UNIVERSITE

@"’: YORK

‘“r-...-.-*“*’ UNIVERSITY

Skyline with Presorting

Jan Chomicki
Parke Godfrey
Jarek Gryz

Dongming Liang

Technical Report CS-2002-04

October 2002

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada



October 2002

Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang

p- 1 of 14

Skyline with Presorting

Jan Chomicki! Parke Godfrey?3
! University at Buffalo

201 Bell Hall, Box 602000
Buffalo, NY 14260-2000
US.A.

chomicki@cse.buffalo.edu

U.S.A.

Abstract

There has been interest recently in skyline
queries, also called Pareto queries, on re-
lational databases. Relational query lan-
guages do not support search for “best” tu-
ples, beyond the order by statement. The
proposed skyline operator allows one to
query for best tuples with respect to any
number of attributes as preferences.

The skyline operator offers a powerful mech-
anism for expressing preference queries over
relational databases. Straightforward evalu-
ation of skyline queries by current relational
engines, however, is prohibitively expensive.
An efficient algorithm for skyline is needed.

In this work, we explore what the skyline
means, and why skyline queries are useful,
particularly for expressing preference. We
develop an algorithm for computing sky-
line queries that is well-behaved and effi-
cient, particularly within a relational set-
ting. There have been two substantial ef-
forts to date to develop algorithms for com-
puting skyline in the relational context. Our
algorithm improves on these in efficiency,
pipelinabilty of output (of the skyline tu-
ples), stability of run-time performance, and
being applicable in any context.

1 Introduction and Motivation

Often one would like to query a relational database
in search of a “best” match, or tuples that best
match one’s preferences (in addition to matching
one’s necessary criteria). Relational query languages
provide only limited support for this: the min and
max aggregation operators, which act over a single
column; and the ability to order tuples with respect
to their attribute values. In SQL, this is done with
the order by clause. This is sufficient when one’s

2College of William and Mary
P.O. Box 8795
Williamsburg, VA 23187-8795

godfrey@cs.wm.edu

Jarek Gryz? Dongming Liang?
3York University

4700 Keele Street

Toronto, ON M3J 1P3

Canada

{jarek, liang}@cs.yorku.ca

preference is synonymous with the values of one of
the attributes, but is far from sufficient when one’s
preferences are more complex, involving more of the
attributes.!

Consider a table of restaurant guide information,
as in Figure 1. Column S stands for service, F for
food, and D for decor. Each is scored from 1 to 30,
with 30 as the best. This table is modeled on the
Zagat Survey Guides (for example, [18]). We are in-
terested in choosing a restaurant from the guide, and
we are looking for a best choice, or best choices from
which to choose. Ideally, we would like the choice to
be the best for service, food, and decor, and be the
lowest priced. However, there is no restaurant that
is better than all others on every criterion individ-
ually, as is usually the case in real life, and in real
data. No one restaurant “trumps” all others. For in-
stance, Summer Moon is best on food, but Zakopane
is best on service.

restaurant S F D price
Summer Moon 21 25 19 47.50
Zakopane 24 20 21 56.00
Brearton Grill 15 18 20 62.00
Yamanote 22 22 17 51.50
Fenton & Pickle 16 14 10 17.50
Briar Patch BBQ 14 13 3 22.50

Figure 1: Example restaurant guide table, GoodEats.

While there is no one best restaurant with respect
to our criteria, we want at least to eliminate from
consideration those restaurants which are worse on
all criteria than some other. Thus, the Briar Patch
BBQ should be eliminated because the Fenton &
Pickle is better on all our criteria and is thus a bet-
ter choice. The Brearton Grill is in turn eliminated

ITo be fair, given query composability in relational query
languages as SQL, much can be accomplished simply with
max. However, we shall demonstrate that more support is
warranted.



October 2002

because Zakopane is better than it on all criteria. If
Zakopane were not in the table, the Brearton Grill
would remain a consideration. (Note that Summer
Moon is not better than the Brearton Grill on D,
decor, while it is better on every other criterion.)
Meanwhile the Fenton & Pickle is worse on every
criterion than every other (remaining) restaurant,
except on price, where it is the best. So it stays in
consideration. (If we were to remove price as one
of our criteria, then the Fenton & Pickle should be
eliminated too.) This would result in the choices in
Figure 2.

restaurant S F D price
Summer Moon 21 25 19 47.50
Zakopane 24 20 21 56.00
Yamanote 22 22 17 51.50
Fenton & Pickle 16 14 10 17.50

Figure 2: Restaurants in the skyline.

In [4], a new relational operator is proposed which
they name the skyline operator. They propose an ex-
tension to SQL with a skyline of clause as counterpart
to this operator that would allow the easy expres-
sion of the restaurant query we imagined above. In
[12, 13] and elsewhere, this is called the Pareto op-
erator. Indeed, the notion of Pareto optimality with
respect to multiple parameters is equivalent to that
of choosing the non-dominated tuples, designated as
the skyline. In [6], a more general operator called
winnow is introduced for the purpose of expressing
preference queries. Skyline is a special case of win-
now.

select ... from ... where ...
group by ... having ...
skyline of a; [min | max | diff], ...,
ap, [min | max | diff]

Figure 3: A proposed skyline operator for SQL.

The skyline of clause is shown in Figure 3. Syn-
tactically, it is similar to an order by clause. The
columns ay, ..., a, are the attributes that our pref-
erences range over. They must be of domains that
have a natural total ordering, as integers, floats, and
dates. The directives min and max specify whether
we prefer low or high values, respectively. The di-
rective diff says that we are interested in retaining
best choices with respect to every distinct value of
that attribute. Let max be the default directive if
none is stated. The skyline query in Figure 4 over
the table GoodEats in Figure 1 expresses what we
had in mind above for choosing “best” restaurants,
and would result in the answer set in Figure 2. If
the table GoodEats had a column C for cuisine, we
might add C diff to the skyline of clause if we wanted

Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang

p- 2 of 14

the best restaurants by each cuisine group.

select * from GoodEats
skyline of S max, F max, D max, price min

Figure 4: Skyline query to choose restaurants.

Skyline queries are not outside the expressive
power of current SQL. The query in Figure 5 shows
how we can write an arbitrary skyline query in
present SQL. The ¢;’s are attributes of OurTable that
we are interested to retain in our query, but are not
skyline criteria. The s; are the attributes that are
our skyline criteria to be maximized, and would ap-
pear in skyline of as s; max. (Without loss of gen-
erality, let us only consider max and not min.) The
d; are the attributes that are the skyline criteria to
differ, and would appear in skyline of as d; diff.

select ¢1, ..., Cg, S1y v+ vy Sy A1y - ooy dpy
from OurTable
except
select D.cy, ..., D.cg, D.sy, ..., D.s,,,
D.dy, ..., Dd,

from OurTable T, QurTable D

where D.s1< T.sy and ... Ds,,< T.s,, and
(D.s;< Tsyor ... D.sy, < Tisy) and
D.di=Td; and ... Dd,=Td,

Figure 5: SQL for generating the skyline set.

Certainly it would be cumbersome to need to
write skyline-like queries in this way. The skyline
clause is a useful syntactic addition, therefore, if we
encounter many queries of this nature. More impor-
tant than ease of expression, however, is the expense
of evaluation. The query in Figure 5 can be quite ex-
pensive. It involves a self-join over a table, and this
join is a #-join, not an equality-join. The self-join
effectively computes the tuples that are trumped—
or dominated—Dby other tuples. The tuples that re-
main, that were never trumped, are then the skyline
tuples. It is known that the size of the skyline tends
to be small, with certain provisos, with respect to
the size of the table.2 Thus, the intermediate result-
set before the except can be enormous.

