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1 Introduction

In the past decade, the performance of automatic speech recognition (ASR) has been sig-
nificantly improved. More and more ASR systems are being deployed in many real-field
applications. In many situations, these speech recognition systems must be operated in
some adverse environments, where ambient noise becomes the major hurdle to achieve
high-accuracy recognition performance. How to improve environmental robustness of
ASR has been intensively studied in the speech community. In the literature, a variety
of noisy speech recognition techniques usually fall into two main categories. In the first
one, we try to remove or compensate the effect of noise in speech signals prior to the
actual recognition procedure. The noise compensation methods can be performed in the
time domain (such as many early speech enhancement methods), the spectral domain, or
the real feature domain used by most speech recognizers, such as the log-cepstrum, LPC-
cepstrum, MFCC, or etc. It has been shown that the methods applied to the ASR feature
domains usually yield the better performance in terms of improving ASR noise robustness.
The most popular techniques in this category include spectral subtraction[13, 5], Wiener
filtering[4] transformation based on stereo data[l, 6, 7], linear noise compensation based
on Taylor series approximation[14, 10, 2], feature domain stochastic matching[17], and
so on. In second category, the effect of noise is compensated within speech recognition
procedure. It usually involves adapting or modifying acoustic models (usually HMM’s) of
the ASR systems to match the noisy speech feature in a new testing environment. The
methods applied in the HMM model domain always are more computationally expensive
than others. The representative methods in the category include parallel model combina-
tion (PMC)[8], model adaptation using MLLR (maximum likelihood linear regression)|[12]
or MAP (maximum a posteriori) 9], Jacobian environment adaptation[16], speech and
noise decomposition[20], model space stochastic matching[17]. It is well known that the
distortion caused by additive ambient noises is highly non-linear in the log-spectral or
cepstral domain. However, due to computational complexity issue, most noise compensa-
tion methods for ASR are approximated by some linear functions, such as in simple bias
removal, an affine transformation, linear regression, first order Taylor series expansion,
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and so on. In the literature, there are only some very limited efforts to compensate noise
with any non-linear ways, such as higher order Taylor series expansion, neural networks
under the framework of stochastic matching[19].

In this study, we propose to compensate additive noise in the log-spectral domain
based on its original non-linear distortion function. We assume the clean speech follows a
Gaussian mixture model in the log-spectral domain and noise signal is a single Gaussian
distribution. Given any noisy speech observation, we estimate the clean speech by using
the original nonlinear distortion function among noise, clean and noisy speech based on the
MMSE (minimum mean square error) criterion. The MMSE estimation of clean speech
ends up with a complex integral. In this work, we propose an efficient algorithm to use
some numerical methods to solve the integral. At last, the estimated clean speech will
be mapped from the log-spectral domain into the MFCC domain, and sent to a speech
recognizer for the recognition results.

2 Environmental Model for Speech in Additive noise

Assume we have clean speech z(t) in the time domain and z(t) is corrupted by an inde-
pendent ambient noise n(t) (also in the time domain). The resultant noisy speech can be
expressed in the time domain as:

y(t) = =(t) + n(t) (1)

Usually we can assume z(t) and n(t) are statistically independent.

If we convert the signals into the log-spectrum domain (either linear or Mel-scale), the
above simple relation becomes a complex nonlinear function (see [1]). For d-th filter bank
(or d-th frequency bin), we have

Yaq=Xg+In (14 ™) (2)

If we assume the independence between all different filter banks, then we can drop
the subscript d for clarity. We just repeat the same operation for all different filter banks
(or feature dimensions). Hereafter, we use letters in bond to represent the corresponding
signals in the log-cepstrum domain, i.e., y denotes noisy speech in the log-cepstrum do-
main, x for clean speech and n for noise. Then, we can have the following three equivalent
functions for y, x and n:

y=x+In (1 + e“*x) (3)

x =1In(e¥ —e") (4)
n=x+In(e*-1) (5)
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3 MMSE Estimation of Clean Speech

