UNIVERSITE

@"’: YORK

‘“r-...-.-*“*’ UNIVERSITY

SECG: the SCOOP-to-Eiffel Code Generator

Oleksandr Fuks, Jonathan S. Ostroff, and Richard F. Paige

Technical Report CS-2003-05

April 24, 2003

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada

SECG: The SCOOP-to-Eiffel Code Generator

Oleksandr Fuks, Jonathan Ostroff,
Department of Computer Science, York University, Canada,
nati@cs.yorku.ca, jonathan@cs.yorku.ca

Richard Paige,
Department of Computer Science, University of York, U.K.,
paige@cs.york.ac.uk

April 24, 2003

Abstract

The Simple Concurrent Object-Oriented Programming (SCOOP) mechanism
introduces inter-object concurrency to the Eiffel language, via addition of one new
keyword, separate We describe a general tool that takes a Eiffel program that
makes use of SCOOP asdparate and translates it into an Eiffel multi-threaded
program that makes use of the standard EiffelBaldé&kE ADclass, which is there-
after compatible with EiffelStudio.

1 Introduction and Background

Many mechanisms exist for introducing concurrency into object-oriented (OO) pro-
gramming languages. These approaches support the use of multiple, perhaps dis-
tributed processors, each of which may be executing multiple processes. Different
techniques are provided with the languages to support synchronisation, interruption,
mutually exclusive access to object state, and atomic execution of routines.

Java [5] introduces concurrency via inheritance from special classes that introduce
threads; additional compilers for Java have been developed for efficiently implementing
Java’s concurrency model, e.g., Jalapeno [1]. The Eiffel// project [2] provided a special
classPROCE S $hat could be used to introduce new threads of execution. Jalloul [7]
extends Eiffel by providing new language features for implementing critical regions
and conditional critical regions; these new features are in turn implemented in a kernel
sitting atop PVM. Variants of Smalltalk have been proposed [12, 9] for multi-threading.
Similarly, C++ extensions such as Parallel-C++ [8] exist for parallel, distributed, and
concurrent execution.

The Simple Concurrent Object-Oriented Programming (SCOOP) mechanism was
proposedin [10] as a way to introduce inter-object concurrency into the Eiffel program-
ming language. The mechanism extends the Eiffel language by adding one keyword,

separate that can be applied to classes, entities, and formal routine arguments. Appli-
cation ofseparateto a class indicates that the class is executing in its own thread of
control; application okeparateto entities or arguments indicate that these constructs
are points of synchronisation, and can be shared among concurrent threads. This mech-
anism was implemented by Compton [4] by building upon the GNU SmartEiffel com-
piler and run-time system. No implementation for other versions of Eiffel, e.g., ISE
EiffelStudio, exist.

We describe a tool, called the SCOOP-to-Eiffel Code Generator (SECG), which
translates Eiffel programs that use the SCOOP mechanissepirate into standard
Eiffel threaded applications that make use of Eiff@’lslREADclass. The results of
applying the tool have been used successfully with EiffelStudio 5.2. SECG differs
from Compton’s implementation in that it does not rely on changes to a compiler (it
translates SCOOP code into pure Eiffel) or a run-time system; thus, it can in theory be
used with any version of Eiffel that provides an implementation ofitHdRE ADclass.

The paper is organised as follows. We start with a brief overview of the SCOOP
mechanism, as specified in [10], and summarise EiffeEl$READclass, and then
explain how the SECG translation tool works. We use two examples to illustrate the
design and implementation of the tool. We then discuss limitations with SECG as
implemented, and consider further work.

2 Overview of SCOOP and Eiffel Threads

SCOOP introduces concurrency to Eiffel by addition of the keyveeqhrate it is the
responsibility of the underlying run-time system and compiler to deal with the subtle
(and, in some cases, complicated) semantic problems introduced by the addition. The
separatekeyword may be attached to the definition of a class, or the declaration of an
entity, or formal routine argument. Examples of the three types of attachments are as
follows.

separate clasfKROOT (1)
X : separatePROCESS (2)
f(y: separatePROCESEH 3

A class that is declared agparate(asROOT in (1)) cannot be declared as expanded
or deferred; nor is its property of beirsgparateinherited. A separate class executes
in its own thread; thus, service requests (i.e., feature calls) to instances of a separate
class may need to block or wait until the thread is available to execute the request.

