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ABSTRACT

This report provides an review of Clustering using Mixture Models and the Expecta-
tion Maximization method[1] and then extends these concepts to the problem of cluster-
ing of unobserved data where we cluster a set of vectorsui for i = 1. .N for which we
only know the probability distribution. This problem has several applications in Com-
puter Vision where we want to cluster noisy data.
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1. Clustering

Data clustering is an important statistical technique, closely related to unsupervised
learning. Clustering is the process of grouping the samples into clusters, so that samples
with similar properties belong to the same cluster. A cluster is just a set whose members
are similar but are different from the members of other clusters. For example, samples in
a particular space where the distances between two samples in a cluster is less than mini-
mal.

One of the most popular clustering techniques is based on Expectation Maximiza-
tion (EM). EM is a method for estimating parameters using partially observed data[2, 3].
Since the clustering problem would be trivial if we already knew the membership of
ev ery sample to a particular cluster, we treat this membership information as the unob-
served part of the data and apply EM. In this report we develop a clustering method that
treats not only the membership of the data as unobserved but the data as well.

Edge grouping is a potential application for clustering. Edges can be considered as
the sets of many edgels (edge elements) and these edgels can be detected in an image
using any of the standard edge detection techniques.

If we happen to know that our edgels belong to straight lines and we have an esti-
mate of the slope of the lines then we can group the edgels into straight line edges using a
clustering technique. One of the problems is that some of the information is not very
accurate and we can only assume that we know the probability distribution of the data,
but not the data itself. So we essentially have partially observed data.

2. Mixture Model

The underlying model of EM clustering is the Mixture Model[4]. This model
assumes that each sample comes from a clusterω j , where j = 1, . . . ,K . The way to gen-
erate samples form the mixture model is as follows. We select one of the clustersω j with
probability P(ω j ) = π j and then generate a samplex out of a probability distribution

p(x|ω j ,θ ) or p(x|θ j ) whereθ =



θ j , j = 1, . . . ,K





and θ j is the vector of parameters

associated with the clusterω j , which in our case contains the meanµ j , the covariance
matrix Cj and the mixture probabilityπ j . One should notice thatp(x|θ j ) and p(x|ω j ,θ )
are the same. The first one denotes the probability density ofx given the parametersθ j

of the clusterω j and the other denotes the probability density ofx given the parametersθ
of all the clusters and the fact that we have selected clusterω j . The densityp(x|θ j ) is
called component density. The probability density function of a sample x from the mix-
ture model is then

(2.1)p(x|θ ) =
K

j=1
Σ p(x|ω j ,θ )π j .

For the mixture probabilitiesπ j , the following is true
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K

j=1
Σ π j = 1.

3. Maximum-Likelihood Estimation

The Maximum-Likelihood (ML) method can be used for parameter estimation from
a set of samplesxi , i = 1. .N. We assume thatp(x|θ j ) is of known parametric form with
parameter vectorsθ j which are unknown. The mixture probabilitiesπ j are also unknown.
The maximum-likelihood estimate of the parametersθ related to a set of data
D = xi , i = 1, . . . ,N is obtained by maximizing the log likelihood of the parameters. The
likelihood of the parameters is the probability of the data given the parameters

L(θ ) = p(D|θ ) =
N

i=1
Π p(xi |θ )

assuming the data is independent. By substituting the probability density function Eq.
(2.1), we get

p(D|θ ) =
N

i=1
Π

K

j=1
Σ p(xi |ω j ,θ )π j .

The reason to take the log-likelihood of the parameters is thatp(D|θ ) inv olves a product
of N terms. To simplify the calculation, we use log-likelihood to change products to
sums. We will use the Gaussian distribution[5] as our parametric form forp(xi |θ j ). For
multidimensional datax it takes the form

(3.1)p(x|θ j ) =
1

√ (2π )m|Cj |
e

−
(x−µ j )

TC j
−1(x−µ j )

2

wherem is the number of dimensions of vectorx, Cj is the covariance matrix andµ j is
the mean for the clusterω j . The mixture probabilities, the covariance and the mean are

bundled in the parameter vectorθ j =




µ j ,Cj , π j




.

Im most applications of ML the next step is to maximize the likelihood function (or
more often the log-likelihood). Usually the result is a simple analytic expression which
along with a host of other nice properties explains the popularity of ML. But in this case
we have a product of sums and it is impossible to get a simple expression.

The problem would become very simple if we knew the membership of every sam-
ple. Then we would only have to solve the Gaussian parameter estimation problem for
ev ery cluster. But lacking this membership information we can use Expectation Maxi-
mization.

4. Expectation Maximization Applied to Clustering

Expectation Maximization (EM) is an iterative algorithm that alternates between
two steps: the Expectation step and the Maximization step. In the Expectation step, we
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first derive the log-likelihood of the unknown parameters as a function of the unobserved
data and then we compute the expected value of this likelihood using the probability den-
sity of the unobserved data. Since the density of the unobserved data involves the parame-
ters we want to estimate we use a guess. In the Maximization step, we obtain the parame-
ters that maximize the expected value of the likelihood. This new parameter will become
the guess to be used in the next iteration. This iteration goes on until convergence or satis-
faction of the termination conditions. The unknown parameter vectorθ contains informa-
tion appropriate for the mixture model we use. Since we will use the Gaussian distribu-
tion over the mixture model, normally the parameter vector contains three components
which are the mean and the variance for each cluster and the mixture probability. These
are usually the unknowns of our problem. After we know the mean, variance and the mix-
ture probabilities of each cluster, we are able to group samples. The number of clustersK
is known, but we can augment the algorithm with BIC or AIC (see below) and haveK as
unknown too.