Based on the above non-linear environmental model, for any given noisy speech feature
y, we will try to estimate a clean speech % in the MMSE (minimum mean square error)
sense. Without losing generality, we assume the clean speech feature x in the log-spectral
domain follows a Gaussian mixture model (GMM) as:

K

p(x) =Y wi- N(x | prar, 03 (6)

k=1

where p,, and 02, are mean and variance of k-th Gaussian mixand, and wy, is the weight
of k-th mixand with the constraint Zszl wy = 1. The GMM model of speech signals may
be constant for all frames in an utterances, or may change from one frame to another. In
the former case, we can train a generic GMM from clean speech data. In the latter one,
for any a particular feature vector, we can use a proper HMM state from the whole HMM
sets for clean speech.

Besides, we assume noise signals in the log-spectral domain follows a single Gaussian
distribution as:

p(n) =N (@ | i, 07) (7)

where p, and o2 are mean and variance of noise signals. They can be estimated from
some initial noise frames in an utterance. Alternatively, if the clean speech distribution
p(x) is known, p,, and o2 can also be refined based on the EM algorithm.

3.1 Deriving the distribution for noisy speech y

Given the pdf’s of clean speech x and noise n in egs.(6) and (7), as well as the environ-
mental model for noisy speech y in eq.(3), here, we are interested in deriving a conditional
distribution of y given clean speech x, i.e., p(y|x). If x is given, y can be viewed as a
transformation from the Gaussian random variable n (with its distribution in eq.(7)) ac-
cording to eq.(3). If x is fixed, from eq.(3) we know the transformation from n to y is
a one-to-one monotonic mapping. Therefore, p(y|x) can be derived as: (see [15] for the
theorem on transformation of random variables)

Py = | pm)
y n=x-+In(e¥y~*-1)
- L. 27 el now]
V2moZ eV —1
1 P(x,y) _ [x—un+1n(w2(x,y)—1)]2

— . .e 202 (8)

V22 Y(xy) -1

where we denote 1(x,y) = e¥ *.
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3.2 MMSE Estimation of Clean Speech

Given a noisy speech observation yg, it is well known that the MMSE estimation x of
clean speech is calculated as X = Ex[x | yo|. From eq.(4), we can see given y, the valid
range for x is (—o00, yo]. Therefore, we have

X = &BDM:/W”MMy@m=/%Xm@yMWMd

oo oo P(¥o)
f”wﬂ)WMMM
fyo p(yo|x) dx
— Zk 1 Wk fy x - N (x|t 035,) - P(yolx) dx )
Zk 1 Wk - fyo (%|ptzks 03) - P(¥olx) dx
Then we replace p(yo|x) with the right hand of eq.(8), we finally can derive x as:
XK w7 x- Uslxlyo) dx "o
S W J70 Uk (xyo) dx
with ( - .
1 _Gemg)® e +Hn( (xyo)=1)]
Ui (x|yo) = Y(x, yo) Yok e 23 (11)

27T0$kan w(X, YO) -1

3.3 A Numerical Solution

Obviously, we need solve the integral calculation in eq.(10) with some numerical methods.
Since we have limy_, o Up(x|yo) = limx—y_ oo X - U (x]yo) = 0 and limy_,y, Ui (x|yo) = 0
(see Appendix A for derivations), we can define the lower bound [ and the upper bound
u for the numerical integral as follows:

Iy = —€1-0gk (81 > 3) (12)

up = min(yo, €2 0gz) (62 > 3) (13)

Then we uniformly (better not) partition the interval [ly, ug] into J equal-length seg-
ments as:
U = Xpo < Xpp < Xpo < -+ - < Xpyo1 < Xpg = Ug (14)

where we have xj; 11 = xi; + Ay with Ay = @ We use a linear approximation in each
of these segments [X;, Xgj+1], o the equation (10) can be approximated as:

