

SECG: the SCOOP-to-Ei�el Code Generator

Oleksandr Fuks, Jonathan S. Ostro�, and Richard F. Paige

Technical Report CS-2003-05

April 24, 2003

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada

SECG: The SCOOP-to-Eiffel Code Generator

Oleksandr Fuks, Jonathan Ostroff,
Department of Computer Science, York University, Canada,

nati@cs.yorku.ca, jonathan@cs.yorku.ca

Richard Paige,
Department of Computer Science, University of York, U.K.,

paige@cs.york.ac.uk

April 24, 2003

Abstract

The Simple Concurrent Object-Oriented Programming (SCOOP) mechanism
introduces inter-object concurrency to the Eiffel language, via addition of one new
keyword, separate. We describe a general tool that takes a Eiffel program that
makes use of SCOOP andseparate, and translates it into an Eiffel multi-threaded
program that makes use of the standard EiffelBaseTHREADclass, which is there-
after compatible with EiffelStudio.

1 Introduction and Background

Many mechanisms exist for introducing concurrency into object-oriented (OO) pro-
gramming languages. These approaches support the use of multiple, perhaps dis-
tributed processors, each of which may be executing multiple processes. Different
techniques are provided with the languages to support synchronisation, interruption,
mutually exclusive access to object state, and atomic execution of routines.

Java [5] introduces concurrency via inheritance from special classes that introduce
threads; additional compilers for Java have been developed for efficiently implementing
Java’s concurrency model, e.g., Jalapeno [1]. The Eiffel// project [2] provided a special
classPROCESSthat could be used to introduce new threads of execution. Jalloul [7]
extends Eiffel by providing new language features for implementing critical regions
and conditional critical regions; these new features are in turn implemented in a kernel
sitting atop PVM. Variants of Smalltalk have been proposed [12, 9] for multi-threading.
Similarly, C++ extensions such as Parallel-C++ [8] exist for parallel, distributed, and
concurrent execution.

The Simple Concurrent Object-Oriented Programming (SCOOP) mechanism was
proposed in [10] as a way to introduce inter-object concurrency into the Eiffel program-
ming language. The mechanism extends the Eiffel language by adding one keyword,

1

separate, that can be applied to classes, entities, and formal routine arguments. Appli-
cation ofseparateto a class indicates that the class is executing in its own thread of
control; application ofseparateto entities or arguments indicate that these constructs
are points of synchronisation, and can be shared among concurrent threads. This mech-
anism was implemented by Compton [4] by building upon the GNU SmartEiffel com-
piler and run-time system. No implementation for other versions of Eiffel, e.g., ISE
EiffelStudio, exist.

We describe a tool, called the SCOOP-to-Eiffel Code Generator (SECG), which
translates Eiffel programs that use the SCOOP mechanism viaseparate, into standard
Eiffel threaded applications that make use of Eiffel’sTHREADclass. The results of
applying the tool have been used successfully with EiffelStudio 5.2. SECG differs
from Compton’s implementation in that it does not rely on changes to a compiler (it
translates SCOOP code into pure Eiffel) or a run-time system; thus, it can in theory be
used with any version of Eiffel that provides an implementation of theTHREADclass.

The paper is organised as follows. We start with a brief overview of the SCOOP
mechanism, as specified in [10], and summarise Eiffel’sTHREADclass, and then
explain how the SECG translation tool works. We use two examples to illustrate the
design and implementation of the tool. We then discuss limitations with SECG as
implemented, and consider further work.

2 Overview of SCOOP and Eiffel Threads

SCOOP introduces concurrency to Eiffel by addition of the keywordseparate; it is the
responsibility of the underlying run-time system and compiler to deal with the subtle
(and, in some cases, complicated) semantic problems introduced by the addition. The
separatekeyword may be attached to the definition of a class, or the declaration of an
entity, or formal routine argument. Examples of the three types of attachments are as
follows.

separate classROOT (1)

x : separatePROCESS (2)

f (y : separatePROCESS) (3)

A class that is declared asseparate(asROOT in (1)) cannot be declared as expanded
or deferred; nor is its property of beingseparateinherited. A separate class executes
in its own thread; thus, service requests (i.e., feature calls) to instances of a separate
class may need to block or wait until the thread is available to execute the request.

