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Abstract

In speech recognition, confidence measures (CM) are used to evaluate reliabil-
ity of recognition results. A good confidence measure can largely benefit speech
recognition systems in many practical applications. In this survey, I summarize
most research works related to confidence measures which have been done during
the past 10-12 years. I will present all these approaches as three major categories,
namely CM as a combination of predictor features, CM as a posterior probability,
and CM as utterance verification. Then, I also introduce some recent advances
in the area. Moreover, I will discuss capabilities and limitations of the current
CM techniques and generally comment on today’s CM approaches. Based on the

discussion, I will conclude the paper with some clues for future works.
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1 Introduction

Automatic speech recognition (ASR) has achieved some substantial successes in past
few decades mostly attributing to two prevalent technologies in the field, namely hidden
Markov modeling (HMM) of speech signals and efficient dynamic programming search
(also known as decoding) techniques for very-large-scale networks. Today, in many as-
pects, it has become a standard routine to build a state-of-the-art speech recognition
system for any particular task if sufficient training data is provided for the target domain.
However, when we migrate speech recognition systems from laboratory demonstrations to
real-world applications, even the best ASR systems available today still encounter some
serious difficulties. First of all, system performance usually dramatically degrades in the
real fields because of ambient noises, speaker variations, channel distortions and many
other mismatches. How to maintain and/or improve ASR performance in real-field condi-
tions has been extensively studied in speech community under the topic of robust speech
recognition. Many good tutorial and overview papers, such as Juang (1991), Gong (1995),
Lee (1998) and many others, can be easily found in the literature with regard to this topic.
Secondly, since every speech recognizer inevitably will make some mistakes during recog-
nition, outputs from any ASR system are always fraught with a variety of errors. Thus,
in any real-world application, it is extremely important to be able to make an appropriate
and reliable judgement based on the error-prone ASR results. This requires the system
to automatically assess reliability or probability of correctness for every decision made by
ASR systems. Nowaday, to certain degree, the capability to evaluate reliability of speech
recognition results has been regarded as a crucial technique to increase usefulness and
”intelligence” of an ASR system in many practical applications. In this area, researchers
have proposed to compute a score (preferably between 0 and 1), called Confidence Mea-
sure (CM), to indicate reliability of any recognition decision made by ASR systems. For
example, a CM can be computed for every recognized word to indicate how likely it was
correctly recognized or for an utterance to indicate how much we can trust the results for
the utterance as a whole. Despite a large amount of research efforts in the past, we still

believe that robust speech recognition and confidence measure will remain as two most
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active and influential research topics in speech community for a foreseeable future. Due to
importance of CM in ASR systems, it has attracted considerable research attentions from
most major speech research groups all over the world and an excessive amount of research
works have been reported in the past decade. But, unlike robust speech recognition, so far
we have not seen too many overview papers in the literature to survey this active topic.
This largely motivates me to write a comprehensive survey to summarize the CM-related
research works reported mostly in the past 10-12 years. In the survey, I will mainly high-
light the major progresses we have achieved in the CM area during the past decade. And
I will stress some promising CM computation approaches which are theoretically sound
and experimentally superior, and also discuss their capabilities and limitations. Finally,
I will present some comparative discussions with respect to all reported CM computation
methods and conclude the paper with some clues for possible future works from my per-
sonal perspective. Throughout the paper, I will attempt to present the CM techniques
from a fairly high level and avoid technical and experimental details as much as possible,
for which readers may wish to refer to the original papers. At the end of this paper, I also
compose a comprehensive list of reference papers for readers’ convenience. To my best
knowledge, Lee (2001) seems to be the only CM-related overview paper which gives some
good tutorials on statistical nature of confidence measure problems and also enumerate
many potential CM applications for ASR.

First of all, we can backtrack some early research works on confidence measure (CM)
to non-keyword rejection in word-spotting systems which were proposed to handle un-
constrained speech inputs, such as Wilpon et al (1990), Mathan & Miclet (1991), Chigier
(1992), Rose (1992), Sukkar & Wilpon (1993), etc. In these works, they first adopted
the so-called garbage or sink models to explicitly model non-keywords, extraneous speech
and background noises in unconstrained input utterances, with which key-word spotting
systems first recognize speech inputs to detect all embedded keywords as well as other
speech segments corresponding to non-keywords or noises. Besides all of these, they all
noticed a need to build additional rejection module to effectively distinguish non-keywords
from the detected keywords to reduce false alarms in non-keyword rejection. Apparently,