No current query optimizer would be able to do
much with the query in Figure 5 to improve perfor-
mance. If we want to support skyline queries, it is
necessary to develop an efficient algorithm for com-
puting skyline. And if we want the skyline operator
as part of SQL, this algorithm must be easy to inte-
grate in relational query plans, be well-behaved in a

2In [8], we establish that the average-case number of sky-
line tuples is ©((In(n))¢~1/(d—1)!), in which n is the number
of tuples in R and d is the number of dimensions of the sky-
line, given an independence assumption across attributes and
an assumption of a sparse distribution of values.



October 2002

relational context, work in all cases (without special
provisions in place), and be easily accommodated by
the query optimizer.

In this paper, we explore what the skyline means,
and why skyline queries are useful, particularly for
expressing preference. We develop a well-behaved,
efficient algorithm for computing skyline queries.
There have been two substantial efforts to date to
develop algorithms for computing skyline in the re-
lational context [4, 17]. Our algorithm improves on
these in efficiency, pipelinabilty of output (of the
skyline tuples), stability of run-time performance,
and being applicable in any context.

In Section 2, we present background and discuss
the related work. In Section 3, we explore the utility
of skyline for preference queries, and establish the
results upon which our skyline algorithm is based.
In Section 4, we present the algorithm, and then
optimizations on the basic approach. In Section 5,
we present timing experiments and comparisons of
the new algorithm with existing approaches. In Sec-
tion 6, we provide insight on the issues involved in
computing skyline, show points for future work, and
conclude.

2 Background and Related Work

Recent years have brought new interest in express-
ing preference queries in the context of relational
databases and the World Wide Web. Two compet-
ing approaches have emerged so far. In the first ap-
proach [1, 9], preferences are expressed by means
of preference (utility) functions. The basic idea is
to define a function over a relation and derive a
score for each tuple. A preference query returns tu-
ples rank-ordered according to their scores. In [1], a
theoretical framework is provided for the approach,
which shows how to combine preferences. In [9], how
preference queries can be efficiently evaluated by us-
ing materialized views that have been precomputed
and stored is demonstrated. Neither paper, how-
ever, addresses the issue of how the preference func-
tions are derived. In the examples provided in [1],
tuples have their scores already assigned. Clearly,
this cannot be done manually by a user. The prefer-
ence function defined in [9] offers a way of generating
scores for individual tuples with minimal user input.
A score of a tuple is defined as a weighted average
over the attributes’ values: vy*a;+...4+v,*a,, where
ai,...,a, are the values of attributes Ap,..., A,
and vy,...,v, are the weights the user assigns to
the attributes (that is, how much a user “cares”
about the attribute). Although this approach does
not require much input from a user (hence is practi-
cal), it also severely restricts the types of preferences
that can be expressed: it applies only to numeric at-
tributes. The main problem with this approach is

Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang

p- 3of 14

that the score of a tuple grows monotonically and
uniformly with the value of an attribute. This does
not seem to correspond to realistic preferences. For
instance, having ten baths in a house is not neces-
sarily better than having five.

The second approach [4, 17] to expressing pref-
erences is based on the skyline operator described
in the previous section. Clearly, only a small frac-
tion of user preferences [6] can be expressed using
this operator. But the simplicity of skyline has its
advantages as well. In particular, it is straightfor-
ward for a user to specify its parameters (that is,
the attributes of interest and the ordering of their
values). Secondly, skyline queries would be trivially
expressible in SQL.

The emphasis of research work in this area has
been in efficient implementations of the skyline
operator. In [4], several algorithms for computing
skyline queries are presented. The basic algorithm,
a block-nested loops (or BNL for short) repeatedly
scans a set of tuples. For each iteration, a window
of incomparable tuples is kept in memory. When a
tuple from the input relation is compared with the
tuples in the window it may: (a) be dominated by
a tuple in the window, in which case it is discarded;
(b) be incomparable to any tuples in the window, in
which case it is added to the window; or (c) domi-
nate some tuples in the window, in which case it is
added to the window and the dominated tuples are
discarded. Multiple iterations are necessary if the
window is not big enough to store all of the gener-
ated incomparable tuples. A tuple in the window
becomes a part of the skyline once it has been com-
pared to the rest of the tuples (modulo eliminations)
and survived.

In [4], another algorithm, divide-and-conquer, is
considered which in some cases provides better per-
formance than BNL. However, in all experiments
presented in [4] and [17], BNL performs better for
small skylines and up to five dimensions and is
uniformly better in terms of I/O. The divide-and-
conquer algorithm would not scale well for larger
datasets—or smaller buffer pools—than used in [4].
For this reason, we only discuss BNL algorithm in
this paper.

In [4] and in [17], both consider indexes for more
efficient computation of skyline queries. However,
indexes suffer from many limitations in this context.
There are two extreme solutions to index design for
skyline queries. One way is to build an index storing
the values of attributes relevant for skyline. Most
of the computational effort in skyline computation,
unfortunately, is not on efficient access to the data,
but on its manipulation (that is, skyline computa-
tion is CPU-bound). Thus, it may seem that a bet-
ter solution for an index design is to precompute as



October 2002

much as possible (or all) of the skyline. Such an
index, however, is fragile in the face of updates: a
single insertion of a tuple that dominates the current
skyline would invalidate the entire index. Addition-
ally, unless the index explicitly stores the values of
the skyline attributes, it cannot be used to compute
a skyline of any subset of these attributes. Simi-
larly, a skyline of a set of attributes cannot be com-
puted from skylines of the subsets of its attributes.
This is because, in general, (skyline of ay, ..., a U
skyline of ag41, ..., an) C skylineof ay, ..., a,. In
[14], the use of spatial indexes is considered to
achieve pipelinability of the results. However, this
algorithm for the skyline operator is not composable
with other relational operations such as selection, so
it of limited utility.

The most important argument against using in-
dexes to compute skyline queries is the fact that the
skyline operator is holistic, in the sense of holistic
aggregation operators. This implies that the skyline
operator is not, in general, commutative with selec-
tions.? For any skyline query with a select condition,
most likely the index cannot be used.

Skyline computation is similar to the mazimal
vector problem studied in [2, 15, 16]. These consider
algorithmic solutions to the problem and address the
issue of skyline size. None of these works addresses
the problem in a database context, however. In [7],
we address the question of skyline query cardinality
more concretely.

The closest related area in databases is the near-
est neighbor problem [3, 10, 11]. Although the near-
est neighbor problem is different from skyline com-
putation, we believe that it can provide an alterna-
tive approach when the size of the skyline is unman-
ageable.

3 Skyline versus Ranking

The skyline of a relation in essence represents the
best tuples of the relation, the Pareto optimal “solu-
tions”, with respect to the skyline criteria. Another
way to find “best” tuples is to score each tuple with
respect to one’s criteria (call these preferences), and
then choose those tuples with the best score (rank-
ing). The latter could be done efficiently in a rela-
tional setting. In one table scan, one can score the
tuples and collect the best scoring tuples.*

In what ways is skyline interesting then, and how
is it related to ranking? It is known that the sky-
line represents the closure over the maximum scor-
ing tuples of the relation with respect to all mono-
tone scoring functions. For example, in choosing a

3In [6], cases of commutativity of skyline with other rela-
tional operators are shown.