An entity or argument declared as separate (e.g., as in (2) and (3) above) indicates
that the data attached to the entity or argument may be shared between threads. Thus,
synchronisation facilities must be provided so that, e.g., mutually exclusive writes to
shared data take place. Entityx can only be declared asseparateif PROCESSin (2) is
not deferred or expanded.

SCOOP is based upon the notion of aprocessor, which defines a unit of execution
in an OO system. When a separate object (defined in the sequel) is created, a new
processor is also created to handle its processing. Thus, a processor is an autonomous

2

thread of control capable of supportingsequentialinstruction execution [10]. A system
in general may have many processors associated with it. Compton [4] introduces the
notion of asubsystem– a model of a processor and the set of objects it operates on – to
distinguish the execution of sequential and concurrent programs. In his terminology, a
separate object is any object that is in a different subsystem.

2.1 Routine calls

In Eiffel, the standard syntax for routine calls is (i)x:c(a) for a commandc, which may
change the state of the object attached tox, and (ii) y := x: f (a) for a side-effect free
function f . In sequential Eiffel, and in both cases, when executing the routine call,
execution switches to the object attached tox, the routine executes, and (perhaps after
storing a result), execution continues at the next instruction. Now suppose that either
x is attached to a separate object, or that the type ofx is separate. For the callx:c(a),
execution on the current object andx synchronise;x registers the fact thatc was called
and either starts execution ofc immediately, or when the next opportunity arises. Then
both the current call andx:c(a) can proceed concurrently. If there are multiple pending
requests for calls onx, they are queued and served in first-in-first-out order.

For case (ii), where a result is needed from a separate call, a restricted version of
the wait-by-necessitymechanism of Caromel [3] is used, because the result of a call
to x: f (a) may not be available when the assignmenty := x: f (a) can take place. In
SCOOP, further client calls onx will wait until the query callx: f (a) has terminated.

2.2 Waiting

Eiffel introducesrequire andensureclauses for specifying the pre- and postcondition
of routines. In a sequential programming, arequire clause specifies conditions that
must be established and checked by the client of the routine; theensureclause specifies
conditions on the implementer of the routine. In a SCOOP Eiffel program, arequire
clause on a routine belonging to a separate object specifies await condition: if on a call
to x:r(a), wherex is attached to a separate object, the routine’srequire clause is false,
the processor associated with the object should wait until it is true before proceeding
with routine execution.

2.3 Object reservation

There are many situations in a concurrent OO program where exclusive use of a sep-
arate object is required. In order to retain consistency and correctness, there must be
some mechanism for stopping or pausing any interleaving of concurrent calls. SCOOP
enables this by altering the semantics of argument passing. Consider the call

r(x : separateT1; :::;y : separateT2) (4)

Exclusive locks should be obtained onx andy before the call tor starts; all locks must
be obtained before the processor executes the call1.

1In general, locks need only be obtained if a feature is called on an argument in the body ofr .

3

2.4 Consistency rules

A SCOOP program may have both separate and non-separate objects. It is essential to
guarantee that an entity declared as non-separate (e.g.,x : T) can never be attached to a
separate object; this could lead to race conditions and object inconsistency. In order to
prevent this, Meyer introduces four consistency rules [10].

1. If the source of an attachment is separate, the destination entity must be separate
as well.

2. If an actual argument of a separate call is of reference type, the corresponding
formal argument must be separate.

3. If the source of an attachment is the result of a separate call to a function return-
ing a separate type, the target must be separate.

4. If an actual argument or result of a separate call is of expanded type, its base
class may not include any non-separate attribute of a reference type.