An entity or argument declared as separate (e.g., as in (2) and (3) above) indicates
that the data attached to the entity or argument may be shared between threads. Thus,
synchronisation facilities must be provided so that, e.g., mutually exclusive writes to
shared data take place. Entitgan only be declared agparateif PROCES$ (2) is
not deferred or expanded.

SCOORP is based upon the notion giracessorwhich defines a unit of execution
in an OO system. When a separate object (defined in the sequel) is created, a new
processor is also created to handle its processing. Thus, a processor is an autonomous

thread of control capable of supportisgquentialnstruction execution [10]. A system

in general may have many processors associated with it. Compton [4] introduces the
notion of asubsystem a model of a processor and the set of objects it operates on —to
distinguish the execution of sequential and concurrent programs. In his terminology, a
separate object is any object that is in a different subsystem.

2.1 Routine calls

In Eiffel, the standard syntax for routine calls isXi¢(a) for a command, which may
change the state of the object attached,tand (i) y := x.f(a) for a side-effect free
function f. In sequential Eiffel, and in both cases, when executing the routine call,
execution switches to the object attached,tthe routine executes, and (perhaps after
storing a result), execution continues at the next instruction. Now suppose that either
X is attached to a separate object, or that the typeisfeparate. For the callc(a),
execution on the current object andynchronisex registers the fact thatwas called

and either starts execution oimmediately, or when the next opportunity arises. Then
both the current call anklc(a) can proceed concurrently. If there are multiple pending
requests for calls or, they are queued and served in first-in-first-out order.

For case (ii), where a result is needed from a separate call, a restricted version of
the wait-by-necessitynechanism of Caromel [3] is used, because the result of a call
to x.f(a) may not be available when the assignmgnt x.f(a) can take place. In
SCOORP, further client calls aawill wait until the query callx. f (a) has terminated.

2.2 Waiting

Eiffel introducesrequire andensureclauses for specifying the pre- and postcondition

of routines. In a sequential programmingremuire clause specifies conditions that
must be established and checked by the client of the routinendereclause specifies
conditions on the implementer of the routine. In a SCOOP Eiffel programqaire
clause on a routine belonging to a separate object specifiag aondition: if on a call
tox.r(a), wherex is attached to a separate object, the routiregiire clause is false,

the processor associated with the object should wait until it is true before proceeding
with routine execution.

2.3 Object reservation

There are many situations in a concurrent OO program where exclusive use of a sep-
arate object is required. In order to retain consistency and correctness, there must be
some mechanism for stopping or pausing any interleaving of concurrent calls. SCOOP
enables this by altering the semantics of argument passing. Consider the call

r(x:separateTl,...,y: separateT 2) 4)

Exclusive locks should be obtained »andy before the call to starts; all locks must
be obtained before the processor executes thé call

LIn general, locks need only be obtained if a feature is called on an argument in the ody of

2.4 Consistency rules

A SCOOP program may have both separate and non-separate objects. It is essential to
guarantee that an entity declared as non-separateXeTX). can never be attached to a
separate object; this could lead to race conditions and object inconsistency. In order to
prevent this, Meyer introduces four consistency rules [10].

1. If the source of an attachment is separate, the destination entity must be separate
as well.

2. If an actual argument of a separate call is of reference type, the corresponding
formal argument must be separate.

3. Ifthe source of an attachment is the result of a separate call to a function return-
ing a separate type, the target must be separate.

4. If an actual argument or result of a separate call is of expanded type, its base
class may not include any non-separate attribute of a reference type.