The straight application of ML to our clustering problem is extremely difficult
because it involves logarithms of sums and many complicated functions. Luckily, it can
be easily put in a form where we can apply EM. We do this as follows[6]. Letzi be a
vector of lengthK (the number of clusters) and thej th element of the vector is 1, if the
samplexi was generated by clusterj and zero otherwise. Obviously there is exactly one
“1” in the vector and the rest are zero so

(4.1)
K

j=1
Σ zij = 1

wherezij is the j th element ofzi . Since we do not know the membership of every sample,
zi is the unobserved part of the data. LetDy = yi , i = 1, . . . ,N be the complete data set
whereyi = { (xi , zi )} , Dx = xi , i = 1, . . . ,N is observed data set andDz = zi , i = 1,. . . , N
be the unobserved data set.

In the expectation step, the expression for expectation is

Q(θ ,θ t) = EDz
{ ln p(Dy|θ )|Dx,θ t} .

Although it looks intimidating at first, it can be tamed in a few simple steps. The first step
is to derive the form of lnp(Dy|θ ) which is a function ofDx, Dz andθ . Once we simplify
the lnp(Dy|θ ), we can get its expected value by applying the standard rules. The sub-
script Dz in EDz

means that the random variables are the elements ofDz and the proba-
bility of Dz is conditioned onDx andθ t , whereθ t is just a guess, but it is usually the
result of thet th (or previous) iteration. The result is a function ofθ , the unknown mixture
parameters,θ t the guess forθ and the observed dataDx, but for simplicity we dropDx

from Q(θ ,θ t).

Using the rule of joint probabilities and assuming that theyis, the elements ofDy,
are independent, we can rewritep(Dy|θ ) as follows:
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p(Dy|θ ) =
N

i=1
Π p(yi |θ )

Since we haveyi = { (xi , zi )} , p(yi |θ ) can be written as

p(yi |θ ) = p(xi , zi |θ )

Based on the properties of conditional probabilityp(xi , zi |θ ) has the following probability
density expression.

p(xi , zi |θ ) = p(xi |zi ,θ )p(zi |θ )

As we mentioned above,zi is the vector, whosej th element is 1 if the samplexi was gen-
erated by the clusterj . Therefore, the probability ofzi given the parameter vectorθ , is
equal to the mixture probabilityπ j , i,e. the probability to select clusterj among the clus-
ters of the mixture model.

The probability ofxi given zi andθ , p(xi |zi ,θ ) has an alternative form which isp(xi |θ j ),
whereθ j is the vector whose parameters associated with the clusterω j . So we hav e

p(xi , zi |θ ) = p(xi |θ j )π j .

Thus p(yi |θ ) can be written as

(4.2)p(yi |θ ) = p(xi |θ j )π j

This equation only presents the correspondence ofp(yi |θ ) to the parameter vector of the
j th clusterθ j . Recalling thatzi vector,zij = 1 andzik = 0 for k ≠ j , we hav e the follow-
ing new expression forp(yi |θ ):

p(yi |θ ) =
K

k=1
Π(p(xi |θ k)π k)

zik

The term (p(xi |θ k)π k)
zik is equal top(xi |θ j )π j whenzij = 1, and it is 1 whenk ≠ j . Thus,

the product terms of all K clusters is the same as Eq. (4.2). By collecting all the samples
yi in Dy the probability density function of theDy set givenθ is:

p(Dy|θ ) =
N

i=1
Π

K

k=1
Π(p(xi |θ k)π k)

zik

Then we should obtain lnp(Dy|θ ) by simply taking the logarithm on the above equation:

ln p(Dy|θ ) =
N

i=1
Σ

K

k=1
Σ zik ln(p(xi |θ k)π k)

and by applying the logarithm rule once more

(4.3)ln p(Dy|θ ) =
N

i=1
Σ

K

k=1
Σ zik ln(p(xi |θ k)) +

N

i=1
Σ

K

k=1
Σ zik ln(π k)

Eq. (4.3) is our form for lnp(Dy|θ ) and we can now calculate the expected value of it to
conclude the Expectation Step. Since the form of lnp(Dy|θ ) is the sum of two terms, the
expected value should be the sum of the expected values of those two terms. We also
need to keep in mind that the random variables are the unobserved datazik only. The
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other terms of the equation should be treated as the constants in this situation. The
expected values of constants are themselves.

(4.4)

Ez{ ln p(Dy|θ )|Dx,θ t} =
N

i=1
Σ

K

k=1
Σ Ez{ zik |Dx,θ t} ln(p(xi |θ k)) +

N

i=1
Σ

K

k=1
Σ Ez{ zik |Dx,θ t} ln(π k)

Let’s renameEz{ zik |Dx,θ t} aszik , then we have

(4.5)Ez{ ln p(Dy|θ )|Dx,θ t} =
N

i=1
Σ

K

k=1
Σ zik ln(p(xi |θ k)) +

N

i=1
Σ

K

k=1
Σ zik ln(π k)

Based on the definition of thezik vector, we notice thatzik takes two values only: zero
and one. So

zik = Ez{ zik |Dx,θ t} = 0 ⋅ P(zik = 0|Dx,θ t) + 1 ⋅ P(zik = 1|Dx,θ t) = P(zik = 1|Dx,θ t)

is the probability ofzik to be 1. This is the same asP(ω k|xi , Dx,θ t) the probability the
samplexi to be generated by thekth cluster among all the clusters. Applying the Bayes
rule, we have zik responding to the whole model:

(4.6)
zik = Ez{ zik |Dx,θ t} = P(ω k|xi ,θ t) =

p(xi |Dx,θ t ,ω k)P(ω k|Dx,θ t)
K

j=1
Σ p(xi |Dx,θ t ,ω j )P(ω j |Dx,θ t)

=

p(xi |θ
t ,ω k)P(ω k|Dx,θ t)

K

j=1
Σ p(xi |θ t ,ω j )P(ω j |Dx,θ t)

=
p(xi |θ k

t)P(ω k|Dx,θ t)
K

j=1
Σ p(xi |θ j

t)P(ω j |Dx,θ t)

Since we use a known parametric form for the probability, Gaussian in this case, we can
computep(xi |θ

t) and so computezik from Eq. (4.6) and the we can plug the value ofzik

into Eq. (4.4), to get the final result of the Expectation Step.

In the Maximization Step, we are supposed to maximize the above expectation func-
tion values in order to get the optimal solution for the unknownθ which can be used in
the next round asθ t to estimate a new expectation function and from this to get the new
θ . There is one constraint in our mixture model, which is

(4.7)
K

j=1
Σ π j = 1.

Therefore, we maximize the expectation functionQ(θ ,θ t) subject to this constraint. We
define a newQ′(θ ,θ t) which takes into account the constraint of Eq. (4.7) by using the
Lagrange multiplier.

Q′(θ ,θ t) =
N

i=1
Σ

K

k=1
Σ zik ln(p(xi |θ k)) +

N

i=1
Σ

K

k=1
Σ zik ln(π j ) + λ(1 −

K

j=1
Σ π j )

Using standard calculus procedures, we can find the maximum value of a function subject
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to the constraint by taking derivatives over the unknowns of the function andλ , set the
derivatives to zero, and solve the resulting equations to find the value of the unknowns
andλ that maximize the function. In the our case the unknown isθ the vector containing
all the parameters of the mixture modelπ j , µ j andCj for j = 1. .K .

First, we take the partial derivative with respect toπ j . In Q′(θ ,θ t), only the last two
terms involve the variableπ j so the first term will give zero. Since we only take
derivatives of the wholeQ′ term with respect to one particularπ j term, only thej th ele-
ment of the wholeQ′ term will have non zero value. So we can get rid of the summation
over j = 1,. . . , K , and we have

∂Q′
∂π j

=
N

i=1
Σ zik

1

π j
− λ = 0

λ =
N

i=1
Σ zik

1

π j

(4.8)π j =
N

i=1
Σ zik

λ

If we take the summation from 1 toK on both sides we can use Eq. (4.7) to eliminateπ j

and have
K

j=1
Σ

N

i=1
Σ zik

λ
= 1

from which we get

λ =
K

j=1
Σ

N

i=1
Σ zik

So we plug theλ into Eq. (4.8), and get

π j =

N

i=1
Σ zik

K

k=1
Σ

N

i=1
Σ zik

We notice that the denominator in the above expression is
K

j=1
Σ

N

i=1
Σ zik =

N

i=1
Σ

K

j=1
Σ zik =

N

i=1
Σ 1 = N

after taking into account Eq. (4.1). So finally

(4.9)π j =
1

N

N

i=1
Σ zik .

Second, we take the partial derivative with respect to the unknownµ j , the mean of
the j th cluster. It is only involved in the Gaussian distribution for our mixture model, so
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we only need to be concerned with the first term of the expectation function when taking
derivatives. In the first term of the function,zik uses the parametersθ t which is the guess
and we consider it independent fromθ and constant. By the same reason as above, we
eliminate one summation fromj = 1, . . . ,K by taking derivative with respect to the par-
ticular µ j . The definition of the Gaussian density from Eq. (3.1) is

p(x|θ j ) =
1

√ (2π )m|Cj |
e

−
(x−µ j )

TC j
−1(x−µ j )

2

and the log is

ln
1

√ (2π )m|Cj |
−

(xi − µ j )
TCj

−1(xi − µ j )

2

The derivative then is as follows:

∂Q′
∂µ j

=
∂

∂µ j





N

i=1
Σ zik ln

1

√ (2π )m|Cj |
−

N

i=1
Σ zik

(xi − µ j )
TCj

−1(xi − µ j )

2





= 0

The derivative of the first term equals to zero. The derivative of
(xi − µ j )

TCj
−1(xi − µ j )

2
with respect toµ j is Cj

−1(xi − µ j ). The derivative of the second part is

∂Q′
∂µ j

=
N

i=1
Σ zikC j

−1(xi − µ j ) = Cj
−1

N

i=1
Σ zik(xi − µ j ) = 0

which results to
N

i=1
Σ zik xi =

N

i=1
Σ zik µ j

or

µ j =

N

i=1
Σ zik xi

N

i=1
Σ zik

and using Eq. (4.9) we get

µ j =
1

Nπ j

N

i=1
Σ zik xi .