the rejection module can be viewed as a stage to investigate reliability or confidence mea-
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sures for the decisions made by word-spotters. Secondly, other early CM-related works
lie in automatic detection of new words (out of the current lexicon) in a large vocabulary
speech recognition, such as Asadi et al (1990), Young & Ward (1993) and Young (1994),
etc. In addition to modeling out-of-vocabulary(OOV) words with a (or a set of) generic
hidden Markov model, Young & Ward (1993) proposed to use word score normalization
to detect mis-recognition and out-of-vocabulary words for continuous speech recognition.
Young (1994) first elucidated how to use posterior probability as a confidence measure for
speech recognition, where she used the acoustic score normalization based on a separate
all-phone recognition to approximate such posterior probability. Young (1994) also tried
to combine the normalized acoustic score with other high-level knowledge sources, e.g.
semantic, pragmatic and discourse analysis, to improve quality of confidence measures.
Thirdly, Sukkar & Wilpon (1993), Sukkar (1994) and others realized that confidence mea-
sures for ASR become extremely important when speech recognition technology is applied
to any practical applications or services for end-users. Some intensive research efforts at
the former AT&T Bell Labs resulted in lots of fruitful works related to confidence mea-
sure for ASR, but under a different name, namely utterance verification. Rose, Juang
& Lee (1995a) first formally cast the confidence measure problem in speech recognition
as a statistical hypothesis testing problem as in classical statistics and proposed to use
likelihood ratio testing (LRT) to solve the problem. Then, the LRT-based formulation
has become the basic theoretical foundation for the follow-up works, e.g. Sukkar & Lee
(1996), Rahim, Lee & Juang (1997a), Rahim & Lee (1997b, 1997c), Sukkar et al (1997),
etc. In these works, they discovered that some discriminative training techniques, such
as minimum verification error (MVE) estimation, can significantly improve performance
of modeling both the null and alternative hypotheses in utterance verification. More re-
cently, a tremendous amount of research activities have been carried out in this area to
seek for some reliable confidence measures for ASR, mainly driven by an increasing num-
ber of dialogue applications. Based on confidence measures, spoken language systems will
be able to handle error-prone ASR outputs more intelligently in those post-recognition

modules, such as language understanding and dialogue management. Some representative

works include Eide et al (1995), Cox & Rose (1996), Chase (1997), Gillick et al (1997),
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Neti et al (1997), Kemp & Schaaf (1997), Schaaf & Kemp (1997), Weintraub et al (1997),
Rueber (1997), Jiang & Huang (1998), Willett et al (1998), Siu & Gish (1999), Benitez
et al (2000), Wessel et al. (2000), Kamppari & Hazen (2000), Kamppari & Hazen (2000),
Jiang et al (2001b, 2002, 2003), San-Segundo (2001), Zhang & Rudnicky (2001) and many
others.

Generally speaking, all methods proposed for computing confidence measures (CM’s)
in speech recognition can be roughly classified into three major categories. Firstly, a large
portion of works aims to compute confidence measures based on a combination of the so-
called predictor features, which are collected during decoding procedure and may include
acoustic as well as language information about recognition decisions. Then all predictor
features are combined in a certain way to generate a single score to indicate correctness of
the recognition decision. We will briefly summarize these methods in section 2. Secondly,
it is well known that the posterior probability in the standard maximum a posterior
(MAP) decision rule is a good candidate as CM for speech recognition since it is an
absolute measure of how well the decision is. However, it is very hard to estimate the
posterior probability in a precise manner due to its normalization term in the denominator.
In practice, many different approaches have been proposed to approximate it, ranging from
simple filler-based methods to complex word-graph-based approaches. We will introduce
these methods in section 3. Next, as already mentioned above, under the name of utterance
verification (UV), lots of works have been conducted to verify the claimed content of a
spoken utterance. The content can be hypothesized by a speech recognizer or keyword
detector or human transcriber. Under the framework of utterance verification (UV),
the CM problem can be formulated as a statistical hypothesis testing. In section 4, we
will briefly present all proposed methods in this category, ranging from the LRT-based
non-Bayesian approach (based on Neyman-Pearson Lemma) to the Bayes-Factors-based
Bayesian approach. We also introduce how to use some discriminative training methods
to improve modeling in UV. In the remainder of the paper, in section 5, I will first mention
several samples of very recent research advances regarding CM computation, including
an in-search data selection for improving verification models in UV, and a novel idea to

compute confidence measures based on neighborhood information in model space, and
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how to annotate confidence measures based on semantic information measured by latent
semantic analysis (LDA). In section 6, I will discuss about performance comparison issues
among all different CM methods and focus on capabilities and limitations of the current
CM techniques in a variety of potential applications. Finally, I will make some general
comments on CM methods in ASR and conclude this paper with some clues for future

works.