4The best scoring tuples can be collected in this single pass
as long as each score group fits in main memory.

Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang

p- 4 of 14

restaurant as in the example in Section 1, say that
one values service quality twice as much as food
quality, and food quality twice as much as decor,
those restaurants that are best with respect to this
“weighting” will appear in the skyline. Furthermore,
the skyline is the least-upper-bound closure over the
(maximums of) the monotone scoring functions [4].

This means that the skyline can be used instead
of ranking, or it can be used in conjunction with
ranking. First, since the best tuples with respect to
any (monotone) scoring are in the skyline, one only
needs effectively to query the skyline with one’s pref-
erence queries, and not the original table itself. The
skyline is (usually) significantly smaller than the ta-
ble itself [7], so this would be much more efficient
if one had many preference queries to try over the
same dataset. Second, as defining one’s preferences
in a preference query can be quite difficult, while
expressing a skyline query is relatively easy, users
may find skyline queries beneficial. The skyline over-
answers with respect to the users’ intent in a way,
since it includes the best tuples with respect to any
preferences. So there will be some choices (tuples)
among the skyline that are not of interest to the user.
However, every best choice with respect to the user’s
implicit preferences shows up too. Lastly, there are
interesting choices which have strong intuitive ap-
peal that can show up in the skyline, but which are
exceedingly difficult to find by ranking.

While in [4], they observe this relation of skyline
with monotone scoring functions, they did not offer
proof nor did they discuss linear scoring functions,
to which much work restricts focus. Let us investi-
gate this more closely, and more formally, then, for
the following reasons:

e to relate skyline to preference queries, and to
illustrate that expressing preferences by scoring
is more difficult than one might initially expect;

e to rectify some common misconceptions re-
garding scoring for the purposes of preference
queries, and regarding the claim for skyline; and

e to demonstrate a useful property of monotone
scoring that we can exploit for an efficient algo-
rithm to compute the skyline (Section 4).

Let attributes a1, ..., a of schema R be the sky-
line criteria, without loss of generality, with respect
to “max”.% Let the domains of the a;’s be real, with-
out loss of generality. Let R be a relation of schema
R, and so represents a given instance.

Definition 1 Define a monotone scoring function S
with respect to R as a function that takes as its input

5We also ignore “diff’ in this discussion, without loss of
generality. The diff in essence allows skyline to be combined
with group by: for each group of diff values, the skyline is
computed. The issue of diff is important for the design of
an algorithm for computing skyline, however. A general algo-
rithm for skyline must be able to accommodate diff efficiently.



October 2002

domain tuples of R, and maps them onto the range
of reals. S is composed of k monotone increasing
functions, f1,..., fr. For any tuple t € R,

k
S(t) = Z fi(t[a:])

Lemma 2 Any tuple that has the best score over
R with respect to any monotone scoring function S
with respect to R must be in the skyline.

Proof. Assume that this is not the case. Let
t,r € R, S(t) be a maximum score, and S(t) > S(r),
but t[a;] < r[a;], for i € 1,..., k. Clearly then,

k k
Z fi(tlai]) < Z fi(rfai])

which means S(¢) < S(r). Contradiction. O
It is more difficult to show that every tuple of the
skyline is the best score of some monotone scoring.
Most restrict attention to linear weightings when
considering scoring, though, so let us consider this
first.
Definition 3 Define a positive, linear scoring func-
tion, W, as any function over a table R’s tuples of
the form

k
W(t) = wit[a]

in which the w;’s are positive, real constants.
As we insist that the w;’s are positive, the class of
the positive, linear scoring functions is a proper sub-
class of the monotone scoring functions. Commonly
in preference query work, as in [9], the focus is re-
stricted to linear scoring. It is not true, however,
that every skyline tuple is the best with respect to
some positive, linear scoring.
Theorem 4 It is possible for a skyline tuple to ex-
ist on R such that, for every positive, linear scoring
function, the tuple does not have the maximum score
with respect to the function over table R.
Proof. Consider R = {{4,1),(2,2),(1,4)}. (The
schema is (a1, az).) All three tuples are in the skyline
(skyline of a1, a2). Linear scorings that choose (4,1)
and (1, 4) are obvious. Let us attempt to find a linear
scoring that chooses (2,2). We need that

1. 2wy + 2wy > 4wy + 1lwse, and

2. 211)1 + 211)2 Z 111]1 + 4’[1}2.

By 1, we > 2wy. By 2, wy; > 2ws. Therefore, wy >
2wy . There is no solution with w; > 0, and so there
is no positive, linear scoring that scores (2,2) best.
O

Note that (2,2) (in the proof above) is an inter-
esting choice. Tuples (4,1) and (1,4) represent in a

Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang

p- 5of 14

way outliers. They make the skyline because each
has an attribute with an extrema value. Whereas
(2,2) represents a balance between the attributes
(and hence, preferences). For example, if we are con-
ducting a house hunt, a; may represent the number
of bathrooms, and as, the number of bedrooms. Nei-
ther a house with four bathrooms and one bedroom,
nor one with one bathroom and four bedrooms, seem
very appealing, whereas a 2bth/2bdrm house might.
Theorem 5 The skyline contains all, and only, tu-
ples yielding mazimum values of monotone scoring
functions.

Proof. One direction has been proven already
by Lemma 2: any tuple that scores maximally with
respect to a monotone scoring function is in the sky-
line. We must now prove the other direction: that,
for every tuple in the skyline, there exists a mono-
tone scoring function that scores it maximally.

We can show this as it is always possible to con-
struct a monotone scoring S; for any given tuple
t € R which is in the skyline such that S;(¢) is maxi-
mum. Let the attribute values of the a;’s range over
the reals from 0 to 1, non-inclusive, without loss of
generality. Let S; be composed of monotone func-
tions as follows:

fi(r) = { Z[if]r[ai]

Thus, Si(t) = k* + ¢, for some € > 0. Consider
any tuple r € R which is not equivalent to ¢ over
ai, ..., ag- Since t is in the skyline, there is an a;
such that r[a;] < t[a;]. Note that for any tuple ¢ and
any f;, fij(¢) < k+ 1. For r and f;, we know that
fi(r) < 1. Therefore, S¢(r) < (k+1)(k—1)+1 = k?.
So, S¢(r) < S¢(t). Thus, S¢(t) has been shown to be
the maximum. O

While there exists a monotone scoring function
that chooses—assigns the highest score to—any
given skyline tuple, it does not mean anyone would
ever find this function. In particular, this is because,
in many cases, any such function is a contrivance
based upon that skyline’s values, just as we con-
trived above. The user is searching for “best” tuples
and has not seen them yet. Thus, it is unlikely any-
one would discover a tuple like (2, 2) above with any
preference query. Yet, the 2bth/2bdrm house might
be exactly what we wanted.

We should note that not every preference can be
cast via a monotone scoring [6]. Hence, skyline is
not adequate for those. We restrict our attention in
this paper, however, to skyline.

For the algorithm for skyline computation we
are to develop, we can exploit our observations on
the monotone scoring functions. Let us define the
dominance relation, “<”, as follows: for tuples any
r,t € Ry r Xt iff rla;] < tlag], for alli € 1,...,k.

if T‘[a,'] < t[a,’]
otherwise



October 2002

Further define that r» < t iff r < ¢ and r[a;] < t[as],
for some i €1,...,k.