2.5 Eiffel Threads

A simple threading mechanism is provided as part of the EiffelBase library that comes
with ISE EiffelStudio. To make use of threads, i.e., to implement a class that defines an
Eiffel thread, a developer writes a new class that inherits from the inteffeldeE AD

This class provides the following fundamental routines:

e execute the routine to be executed by the new thread. In general, this must be
implemented by the developer.

e join: the calling thread waits for the current child thread to terminate.
e launch initialise a new thread runningkecute
e join_all: the calling thread waits for all other threads to terminate.

The classT HREADCONT ROLprovides control over thread execution. Typically
the root class of an Eiffel application inherits fronHREADCONT ROL and uses its
join and join_all routines to manage execution of spawned child threads.

The library also provides basic concurrent functionality, particularly through the
classMUT E X, which provides a synchronisation object.

In [4], the SCOOP proposal of Meyer is implemented in the framework of the GNU
SmartEiffel compiler and run-time system. We now describe the SECG code generator,
which translates SCOOP Eiffel programs that usestifgaratemechanism, into multi-
threaded Eiffel applications.

3 The SCOOP-to-Eiffel Code Generator

The SCOOP-to-Eiffel Code Generator (SECG) tool provides implicit support for the
SCOOP proposal by translating an Eiffel program that makes usepafrateclasses,
arguments, and entities, into one that makes use of threads and the Eiff@lidIB&AD
which is available with distributions of EiffelStudio. No changes to the EiffelStudio
compiler or run-time system are needed, and all Eiffel programming constructs can be
used, includingonceroutines. In an informal sense, SECG implementsfanement
of the SCOOP specification into Eiffel classes and statements that do not make use of
separate we discuss this further in the sequel.

The basic mechanism underlying SECG is to add mutexes and buffeepte
rate classes in order to keep track of pending requests made by clients to make use
of services. Additional and similar changes are made to separate entities and separate
arguments to introduce mutexes, allowing synchronisation and mutually exclusive ac-
cess. Each separate class, when translated, inheritsTileRE ADand is provided
with a buffer containing pending services requests (i.e., feature calls). The root class
of the system simply executes all threads; each thread, indefinitely, removes a pending
request for service and executes the request.

We first describe the general translation scheme used by SECG, and then illustrate
its use with two examples.

The SECG tool accepts a single command-line parameter indicating the name of
a projectfile. The project file specifies the names of all Eiffel classes (and thus, all
.e files) to be included in the project. As well, the root class of the project must be
specified with the keywortbot prepended.

Using the information provided in the project file, the generator scans the files
included in the system. The generator then produces the code as follows.

1. THREADCONT ROLis added as a superclass of the root class. This provides
the root of the application with control over thread execution. The root class is
responsible for making sure that, when the application terminates, all pending
service requests on all threads in the application have been handled.

2. All classes inherit fronE XCEPTIONS

3. requestspendingandrequestspendingmutexare added as attributes to the root
class. The former attribute is used as a resource monitor for the root class, while
the latter attribute synchronises access to the monitor (since clients may make
service requests of the root class).

4. The following features are also declared and implemented in the root class.
is_requestpendings used to determine if there are pending accesses to the root.

is_requests_pending : BOOLEAN is
do
Result := true
requests_pending_mutex.lock
if requests_pending.is_equal(0) then

Result := false
end
requests_pending_mutex.unlock
end

As well, a general-purposescueroutine is provided to flag exceptional be-
haviour in the root class.

rescue_SCOOP(who_caused: STRING; what_caused: STRING) is

do
io.put_string("Assertion violated in "+who_caused+"; "+what_caused)
raise("Assertion " + what_caused + " violated in " + who_caused)
end

. Each class declared saparateinherits fromTHREAD thus, each separate class
has its own thread. The basic idea in translatirsgparateclass is to provide a
buffer for service requests (along with a mutex to ensure synchronised access).