2 CM as Combination of Predictor Features

In the literature, a very large portion of CM-related works aims to search for a predic-
tor feature (or a set of features) which is informative to distinguish correctly recognized
results from other possible recognition errors. Any feature can be called a predictor if
its probabilistic distribution (e.g., p.d.f.) of correctly recognized words is clearly distinct
from that of mis-recognized words. Usually, the predictor features may have to be col-
lected within the recognition process at levels of acoustics, language model, syntax, and

semantics. Some common predictor features reported in the literature may include:

e Pure normalized likelthood score related: acoustic score per frame.

e N-Best related: count in the N-best list, N-Best homogeneity score (the weighted
ratio of all paths passing through the hypothesized word in N-best list), top N

recognition scores, top N-1 difference in adjacently ranked recognition scores, etc.

e acoustic stability: a number of alternative hypotheses are generated based on dif-
ferent language model weights in decoding and acoustic stability of any given word
is defined as the number of times the word occurs in the list divided by the number

of alternatives in the list.

e hypothesis density: the number of alternative arcs spanning the time segment of the

recognized word in word graph.
e Duration related: HMM state duration, phoneme duration, word duration.

e Language model (LM) related: LM score, LM back-off behavior, etc.
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e Posterior probability related: see section 3 for details.

e Log-likelihood-ratio related: see section 4 for details.

For more predictor features, please refer Cox & Rose (1996), Schaaf & Kemp (1997),
Chase (1997), Benitez et al (2000), San-Segundo et al (2001), etc. An ideal predictor fea-
ture should provide strong information to separate the correctly recognized words from
other misrecognitions and the distribution overlap between the two classes should be mi-
nor. However, none of the above predictor features is ideal in this sense. As reported
in many papers, the overlap is actually quite large even for the best predictor feature.
Therefore, some people attempt to combine several different predictor features for a bet-
ter performance. Many different combinational models have been reported in literature,
including linear discriminant function (Sukkar, 1994, Sukkar & Lee, 1996), generalized
linear model (Gillick et al, 1997, Siu & Gish, 1999), single or mixture Gaussian classi-
fier (Chigier, 1992), neural networks (Mathan & Miclet, 1991, Weintraub et al., 1997,
San-Segundo et al 2001), decision tree (Eide et al, 1995, Neti et al, 1997), support vec-
tor machine (Zhang et al, 2001), boosting (Moreno et al, 2001) and others. In most
cases, parameters of combinational models are estimated from some discriminative train-
ing procedures based on some criteria such as cross-Entropy, classification error rate (see
Weintraub et al., 1997 for more details about this).

A combination approach can improve the overall performance only when all individual
components are statistically independent. Obviously, this is not the case for the above
predictor features. It has been observed in many experiments that all these predictor
features are highly correlated!. Usually the combination methods can not significantly
improve over the best predictor feature. So far, we have not seen any compelling results

by combining various predictor features in confidence measure estimation.

3 CM as Posterior Probability

It is well known that the conventional ASR algorithms are usually formulated as a pattern

classification problem using the mazimum a posterior (MAP) decision rule to find the most

!Refer to final remarks in section 7 for a possible explanation for this.
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likely sequence of words W which achieves the maximum posterior probability p(W1X)

given any acoustic observation X, i.e.,

i _ p(XIW) - p(W)
W= aregpas oIV =are i T

= argmax p(X[W)-p(W) (1)
where X denotes the set of all permissible sentences, p(1¥) is the probability of W evalu-
ated with a language model, p(X) is the probability of observing X, and p(X|W) is the
probability of observing X by assuming that W is the underlying word sequence for X. In
theory, the posterior probability p(W|X) is a good confidence measure for the recognition
decision that X is recognized as W. However, as shown in the above eq.(1), most practical
ASR systems simply ignore the term p(X) in decision-making because it is constant across
different words W. This explains why the raw ASR scores are inadequate as confidence
measures to judge recognition reliability. However, after being normalized by p(X), the
posterior probability p(W|X) can serve as a good confidence measure since it represents
the absolute quantitative measure of the match between X and W. In theory, we should
compute p(X) as follows:

p(X) =) p(X,H)=>_ p(H)-p(X|H) (2)

H H

where H denotes any a hypothesis for X, and the above summation must be done over
all possible hypotheses for X, including all combinations of words, phonemes, noises and
other events. Obviously, without any further constraint, it is impossible to enumerate
and model all these hypotheses so that it is extremely difficult to estimate p(X) in a
precise manner. In practice, we have to either impose certain assumptions or adopt some
approximate methods when estimating p(X) for the posterior probability.

In the first category, it includes the so-called filler-based methods which try to cal-
culate p(X) from a set of general filler or background models, i.e., all-phone recognition
(Young, 1994), catch-all model (Kamppari & Hazen, 2000), the highest score in recogniz-
ing the word from decoder (Cox & Rose, 1996), etc. These approaches are very straight-
forward and usually can achieve an reasonable performance in many cases. In another
category, there are the so-called lattice-based methods which attempts to calculate p(X),
then the posterior probability p(W|X) in turn, from a word lattice or graph based on