It’s time to derive the last unknown variableCj of our model in the Maximization
step. The steps of derivation are similar to the derivation ofµ j . We only work with the
first term of expectation function. The difference begins with the following step:
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∂Q′
∂Cj

=
∂

∂Cj





N

i=1
Σ zik ln

1

√ (2π )m|Cj |
−

N

i=1
Σ zik

(xi − µ j )
TCj

−1(xi − µ j )

2





= 0

The above differentiation involves derivatives of a determinant and a quadratic product
which we can get from the Matrix Reference Manual
(http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/index.html):

∂
∂Cj

(xi − µ j )
TCj

−1(xi − µ j ) = −Cj
−1(xi − µ j )(xi − µ j )

TCj
−1

∂
∂Cj

|Cj | = |Cj |Cj
−1

and using the chain rule

∂
∂Cj

ln
1

√ (2π )m|Cj |
=

∂
∂Cj



−

1

2
ln |Cj |




= −
1

2
Cj

−1

and we get

∂Q′
∂Cj

= −
1

2

N

i=1
Σ zik



Cj

−1 + Cj
−1(xi − µ j )(xi − µ j )

TCj
−1


= 0

After that, we multiplyCj twice on both sides of above equation to eliminateCj
−1, and

we get the following:
N

i=1
Σ zik(−Cj + (xi − µ j )(xi − µ j )

T) = 0

N

i=1
Σ zikC j =

N

i=1
Σ zik(xi − µ j )(xi − µ j )

T

which gives

Cj =

N

i=1
Σ zik(xi − µ j )(xi − µ j )

T

N

i=1
Σ zik

By using Eq. (4.9), we have theCj for the next iteration.

Cj =
1

Nπ j

N

i=1
Σ zik(xi − µ j )(xi − µ j )

T

In conclusion, the above derivation explains the internal detail steps of EM algo-
rithm. When we run the EM algorithm each time, we can directly use the obtained equa-
tions to calculate the covariance, means and mixture parameters.

K-means clustering is a simple and classical example by applying EM algorithm. It
can be viewed as the problem of estimating the means of K Gaussians Mixture Model.
The special assumption of K-means is that the mixing probabilitiesπ j are equal and each
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Gaussian distribution has the same variance.

5. Bayesian Information Criterion Applied to Clustering

The EM clustering algorithm that we outlined above assumes a Mixture of Gaus-
sians as the underlying model. After the particular mixture model is defined, the EM
algorithm is be applied to find all the parameters except the number of clusters. So we
have to provide the number of clusters through some other method. The Bayesian Infor-
mation Criterion (BIC) is a widely used method for this purpose[7, 8], and can be applied
in our case to find the number of clusters.

Since we use EM to find the maximum mixture likelihood after each iteration, we
can get reliable approximation of BIC. The expression of BIC is

(5.1)BIC = −2LM (x,θ ) + mM log(N)

whereLM (x,θ ) is the maximized mixture loglikelihood for the modelM , mM is the num-
ber of independent parameters to be estimated in the model andN is the number of sam-
ples. The maximized mixture loglikelihood function is

LM (x,θ ) = log
N

i=1
Π p(xi |θ ) = log

N

i=1
Π

K

j=1
Σ p(xi |θ j )π j

Recalling the material discussed in the previous sections,p(xi |θ j ) is the probability ofxi

given that it belongs to thej th cluster, which is a Gaussian distribution andπ j is the the
mixture probability of the modelM . The smaller the value of BIC, the stronger the evi-
dence for the model.

The BIC can be used not only to determine the number of clusters by comparing
models, but also help avoid local minima in our clustering problem. Since we use ran-
dom starting points, usually by selecting random initial values for parametersθ j ,
θ j = (µ j ,Cj , π j ) where j = 1,. . . , K , we get distinct clustering results when we run the
EM algorithm several times. If it is our lucky day, we get reasonably good initial values
for θ j , and we get desirable results in the first attempt. However, we can’t control our
luck. To solve this problem, we apply the EM clustering on the same data several times
using random starting points and calculate the BIC to examine the maximum likelihood
for each complete run by applying Eq. (5.1). Then we select the run that has minimum
BIC.

6. Expectation Maximization Clustering Applied on Unobserved Data

In the previous sections, we discussed the EM method and the clustering problem
and applied the EM algorithm on the clustering ofN samples intoK clusters. We
assumed that the underlying model is a Mixture of Gaussians and the coordinates of the
samples are given. Next we study the problem where the coordinates of samples are not
given directly and we only know the probability distributions of the samplesp(ui |Di ),
whereui are the samples andDi is the data where these probabilities are based on. The
union of allDi is D. We will again use EM to cluster these samples. The general proce-
dure of EM algorithm remain the same but we have different assumptions and precondi-
tions.

10
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As before, we have both a set of observed data and a set of unobserved data. We are
given the informationD, and we haveN unobserved samplesui , i = 1, . . . ,N. As before
ψ i is the membership vector of that sample where asψ ij = 1 if sampleui was generated by
clusterω j and is equal to zero otherwise. The complete the datayi for each sample is
yi = (Di ,ψ i , ui ). The complete data set isDy = (yi , i = 1, . . . ,N) whereyi = (Di ,ψ i , ui ) .
The unobserved data isDz = (zi , i = 1, . . . ,N) wherezi = (ψ i , ui ). Since we assume Mix-
ture of Gaussians, we have to compute the parameter vectorθ = (θ j , j = 1. .K ) where
θ j = (µ j ,Cj , π j ) is the mean, variance and mixture probabilities of each cluster.