> ket WA [Xkon(Xko\yO) + XUk (Xpsy0) + 2327 ijuk(xkjb’o)}

ey Wiy [Uk (xk0lyo) + Uk (Xkslyo) +2 37125 Us (ij|¥0)]

A

X =

(15)
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4 Non-linear Noise Compensation for Robust Speech
Recognition

It is well known that mismatches caused by additive noise corruption can seriously degrade
performance of speech recognition. In this study, we assume that we have a set of HMM
models trained from clean speech data. These HMM models will be used to recognize some
noisy speech utterances. We know, most speech recognition systems use speech feature in
the cepstral domain, e.g., MFCC’s. But the above non-linear noise compensation method
must be performed in the log-cepstral domain. First of all, we train a GMM model for
clean speech in the log-cepstral domain, i.e. p(x), based on clean speech data in training
set. Then model parameters for p(x) will be fixed during noise compensation procedure
in this study.

For each test noisy speech utterance, we compute the feature vectors in the log-spectral
domain as Y = {¥1,¥2, -+, ¥}, then we do

1. Initialize the mean pu, and variance o, of the noise distribution p(x) using the first
N frames of the utterance. We typically use N = 10.}

2. Given clean speech model p(x), refine the noise mean p, according to the EM
algorithm based on the whole utterance Y. It is also possible to refine the noise
variance in this step. (see Appendix B for details.)

3. Based on the refined noise model p(n) and clean model p(x), we compensate Y a
frame by a frame. More specifically, for each vector dimension y;; in each frame
{¥: |1 <t <T}, we use equation (15) to obtain its MMSE estimation.

4. The compensated vectors are mapped from the log-spectral domain into the MFCC
domain by using the DCT transformation. Then the resultant feature vectors can
be sent to the recognizer for recognition results.

5 Computational Complexity Issue

In the above approach, given any noisy speech utterance, we have to repeat the numerical
integral in eq.(15) for each dimension in every frame. For each of these integrals, we have
to calculate the value of function Uy(x|y) for J different sampling points of x and for
every Gaussian component in clean speech model p(x). Furthermore, the calculation of
function U (x|y) involves to call functions exp(-) and In(-) several times. Obviously, the
overall computational complexity is very high. In this section, we will consider several
possible ways to reduce computational complexity of the algorithm.

We assume the first 10 frames, i.e. 100 msec in usual frame rate, of each utterance are non-speech
segment, which is reasonable in most situations.
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First of all, from eq.(15), for each y,, we must repeat the numerical integral for every
Gaussian components in clean speech model p(x). If we use a GMM model with 128
or more Gaussian mixands, the computation in this step is very expensive. One simple
solution is that for any given y, we only calculate the integral for the most significant
Gaussian component corresponding to yo or the N-best Gaussian components (N < 5).
In this way, the total computational complexity can be largely reduced. In order to select
the most significant Gaussian component for any y,, we can first use the conventional
linear noise compensation method (e.g., the one in [2]) to get a rough estimation X, for
Vo, then the most signification mixture component for y, is selected as:

k* = argmaxp_| wy, - N (Xo | pak, 02%) (16)
Similarly, the N-best mixture components for for y, can be selected as:
ny) — arg rnax,(cjl)1 Wy, - N(io | Hzk, O-ik) (17)

where arg max"¥) denotes the operation to select the N-best ones, and the N-best set is
denoted as ¥) and usually we have N << K.
Accordingly, the estimation in eq.(15) can be simplified as:

Xol (Xo[Yo0) + X Ui~ (X41y0) + 2 3725 X;Us- (X5]¥0)
Uy (Xolyo0) + Us- (x1y0) + 2 3272, Us- (x;y0)

X =

(18)

or

Y kesn Wl [Xkon (Xkolyo) + Xksll (Xkslyo) + 237, Xl (ij|}’0)]

(19)
S resion Wk [Un(ko[¥o) + Us (e [¥o) +2 Y273 Ue (x11yo)|

X =

Secondly, since the functions exp(-) and In(-) will be called repeatedly when calculating
Ui (x|yo), they must be tabulated in memory for quick look-up.