Theorem 6 Any total order of the tuples of R with
respect to any monotone scoring function (ordered
from highest to lowest score) is a topological sort
with respect to the skyline dominance partial rela-
tion (“X7).

Proof. Assume otherwise. Thus there exist tuples
r,t € T and a monotone scoring function S such
that ¢ < 7 but S(t) > S(r). As noted in the proof
of Lemma 2, because t <X 7, f;(t[a;]) < fi(r[as]), for
i € 1,...,k. However, then S(t) < S(r), by S’s
definition. Contradiction. m|

So if S(r) < S(t), it is possible that r < ¢, but
we are certain that ¢ A r. If S(r) = S(¢), then ei-
ther r < ¢t and ¢ < r (that is, they are equivalent
with respect to their projection over the skyline at-
tributes), or r and ¢ are incomparable with respect
to dominance. A skyline tuple ¢t € R is a tuple such
that there is no 7 € R such that ¢t < r.

Consider the total ordering on R provided by the
basic SQL order by as in the query in Figure 6. This
total order is a topological sort with respect to dom-
inance.

select * from R
order by a; desc, ..., a; desc;

Figure 6: An order by query that produces a total
monotone order.

While the following proposition is fairly obvious,
we state it and prove it for sake of insight, and be-
cause we shall exploit this proposition to build a
better skyline algorithm.

Theorem 7 Any nested sort of R over the skyline
attributes (sorting in descending order on each), as
in the query in Figure 6, is a topological sort with
respect to the dominance partial order.

Proof. Assume again, without loss of generality,
that the domains of the a;’s are reals over 0 to 1, non-
inclusive. Consider the nested sort by the query in
Figure 6, without loss of generality. As R is finite,
there is an € > 0 such that, for all ¢ € 1,...,k, for
all r,t € R, if r[a;] < t[a;], then t[a;] — r[a;] > e.
Consider the following scoring function:

k

T(r) =) (c/k)'r[ai]

i=1

Note that if r[a;] > t[a;], then T'(r) > T'(t). More
generally, the scoring function 7" gives total prefer-
ence to a; over all of a; 11, .. ., a;. Any increase in the
value of a;, however small, is worth more than any
cumulative increases in a;y1, ..., ag, however large.
This ordering, then, is equivalent to the nested sort
obtained by the SQL query in Figure 6. O

Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang

p- 6 of 14

As we read the tuples output by the query in Fig-
ure 6 one by one, it is only possible that the current
tuple is dominated by one of the tuples that came
before it (if, in fact, it is dominated). It is impossi-
ble that the current tuple is dominated by any tuple
to follow it in the stream. Thus, the very first tu-
ple must belong to the skyline; no tuple precedes it.
The second tuple might be dominated, but only by
first tuple, if at all. And so forth.

4 The Sort-Filter-Skyline Algorithm
4.1 SFS

The observation in the last section provides us the
basis for an algorithm to compute skyline. First,
we sort our table as with the query in Figure 6. In
a relational engine, an external sort routine can be
called for this. Buffer pool space is then allocated as
a window in which skyline tuples are to be placed as
found. A cursor pass over the sorted tuples is then
commenced. The current tuple is checked against
the tuples cached in the window. If the current tu-
ple is dominated by any of the window tuples, it
is safe to discard it. It cannot be a skyline tuple.
(We have established that the current tuple cannot
dominate any of the tuples in the window.) Oth-
erwise, the current tuple is incomparable with each
of the window tuples. Thus, it is a skyline tuple it-
self. Note that it was sufficient that we compared
the current tuple with just the window tuples, and
not all tuples that preceded it. This is because if
any preceding tuples were discarded, it can only be
because another tuple already in the window dom-
inated it. Since dominance is transitive, then com-
paring against the window tuples is sufficient. In
the case that the current tuple was not dominated,
if there is space left in the window, it is added to the
window. Note that we can also place the tuple on
the output stream simultaneously, as we know that
it is skyline. The algorithm fetches the next tuple
from the stream and repeats.

It can happen that the current tuple is seen to be
skyline, but there is no space remaining in the win-
dow to add it. In this event, the algorithm switches
modes. This tuple is written instead to a temporary
file. (That is, it is written to a heapfile managed by
the RDBMS.) Subsequent tuples are checked against
the window as before. If a tuple is dominated, it is
discarded as before. Else, if the tuple is not domi-
nated, it is written to the temporary file instead. We
can no longer be certain that such a tuple is skyline.
It has been compared against the skyline tuples in
the window (and been found not to be dominated),
but it has not been compared against other tuples
now in the temporary file, tuples which preceded it.

If the algorithm exhausts the tuple stream and no



October 2002

unfinished = TRUE
while (unfinished)
T = open_cursor (Heap)
unfinished = FALSE
while (next_tuple(T, t))
if ("t is not dominated")
if ("window is full")
unfinished = TRUE
break
else
"Add t to window."
if (unfinished)
S = open_new_file(SecondPass)
write(S, t)
while (next_tuple(T, t))
if ("t is not dominated")
write(S, t)
free(Heap)
close(S)
Heap = SecondPass
"Write window tuples to output."
"Clear window."

Figure 7: The Sort-Filter-Skyline algorithm.

tuple was written to the temporary file, we are fin-
ished. All the skyline tuples have been found. Oth-
erwise, the algorithm repeats another pass, opening
the temporary file as the input stream. Eventually,
on some pass, no temporary file will be written, and
the algorithm will halt. Figure 7 presents the algo-
rithm in pseudo-code. We call it Sort-Filter-Skyline
(SFS). The input, Heap, is assumed to be sorted al-
ready.

If the window is large enough to hold all the
skyline tuples, SFS halts in a single pass. Other-
wise, multiple passes are necessary. It is impor-
tant to note, however, that SFS’s passes (and like-
wise, BNL’s passes) are not passes in the traditional
sense, as with external sorting. Not every pass is
the over the entire table, with the same number of
I/0’s each time. Many tuples will be discarded dur-
ing a pass, and thus the next pass will be over fewer
pages. More important is to count the additional
pages (thus I/O’s) required by the algorithm.

4.2 SFS and BNL

SFS is quite similar to BNL from [4]. The BNL algo-
rithm keeps a window, but new tuples may dominate
window tuples which requires replacement. SFS re-
quires initial sorting of the data, which BNL does
not. In this and the next section, we shall demon-
strate that SFS is the better algorithm, especially in
a relational setting.

The two algorithms have relative merits. Advan-
tages of BNL are that no preliminary sort is nec-
essary, its input stream can be pipelined, it tends

Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang

p- 7of 14

to take the minimum number of passes, and it has
a naturally good reduction factor (which we dis-
cuss below). Advantages of SFS are that it al-
ways takes the minimum number of passes, its out-
put stream (the skyline tuples) is pipelinable, it is
much less CPU-bound (and thus, it is stable with
respect to increased window sizes), and it can gen-
erate “interesting orders” for other relational oper-
ators. Meanwhile BNL’s disadvantages are that it
is quite CPU-bound (times can go up with larger
window sizes), “bad” input ordering leads to patho-
logical run-times, and it blocks on output. SFS’s dis-
advantages are that a preliminary sort is required,
and it consequently blocks on input.