Confidence Measures for Speech Recognition (Hui Jiang) 9

the forward-backward algorithm, such as Kemp & Schaaf (1997) and Wessel et al (1998,
1999, 2000, 2001). Usually, one word lattice or graph is generated by the ASR decoder
for every utterance. Then the posterior probability of each recognized word or the en-
tire hypothesized sentence can be calculated based on the word-graph from an additional
post-processing stage. Since word graph is a compact and fairly accurate representation
of all alternative competing hypotheses of the recognition result which usually dominate
the summation when computing p(X) over a variety of hypotheses in eq.(2), the posterior
probability calculated from a word graph can approximate the true p(W|X) pretty well.
Therefore, the resultant confidence measures generally achieve better performance than
all other CM’s mentioned in the above. However, generating word graphs and scoring
word-graphs for posterior probabilities are relatively complicated and quite demanding in
computation, especially in large vocabulary ASR systems. Thus, for the sake of simplicity,
an N-Best list can also be used in place of word graph for this purpose, such as Rueber
(1997), Wessel et al (2000), etc. Due to its superior performance as a CM for ASR, in the
following, T will review some details about how to compute posterior probabilities from a

word graph as originally reported by Wessel et al. (2001).

3.1 Word Graph Notations

Usually the ASR decoder generates a word graph X for each utterance X. Here, the
word graph is represented as a directed, acyclic, weighted graph. All its nodes represent
discrete points in time. Each arc is labeled with three variables, i.e. [w]¢, where w is the
hypothesized word attached to the arc, and s and e denote the starting and ending time
instances of the arc. Also, each arc is associated with a weight, B(w)¢, which is actually
acoustic score of generating acoustic feature vectors from time s to e from the HMM of
word w. In every word graph, there are two special notes: one is called START note
which corresponds to the beginning of the utterance and one END note for the end of
the utterance. Any path from START node to END note is called a complete path which
represents a sentence (a sequence of words) hypothesis for the underlying utterance. Let’s
assume a complete path in word graph X of an utterance X, which consists of n different

arcs as C = { [w1]§}, [wo]$2, - -+, [wn]s" }. Obviously, it is straightforward to compute the
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probability of this complete path given the word graph X as follows:
p(C1X) = || Blw:)é - p(w; | hs) (3)
i=1
where h; denotes the history of word w; and p(w; | h;) is the language model score com-

puted with n-gram language models.

3.2 Posterior Probability of an Arc

Based on the above notations, it is easy to compute the posterior probability of any arc
a = [w]¢ given the word graph X, namely p(a|X).> Normally, p(a|X) is calculated as a
ratio between the total probability of all complete paths passing through the arc a to that
of all complete paths in X, i.e.,

where C' € X denotes C' is a complete path in word graph X and a D C denotes that

the complete path C passes through the arc a. The posterior probability p(a|X) can
be efficiently computed based on a forward-backward algorithm. A forward probability
as(a) is recursively computed from the start note of the arc a backward until the START

note of the word graph as:
(@) = Bw); - ) ay(d') - pwlk) (5)

where the summation is conducted for all arcs a' (s’ is start time of @) merging into the
start node of @ and A’ is word history of w in language model computation. Analogously,
a backward probability (. (a) is computed from the end node of a forward until END node
of the word graph as:
fela) = 3 Ber(a”) - Bw")5 - p(w|I") (6)
all
where the summation is conducted over all arcs a” (¢” is ending time of ¢” and w" is word

id in a”) leaving the end node of a and A" is word history of w” when calculating language

2Note that the posterior probability of an arc given the word graph X differs from the original posterior

probability given the utterance X.
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model score. Obviously, the numerator in eq.(4) can be computed as the product of
as(a) and B.(a). And the denominator in eq.(4) can be recursively computed as forward
probability as(a) in eq.(5) staring from START node until END node of the word graph
or backward probability f.(a) in eq.(6) from END node backward to START node of word

graph.

3.3 Posterior Probability of a Recognized Word

We can directly use the posterior probability, p(a | X), of the arc, a = [w]¢, as confidence

measure for the recognized word w. But it has been shown that it does not perform

e

¢, there

very well as a confidence measure for w. We know that except the arc a = [w]
are usually lots of other arcs in word graph that have the same word id w but slightly
different starting time s and ending time e. It will underestimate confidence measure
of w if we only count p(a|X) for w. Thus, it is very important to take into account

other arcs which have the same word id w but slightly different s and e. Wessel et al

(2001) proposes three different ways to solve this problem. In the first method, called

e

Csee, when calculating confidence measure for the word w in an arc a = [w]¢,

we sum

over all arcs in word graph which have the same word id w and intersect with the current

e

¢ in time domain. In the second method, called Cj,.4, we only accumulate

arc a = [w]
posterior probability for all arcs with the same word id which intersects the median time
frame of the arc under consideration. In the third approach, called C,,,;, we determine a
best-case probability for word w in an arc a = [w]¢. We accumulate posterior probability
for all arcs (with the same word id) which not only intersect the median time frame but
also all other time frames between s and e, and then choose the maximum one from these
sums as the confidence measure for the word w in the underlying arc. Based on Wessel
et al (2001), the third method, namely C,,4., yields the best performance.