The following attributes are declared.

requests_pending: INTEGER_REF
requests_pending_mutex: MUTEX
request_buffer: LINKED_LIST[TUPLE]
request_buffer_mutex: MUTEX
current_feature_args: TUPLE
current_feature_name: STRING

The attributes prefixed wittequestare used to ensure mutually exclusive access
and also to buffer the requests for access; concurrent requests for service are,
of course, queued. The attributes prefixed wveitinrent store the current feature
(service) being requested and the arguments supplied to the call. Requests for
services are stored as tuples, containing the target of the service request and the
name of the service requested, encoded as a string. Decoding takes place in the
executeoutine of the thread.

Additional routines must be added to each separate class in order to provide mu-
tually exclusive access and FIFO buffering of service requisstequestspending
andrescueSCOOPare identical to the ones defined in the root class above; we
do not repeat their definitions here. The routset featureto_do simulates a
feature call that is pending. It will first obtain the lock on the pending requests
mutex, and increase the number of pending requests. The buffer of pending re-
guests is extended with suitable arguments.

set_feature_to_do(feature_params_arg: TUPLE) is
do
requests_pending_mutex.lock
requests_pending.copy(requests_pending + 1)

requests_pending_mutex.unlock
request_buffer_mutex.lock
request_buffer.extend(feature_params_arg)
request_buffer_mutex.unlock

end

get featureto_doremoves a pending request from the buffer, if one exists; oth-
erwise, a dummy empty request is returned, which can be used as a termination
signal to a controlling thread, e.g., the root.

get feature to_do: TUPLE is
do
request_buffer_mutex.lock
if not request buffer.is_empty then
Result := request_buffer.first

else
Result := [Current, "NOTHING"]
end
request_buffer_mutex.unlock
end

3.1 Separate entities and arguments

Changes must also be made to entities declared as separate. The declaration
X. separate SOME_TYPE

in a SCOOP Eiffel program is replaced by SECG with the declarations

x: SOME_TYPE
X_mutex: MUTEX

A similar addition is made for separate arguments: a mutex is added for each sepa-
rate argument, and tlseparatekeyword is removed. This is illustrated in the examples
in the next section.

3.2 Creation procedures

Given that separate classes and entities are being replaced with threads, buffers, and
mutexes, the creation procedures of translated separate classes must be extended to
initialise mutexes and service request buffers accordingly. In the declaration of the
creation procedures of separate classes, two arguments are added:

requests_pending_arg: INTEGER_REF
requests_pending_mutex_arg: MUTEX

Initialisation is also provided for these attributes in all creation procedures of sep-
arate classes. At the start of the creation procedure of the root class the following
instructions are added:

create requests_pending_mutex.default_create
requests_pending = 1

At the end of this creation procedure we add instructions which guarantee correct
completion of the application. All requests for service that are still pending are re-
moved from the buffer, and then the routijen_all of classT HREAD:Is called; the
root class will then wait (and termination of the application will therefore wait) until
all threads have finished execution.

from
requests_pending_mutex.lock
requests_pending.copy(requests_pending -1)
requests_pending_mutex.unlock

until not is_requests_pending

loop end

join_all

In the creation procedures of separate classes we add the following instructions,
which initialise the pending services request buffer to empty, and initialise the mutex
for the class.

requests_pending := requests_pending_arg
requests_pending_mutex:= requests_pending_mutex_arg
current_feature_name := "NOTHING"

create current_feature_args.make

create request_buffer.make

create request_buffer_mutex.default_create

3.3 Calls

Finally, we can translate calls to routines. We substitute calls to features of formerly
separate classes as follows. The call

p.some_feature(d)

wherep is an entity of a separate class, ahis a separate reference, is translated
to the call

p.set feature to_do([Current, "SOME_FEATURE_STRING", d, d_mutex])

The first argument indicates the target of the feature call; the second is a string
encoding of the feature being requested. Note that a mutex is supplied with the separate
argument so that mutually exclusive access can be arranged.