It is really BNL’s disadvantages that make it un-
suitable as an algorithm in a relational engine. Sky-
line computation is CPU-intensive for a relational
operation. CPU time is not dominated by I/O-time,
thus we must account for it. In timing results in [4]
and in [17], BNL exhibited to be CPU-bound, and
we observed this as well. Window operations are
expensive for BNL. Each new tuple must be checked
against the window tuples for dominance. (SFS pays
this price too.) Tuples must be discarded from the
window when a new tuple dominates them. (SFS
does not have this expense.) And extra bookkeep-
ing is needed to ascertain when a window tuple is
deemed skyline. (SFS does not have this expense
either.)

The CPU-boundedness of BNL can be seen in that
the time can actually increase for BNL when it is al-
located a larger window. This is bad for a relational
engine. It is assumed by the optimizer that an algo-
rithm’s performance will be improved by more buffer
allocation (or at least not harmed). Devising a good
cost model for BNL to integrate into the optimizer
would be complex, if not impossible.

BNL can exhibit extremely bad run-times when
the input tuples are ordered in a “bad” way. We
demonstrate this in the next section. (It is perhaps
surprising that BNL runs reasonably well on “ran-
dom” ordered input.) Unfortunately, such “average-
case” is not sufficient in a relational setting. If a ta-
ble has a clustered (tree) index, which is quite likely,
its tuples are ordered in the heapfile. Data may be
ordered due to other operators before it arrives as
input at a skyline operation. It is impossible to en-
sure that the skyline operation receives its input in
a “random” ordering. This extra unpredictability in
BNL’s runtime, and of course, the fact that it can ex-
hibit pathological run-times, make it only harder to
accommodate in the optimizer. We shall show that
SFS addresses these deficiencies while providing new
benefits.

Meanwhile, we learned that BNL has some sur-
prisingly good qualities. For random cases, it tends



October 2002

to take the minimum number of passes needed, even
though in theory it may require more. As discussed
above, more important is that BNL in average case
is very good at eliminating tuples, thus reducing the
number of pages written per subsequent pass. Let us
call this the algorithms’ reduction factor. In fact, the
total number of pages over all passes after the first
usually is a small fraction of the number of pages of
the initial pass (which is a complete table scan it-
self). BNL’s reduction factor is superior to SFS’s in
SFS’s basic version. Thus, SFS spends more I/O’s.
(We note that SFS is still competitive in run-time
with BNL even at this point, mostly because BNL is
CPU-bound.)

In the next sub-section, we introduce some op-
timizations for SFS. We explain why BNL’s reduc-
tion factor is better than basic SFS’s, and present
a remedy that improves SFS’s reduction factor be-
yond BNL’s. This version of SFS performs better
time-wise than BNL, and it consumes fewer I/O’s.
(This does not count that SFS must sort first. How-
ever, we shall show that SFS’s performance is better
than BNL’s despite the cost of SFS’s presorting.)

4.3 Optimizations

Reduction Factor

A key to efficiency for any skyline algorithm is to
eliminate tuples that are not skyline as quickly as
possible. In the ideal, every eliminated tuple would
only be involved in a single comparison, which shows
it to be dominated. In the worst case, a tuple that
is eventually eliminated is compared against every
other tuple with which it is incomparable (with re-
spect to dominance) before it is finally compared
against a tuple that dominates it. In cases that SFS
or BNL are destined to make multiple passes, how
large the run of the second pass will be depends on
how efficient the window was during the first pass at
eliminating tuples.

For SFS, at least, only skyline tuples are kept in
the window. One might think on first glance that
any skyline tuple ought to be good at eliminating
other tuples, that it will likely dominate many oth-
ers in the table. This is not necessarily true, how-
ever. Recall the definition of a skyline tuple: a tuple
that is not dominated by any other. So while some
skyline tuples are great dominators, no doubt, there
are possibly others that dominate no other tuples.

Let us formalize this some, for sake of discussion.
Define a function over the domain of tuples in R
with respect to R called the dominance number, dn.
This function maps a tuple to the number of tuples
in R that it properly dominates (“<”). So, given
that R has n tuples, dn(t) can range from 0 to n —
1. If tuple ¢ is in the window (for either SFS or
BNL) for the complete first pass, at least dn(t) tuples

Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang

p- 8 of 14

will be eliminated. Of course, dn’s are not additive:
window tuples will dominate some of the same tuples
in common. However, this provides us with a good
heuristic: We want to maximize the cumulative dn of
the tuples in the window. This will tend to maximize
the algorithm’s reduction factor.

So why does BNL exhibit such a good reduction
factor? After all, for BNL, the window holds a mix
of skyline and non-skyline tuples at any given point.
Note that a non-skyline tuple can have a high dn,
however. The only thing that we can say is that,
for any non-skyline tuple ¢, there exists a skyline
tuple s such that dn(s) > dn(t). Since dominance
is transitive, s properly dominates any tuple that ¢
does, and (properly) dominates ¢ too. BNL replaces
tuples in the window as it finds new tuples that dom-
inate existing window tuples. Every time we replace
window tuples by a new tuple, note that the new
tuple’s dn must be greater than the maximum dn
over the tuples that it is replacing. This means that
the cumulative dn of the window for BNL is always
increasing! This results in a great reduction factor
for BNL.

SFS does not have this advantage, since we pur-
posefully designed it to eliminate the need for re-
placement in the window. Once the window is filled
on a pass for SFS, the cumulative dn is fixed for the
rest of the pass. Our only available strategy is to fill
the window initially with tuples with high dn’s. This
is completely dependent upon the sort order of the
tuples established before we commence the filtering
passes. Let us analyze what happens currently. We
employ a sort as with the query in Figure 6, a nested
sort over the skyline attributes. The very first tu-
ple t; (which must be skyline) has the maximum a;
value with respect to R. Say that ¢1[a;] = 100. Then
t1[az2] is the maximum with respect to all tuples in
R that have a; = 100. This is probably high. And
so forth for az, ..., ag. Thus, t; with high prob-
ability has a high dn. Now consider #; such that
ti[al] = 100, but t,~+1[a1] < 100. So t; is the last
of the “a; = 100” group. Its ay value is the lowest
of the “a; = 100” group, and so forth. With high
probability, ¢;’s dn is low. However, if ¢; is skyline
(and it well could be), it is added to the window.

So SFS using a nested sort for its input tends
to flood the window with skyline tuples with low
dn’s, on average, which is the opposite of what we
want. In Section 3, we observed that we can use any
monotone scoring function for sorting as input to
SFS. It might be tempting, if we could know tuples’
dn’s, to sort on dn. The dn function is, of course,
monotone with respect to dominance. However, it
would be prohibitively expensive to calculate tuples’
dn’s. Next best then would be to approximate the
dn’s, which we can do.



October 2002

Instead of a tuple’s dn, we can estimate the prob-
ability that a given tuple dominates an arbitrary tu-
ple. For this, we need a model of our data. Let
us make the following assumptions. First, each sky-
line attribute’s domain is over the reals between 0
and 1, non-inclusive. Second, the values of an at-
tribute in R are uniformally distributed. Lastly, the
values of the skyline attributes over the tuples of R
are pair-wise independent. So given a tuple ¢t and
a randomly chosen r € R, what is the probability
that ¢[a;] > r[a;]? It is the value t[a;] itself, due
to our uniform distribution assumption (and due to
that t[a;] is normalized between 0 and 1). Then the
probability that r < ¢, given ¢ is

k

1 #ail

i=1

by our independence assumption. We can compute
this for each tuple just from the tuple itself. Is this
probability a monotone scoring function? It is easy
to show that it is monotone. However, it is not for-
mally a monotone scoring function as we defined this
in Section 3; the definition only allowed addition of
the monotone functions applied over the skyline at-
tributes. Define the monotone scoring function E
then as

k
E@)=§:m@hd+D

This clearly results in the same order as ordering by
the probability. Interestingly, this is an entropy mea-
sure, so let us call this monotone scoring function £
entropy scoring.