2.5 Eiffel Threads

A simple threading mechanism is provided as part of the EiffelBase library that comes
with ISE EiffelStudio. To make use of threads, i.e., to implement a class that defines an
Eiffel thread, a developer writes a new class that inherits from the interfaceTHREAD.
This class provides the following fundamental routines:

� execute: the routine to be executed by the new thread. In general, this must be
implemented by the developer.

� join: the calling thread waits for the current child thread to terminate.

� launch: initialise a new thread runningexecute.

� join all : the calling thread waits for all other threads to terminate.

The classTHREADCONT ROLprovides control over thread execution. Typically
the root class of an Eiffel application inherits fromTHREADCONTROL, and uses its
join and join all routines to manage execution of spawned child threads.

The library also provides basic concurrent functionality, particularly through the
classMUTEX, which provides a synchronisation object.

In [4], the SCOOP proposal of Meyer is implemented in the framework of the GNU
SmartEiffel compiler and run-time system. We now describe the SECG code generator,
which translates SCOOP Eiffel programs that use theseparatemechanism, into multi-
threaded Eiffel applications.

4

3 The SCOOP-to-Eiffel Code Generator

The SCOOP-to-Eiffel Code Generator (SECG) tool provides implicit support for the
SCOOP proposal by translating an Eiffel program that makes use ofseparateclasses,
arguments, and entities, into one that makes use of threads and the Eiffel classTHREAD,
which is available with distributions of EiffelStudio. No changes to the EiffelStudio
compiler or run-time system are needed, and all Eiffel programming constructs can be
used, includingonceroutines. In an informal sense, SECG implements arefinement
of the SCOOP specification into Eiffel classes and statements that do not make use of
separate; we discuss this further in the sequel.

The basic mechanism underlying SECG is to add mutexes and buffers tosepa-
rate classes in order to keep track of pending requests made by clients to make use
of services. Additional and similar changes are made to separate entities and separate
arguments to introduce mutexes, allowing synchronisation and mutually exclusive ac-
cess. Each separate class, when translated, inherits fromTHREADand is provided
with a buffer containing pending services requests (i.e., feature calls). The root class
of the system simply executes all threads; each thread, indefinitely, removes a pending
request for service and executes the request.

We first describe the general translation scheme used by SECG, and then illustrate
its use with two examples.

The SECG tool accepts a single command-line parameter indicating the name of
a project file. The project file specifies the names of all Eiffel classes (and thus, all
.e files) to be included in the project. As well, the root class of the project must be
specified with the keywordroot prepended.

Using the information provided in the project file, the generator scans the files
included in the system. The generator then produces the code as follows.

1. THREADCONTROLis added as a superclass of the root class. This provides
the root of the application with control over thread execution. The root class is
responsible for making sure that, when the application terminates, all pending
service requests on all threads in the application have been handled.

2. All classes inherit fromEXCEPTIONS.

3. requestspendingandrequestspendingmutexare added as attributes to the root
class. The former attribute is used as a resource monitor for the root class, while
the latter attribute synchronises access to the monitor (since clients may make
service requests of the root class).

4. The following features are also declared and implemented in the root class.

is requestpendingis used to determine if there are pending accesses to the root.

is_requests_pending : BOOLEAN is
do

Result := true
requests_pending_mutex.lock
if requests_pending.is_equal(0) then

5

Result := false
end
requests_pending_mutex.unlock

end

As well, a general-purposerescueroutine is provided to flag exceptional be-
haviour in the root class.

rescue_SCOOP(who_caused: STRING; what_caused: STRING) is
do

io.put_string("Assertion violated in "+who_caused+": "+what_caused)
raise("Assertion " + what_caused + " violated in " + who_caused)

end

5. Each class declared asseparateinherits fromTHREAD; thus, each separate class
has its own thread. The basic idea in translating aseparateclass is to provide a
buffer for service requests (along with a mutex to ensure synchronised access).