6.1. Expectation

The first step in EM is to derive the expression for expectation. In this problem,D is
the only given data,Dy is the complete data andDz is the unobserved data. The general
expression for the expectation for this problem is

Q(θ ,θ t) = EDz
{ ln p(Dy|θ )|D,θ t}

but now Dy and Dz contain different data sets and we need to derive lnp(Dy|θ ) under
different assumptions. As before, we write thep(Dy|θ ) as:

(6.1)p(Dy|θ ) =
N

i=1
Π p(yi |θ )

Sinceyi = (Di ,ψ i , ui ), we can write

p(yi |θ ) = p(Di ,ψ i , ui |θ )

and we rewritep(Di ,ψ i , ui |θ ) as

p(Di ,ψ i , ui |θ ) = p(ψ i , ui |θ )p(Di |θ ,ψ i , ui )

and p(ψ i , ui |θ ) as

p(ψ i , ui |θ ) = p(ψ i |θ )p(ui |θ ,ψ i ).

so

p(yi |θ ) = p(ψ i |θ )p(ui |θ ,ψ i )p(Di |θ ,ψ i , ui )

We now introduce the “quazi-dependence” assumption thatD (or its components) are not
directly related toθ (or its components) but only through the correspondingu. So
p(Di |θ , ψ i , ui ) = p(Di |ui ). So thep(yi |θ ) becomes

(6.2)p(yi |θ ) = p(ψ i |θ )p(ui |θ ,ψ i )p(Di |ui )

The first term in Eq. (6.2) isp(ψ i |θ ) andψ i is the membership vector for thei th sample.
Then

ψ ij =




1 if ui generatedbyω j

0 otherwise

and
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(6.3)
K

j=1
Σ ψ ij = 1

and we can write

p(ψ i |θ ) =
K

k=1
Π π k

ψ ik

The value of the above expression isπ j if the i th sample is the member ofj th cluster, or
ψ ij = 1. We can apply the same technique top(ui |θ ,ψ i ) and have

p(ui |θ ,ψ i ) =
K

k=1
Π p(ui |θ k)

ψ ik .

Then the Eq. (6.2) can be rewritten as

p(yi |θ ) = 


K

k=1
Π π k

ψ ik 





K

k=1
Π p(ui |θ k)

ψ ik 

p(Di |ui )

By taking the log ofp(yi |θ ) we get:

(6.4)log p(yi |θ ) =
K

k=1
Σ ψ ik logπ k +

K

k=1
Σ ψ ik log p(ui |θ k) + log p(Di |ui )

and from Eq. (6.1)

log p(Dy|θ ) =
N

i=1
Σ log p(yi |θ )

We substitute Eq. (6.4) into the above equation, we get the function of logp(Dy|θ )

(6.5)log p(Dy|θ ) =
N

i=1
Σ

K

k=1
Σ ψ ik logπ k +

N

i=1
Σ

K

k=1
Σ ψ ik log p(ui |θ k) +

N

i=1
Σ log p(Di |ui )

The final step to derive the expectation function is to take expected value of Eq. (6.5) with
respect to the unobserved dataDz given the dataD and a guess of the clustering parame-
tersθ t . The expectation equation is:

(6.6)

EDz
{ log p(Dy|θ )|D,θ t} =

N

i=1
Σ 


K

k=1
Σ E{ψ ik|θ t , D} logπ k +

K

k=1
Σ E{ψ ik log p(ui |θ k)|θ t , D} +

E{ log p(Di , ui )|θ t , D} 


where we assume that all the expected values are taken overDz. We first derive
E{ψ ik |θ t , D} , which we nameψ ik .

ψ ik = E{ψ ik|θ t , D} = 0 ⋅ P(ψ ik = 0 |θ t , D) + 1 ⋅ P(ψ ik = 1 |θ t , D)

sinceψ ik takes only the values 0 and 1. So

12
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ψ ik = P(ψ ik = 1 |θ t , D)

Since we need explicit dependence onui we write

P(ψ ik = 1 |θ t , D) =

∫ P(ψ ik = 1 ,ui |θ
t , D)dui =

∫ p(ui |θ
t , D)P(ψ ik = 1 |θ t , D, ui )dui

By invoking again the quazi-dependence assumption we notice thatψ ik doesn’t depend on
D, sinceui is given, so we dropD. We also notice thatp(ui |θ

t , D) = p(ui |θ
t , Di ).

∫ p(ui |θ
t , Di )P(ψ ik = 1 |θ t , ui )dui = ∫ p(ui |θ

t , Di )P(ω k|θ
t , ui )dui =

∫
p(Di |θ

t , ui )p(ui |θ
t)

p(Di |θ t)

p(ui |θ k
t)P(ω k|θ

t)

p(ui |θ t)
dui =

∫
p(Di |θ

t , ui )p(ui |θ k
t)π k

t

p(Di |θ t)
dui

In p(Di |θ
t , ui ), θ t has no direct relationship withDi but only throughui , so we inv oke the

quazi-dependence assumption and dropθ t so p(Di |θ
t , ui ) = p(Di |ui ) which is the likeli-

hood ofui given the dataD and is assumed known. Sinceπ k
t and p(Di |θ

t) don’t contain
theui variable, we have

∫
p(Di |ui )p(ui |θ k

t)π k
t

p(Di |θ t)
dui =

π k
t

p(Di |θ t) ∫ p(Di |θ
t , ui )p(ui |θ k

t)dui

Then we get

(6.7)

ψ ik=
π k

t

p(Di |θ t) ∫ p(Di |ui )p(ui |θ k
t)dui =

π k
t

∫ p(Di , ui |θ t)dui
∫ p(Di |ui )p(ui |θ k

t)dui =

π k
t

∫ p(Di |ui )p(ui |θ t)dui
∫ p(Di |ui )p(ui |θ k

t)dui =

π k
t

∫ p(Di |ui )
K

j=1
Σ π j

t p(ui |θ j
t)dui

∫ p(Di |ui )p(ui |θ k
t)dui

and if we exchange the summation and the integral we get

13
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π k
t

K

j=1
Σ ∫ p(Di |ui )π j

t p(ui |θ j
t)dui

∫ p(Di |ui )p(ui |θ k
t)dui =

π k
t ∫ p(Di |ui )p(ui |θ k

t)dui

K

j=1
Σ π j

t ∫ p(Di |ui )p(ui |θ j
t)dui

We definegik

gik = p(Di |θ k
t) = ∫ p(Di |ui )p(ui |θ k

t)dui =

and we rewrite the expression ofψ ik as

(6.8)
ψ ik =

π k
t gik

K

j=1
Σ π j

t gij

We can computegik by evaluating the integral using one of the methods described later
and we can the computeψ ik . The first term of Eq. (6.6) can be written as follows