Our first assumption can always be met by nor-
malizing the data. Relational systems usually keep
statistics on tables, so it should be possible to do
this without accessing the data. The second as-
sumption of uniform distribution of values is often
wrong. However, we are not interested in the ac-
tual dominance probability of tuples, but in a rela-
tive ordering with respect to that probability. Other
distributions would not effect this relative ordering
much, so E would remain a good ordering heuristic
in these cases. The last assumption of independence
too is likely to be wrong. Even in cases where inde-
pendence is badly violated, E should remain a good
heuristic, as again, the relative ordering would not
be greatly effected. Regardless of the assumptions,
E is always a monotone scoring function over R, and
we can always safely use it with SFS.

Projection
For SFS, a tuple is added to the window only if
it is in the skyline. Therefore, the tuple at the same

Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang

p- 9of 14

time can be pushed to the output. So it is not nec-
essary to keep the actual tuple in the window. All
we need is that we can check subsequent tuples for
whether they are dominated by this tuple. For this,
we only need the tuple’s skyline attributes. Real
data will have many attributes in addition to the
attributes we are using as skyline criteria. Also, at-
tributes suitable as skyline conditions are compara-
bles, as integer, float, and date. These tend to be
small, storage-wise. A tuple’s other attributes will
likely include character data and be relatively large,
storage-wise. So projecting out the non-skyline at-
tributes of tuples when we add them to the window
can be a great benefit. Significantly more skyline
tuples will fit into the same size window. Likewise,
there is no need to ever keep duplicate (projected)
tuples in the window. So we can do duplicate elim-
ination, which also makes better use of the window
space.

BNL cannot use this optimization, because when
a tuple is added to the window, it is not known
whether the tuple is in the skyline. Eventually, when
it is determined that a window tuple is in the sky-
line, the tuple then is pushed to the output. Of
course BNL must have the whole tuple available at
that time.®

Dimensional Reduction

Another optimization available to SFS is due
again to the fact that we first sort the table. Re-
call the nested sort that results from the query in
Figure 6. Now consider the table that results from
the query in Figure 8. It has precisely the same
skyline as table R. We choose the maximum a; for
each “aj, ..., ag—1” group. Clearly, any tuple in the
group but with a non-maximum aj, cannot belong to
the skyline. Of course, we can only apply this reduc-
tion once. (Implemented internally, other attributes
of R besides the a;’s could be preserved during the
“group by” computation.)

select ay, ..., a1, max(ag) as aj from R
group by aj, ..., ag_1;
order by a; desc, ..., ag_1 desc;

Figure 8: An order by query that produces a total
monotone order.

This optimization is useful in cases when the num-
ber of distinct values for each of the attributes aj,
..., ax—1 appearing in R is small, so that the num-
ber of groups is much smaller than the number of
tuples. If one attribute has many distinct values, we

SBNL could be altered so that it keeps projected tuples in
the window. The projection would also need to include the
record identifier. Once the record were verified as skyline, the
full record could be retrieved by the identifier. This would be
quite expensive, though, if there are many skyline tuples.



October 2002

can make this one our “a;”. In such a case, we are
applying SFS to the result of the query in Figure 8,
which can be a much smaller input table.

Diff

SFS can handle skyline of with the diff directive
without problem. In fact, the presence of diff at-
tributes in the query help the efficiency of the algo-
rithm. In the sort phase, we would do a nested sort
on the diff attributes outer-most and on the scoring
function (say E), or the max / min attributes, inner-
most. During the filter phase, every time the diff
group changes, we can can clear the window.

Note that BNL’s performance is not helped by
diff attributes at all. One could argue that in the
query plan, the data should be sorted first on the
diff attributes. BNL could be tailored to process the
diff groups as does SFS. However, if the data must
be sorted initially, we would choose SFS over BNL
anyway.

4.4 Other Advantages of SFS

Because the output of SFS is pipelinable, this means
the algorithm can be stopped early. This is useful if
the user only wants some answers, or the top N an-
swers. Research has been done on relational systems
to show how stopping early can be accommodated,
and how this can be used for optimization [5]. SFS
can be used in conjunction with this.

SFS can be combined with any preference order-
ing. If the user has additional preferences beyond
the skyline criteria—as long as these preferences are
equivalent to a monotone scoring—SFS can produce
the skyline in that preference order. We can use the
monotone scoring function induced from the prefer-
ences for SFS’s preliminary sort. This is especially
useful if the user is also interested in just a few an-
swers.

The SFS algorithm can also be adapted to find
multiple strata of skyline. (Skyline strata are intro-
duced in [6], in which they are called iterations.) Let
sky(R) denote the skyline of R. Let us define stratum
s;(R) as follows.

5:(R) = sky(R — | J 5;(R))
=0

Thus, so(R) = sky(R). Stratum s1(R) is the skyline
of R with the initial skyline tuples removed. And
so forth. Strata can be useful for users querying for
choices. Consider our restaurant search from Sec-
tion 1, and assume that there is a restaurant perfect
on all accounts: scores of 30’s for food, service, and
decor, and it is free. The skyline of this restaurant
table consists of just this restaurant. It trumps all
others. However, we may have gotten tired of eating

Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang

p.- 10 of 14

there. Or we simply do not like this restaurant our-
selves. We would like to search the restaurant table
for “best” restaurants, excluding this one. Stratum
s1(R) would do this for us.

We can adapt SFS to compute the top several sky-
line strata simultaneously. Say we want to compute
50(R), s1(R), and s2(R). SFS can use three win-
dows, one for each stratum. Now if a tuple is found
to be dominated by a tuple in window one (a s, or
skyline, tuple), instead of deleting it, we compare it
with tuples in window two. It may belong to s;. If
it is incomparable, we add it to window two as it is
a s1 tuple. Otherwise, we compare it with window
three. By the end, we have computed the first three
strata. How expensive this is depends on how large
s0(R), s1(R), and s3(R) are.

5 Timing Results and Comparisons

In [4, 17], both run experiments over a 100,000 tuple
table. Each tuple is 100 bytes, for a 10MB data-
set. We run our experiments over a million tuple
table. Again, each tuple is 100 bytes, for a 100MB
data-set. Each of our tuples consists of ten integer
attributes (four bytes each) and a sixty byte string.
A page for us is 4096 bytes, so 40 tuples fit per page.
We use the integer columns for skyline dimensions.
The data was randomly generated, each integer has
a value from -MAXINT to MAXINT, the values are
uniformally distributed, and the columns are pair-
wise independent.

Our testing program is written in C++ (Microsoft
Visual C++, V6.0). We implement both SFS and
BNL in the same code-base for purposes of compar-
ison. As the two algorithms are similar, if-then-else
statements switch to specifics for SFS or BNL from
the main routine, as needed. We implement the ba-
sic BNL algorithm, as discussed in [4]. We do not
implement any of the optimizations discussed for
BNL, although we note that basic BNL and the opti-
mized versions track quite closely in the experiments
in [4]. We ran the experiments on a AMD Athlon
900-MHz PC with 384-MB main memory and a 40-
gigabyte disk (7200-rpm, UDMA 100), running Mi-
crosoft Windows 2000.