The following attributes are declared.

requests_pending: INTEGER_REF
requests_pending_mutex: MUTEX
request_buffer: LINKED_LIST[TUPLE]
request_buffer_mutex: MUTEX
current_feature_args: TUPLE
current_feature_name: STRING

The attributes prefixed withrequestare used to ensure mutually exclusive access
and also to buffer the requests for access; concurrent requests for service are,
of course, queued. The attributes prefixed withcurrent store the current feature
(service) being requested and the arguments supplied to the call. Requests for
services are stored as tuples, containing the target of the service request and the
name of the service requested, encoded as a string. Decoding takes place in the
executeroutine of the thread.

Additional routines must be added to each separate class in order to provide mu-
tually exclusive access and FIFO buffering of service requests.is requestspending
andrescueSCOOPare identical to the ones defined in the root class above; we
do not repeat their definitions here. The routineset f eatureto do simulates a
feature call that is pending. It will first obtain the lock on the pending requests
mutex, and increase the number of pending requests. The buffer of pending re-
quests is extended with suitable arguments.

set_feature_to_do(feature_params_arg: TUPLE) is
do

requests_pending_mutex.lock
requests_pending.copy(requests_pending + 1)

6

requests_pending_mutex.unlock
request_buffer_mutex.lock
request_buffer.extend(feature_params_arg)
request_buffer_mutex.unlock

end

get f eatureto do removes a pending request from the buffer, if one exists; oth-
erwise, a dummy empty request is returned, which can be used as a termination
signal to a controlling thread, e.g., the root.

get_feature_to_do: TUPLE is
do

request_buffer_mutex.lock
if not request_buffer.is_empty then

Result := request_buffer.first
else

Result := [Current, "NOTHING"]
end
request_buffer_mutex.unlock

end

3.1 Separate entities and arguments

Changes must also be made to entities declared as separate. The declaration

x: separate SOME_TYPE

in a SCOOP Eiffel program is replaced by SECG with the declarations

x: SOME_TYPE
x_mutex: MUTEX

A similar addition is made for separate arguments: a mutex is added for each sepa-
rate argument, and theseparatekeyword is removed. This is illustrated in the examples
in the next section.

3.2 Creation procedures

Given that separate classes and entities are being replaced with threads, buffers, and
mutexes, the creation procedures of translated separate classes must be extended to
initialise mutexes and service request buffers accordingly. In the declaration of the
creation procedures of separate classes, two arguments are added:

requests_pending_arg: INTEGER_REF
requests_pending_mutex_arg: MUTEX

Initialisation is also provided for these attributes in all creation procedures of sep-
arate classes. At the start of the creation procedure of the root class the following
instructions are added:

7

create requests_pending_mutex.default_create
requests_pending := 1

At the end of this creation procedure we add instructions which guarantee correct
completion of the application. All requests for service that are still pending are re-
moved from the buffer, and then the routinejoin all of classTHREADis called; the
root class will then wait (and termination of the application will therefore wait) until
all threads have finished execution.

from
requests_pending_mutex.lock
requests_pending.copy(requests_pending -1)
requests_pending_mutex.unlock

until not is_requests_pending
loop end
join_all

In the creation procedures of separate classes we add the following instructions,
which initialise the pending services request buffer to empty, and initialise the mutex
for the class.

requests_pending := requests_pending_arg
requests_pending_mutex:= requests_pending_mutex_arg
current_feature_name := "NOTHING"
create current_feature_args.make
create request_buffer.make
create request_buffer_mutex.default_create

3.3 Calls

Finally, we can translate calls to routines. We substitute calls to features of formerly
separate classes as follows. The call

p.some_feature(d)

wherep is an entity of a separate class, andd is a separate reference, is translated
to the call

p.set_feature_to_do([Current, "SOME_FEATURE_STRING", d, d_mutex])

The first argument indicates the target of the feature call; the second is a string
encoding of the feature being requested. Note that a mutex is supplied with the separate
argumentd so that mutually exclusive access can be arranged.