There are many other implementation issues to consider when computing posterior

probability in word graph, e.g., scaling of probabilities in summation, elimination of re-

dundant silence edges, etc. Readers are referred to Wessel et al (2001) for more details.
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4 CM as Utterance Verification

Mainly motivated by speaker verification problem, Rose, Juang & Lee (1995a), Sukkar
& Lee (1996), Rahim, Lee & Juang (1997a) have proposed to tackle confidence measure
problems from a different perspective. Under the framework of utterance verification
(UV), the confidence measure problem in ASR is formulated as a statistical hypothesis
testing problem. For a given speech segment X, assume that an ASR system recognizes
it as word W which is represented by an HMM MAy,. Utterance verification is a post-
processing stage to examine the reliability of the hypothesized recognition results. Under
the framework of UV, we first propose two complementary hypotheses, namely the null

hypothesis Hy and the alternative hypothesis H; as follows:

H, : X is correctly recognized and truly comes from model Ay,

H, : X is wrongly classified and is NOT from model Ay (7)

Then we test H, against H; to determine whether we should accept the recognition
result or reject it. According to Neyman-Pearson Lemma, under some conditions, the

optimal solution to the above testing is based on a likelihood ratio testing (LRT), i.e.,

p(X|Hy) o
p(XI%) 2 ®)

LRT =
The LRT-based utterance verification provides a good theoretical formulation to address
confidence measure problem in ASR. As pointed out by Lee (2001), the above LRT can be
transformed to a confidence measure based on a monotonic one-to-one mapping function.
The major difficulty with LRT is how to model the alternative hypothesis which usually
represents a very complex and composite event, where the true distribution of data is
unknown. In practice, as in Rose, Juang & Lee (1995a), Sukkar & Lee (1996), Rahim,
Lee & Juang (1997a), the same HMM structure is adopted to model the alternative
hypothesis, which can be a general background model, or hypothesis-specific anti-model,
or a set of competing models, or a combination of all the above. In these works, a variety
of training methods have been used to estimate HMM'’s for the alternative hypothesis.

It is generally agreed that a discriminative training procedure plays a crucial role in

improving modeling performance for the alternative hypothesis. In Sukkar & Lee (1996),
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a GPD (generalized probabilistic descent) based discriminative training procedure is used
to estimate parameters of a linear discriminant function based on a criterion to minimize
sub-word level verification error counts represented by a sigmoid function. In Rahim,
Lee & Juang (1997a), it is found that the minimum classification error (MCE) training,
which is originally proposed to reduce recognition errors, can contribute to improving
performance of UV. In Rahim & Lee (1997b) and Sukkar et al (1997), a GPD-based
training algorithm is proposed to achieve minimum verification error (MVE) estimation
for utterance verification with respect to optimizing verification HMM parameters. In
MVE, the string-level verification errors are approximated by using a sigmoid function
embedded with a mis-verification function, which actually is negative log-likelihood ratio
used in verification. Then the total empirical verification errors can be minimized over all
training data by optimizing the verification HMM parameters corresponding to the both
null and alternative hypotheses. The optimization can be iteratively achieved by using a
GPD algorithm. Experiments clearly show all these discriminative training methods can
largely improve performance of the LRT-based utterance verification.

Alternatively, if we consider the above UV problem from a Bayesian viewpoint, the
final solution ends up with calculating and evaluating the so-called Bayes factors as in
Jiang & Deng (2001a). Bayes factors has its solid foundation from Bayesian theory.
Given the speech data X along with the above two hypotheses Hy and H;, Bayes factors

is computed as:

_ (X | Hy) [ f(X | Ao, Ho)-p(Ao | Ho) dXo
Bl = X ) = T F(X A B - pO | Hy) di, ©)

where, for £ = 0,1, A\ is the model parameter under Hy, p(\; | H) is its prior density,
and f(X | Ag, Hg) is the likelihood function of Ay under Hy.

Bayes factors offers a way to evaluate evidence in favor of the null hypothesis Hy
because Bayes factors is the ratio of the posterior odds of Hj to its prior odds, regardless
of the value of the prior odds.®> Therefore, Bayes factors can be used to compare with
a threshold, just like the likelihood ratio in Neyman-Pearson lemma, to make a decision

with regard to Hy. In other words, if BF' > 7, where 7 is a pre-set critical threshold,

3 Any probability can be converted to the odds scale, i.e., odds=probability/(1-probability). Thus,

ﬁ:ggﬂg; is called the posterior odds in favor of Hy, and ﬁ:ggﬁ’g is prior odds in favor of Hy.
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then we accept Hj, otherwise reject it. Like LLR, the BF value can also be transformed
or formulated as a confidence measure for ASR.