Figure 9 shows timing results versus window size
for three versions of SFS: the basic SFS algorithm
with the input in nested sorted order as by the query
in Figure 6; SFS with entropy sorted input instead
(w/E); and SFS with entropy sorted input and ap-
plying the projection optimization (w/E,P). For the
last, we project out the sixty-byte string of a tuple
being added to the window. Thus, for SFS (w/E,P),
100 tuples fit per page in the window.” Where the

"For the experiments with fewer than the possible ten di-
mensions, we could have projected out the unused integer



October 2002

3000
2500 |,
2000 | °
1500

Time (sec)

1000 F

500 e

B ——

1 10 100 1000
Window (#pages)

Figure 9: SFS Times (7 dim.).

1e+06
__ 100000 }_
(%)
2 )
2 10000 |
o
£ 1000 |
x
(0]
£ 100}
Q
= 10 |

1

1 10 100 1000
Window (#pages)

Figure 10: SFS I/O’s (7 dim.).

lines level out to horizontal is where the window was
large enough the skyline could be found in one pass.
The number of skyline tuples with respect to the first
seven attributes (dimensions) and our table is 14,081
(or 353 pages at 40 tuples per page, and 141 pages
at 100 tuples per page). This happens sooner for
SFS (w/E,P) since its window is effectively bigger (in
number of tuples). The reason that SFS (w/E) per-
forms better than SFS initially is because it writes
fewer pages for subsequent passes because more tu-
ples are eliminated due to the entropy ordering. It is
better once the times have leveled because it is less
CPU-bound as it eliminates tuples with less CPU
overhead (because the window tuples have higher
dn’s) since a dominating tuple in the window is en-
countered faster.

The times reported for all SFS experiments in-
clude the time for pre-sorting. The million tuples
were sorted in each case via an external sort routine
with the equivalent of a 1,000 page buffer alloca-
tion. We treat the sort phase and the filter phase
of SFS as two separate operations. This is legiti-
mate, since the two operations would be separately
allocated and scheduled by the optimizer in any rela-
tional system. It is also reasonable to expect that the

columns too. So for a five dimensional skyline, 200 tuples
would have fit per page. However, we unintentionally ne-
glected to do this. If this were corrected, the results for SFS
would be that much more improved.

Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang

p. 11 of 14

3000 "BNL W/RE (7d) ———
b JBNL (7d) —=— |
2500 W/RE (64)
— L BNL (6d) o
g 2000 NL W/RE (5d) —=--
2 A5d) oo
5 1500 | BNL/5d) ==
£ et /s
= 1000 4
500 + [ o
0 btte ooy
1 10 100 1000
Window (#pages)

Figure 11: Times for BNL (5, 6, & 7 dim.).

buffer pool allocation for each phase (sort and filter)
then might differ. Indeed, the filter phase will not
need the size window that would be best for exter-
nal sorting. Most commercial systems pre-allocate
a large portion of buffer space just for sorting oper-
ations. Thus the 1,000 page allocation we assumed
for sorting is reasonable. With this, nested-sorting
the heapfile on the seven attributes for SFS took 57
seconds. Sorting on a single attribute (the tuples’ E
value, computed on-the-fly) for SFS (w/E) took 37
seconds. These times are reflected in Figure 9. This
is another advantage of entropy ordering: Sorting on
a single attribute is faster than nested-sorting over
a number of attributes.

Figure 10 shows an I/O comparison of the three
SFS variants. All the algorithms require 25,000
pages to read the initial heapfile of tuples for the
first pass. Thus, we do not include these I/O’s in
the count. The number of extra pages is the num-
ber of pages written cumulatively over all subsequent
passes. Each page requires two I/0’s: when it is
written, and when it is read on the subsequent pass.
Where the lines drop down to zero is the point at
which the skyline could be computed in one pass.
After that point, no additional passes, so no addi-
tional pages, were required. SFS and SFS (w/E)
obviously reach that point at the same window size.
Before that, the fact that SFS (w/E) performs with
so fewer I/O’s demonstrates the entropy order’s ef-
fectiveness. SFS (w/E,P) requires fewer I/0’s be-
cause it is finding more skyline tuples per pass, since
more tuples fit into the window. Its drop-off to zero
occurs earlier for this reason.

In Figure 11, we plot the performances of BNL
over the data-set for skylines of 5, 6, and 7 dimen-
sions, respectively. The five dimensional skyline has
1,651 tuples, the six, 5,357, and the seven, 14,081.
We tested two variants of BNL. Each variant is the
same algorithm, but different input orders for the
tuples. For BNL, the input order is random. (It is
the order we generated the data-set in, and the data-
set is randomly generated.) For BNL (w/RE), the



October 2002

14 ‘ ‘
0 BNLWRE ——
1200 | BNL ]
e
1000 © ]

800 t
600 f
400 ¢
200 | P :

,,,,,,,,,

Time (sec)

1 10 100 1000
Window (#pages)

Figure 12: Times for SFS versus BNL (5 dim.).

input order is the tuples sorted by entropy scores,
but in ascending order (thus, reverse entropy order-
ing). This should be a worse case for BNL since
it removes the reduction factor benefit BNL enjoys
due to window replacement. BNL’s performance in
a relational setting for a given data-set and order-
ing could fall anywhere between these. The lines for
BNL (w/RE) stop because we curtailed experiments
at larger window allocations for them as they took
hours to run.

That BNL is CPU-bound is evident: As the win-
dow allocation is increased, at some point BNL’s
times start rising. This is due to the fact that check-
ing new tuples against the tuples in the window is
expensive. When the window is larger, this takes
more time.

Note that BNL appears to get substantially worse
at higher dimensions. This is not a problem of more
dimensions, per se. Number of dimensions is not an
operating parameter for either BNL or SFS. Rather,
for our experiments, we use the same million-tuple
data-set, and add attributes to the the skyline crite-
ria to increase dimensions. This has the effect both
that more tuple-pairs become incomparable and the
size of the skyline increases. Since there are more
skyline tuples to be found, BNL will require more
passes. Since more tuples are mutually incompa-
rable, BNL’s window and tuple replacement in the
window is not as effective. So BNL becomes less
effective at eliminating tuples, and the number of
pages written for subsequent passes starts to rise.

We compare BNL with SFS. From here on, when
we say SFS, we mean SFS (w/E,P). In Figure 12,
we compare SFS; BNL, and BNL(w/RE) for comput-
ing a five dimensional skyline over the data-set. In
Figure 13, we compare them for computing a seven
dimensional skyline. In Figure 14 and Figure 15, we
compare SFS and BNL on I/0O. Again, we do not
count the 25,000 pages read for the first pass each
makes. The drop-offs to zero represent when the
window was sufficient for a single pass, so no ad-
ditional pages were produced. That SFS drops off

Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang

p.- 12 of 14

5000 BNL WRE ——
BNL e
4000 ¢ SFS
Eﬁ, 3000 |
o
£ 2000 |
[ . <
1000 1. o
o P— o -
1 10 100 1000
Window (#pages)

Figure 13: Times for SFS versus BNL (7 dim.).