One question remains: the above translation effectiveffersservice requests. So
when do service requests actually get processed, and features called? This is carried
out in the routineexecute which must be implemented by the translation of every
separateclass;executds a deferred routine inherited fromHREAD Effectively, all

thatexecutedoes is remove a tuple from the request buffer, decodes the feature to be
executed, and executes it. We illustrate this in the examples.

Finally, SECG automatically places lock/unlock instructions where necessary, i.e.,
when attempting to write to formerly separate entities. This is illustrated in more detail
in the next sections, where examples show how the conversion process works.

4 One-Zero Example

Our first example is called one-zero; it is intentionally simple in order to illustrate the
basic conversion process. We assume that we have two cIRS¥BEE S@ndDATA
PROCES$ a separate class, whiIAT Ais used to represent shared data; thus, access
to an entity of typeDAT Ashould be synchronised in some way. We will create three
entities of clas$®ROCE SSwhich will access a synchronised entity of typATA We

will use the clas?ROCE SSurther in the next section, where we show the effect of
applying SECG to it.

4.1 SCOOP source

Consider the following SCOOP Eiffel program, consisting of a single root class. The
program creates tree entities of separate @#&¥3CE S3which will access the separate
entity of typeDAT A The details of clasBROCE S&re in the next section, but for now

it suffices to know that all theun routine of PROCE S&an do is either set the value
stored ind to O or 1, or print the stored value ¢h

class ROOT_CLASS
creation make

feature
d: separate DATA
pl, p2, p3: PROCESS -- separate class

make is -- start three processes
do
io.putstring (“Test threads%N")
create d.make
create pl.make(d,0,"First")
create p2.make(d,1,"Second")
create p3.make(d,2,"Third")
pl.run
p2.run
p3.run
end
end -- class ROOT_CLASS

4.2 Generated source

After applying SECG to the above class, the following result is generated. First, in-
heritance fronTHREADCONT ROLandEXCEPTIONSs added. Further, a mutex

is added for separate entity Since we have several threads (because each process
pl, p2, and p3 are separate entities) — each of which can place service requests to the
others — we need to know when requests were executed and if there is a need to con-
tinue thread execution. We thus introduce variables to keep track of pending requests
(and their number). Once all requests have been executedéesstspendingis

zero), thread execution can terminate. The following source is therefore generated.

class ROOT_CLASS
inherit
EXCEPTIONS
THREAD_CONTROL

creation make

feature
d_mutex: MUTEX
requests_pending: INTEGER_REF
requests_pending_mutex: MUTEX

is_requests_pending:BOOLEAN is
do
Result := true
requests_pending_mutex.lock
if requests_pending.is_equal(0) then
Result := false
end
requests_pending_mutex.unlock
end

rescue_SCOOP(who_caused:STRING;what_caused:STRING) is

do
io.put_string("Assertion violated in " + who_caused + " " + what_caused)
raise("Assertion " + what_caused + " violated in " + who_caused)

end

The attributes from the source file are translated directly, withstparatekey-
word removed.

d: DATA
pl, p2, p3: PROCESS

makemust be modified according to the translation scheme described in the previ-
ous section. Its purpose is to start the three processes. First, it initi@ligesstspending
to 1 since the creation procedure is a service that can make further requests. It then ini-
tialises the attribute and its mutex.

10

make is

do
create requests_pending_mutex.default_create
requests_pending = 1

io.putstring ("Test threads%N");
create d_mutex.default_create
d_mutex.lock

create d.make

d_mutex.unlock

Next, we translate the statements contained in the body of the origaiadproce-
dure. The statements areeatestatements and process) statements. For translating
the create statements, we adequestspendingandrequestspendingmutexparam-
eters, and alsd_mutexsince the attributé is declared as separate and we may need
to synchronise access to it. After creating eREOCE S®bject, we launch the corre-
sponding thread.

create pl.make(d, d_mutex, 0,"First", requests_pending, requests_pending_mutex)
pl.launch

create p2.make(d, d_mutex, 1,"Second", requests_pending, requests_pending_mutex)
p2.launch

create p3.make(d, d_mutex, 2,"Third", requests_pending, requests_pending_mutex)
p3.launch