Thirdly, if we can arrange to cache Uy (x|yo) during the calculation, then the nonlinear
noise compensation can be further accelerated greatly.

6 Discussion

The proposed method can be evaluated in robust speech recognition tasks. In the first set
of experiments, we are going to test with some artificial data, where clean speech data is
artificially corrupted by computer-generated white Gaussian noises in the time domain. In
the second set of experiments, the method is used to recognition some hands-free speech
data, which is recorded from some distant microphones in a running car environment.
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Appendix

A Proof of limy_,y, Ui (x|yo) =0

First of all, we have

_Gmpg)? = pn +In( (,y0) = 1)1
1 . w(xa yo) e 2a§k . 6_ = 20’721 . (20)

lim 14 =i |
A OO = I S, U,y — 1

We define 1) = e¥0* — 1, then we have

lim U, Cotim L. 21
— . — . 205
Jim U (x[yo) hm 5 (21)
where C' and K are constants. Moreover, we define z = —In 1, we have
_ (z—K)2
lim Uy (x|yo) =C - lime*-e 222 =0 (22)
X—Yyo 2—00

B The EM algorithm to refine noise model p(n)

Assume we know clean speech model p(x) as shown in eq.(6), we assume the noise model
is a single Gaussian distribution as shown in eq.(7). The noise model parameters p, and
o, are unknown and initialized as u%o) and 0780) in the first step. Now we are interested in
refining the noise model parameters from a noisy speech utterance Y based on the EM
algorithm. Since we assume independence among all feature vector dimensions, we can
perform the EM-based re-estimation for every vector dimension separately as follows.

In order to obtain a close-form solution, in this step, we use a linear approximation
for the environmental model in eq.(3) based on the first order Taylor series expansion. If

we expand around the point (xg,ng), we have

y = f(x,n)=x+1n (l—f—en_x)
f(x0,m0) + fr(%0,m0) - (x — x0) + f1 (%0, m0) - (n — my)

&Q

= Ap-x+ By-n+Cy (23)
where 1
Ao = f! = 24
0 = fx(X0,10) 11 eno %o (24)
B , ePo—xo
_ — _ 25
0= fa(X0,00) = 7 pr— (25)

Co = f(x0,n9) — f)lc(XO; ng) - Xo — frll(Xo, ng) - ng (26)
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If we use the above linear distortion function, the p.d.f. of noisy speech y is also a
GMM model as:

K
p(Y) =Y N | gk o) (27)
k=1
with
Hyr = Aok * tok + Bok -+ ptn + Cog (28)
Uzk = Aby oo + By - o (29)

where { Ao, Bok, Cox } are coefficients when expanding first order Taylor series around the
means of Gaussian components (g, tn)-

Given the utterance {y1,¥y2, - ,¥r}, the iterative maximum likelihood (ML) estima-
tion for u, and o, can be derived based on the EM algorithm as:

(i+1) _ S Sy pk|xe) (vt — Aokttor — Cox) / Bow

ne (30)
ZtT:1 Zf:l p(klxt)
o+ — Zthl ZkK:1 Pk[xe) (yr — Aok ok — Byt — Cor)? (31)
" ZtT:1 Zk:K:I p(k|x;)
where Nix, | ) )
p(k‘xt) _ Xt I’Lyk’ Jyk (32)

Zlle N(Xt | ,uykzao-jk)

In which {uyk, 07} are derived from egs. (28) and (29) based on the current noise

(@) ()
model parameters {uy’, 07" }.
The above iterative estimation in egs.(30) and (31) continues until some convergency
conditions are met.
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