(6.9)
K

k=1
Σ E{ψ ik|θ t , D} logπ k =

K

k=1
Σ ψ ik logπ k

We now simplify the second term of Eq.(6.6).
K

k=1
Σ EDz

{ψ ik log p(ui |θ k)|θ t , D} =

0 +
K

k=1
Σ Eui

{ log p(ui |θ k)|D,θ t ,ψ ik = 1} P(ψ ik = 1|D,θ t)

The second factorP(ψ ik = 1|D,θ t) is the same as theψ ik that we have derived. We use the
result of Eq. (6.7) directly, and have

Eui
{ log p(ui |θ k)|D,θ t ,ψ ik = 1}ψ ik = Eui

{ log p(ui |θ k)|D,θ k
t}ψ ik =

ψ ik ∫ log p(ui |θ k)p(ui |Di ,θ k
t)dui

All the θ t parameters are given and only logp(ui |θ k) containsµk andCk which will be
estimated in the Maximization step.

Since the third term of Eq. (6.6) doesn’t contain any variables that need to be esti-
mated in the maximization step, it is irrelevant and we can ignore it.

6.2. Maximization

In the Maximization step, we use the same method to get the optimal solution for

parameters inθ j = { µ j ,Cj , π j} . We also need to use the constraint
K

j=1
Σ π j = 1. I use the

defined symbols to substitute some complex terms in Expectation step. By using the

14
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Lagrange multiplier, we get the maximization function.

(6.10)

Q′(θ ,θ t) =
N

i=1
Σ 


K

k=1
Σ ψ ik logπ k +

K

k=1
Σ ψ ik ∫ log p(ui |θ k)p(ui |Di ,θ k

t)dui



+ λ

1 −

K

k=1
Σ π k




We want to take partial derivatives overQ′(θ ,θ t) with respect to the components of
θ j = { µ j ,Cj , π j} andλ .

First, we take the partial derivative with respect toπ j . Only the first term and the
lagrange term contain the variableπ j in the Eq. (6.10), so the other terms will vanish.
Since the integral operator and partial derivative are the linear operators, we can inter-
change them

∂Q′
∂π j

=
N

i=1
Σψ ik

1

π j
− λ = 0

λ =
N

i=1
Σψ ik

1

π j

and after solving forπ j

(6.11)π j =
1

λ

N

i=1
Σψ ik

Using the constraint of the mixture probabilities (by taking the derivative with respect to
λ)

K

k=1
Σ π k = 1

we get

1 =
1

λ

K

k=1
Σ

N

i=1
Σψ ik

λ =
K

k=1
Σ

N

i=1
Σψ ik

So we plug the expression ofλ into the Eq. (6.11) and get

(6.12)π j =

N

i=1
Σψ ik

K

k=1
Σ

N

i=1
Σψ ik

Next we take the partial derivatives with respect toµ j and set it to 0 to get the opti-
mal value ofµ j which only appears in the log-Gaussian logp(ui |θ k). The other terms will
vanish.

15
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(6.13)∂Q′
∂µ j

=
∂

N

i=1
Σ

K

k=1
Σ ψ ik ∫ log p(ui |θ k)p(ui |Di ,θ k

t)dui

∂µk
= 0

The distribution ofp(ui |θ k) is a Gaussian with probability density function

p(ui |θ k) =
1

√ (2π )m|Ck|
e

−
(ui −µk)TCk

−1(ui −µk)

2

and

log p(ui |θ k) = log
1

√ (2π )m|Ck|
−

(ui − µk)
TCk

−1(ui − µk)

2

Then we plug the expression of logp(ui |θ k) into the Eq. (6.13) and we get

∂Q′
∂µ j

=
∂

N

i=1
Σ

K

k=1
Σ ψ ik ∫ log


1

√ (2π )m|Ck|
−

(ui − µk)
TCk

−1(ui − µk)

2


p(ui |Di ,θ k

t)dui

∂µk
= 0

After changing the order of the summation, the integral and the derivative, and ignoring
the term that vanishes we get

∂Q′
∂µ j

=
N

i=1
Σ

K

k=1
Σ ψ ik ∫

1

2


∂

(ui − µk)
TCk

−1(ui − µk)p(ui |Di ,θ k
t)

∂µ j



dui = 0

As mentioned in the last problem, the derivative of
(ui − µk)

TCk
−1(ui − µk)

2
with respect

to µk is Ck
−1(ui − µk). Thus we get

∂Q′
∂µ j

=
N

i=1
Σψ ik ∫ Cj

−1(ui − µ j )p(ui |Di ,θ k
t)dui =

N

i=1
Σψ ik ∫ p(ui |Di ,θ k

t)Cj
−1ui dui −

N

i=1
Σψ ik ∫ p(ui |Di ,θ k

t)Cj
−1µ j dui = 0.