" BNCWRE ———
10000 BNL -~ 1
n SFS -
o ..
2 1000 [
Q .
© .. *x“\x
£ 1001 T,
& T, x
Q 10} ‘
l i i L
1 10 100 1000

Window (#pages)
Figure 14: I/O’s for SFS versus BNL (5 dim.).

sooner is due to the projection optimization. Note
that the slope for SFS is steeper than for BNL. This
is significant, as the figures are plotted on logarith-
mic scale. SFS improves more rapidly in reducing
the number of pages read with larger window allo-
cations. SFS makes more efficient use of the window.
For BNL (w/RE), I/O performance is horrible. This
is because window replacement is greatly diminished
for BNL (w/RE), so few tuples are discarded each
pass.

We did not test SFS using the last optimization
discussed in Section 4, dimensional reduction. It
is only effective when the ranges of attributes are
small. We generated another million tuple database

100000 BNLWRE —— 1
S BNL

7 10000 [ e e SFS -
o 1000
© T
g 100 | “y
S |
= 10t

1 . i i

1 10 100 1000

Window (#pages)

Figure 15: I/O’s for SFS versus BNL (7 dim.).



October 2002

randomly with ranges of 0 to 9 for each integer at-
tribute. For a four-dimensional skyline, and taking
the max for the fourth attribute, the sorted table
size reduced to 99,826 tuples, so the filter phase of
SFS effectively runs on an input 10% of the table’s
original size.

For SFS adapted for finding skyline strata, it com-
puted sq, s1, s2, and s3 for four dimensional skyline
with respect to the original data-set in 118 seconds,
with a window allocation of 500 pages. The s;’s
were 460, 1430, 2766, and 4,444 tuples in size, re-
spectively. For a five dimensional skyline, it com-
puted the first four strata in 723 seconds, with a
window allocation of 500 pages. They were 1,651,
5,749, 11,879, and 19,020 tuples, respectively.

6 Conclusions and Future Work

There are possible avenues to improve skyline com-
putation performance. There may be ways to speed
up checking for dominance in the window to reduce
CPU-boundedness. In [4], replacement strategies
are discussed for BNL. SFS does not employ replace-
ment, but a certain ordering of tuples in the window,
or indexing of window tuples, could increase perfor-
mance. It might also be possible to incorporate ideas
from the divide-and-conquer approach into SFS.2 In
particular, removal of non-skyline tuples could be
done during the external sort passes, leaving fewer
tuples for the filter passes. Special cases of skyline
are known to have good solutions, as for two- and
three-dimensional skylines [4]. Perhaps these special
cases could be exploited to benefit general skyline
computation.

Better provisions to handle anti-correlated data
are needed.® With anti-correlated attributes as sky-
line criteria, the size of the skyline can be huge.
With 100% anti-correlation, the skyline is the table
itself. Currently, both SFS (and BNL) will degen-
erate into [|R|/|Window|] number of passes in this
case.

We would like to develop an algorithm to compute
efficiently the skyline strata of a table; that is, label
each tuple with its stratum number (with respect to
the skyline criteria). We want also to extend skyline
algorithms to handle more general cases of winnow
[6]. We need a better theoretical understanding of
skyline, and how it can be used. We want to study
which preference queries can be expressed with the
skyline operator. In [8], we begin to address the
question of how many skyline tuples are likely for
a given table R. A cardinality estimator for skyline

8The skyline of the union of two relations can be computed
as the skyline of the union of the skylines of both relations.

9 Also, while we expect that SFS with entropy scoring will
work well in these cases too, we must further test SFS to verify
this.

Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang

p.- 13 0of 14

queries is necessary if skyline is to be incorporated
into relational engines. The query optimizer’s cost
model would need to be extended to accommodate
skyline queries. A better understanding of the al-
gebra of the skyline operator would be beneficial.
For example, a skyline can be computed from sub-
skylines; that is, both “skyline of a;, as” and “skyline
of a3, a,”, can be computed from just “skyline of ay,
as, as, a4”, but not vice-versa. Finally, it is interest-
ing, and exciting, to note that efficient algorithms
for skyline could lead to approaches for faster ways
to evaluate queries that use except.

We believe that the skyline operator offers a good
start to providing the functionality of preference
queries in relational databases, and would be easy
for users to employ. We believe that our SFS algo-
rithm for skyline offers a good start to incorporat-
ing the skyline operator into relational engines, and
hence, into the relational repertoire, effectively and
efficiently.

References

[1] R. Agrawal and E. L. Wimmers. A framework
for expressing and combining preferences. In
Proceedings of SIGMOD, pages 297-306, 2000.

[2] J. L. Bentley, H. T. Kung, M. Schkolnick, and
C. D. Thompson. On the average number of
maxima in a set of vectors and applications.
JACM, 25(4):536-543, 1978.

[3] S. Berchtold, C. Bohm, D. A. Keim, and H.-
P. Kriegel. A cost model for nearest neighbor

search in high-dimensional data space. In Pro-
ceedings of PODS, pages 78-86, 1997.

[4] S. Borzsonyi, D. Kossmann, and K. Stocker.
The skyline operator. In Proceedings of ICDE,
pages 421-430, 2001.

[5] M. J. Carey and D. Kossmann. Reducing the
braking distance of an SQL query engine. In
A. Gupta, O. Shmueli, and J. Widom, editors,
Proceedings of VLDB, pages 158-169. Morgan
Kaufmann, 1998.

[6] J. Chomicki. Querying with intrinsic prefer-
ences. In Proceedings of EDBT, 2002.

[7] P. Godfrey. Cardinality estimation of skyline
queries. Technical Report CS-2002-03, Com-
puter Science, York University, Toronto, On-
tario, Canada, Oct. 2002.

[8] P. Godfrey. Cardinality estimation of skyline
queries: Harmonics in data. Submitted, 2002.



October 2002 Skyline with Presorting—Chomicki, Godfrey, Gryz, & Liang p. 14 of 14

[9] V. Hristidis, N. Koudas, and Y. Papakonstanti-
nou. PREFER: A system for the efficient ex-
ecution of multi-parametric ranked queries. In
Proceedings of SIGMOD, pages 259-270, 2001.

[10] N. Katayama and S. Satoh. Nearest neighbor
queries. In Proceedings of SIGMOD, pages 71—
79, 1995.

[11] N. Katayama and S. Satoh. The SR-tree: An
index structure for high-dimensional nearest
neighbor queries. In Proceedings of SIGMOD,
pages 369-380, 1997.

[12] W. KieBling. Foundations of preferences in
database systems. In Proceedings of the 28th
Conference on Very Large Databases (VLDB),
Aug. 2002.

[13] W. Kieflling and G. Kostler. Preference SQL:
Design, implementation, experiences. In Pro-
ceedings of the 28th Conference on Very Large
Databases (VLDB), Aug. 2002.

[14] D. Kossmann, F. Ramsak, and S. Rost. Shoot-
ing stars in the sky: An online algorithm for
skyline queries. In Proceedings of the 28th Con-
ference on Very Large Databases (VLDB), Aug.
2002.

[15] H. T. Kung, F. Luccio, and F. P. Preparata. On
finding the maxima of a set of vectors. JACM,
22(4):469-476, 1975.

[16] F. P. Preparata and M. I. Shamos. Computa-
tional Geometry: An Introduction. Springer-
Verlag, 1985.

[17] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient
progressive skyline computation. In Proceedings
of VLDB, pages 301-310, 2001.

[18] Zagat Toronto Restaurants. Zagat Survey, 2002.