One question remains: the above translation effectivelybuffersservice requests. So
when do service requests actually get processed, and features called? This is carried
out in the routineexecute, which must be implemented by the translation of every
separateclass;executeis a deferred routine inherited fromTHREAD. Effectively, all

8

thatexecutedoes is remove a tuple from the request buffer, decodes the feature to be
executed, and executes it. We illustrate this in the examples.

Finally, SECG automatically places lock/unlock instructions where necessary, i.e.,
when attempting to write to formerly separate entities. This is illustrated in more detail
in the next sections, where examples show how the conversion process works.

4 One-Zero Example

Our first example is called one-zero; it is intentionally simple in order to illustrate the
basic conversion process. We assume that we have two classes,PROCESSandDATA.
PROCESSis a separate class, whileDATAis used to represent shared data; thus, access
to an entity of typeDATAshould be synchronised in some way. We will create three
entities of classPROCESS, which will access a synchronised entity of typeDATA. We
will use the classPROCESSfurther in the next section, where we show the effect of
applying SECG to it.

4.1 SCOOP source

Consider the following SCOOP Eiffel program, consisting of a single root class. The
program creates tree entities of separate classPROCESS, which will access the separate
entity of typeDATA. The details of classPROCESSare in the next section, but for now
it suffices to know that all therun routine ofPROCESScan do is either set the value
stored ind to 0 or 1, or print the stored value ind.

class ROOT_CLASS
creation make

feature
d: separate DATA
p1, p2, p3: PROCESS -- separate class

make is -- start three processes
do

io.putstring ("Test threads%N")
create d.make
create p1.make(d,0,"First")
create p2.make(d,1,"Second")
create p3.make(d,2,"Third")
p1.run
p2.run
p3.run

end
end -- class ROOT_CLASS

9

4.2 Generated source

After applying SECG to the above class, the following result is generated. First, in-
heritance fromTHREADCONTROLandEXCEPTIONSis added. Further, a mutex
is added for separate entityd. Since we have several threads (because each process
p1; p2; andp3 are separate entities) – each of which can place service requests to the
others – we need to know when requests were executed and if there is a need to con-
tinue thread execution. We thus introduce variables to keep track of pending requests
(and their number). Once all requests have been executed (i.e.,requestspendingis
zero), thread execution can terminate. The following source is therefore generated.

class ROOT_CLASS
inherit

EXCEPTIONS
THREAD_CONTROL

creation make

feature
d_mutex: MUTEX
requests_pending: INTEGER_REF
requests_pending_mutex: MUTEX

is_requests_pending:BOOLEAN is
do

Result := true
requests_pending_mutex.lock
if requests_pending.is_equal(0) then

Result := false
end
requests_pending_mutex.unlock

end

rescue_SCOOP(who_caused:STRING;what_caused:STRING) is
do

io.put_string("Assertion violated in " + who_caused + ": " + what_caused)
raise("Assertion " + what_caused + " violated in " + who_caused)

end

The attributes from the source file are translated directly, with theseparatekey-
word removed.

d: DATA
p1, p2, p3: PROCESS

makemust be modified according to the translation scheme described in the previ-
ous section. Its purpose is to start the three processes. First, it initialisesrequestspending
to 1 since the creation procedure is a service that can make further requests. It then ini-
tialises the attributed and its mutex.

10

make is
do

create requests_pending_mutex.default_create
requests_pending := 1

io.putstring ("Test threads%N");
create d_mutex.default_create
d_mutex.lock
create d.make
d_mutex.unlock

Next, we translate the statements contained in the body of the originalmakeproce-
dure. The statements arecreatestatements and processrun statements. For translating
thecreatestatements, we addrequestspendingandrequestspendingmutexparam-
eters, and alsod mutexsince the attributed is declared as separate and we may need
to synchronise access to it. After creating eachPROCESSobject, we launch the corre-
sponding thread.

create p1.make(d, d_mutex, 0,"First", requests_pending, requests_pending_mutex)
p1.launch
create p2.make(d, d_mutex, 1,"Second", requests_pending, requests_pending_mutex)
p2.launch
create p3.make(d, d_mutex, 2,"Third", requests_pending, requests_pending_mutex)
p3.launch

