; im N (Ui Him, Cim)g\l(ui’ i Cl)du

Z_Il Qim I N(U;, Lims Cim) N (Ui, i, Cl)du

The product of two Gaussians is a simple function of the two sets of para@gtets,
Him and,uj

N(U;; fim, Cim)N(Ui; 2, CL) =

N(ui; HMimk: Cumk) T Slige

N(O; Limk» Cimi)
N (Ui Himks Cimi) fimk

where
- 10
Cimk = g:u% +(Cy) 1D
41
Himk = C(Cim thim + (Cl) ™ 14}
f = N(O; Him» Cim)N(O; ,UL, Ctk)
" N(O; Limk: Cimk)

and since we know that the integral of the Gaussian is the unity

;i
Ok = 2 Oim fimk
m=1
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In a very similar fashion we can derive the expressiogifanddi,

Oik =I p(D;|u;) p(u; |6, us duy =
IE:Z' Gin N (Ui, £tim, .m)g\l(u., 1, CHu;dy,
Z QimI N(U;; Himir Cimi) fimicli AU
Z Qim |ka- N(U;; timio Cimi Ui duy; =
mgl Clim Firmk Himk
and

’|I'< = Z Q|m |ka|mk

6.4. Summary of the Algorithm

While the derivation is rather complicated the steps one needs to follow to execute
one iteration of the algorithm are straightforward. We will follow the established practice
and name the two distinct groups of stépgectationand Maximizationrespectively
although this association is by no means direct. The Expectation step is

t
_ 7h Qi
‘Zlik T K
2 779
=1

and the Maximization step is:

21



Lu Ye, Minas E. Spetsakis Clustering of Unobserved Data

After we compute the parameters of all the Gaussians we can compug'she be
used in the next step. If th®D;|y;) is given in discrete form as a setMf samples on a
regular grid in the space spannedubthen

M

Oik = Zl p(Di| Mu)N(Mu;; w1, Cit +Cy)
m=
il m m m t t

Oik = Zl P(D;| Muy) "uN("ui; gy, G +Cs)
m=
M

Jik = Zl P(DiI ™u)(Mui = 1) "My = )N i G+ C)
m=

If on the other hang(D;|u;) is given as a weighted sum of Gaussians then

- -0
Cimk = S:m} +(Ck) 1D
41
Himk = C(Cim tim + (Cl) ™ 444
f = N(O! Him C|m)N(01 /’1}(; Ctk)
" N(O; Limks Cimi)

mj
Ok = 2 Oim fimk
m=1
m;
Ok = 2 Clim fimk,y
m=1
m
Qik = Zl Gim f (Cim» Cis Him» 1) Cimi
m=

7. Conclusion

In this report, we reviewed briefly the conceptsGhlistering Expectation Maxi-
mizationand Mixture of Gaussiangand then developed the background for clustering of
unobserved data under the Mixture of Gaussians model. WeMesadhum Likelihood
estimation to do this and since this problem involves hidden variables (the unobserved
data and the membership) we usedBRpectation Maximizatio(EM) method.

Our fundamental assumption is that the data is not directly observed but we assume
that its probability distribution is known. Each datums conditioned on a set of known
parameter®; and that datunu; is independent ob; if i =i'. We also assume that the
D;s are not directly dependent on the clustering parameters which gave arise to the quazi-
dependence assumption we used throughout the report. Armed with these assumptions we
developed the equations for the iterative estimation of the gaussian clusters. If the proba-
bility distribution of the data is assumed to be a parametric form the formulas could be
further further simplified and we plan to do this for future research.
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