We must next translate tlman feature calls. As with any feature call, it is translated
to invocations of threadet featureto_do calls, which effectively inform the thread
that a service request of the feature specified as a parameter is being made; the thread
can then buffer the service request and carry it out as soon as possible.

pl.set feature to_do([Current,"RUN_STRING"])
p2.set_feature_to_do([Current,"RUN_STRING"])
p3.set_feature_to_do([Current,"RUN_STRING"])

Finally, all pending requests must be removed from the buffer for the class, and
the root class thread must wait until all other threads have terminated, before it can
terminate

from
requests_pending_mutex.lock
requests_pending.copy(requests_pending - 1)
requests_pending_mutex.unlock

until not is_requests_pending

loop end

join_all

end -- make

end -- class ROOT_CLASS

The above translated program compiles and executes under EiffelStudio 5.2.

11

5 Example: ClassPROCESS

The example of the preceding section makes use of the separatePREXSESS

We now show how SECG translates this separate class into a threaded Eiffel class.
PROCESSs a straightforward class, possessing a name, an option, and shared data.
When the process runs, it can do one of three things: sets its shared data to 0; to 1; or
view and print its data. Here is its source.

separate class PROCESS
creation make
feature
option: INTEGER
data: separate DATA
name: STRING

make(d: separate DATA; optINTEGER; n:STRING) is
do

data := d

option := opt

name := n
end

run is
local i:INTEGER
do
from until false
loop
if option = 0 then
data.zero -- set data to zero
elseif option = 1 then
data.one -- set data to one
else data.view; print_me
end
end
end

print_me is
do
print("%N" + name + " just ran" + "%N")
end
end -- class PROCESS

SECG must carry out several tasks in translating this class: it must implement mu-
texes for separate entities, add inheritance clauses for the separate class, and translate
the separate arguments imake An implementation must also be provided for the
executdeature, which must be implemented in any class that inherits TTelREAD
executesimply takes requests from the pending buffer and executes the corresponding
feature (eitherun or print_mé. Here is a snapshot of the translation.

class PROCESS

12

inherit
THREAD
EXCEPTIONS
creation make
feature
execute is
do
from
until not is_requests_pending
loop
current_feature_args := get_feature_to_do
current_feature_name ?= current_feature_args.item(2)
if not current_feature_name.is_equal("NOTHING") then
if current_feature_name.is_equal("RUN_STRING") then
run
end
if current_feature_name.is_equal("PRINT_ME_STRING") then
print_me
end
requests_pending_mutex.lock
requests_pending.copy(requests_pending - 1)
requests_pending_mutex.unlock
request_buffer_mutex.lock
request_buffer.start
request_buffer.remove
request_buffer_mutex.unlock
end
end
end

As discussed in Section 3, a humber of features will be automatically added by
SECG for keeping track of pending requests to a (translated) separate object, to keep
track of which feature is being called by a thread, and to handle exceptions. These
features, such agquestspendingandset featureto_do, are added to the translate of
PROCES&at this state, as described in Section 3.

Next, SECG copies over attributes from the separate dPROSCESSnto the
threaded version; this includegtion data andname The creation proceduraake
is then translated, adding three new argumeshtsiutex(to handle mutually exclusive
access to the datagquestspending and a mutex. Finallysun can be translated, and
at this point we can illustrate the addition of locking and unlocking of mutexes, which
must be before and after accessing any shared (separate) entities.

run is
local i:INTEGER
do
from
until false
loop
if option = 0 then

13

data_mutex.lock
data.zero
data_mutex.unlock

elseif option = 1 then
data_mutex.lock
data.one
data_mutex.unlock

else
data_mutex.lock
data.view
data_mutex.unlock
print_me

end

end
end

5.1 Limitations

A SCOOP program that is translated using SECG is not guaranteed to be deadlock
free: if a programmer misuses shared data or synchronised processes, it is not difficult
to introduce deadlock (or livelock) among threads. It is not clear, based on [10], to see
how deadlock freedom can be guaranteed for SCOOP programs.