We must next translate therun feature calls. As with any feature call, it is translated
to invocations of threadset f eatureto do calls, which effectively inform the thread
that a service request of the feature specified as a parameter is being made; the thread
can then buffer the service request and carry it out as soon as possible.

p1.set_feature_to_do([Current,"RUN_STRING"])
p2.set_feature_to_do([Current,"RUN_STRING"])
p3.set_feature_to_do([Current,"RUN_STRING"])

Finally, all pending requests must be removed from the buffer for the class, and
the root class thread must wait until all other threads have terminated, before it can
terminate

from
requests_pending_mutex.lock
requests_pending.copy(requests_pending - 1)
requests_pending_mutex.unlock

until not is_requests_pending
loop end
join_all
end -- make
end -- class ROOT_CLASS

The above translated program compiles and executes under EiffelStudio 5.2.

11

5 Example: ClassPROCESS

The example of the preceding section makes use of the separate classPROCESS.
We now show how SECG translates this separate class into a threaded Eiffel class.
PROCESSis a straightforward class, possessing a name, an option, and shared data.
When the process runs, it can do one of three things: sets its shared data to 0; to 1; or
view and print its data. Here is its source.

separate class PROCESS
creation make
feature

option: INTEGER
data: separate DATA
name: STRING

make(d: separate DATA; opt:INTEGER; n:STRING) is
do

data := d
option := opt
name := n

end

run is
local i:INTEGER
do
from until false
loop

if option = 0 then
data.zero -- set data to zero

elseif option = 1 then
data.one -- set data to one

else data.view; print_me
end

end
end

print_me is
do

print("%N" + name + " just ran" + "%N")
end

end -- class PROCESS

SECG must carry out several tasks in translating this class: it must implement mu-
texes for separate entities, add inheritance clauses for the separate class, and translate
the separate arguments inmake. An implementation must also be provided for the
executefeature, which must be implemented in any class that inherits fromTHREAD.
executesimply takes requests from the pending buffer and executes the corresponding
feature (eitherrun or print me). Here is a snapshot of the translation.

class PROCESS

12

inherit
THREAD
EXCEPTIONS

creation make
feature

execute is
do

from
until not is_requests_pending
loop

current_feature_args := get_feature_to_do
current_feature_name ?= current_feature_args.item(2)
if not current_feature_name.is_equal("NOTHING") then

if current_feature_name.is_equal("RUN_STRING") then
run

end
if current_feature_name.is_equal("PRINT_ME_STRING") then

print_me
end
requests_pending_mutex.lock
requests_pending.copy(requests_pending - 1)
requests_pending_mutex.unlock
request_buffer_mutex.lock
request_buffer.start
request_buffer.remove
request_buffer_mutex.unlock

end
end

end

As discussed in Section 3, a number of features will be automatically added by
SECG for keeping track of pending requests to a (translated) separate object, to keep
track of which feature is being called by a thread, and to handle exceptions. These
features, such asrequestspendingandset f eatureto do, are added to the translate of
PROCESSat this state, as described in Section 3.

Next, SECG copies over attributes from the separate classPROCESSinto the
threaded version; this includesoption, data, andname. The creation proceduremake
is then translated, adding three new arguments:d mutex(to handle mutually exclusive
access to the data),requestspending, and a mutex. Finally,run can be translated, and
at this point we can illustrate the addition of locking and unlocking of mutexes, which
must be before and after accessing any shared (separate) entities.

run is
local i:INTEGER
do

from
until false
loop

if option = 0 then

13

data_mutex.lock
data.zero
data_mutex.unlock

elseif option = 1 then
data_mutex.lock
data.one
data_mutex.unlock

else
data_mutex.lock
data.view
data_mutex.unlock
print_me

end
end

end

5.1 Limitations

A SCOOP program that is translated using SECG is not guaranteed to be deadlock
free: if a programmer misuses shared data or synchronised processes, it is not difficult
to introduce deadlock (or livelock) among threads. It is not clear, based on [10], to see
how deadlock freedom can be guaranteed for SCOOP programs.