As shown in Jiang & Deng (2001a), Bayes factors is a powerful statistical tool to model
composite hypotheses and can be used to solve many different verification problems. The
same formulation proposed for speaker verification in Jiang & Deng (2001a) is also equally
applicable to the above UV problem though no research work has been reported about
this. The key issues are what role the prior distributions p(\o | Hy) and p(A;, | Hy) will
play in utterance verification and how to use them as a flexible tool to incorporate a

variety of information sources useful for UV.

5 Some Recent Efforts

Confidence measures or utterance verification aims to verify reliability of speech recogni-
tion outputs, which significantly differs from other typical verification problems in statis-
tics, such as test for goodness-of-fit, and outlier detection in statistical data analysis.
We believe that it is beneficial not to isolate confidence measures (or utterance verifica-
tion) from its prior recognition stage. In acoustic level, it is very important to know the
distribution properties of competing sources in recognition phase in order to optimize per-
formance of CM or UV. In the following, I will first present two pieces of recent research
works along this direction. Besides, I will also briefly summary some other research works

to integrate some high-level knowledge (beyond acoustic information) for CM or UV.

5.1 In-search Data Selection for Accurate Competing Models

Under the UV framework, it is not an easy job to model the alternative hypothesis. Juang
& Lee (1995a), Sukkar & Lee (1996), Rahim, Lee & Juang (1997a) propose to use the
so-called anti-models for this purpose. However, it is still unclear what data should be
used to estimate these anti-models. In their works, some heuristic methods are adopted,
such as performing forced-alignment against a wrong or random transcript to generate
training data for each anti-model. More recently, Jiang et al (2001b) propose a well-

defined in-search data selection procedure to collect the most representative competing
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tokens for each HMM in the system. Then the selected tokens can be used to estimate
highly accurate competing models for the utterance verification purpose.

In Jiang et al (2001b), we first define competing tokens (CT) of any a given HMM
model as data segments which are mis-recognized to this model during recognition. A
dynamic in-search data selection method is proposed to collect competing tokens for every
HMM automatically from training data set. In the method, every utterance in training set
is recognized with the Viterbi beam search algorithm just as in regular recognition phase.
During the Viterbi search, all potential segments located in all active partial paths within
the search beam width are compared with the reference segmentation generated from a
forced-alignment procedure to determine whether each segment should be a competing
token or true token of the model. The procedure is carried out for all training data to
collect two token sets, namely the competing token set S¢(a) and the true token set Sr(a)
for every HMM ¢ in the system. The competing information collected in this way is very
valuable for utterance verification. Given that a speech observation X is recognized as W

by the decoder, the original hypotheses in eq.(7) can be re-phrased as follows:

H, : X belongs to W’s true token set Sp(W),i.e., X € Sp(W)

H;: X belongs to W’s competing token set Sc(W),i.e., X € Sc(W) (10)

Comparing with the original hypotheses, both the null hypothesis Hy and the alternative
hypothesis H; in the above are well-defined from available data, which in turn make our
modeling problem easier. The simplest way to model them is to estimate two different
models Ay and A¢ for Sp(W) and Sc(W) respectively, based on all tokens collected from
training data. Then the LRT-based utterance verification is operated as follows:

_p(X | Ho) _ Pr(X € Sr(W)) _ p(X | Ar) Ho

T (X | H) Pr(XeSc(W)  p(X|Ac) ;| (11)

n

where 7 is the critical decision threshold. The above models A7 and As can be estimated
based on different criteria, such as maximum likelihood (ML), or minimum verification
error (MVE), etc. Jiang et al (2001b) shows the ML-trained models already significantly
surpass the conventional UV methods, such as in Sukkar & Lee (1996), Sukkar et al
(1997), Rahim et al (1997a, 1997b).
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5.2 UV based on neighborhood Information in Model Space

In Jiang & Lee (2002), a novel approach is proposed for utterance verification based
on competing information in model space. First of all, let’s look at the model space
T of HMM. Each HMM X in the system can be viewed as a point in the model space
7. Intuitively, we can imagine two nested neighborhoods surrounding the underlying
model A\, namely a small neighborhood A; and a medium neighborhood A,. The small
neighborhood A; is a tiny neighborhood which tightly surrounds the underlying model .
As indicated in Jiang et al (1999), a neighborhood with a relatively small size contains all
variants of the original model due to estimation errors and possible mismatches in testing.
It serves as a robust representation of the original model. On the other hand, the medium
neighborhood A is significantly larger than A;. As the neighborhood size increases, it
starts to cover all of its competing models in the model space, which by definition should
be close to the original one in some sense. Based on the concept, we can translate the
original hypotheses in eq.(7) in another way.