The SCOOP proposal in [10] allowscal variables to be declared agparate
This is not permitted in SECG; any locals declared as separate will not be translated
correctly, nor will the resulting program compile. An entity declaredoasl has its
lifecycle linked to that of the execution of its enclosing routine. Once the routine
terminates, any object attached to the entity will be destroyed. An entity declared as
separate is intended to be (potentially) shared by multiple threads; thus, it seems that
declarations ofocal and separateare incompatible. It remains for future work to
investigate whether the two mechanisms can be reconciled.

There are no further limitations with SECG: any valid Eiffel constructs, including
onceroutines anéxpandedtypes can be used. Because SECG is a pre-processor, and
because it implementeparateclasses and entities in terms DHREADs, instead of
modifying the underlying run-time system, it should not be affected by changes to the
Eiffel language, e.g., additions of new constructs.

5.2 Soundness

The soundness of SECG has not been proven, though the tool has been tested exten-
sively on a number of case studies. Soundness could be proven by appealing to the
Eiffel Refinement Calculus (ERC) [11]. This calculus provides a formal semantics for

a subset of Eiffel (including feature calls and reference types). The calculus currently
supports real-time specification, but it could be extended to concurrency and multi-
threading; the calculus is built atop Hehner’s predicative programming calculus [6],
which supports concurrency and communicating processes. The calculus could then
be used to give a formal semanticsparateclasses and entities. Thereafter, it could

be shown that a class produced by SE@fhesa separate class in SCOOP.

14

6 Conclusions

We have given an overview of the SECG tool, which implements the SCOOP con-
currency proposal for Eiffel by translating Eiffel programs that sisparateentities
and classes into threaded applications. Two examples have demonstrated the process,
and limitations with the tool have been discussed. With some work and tuning for
efficiency, a mechanism like SECG could form the basis for an industrial-quality im-
plementation of the SCOOP mechanism in open-source Eiffel compilers.

The latest alpha version of SECG can be obtained from the authors. SECG is itself
written in Eiffel, and has been tested and evaluated under ISE EiffelStudio 5.2.

References

[1] B. Alpern et al. The Jalapeno Virtual MachinBM Systems Journ&9(1), 2000.

[2] 1. Attali and D. Caromel. Formal Properties of the Eiffel// Modeé&rallel and
Distributed Objects1999.

[3] D. Caromel. Towards a method of object-oriented concurrent programming.
Comm. ACM36(9), September 1993.

[4] M. Compton.SCOOP: an Investigation of Concurrency in EiffdSc Thesis,
Australian National University, 2000.

[5] J. Gosling, B. Joy, and G. SteelBhe Java Language Specificatji@econd Edi-
tion, AWL, 2000.

[6] E.C.R. HehnerA Practical Theory of Programmingsecond Edition, Springer-
Verlag, 2003.

[7] G. Jalloul. Communicating Sequential Systedmurnal of Object-Oriented Pro-
gramming 2000.

[8] C.-H. Jo, C.-J. Lee, and J. Son. A realization of a concurrent object-oriented
programming language. IRroc. ACM Symposium on Applied Computit#p8,
ACM Press, 1998.

[9] D. Konstantas, O. Nierstrasz, and M. Papthomas. An implementation of Hybrid,
a concurrent object-oriented language. Technical Report, University of Geneva,
June 1998.

[10] B. Meyer.Object-Oriented Software Constructid®econd Edition, Prentice-Hall,
1997.

[11] R. Paige and J. Ostroff. ERC: an Object-Oriented Refinement Calculus for Eiffel,
under review, 2003. Draft available at www.cs.yorku.ca/techreports/2001.

[12] Y. Yokote and M. Tokoro. Experience and evolution of Concurrent Smalltalk.
SIGPLAN Notice22, October 1987.

15