Sinceµ j can be moved out of the integral and sinceCj
−1 is not singular and can be elimi-

nated, we get
N

i=1
Σψ ik ∫ p(ui |Di ,θ k

t)ui dui = µ j

N

i=1
Σψ ik ∫ p(ui |Di ,θ k

t)dui

and

µ j =

N

i=1
Σψ ik ∫ p(ui |Di ,θ k

t)ui dui

N

i=1
Σψ ik

since∫ p(ui |Di ,θ k
t)dui = 1. Furthermore, we can write

16
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p(ui |Di ,θ k
t) =

p(Di |ui ,θ k
t)p(ui |θ k

t)

p(Di |θ k
t)

and from the quazi-dependence assumption, we havep(Di |ui ,θ k
t) = p(Di |ui ). Thus we

rewrite above expression as

µ j =

N

i=1
Σ ψ ik

p(Di |θ k
t) ∫ p(Di |ui )p(ui |θ k

t)ui dui

N

i=1
Σψ ik

Recall that we denoted p(Di |θ k
t) as gik , and similarly we denote

g′ik = ∫ p(Di |ui )p(ui |θ k
t)ui dui . Then we get

µ j =

N

i=1
Σψ ik

g′ik
gik

N

i=1
Σψ ik

Finally, we need to derive the last unknown parameterCj . As before, only
log p(ui |θ k) containsCj . We start the derivation from the following:

∂Q′
∂Cj

=

∂

N

i=1
Σ

K

k=1
Σ ψ ik ∫ p(ui |Di ,θ k

t) log
1

√ (2π )m|Ck|
dui

∂Cj
−

1

2
∂

N

i=1
Σ

K

k=1
Σ ψ ik ∫ (ui − µk)

TCk
−1(ui − µk)p(ui |Di ,θ k

t)dui

∂Cj
= 0

which is

∂Q′
∂Cj

=

−
1

2

N

i=1
Σ

K

k=1
Σ ψ ik∂ ∫ (log |Ck|)p(ui |Di ,θ k

t)dui

∂Cj
−

1

2

N

i=1
Σ

K

k=1
Σ ψ ik∂ ∫ (ui − µk)

TCk
−1(ui − µk)p(ui |Di ,θ k

t)dui

∂Cj
= 0

Since

17
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∂ log |Ck|

∂|Ck|
=

1

|Ck|

and the derivative of a determinant is

∂|Ck|

∂Ck
= |Ck|Ck

−1

the derivative of the logarithm of the determinant is

∂ log |Ck|

∂Ck
= Ck

−1.

The differentiation of a quadratic product is

∂(ui − µk)
TCk

−1(ui − µk)

∂Ck
= −Ck

−1(ui − µk)(ui − µk)
TCk

−1

We combine the above two equations and get

∂Q′
∂Cj

= −
1

2

N

i=1
Σψ ik ∫ Cj

−1 p(ui |Di ,θ k
t)dui +

1

2

N

i=1
Σψ ik ∫ p(ui |Di ,θ k

t)Cj
−1(ui − µ j )(ui − µ j )

TCj
−1dui = 0

After left and right multiplying byCj both sides and omitting non-zero constants, we get
N

i=1
Σψ ikC j ∫ p(ui |Di ,θ k

t)dui −

N

i=1
Σψ ik ∫ p(ui |Di ,θ k

t)(ui − µ j )(ui − µ j )
T dui = 0

and get finally

Cj =

N

i=1
Σψ ik ∫ p(ui |Di ,θ k

t)(ui − µ j )(ui − µ j )
T dui

N

i=1
Σψ ik ∫ p(ui |Di ,θ k

t)dui

The integral in the denominator is equal to one so we get

Cj =

N

i=1
Σψ ik ∫

p(Di |ui )p(ui |θ k
t)(ui − µ j )(ui − µ j )

T

p(Di |θ k
t)

dui

N

i=1
Σψ ik

As before, we denoteg′′ik = ∫ p(Di |ui )p(ui |θ k
t)(ui − µ j )(ui − µ j )

T dui . Then we have
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Cj =

N

i=1
Σψ ik

g′′ik
gik

N

i=1
Σψ ik

6.3. Computinggik , g′ik and g′′ik
All the computations described above are simple summations and averages of the

gik ’s, g′ik ’s and g′′ik ’s. The only non trivial computation involvesgik , g′ik and g′′ik them-
selves. The reason is that they contain integration.

The actual method used to compute them will depend on the form in whichp(Di |ui )
is given. If we are given samples on a regular grid (which can be efficient for low dimen-
sionality ui ) we can computep(ui |θ k

t) on the same grid and the integral becomes a dis-
crete summation. Letmui be the discrete samples ofui for m = 1. .M . We can write then

p(Di |ui ) =
M

m=1
Σ p(Di |

mui )Sa( mui − ui ) =

so the integral

gik =
ui

∫ p(Di |ui )p(ui |θ k
t)dui =

ui

∫
M

m=1
Σ p(Di |

mui )Sa( mui − ui )p(ui |θ k
t)dui =

M

m=1
Σ p(Di |

mui )
ui

∫ Sa( mui − ui )p(ui |θ k
t)dui

is transformed into a sum of several definite integrals that can be computed analytically.
If we approximate the sampling function with the zero mean Gaussian with varianceCs

the integral becomes much simpler

gik =
M

m=1
Σ p(Di |

mui )
ui

∫ N( mui − ui ; 0,Cs)p(ui |θ k
t)dui =

M

m=1
Σ p(Di |

mui )
ui

∫ N( mui − ui ; 0,Cs)N(ui ; µk
t ,Ck

t)dui =

M

m=1
Σ p(Di |

mui )N( mui ; µk
t ,Ck

t + Cs)

whereCs is a matrix chosen so that the Gaussian approximates the sampling function. A
diagonal matrix with every member of the diagonal equal to 0.4 is adequate for our pur-
poses if the samples are on integer values ofui . A similar procedure can be followed to
compute the otherg’s
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g′ik =
M

m=1
Σ p(Di |

mui )N( mui ; µk
t ,Ck

t + Cs)
mui

g′′ik =
M

m=1
Σ p(Di |

mui )N( mui ; µk
t ,Ck

t + Cs)(
mui − µk)