Once again, assume a speech observation X is recognized as W which is represented
by the model A\y,. We are interested in verifying the reliability of the decision. Given the
decision that X is recognized as model Ay, if X is not from the model Ay (as stated in
the alternative hypothesis), it is reasonable to consider that X probably comes from some

competing model of Ay,. Therefore, we can translate the original hypotheses in eq.(7) as:

Hy : The true model of X locates in the small neighborhood A,

H,: The true model of X locates in the region Ay — A (12)

where As — Ay denotes the holed region inside the the medium neighborhood by excluding
the small neighborhood, as shown in Figure 1.
In Jiang & Lee (2002), an approach based on Bayes factors is proposed to solve the
above hypothesis testing problem.
fo, FXIN) -poX) dx 1,
n= 7 27
Jaooay SN -pr(A) dX 1y

where f(X|)) is likelihood function, and pg(A) and p; () represent the prior distribution of

(13)

model parameters under the hypothesis Hy and H; respectively. Furthermore, Jiang & Lee
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&  Target model
@  Competing models

@  Other Models

Region represents H' o

Region represents H'1

.....................................................................................................................................................................

Figure 1: Illustration of the hypothesis testing based on the neighborhood information in

model space.

(2002) propose two simple methods, i.e. a parametric definition and a nonparametric one,
to quantitively define the neighborhoods as well as the prior distributions for the above
formulation. Some preliminary experiments show some promising results for utterance
verification based on the above framework. Obviously, much more research efforts are

needed to define the neighborhoods in a more precise and controllable manner.

5.3 Incorporation of High-Level Information for CM

So far we have concentrated on confidence measures which solely rely on acoustic infor-
mation. However, other syntactical or sematic information is also reported to provide
certain clues for the purpose of confidence measure, such as Young (1994), Pao et al
(1998), Zhang et al (2001), etc. More recently, Cox & Dasmahapatra (2002) report that
human can clearly identify a certain portion of recognition errors in recognizer outputs
on purely semantic grounds. They also propose to use latent semantic analysis (LSA)
to annotate confidence scores for recognized words. Latent sematic analysis (LSA) is a
technique for associating words that are ”semantically coherent”. The semantic coherence

between any two words is computed as the cosine of the angle between the two vectors
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corresponding to these two words in a reduced subspace. Thus, confidence measure of a
recognized word is calculated as an average of coherence of this word with all other recog-
nized words in a close context. Although CM’s based on this kind of semantic information
is generally not as good as the best CM’s in the acoustic level, a combination probably

will yield a better performance due to their clear independence.

6 Performance and Applications of CM: Capabilities
and Limitations

It is well known that good confidence measures will largely benefit a variety of ASR appli-
cations, e.g., to smartly reject non-speech noises, detect/reject out-of-vocabulary words,
detect/correct some potential recognition mistakes, clean up human transcription errors
in large training corpus, guide the system to perform un-supervised learning, provide side
information to assist high-level speech understanding and dialogue management, and so
on and so forth. However, confidence measures for ASR is an extremely difficult problem.
Even today’s best available CM’s are generally not good enough to effectively support
most of the above-mentioned applications. In this section, we first briefly talk about
the assessment problem of confidence measures in ASR. Then, based on my personal un-
derstanding, I will discuss on performance issues of various CM’s. At last, I will point
out several promising applications for the current CM’s in ASR even though many other
applications are apparently beyond the capability of today’s techniques.

When evaluating confidence measure annotation, we usually encounter two types of
errors, namely false alarm errors and false rejection errors. Obviously, receiver operating
characteristic (ROC) curve gives a full picture of verification performance at all operating
points. In many cases, it is convenient to use a single-number metric for CM assessment.
Some widely used metrics include equal error rate (EER), confidence error rate, normalized
cross entropy, etc. Refer to Kemp & Schaaf (1997), Siu & Gish (1999), Maison & Gopinath
(2001) and Wessel et al (2001) for details. Another important issue in CM evaluation is to
take recognition boundaries into account. For example, a correctly recognized word may

have a very low confidence measure because its boundary is wrong (though its identity
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is correct). Thus, it is helpful to use the concept of "word-correctness” proposed by
Weintraub et al (1997) in evaluating CM’s.

As far as CM’s performance issues are concerned, it has been widely reported that
N-Best related feature predictors perform much better than other predictors introduced
in section 2 (see Chase, 1997, Rueber, 1997, Williams & Renals, 1999, etc). Moreover,
Wessel et al (1998, 1999, 2001) clearly shows that posterior probabilities calculated from
word graphs significantly outperform N-best-related confidence measures. On the other
hand, along a totally different line, Sukkar et al (1996, 1997) and Rahim et al (1997a,
1997b) demonstrate that MVE-based discriminative training significantly improve perfor-
mance of utterance verification. Furthermore, Jiang et al (2001b) shows the performance
of utterance verification is largely improved over the previous UV approaches by using
an in-search data selection method to train some highly accurate competing models. In
Garcia et al (1999), the conventional LRT-based utterance verification is compared with
posterior probabilities in word graph albeit their implementation is an approximate one.
The results show word-graph-based posterior probabilities outperform the LRT-based
utterance verification methods. However, it still remains unclear how the approach in
Jiang et al (2001b) compares with word-graph-based posterior probabilities in Wessel et
al (2001). Moreover, it will be more informative if all CM’s are evaluated in a common
corpus for several well-designed verification tasks. Generally speaking, the CM’s based on
posterior probabilities derived from word graphs are advantageous since language model
scores can be naturally incorporated in CM computation in addition to acoustic informa-
tion. But once being strictly implemented as in Wessel et al (2001), the performance of
CM’s can not be easily improved within the same paradigm because word graphs with
various sizes usually generate CM’s with similar performance. On the other hand, perfor-
mance of utterance verification can be progressively improved by estimating better and
better verification models. And the hypothesis testing paradigm, as formulated in LRT-
or Bayes-factors-based testing, provides a flexible framework to incorporate a variety of
knowledge sources which may be useful for CM computation.