The SCOOP proposal in [10] allowslocal variables to be declared asseparate.
This is not permitted in SECG; any locals declared as separate will not be translated
correctly, nor will the resulting program compile. An entity declared aslocal has its
lifecycle linked to that of the execution of its enclosing routine. Once the routine
terminates, any object attached to the entity will be destroyed. An entity declared as
separate is intended to be (potentially) shared by multiple threads; thus, it seems that
declarations oflocal and separateare incompatible. It remains for future work to
investigate whether the two mechanisms can be reconciled.

There are no further limitations with SECG: any valid Eiffel constructs, including
onceroutines andexpandedtypes can be used. Because SECG is a pre-processor, and
because it implementsseparateclasses and entities in terms ofTHREADs, instead of
modifying the underlying run-time system, it should not be affected by changes to the
Eiffel language, e.g., additions of new constructs.

5.2 Soundness

The soundness of SECG has not been proven, though the tool has been tested exten-
sively on a number of case studies. Soundness could be proven by appealing to the
Eiffel Refinement Calculus (ERC) [11]. This calculus provides a formal semantics for
a subset of Eiffel (including feature calls and reference types). The calculus currently
supports real-time specification, but it could be extended to concurrency and multi-
threading; the calculus is built atop Hehner’s predicative programming calculus [6],
which supports concurrency and communicating processes. The calculus could then
be used to give a formal semantics toseparateclasses and entities. Thereafter, it could
be shown that a class produced by SECGrefinesa separate class in SCOOP.

14

6 Conclusions

We have given an overview of the SECG tool, which implements the SCOOP con-
currency proposal for Eiffel by translating Eiffel programs that useseparateentities
and classes into threaded applications. Two examples have demonstrated the process,
and limitations with the tool have been discussed. With some work and tuning for
efficiency, a mechanism like SECG could form the basis for an industrial-quality im-
plementation of the SCOOP mechanism in open-source Eiffel compilers.

The latest alpha version of SECG can be obtained from the authors. SECG is itself
written in Eiffel, and has been tested and evaluated under ISE EiffelStudio 5.2.

References

[1] B. Alpern et al. The Jalapeno Virtual Machine.IBM Systems Journal39(1), 2000.

[2] I. Attali and D. Caromel. Formal Properties of the Eiffel// Model.Parallel and
Distributed Objects, 1999.

[3] D. Caromel. Towards a method of object-oriented concurrent programming.
Comm. ACM36(9), September 1993.

[4] M. Compton.SCOOP: an Investigation of Concurrency in Eiffel, MSc Thesis,
Australian National University, 2000.

[5] J. Gosling, B. Joy, and G. Steele.The Java Language Specification, Second Edi-
tion, AWL, 2000.

[6] E.C.R. Hehner.A Practical Theory of Programming, Second Edition, Springer-
Verlag, 2003.

[7] G. Jalloul. Communicating Sequential Systems.Journal of Object-Oriented Pro-
gramming, 2000.

[8] C.-H. Jo, C.-J. Lee, and J. Son. A realization of a concurrent object-oriented
programming language. InProc. ACM Symposium on Applied Computing1998,
ACM Press, 1998.

[9] D. Konstantas, O. Nierstrasz, and M. Papthomas. An implementation of Hybrid,
a concurrent object-oriented language. Technical Report, University of Geneva,
June 1998.

[10] B. Meyer.Object-Oriented Software Construction, Second Edition, Prentice-Hall,
1997.

[11] R. Paige and J. Ostroff. ERC: an Object-Oriented Refinement Calculus for Eiffel,
under review, 2003. Draft available at www.cs.yorku.ca/techreports/2001.

[12] Y. Yokote and M. Tokoro. Experience and evolution of Concurrent Smalltalk.
SIGPLAN Notices22, October 1987.

15