T( mui − µk)

It is obvious that the above procedure is not suitable for high dimensionalityui ’s. An
alternative is thatp(Di |ui ) is giv en in a standard analytic form which would allow the
analytic computation of theg’s. There are many good candidate standard forms but one
of the most adaptable is Weighted Sum of Gaussians (similar to Mixture of Gaussians but
without the requirement that the mixture probabilities sum up to one). Let

p(Di |ui ) =
mi

m=1
Σ qimN(ui , µ im,Cim)

whereqim is the mixture weight for Gaussianm for data pointui , andµ im andCim are the
mth mean and covariance for pointui . As beforep(ui |θ k

t) is a Gaussian, which we denote
asN(ui ; µ t

k,C
t
k). So we can write

gik = ∫ p(Di |ui )p(ui |θ k
t)dui =

∫ 


mi

m=1
Σ qimN(ui , µ im,Cim)


N(ui , µ t

k,C
t
k)dui

mi

m=1
Σ qim ∫ N(ui , µ im,Cim)N(ui , µ t

k,C
t
k)dui

The product of two Gaussians is a simple function of the two sets of parametersCim, Cj ,
µ im andµ j

N(ui ; µ im,Cim)N(ui ; µ t
k,C

t
k) =

N(ui ; µ imk,Cumk)
N(0; µ im,Cim)N(0; µ t

k,C
t
k)

N(0; µ imk,Cimk)
=

N(ui ; µ imk,Cimk) fimk

where

Cimk = 

C−1

im + (Ct
k)

−1
−1

µ imk = C(C−1
im µ im + (Ct

k)
−1µ t

k)

fimk =
N(0; µ im,Cim)N(0; µ t

k,C
t
k)

N(0; µ imk,Cimk)

and since we know that the integral of the Gaussian is the unity

gik =
mi

m=1
Σ qim fimk
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In a very similar fashion we can derive the expression forg′ik andg′′ik

g′ik = ∫ p(Di |ui )p(ui |θ k
t)ui dui =

∫ 


mi

m=1
Σ qimN(ui , µ im,Cim)


N(ui , µ t

k,C
t
k)ui dui

mi

m=1
Σ qim ∫ N(ui ; µ imk,Cimk) fimkui dui

mi

m=1
Σ qim fimk ∫ N(ui ; µ imk,Cimk)ui dui =

mi

m=1
Σ qim fimkµ imk

and

g′′ik =
mi

m=1
Σ qim fimkCimk

6.4. Summary of the Algorithm

While the derivation is rather complicated the steps one needs to follow to execute
one iteration of the algorithm are straightforward. We will follow the established practice
and name the two distinct groups of stepsExpectationand Maximizationrespectively
although this association is by no means direct. The Expectation step is

ψ ik =
π k

t gik
K

j=1
Σ π j

t gij

and the Maximization step is:

π j =

N

i=1
Σψ ik

K

k=1
Σ

N

i=1
Σψ ik

µ j =

N

i=1
Σψ ik

g′ik
gik

N

i=1
Σψ ik

C j =

N

i=1
Σψ ik

g′′ik
gik

N

i=1
Σψ ik
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After we compute the parameters of all the Gaussians we can compute thegik ’s to be
used in the next step. If thep(Di |ui ) is giv en in discrete form as a set ofM samples on a
regular grid in the space spanned byui then

gik =
M

m=1
Σ p(Di |

mui )N( mui ; µk
t ,Ck

t + Cs)

g′ik =
M

m=1
Σ p(Di |

mui )
mui N( mui ; µk

t ,Ck
t + Cs)

g′′ik =
M

m=1
Σ p(Di |

mui )(
mui − µk)

T( mui − µk)N( mui ; µk
t ,Ck

t + Cs)

If on the other handp(Di |ui ) is giv en as a weighted sum of Gaussians then

Cimk = 

C−1

im + (Ct
k)

−1
−1

µ imk = C(C−1
im µ im + (Ct

k)
−1µ t

k)

fimk =
N(0; µ im,Cim)N(0; µ t

k,C
t
k)

N(0; µ imk,Cimk)

gik =
mi

m=1
Σ qim fimk

g′ik =
mi

m=1
Σ qim fimkimk

g′′ik =
mi

m=1
Σ qim f (Cim,Ck, µ im, µk)Cimk

7. Conclusion

In this report, we reviewed briefly the concepts ofClustering, Expectation Maxi-
mizationandMixture of Gaussiansand then developed the background for clustering of
unobserved data under the Mixture of Gaussians model. We usedMaximum Likelihood
estimation to do this and since this problem involves hidden variables (the unobserved
data and the membership) we used theExpectation Maximization(EM) method.

Our fundamental assumption is that the data is not directly observed but we assume
that its probability distribution is known. Each datumui is conditioned on a set of known
parametersDi and that datumui ′ is independent ofDi if i = i ′. We also assume that the
Dis are not directly dependent on the clustering parameters which gav e arise to the quazi-
dependence assumption we used throughout the report. Armed with these assumptions we
developed the equations for the iterative estimation of the gaussian clusters. If the proba-
bility distribution of the data is assumed to be a parametric form the formulas could be
further further simplified and we plan to do this for future research.
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