As already mentioned above, the overall performance of CM’s (even the best ones)

remains fairly poor, which largely limits their applications. Some early research on CM
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aimed to detect out-of-vocabulary (OOV) words in large-vocabulary ASR system. How-
ever, even by today, an effective detection of OOV words in continuous speech recognition
remains as an open question. It seems only feasible to use CM’s to reject OOV words
in some constrained small vocabulary applications, such as isolated voice command con-
trolling, etc. Besides, a large number of works have been conducted to improve ASR
performance with assistance of various CM’s, e.g., Neti et al (1997), Jitsuhiro et al (1998),
Vergyri (2000), Wessel et al (2000), Tan et al (2000), Lleida & Rose (2000), Koo et al
(2001) and others. A consistent and significant error reduction over the state-of-the-art
performance is still not an easy goal to achieve® unless the performance of CM’s is en-
hanced further. Moreover, CM’s have been included in many spoken dialogue systems to
provide certain level of support for language understanding and dialogue management.
But the CM’s themselves are found not robust and reliable enough to be a solid basis for
decision-making in many cases. In spite of these, the current CM techniques still have a
chance to shine if they are applied to a proper place. Although it is hard to detect or
correct errors made by ASR systems by using CM’s, it seems much easier to use CM’s to
detect human-made errors. Thus, it is promising to use CM’s to clean-up or verify tran-
scription in a large corpus, such as some preliminary studies in Arslan & Hansen (1999),
Li et al (2002). In addition, there are two other successful stories to apply CM’s to verify
some decisions not hypothesized by ASR systems. One is verbal information verification
(VIV) in Li et al (2000) and another one is Liu et al (2001) where they demonstrate
effectiveness of using CM'’s for search space pruning prior to recognition stage. Moreover,
another interesting area to apply CM’s is un-supervised adaptation where CM’s are used
to select more reliable speech segments from recognizer’s outputs to self-improve recog-
nition models, e.g. Wallhoff et al (2000) and many others. One important issue here is
that the operating point in verification stage should be set up to guarantee a low false

acceptance rate.

4If counting the correct recognition results which are mistakenly rejected.
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7 Final Remarks

Although there are various types of CM’s reported for ASR, almost all CM’s in acoustic
level fundamentally rely almost entirely on a single information source, namely how much
the underlying decision can overtake other possible competitors. The larger the difference
is the more confident we will believe the decision to be. This explains why most research
works to combine a variety of CM’s usually do not yield better results. The various
CM or UV methods mentioned in this paper attempt to explore this discrepancy in
different ways (direct or indirect). For example, in the posterior probability method
based on a word graph, if the recognition result significantly surpasses other competing
choices in the word graph, the contribution of the recognized path will dominate the total
posteriori probability computed based on the forward-backward algorithm. In this case,
the derived CM will be large (close to 1). If other competing paths in the word graph
come very close to the recognized results, the contribution of the recognized path will
be relatively small when computing the posterior probability. Thus, the derived CM will
be small (close to 0). Similarly in UV, if the recognized result largely surpasses other
competitors, the likelihood under the null hypothesis will be significantly larger than that
of the alternative hypothesis. As a result, the likelihood ratio will be large. On the other
hand, the likelihood ratio will be small if the competing sources from the alternative
hypothesis gives comparable results with the recognized one in the null hypothesis. This
also explains why it is very important to model distribution properties of competing
hypotheses when deriving CM’s for ASR. Apparently, it is a real challenge to compute
any effective CM’s beyond this sole source. Besides, one major drawback of almost all CM
or UV methods is that we only verify segment identities but never question the correctness
of segmentation hypothesized by ASR systems. It is common that most recognition errors
accompany with segmentation mistakes in continuous speech recognition. A preliminary
study on boundary adjustment for UV can be found in Matsui et al (2001). We believe it
is critical to improve performance of CM’s by taking this segmentation issue into account.
How to consider it effectively in any formal way in CM estimation still remains unclear.

Finally, despite a large number of research activities in the past, confidence measure
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estimation for ASR still remains unsolved in so many aspects. Due to its importance in

practice and its difficulty in theory, we expect much more research efforts will be devoted

into this topic in coming years.
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