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Abstract

There is interest to support queries with preferences in relational systems. In accordance, the skyline
operator has been proposed as an extension to SQL. The corresponding skyline clause extends on the
aggregate operators of max and min. It essentially selects the tuples that are mutually optimal over a
number of attributes (by filtering out all tuples with worse values on every skyline attribute compared
with the skyline tuples).

Recent work has focused on how to compute efficiently skyline queries in relational systems over large
datasets. Steps remain, however, before the skyline operator can be incorporated into today’s relational
systems. A better understanding is needed on how the skyline operator composes with the other relational
operators, both logically and algorithmically. The query optimizer must be able to incorporate the skyline
operator. This will require extending the cost model for skyline queries. A critical component of the cost
model must be a cardinality estimator for skyline queries’ result sets.

Skyline cardinality estimation is the focus of this work. Under a basic model of assumptions of
sparseness of values on attributes’ domains (that is, virtually no duplicate values over an attribute) and
statistical independence across attributes, we prove the expected skyline cardinality for two-dimensional
skyline queries is the harmonic of the number of input tuples, and we generalize to prove the expected
value for multi-dimensional skyline queries is a higher-order harmonic—a particular two parameter ex-
tension of the harmonic numbers—with respect to the number dimensions (skyline attributes) and the
number of input tuples. We then consider the ramifications on the estimates as we relax the assumptions
of the basic model, some of which are counter-intuitive. Our results provide a basis for a cost model for
the skyline operator, and general insight into queries over multi-dimensional criteria.

1 Introduction

1.1 About Skyline Queries

Sometimes one wants to query relational data to find a best match. The aggregation operators min and max
allow one to retrieve the best—that is, either lowest or highest—tuples with respect to one criterion. The
order by clause in SQL allows one to rank order the results, perhaps with respect to many criteria. (The rank
ordering will be equivalent to a nested sort over the indicated attributes’ values.) Beyond this, relational
query languages as SQL provide little else for finding best matches, or for expressing preferences as part of
one’s queries.

As an example, consider a table of restaurant guide information, as in Figure 1(a). Column S stands for
service, F for food, and D for decor. Each is scored from 1 to 30, with 30 as the best. This table is modeled
on the Zagat Survey Guides (for example, see [19]). We are interested to choose a restaurant from the guide.
We are looking for a best choice, or a set of best choices from which to choose. Ideally, we would like the
restaurant chosen to be the best for service, food, and decor, and be the lowest priced. There is likely no

*Parke Godfrey is presently on leave-of-absence from York University at The College of William and Mary.



October 2002 Skyline Cardinality—Godfrey p- 2 of 12

restaurant S F D price

Summer Moon 21 25 19 47.50 restaurant S F D price
Zakopane 24 20 21 56.00 Summer Moon 21 25 19 47.50
Brearton Grill 15 18 20 62.00 Zakopane 24 20 21 56.00
Yamanote 22 22 17 51.50 Yamanote 22 22 17 51.50
Fenton & Pickle 16 14 10 17.50 Fenton & Pickle 16 14 10 17.50

Briar Patch BBQ 14 13 3 2250
(b) The skyline.
(a) Restaurant guide table, GoodEats.

Figure 1: The restaurant table and the skyline.

restaurant that is better than all others on all criteria, however, as is usually the case in real life, and in real
data. No one restaurant trumps all others. For instance, Summer Moon is best on food, but Zakopane is
best on service.

While there is no one best restaurant with respect to our criteria, we can eliminate from consideration
at least those restaurants which are worse on all criteria than some other. The Briar Patch BBQ should be
eliminated because the Fenton & Pickle is better in comparison across all our criteria. The Brearton Grill
is eliminated, in turn, because Zakopane is better than it on all criteria. If Zakopane were not in the table,
the Brearton Grill would have remained a consideration. (Note that Summer Moon is not better than the
Brearton Grill on D, decor, even though it is better on every other criterion.) Meanwhile the Fenton & Pickle
is worse on every criterion than every other (remaining) restaurant, except on price, where it is the best. So
it stays in consideration. (If we were to remove price as one of our criteria, the Fenton & Pickle should be
eliminated too.) This would result in the choices in Figure 1(b).

In [3], a new relational operator is proposed called the skyline operator. They propose an extension to
SQL with a skyline of clause as the language counterpart of the operator, which allows easy expression of the
restaurant query we imagined above.

select ... from ... where ...
group by ... having ...
skyline of a; [min | max | diff], ...,
a, [min | max | diff]

select * from GoodEats
skyline of S max, F max,
D max, price min

b) Query to choose restaurants.
(a) Proposed skyline operator for SQL. (b) Query

Figure 2: Skyline queries.

The skyline of clause is shown in Figure 2(a). Syntactically, it is similar to an order by clause. The
columns ay, ..., a, are the attributes over which our preferences range. They must be of domains that have
a natural ordering, such as integers, floats, and dates. The directives min and max specify whether we prefer
low or high values, respectively. The directive diff states that one wants to retain best choices with respect
to each distinct value of that attribute. Let min be the default directive if none is stated. The skyline query
in Figure 2(b) over the table GoodEats in Figure 1(a) expresses what we had in mind above for choosing
“best” restaurants, and would result in the answer set in Figure 1(b). If the table GoodEats had a column
C for cuisine, we could add C diff to the skyline of clause to find the best restaurants by each cuisine group.

Skyline queries are not outside the expressive power of current SQL, but it is quite cumbersome to render
skyline-like queries.! The skyline clause would be a useful syntactic addition to SQL, if skyline-like queries
were to become commonplace. More important than ease of expression, however, is the expense of evaluation.
A skyline operator in the relational engine would make skyline queries tractable to evaluate.

1Tt involves a self-8-join over the table, and then an except of the join result against the original table.
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1.2 Related Work

The concept of skyline in itself is not new in the least. Of course the search for optimal solutions is a
well-established endeavor with a deep literature. Beginning in the 1960’s, work focused on optimization with
respect to multiple criteria. Techniques have been explored for finding good wtility functions to combine
effectively the multiple criteria of interest into a single score. Then traditional mathematical techniques
for finding the optimal solution—with respect to a single criterion, the utility function in this case—could
then be applied. Others, however, recognized that it is often difficult, if not virtually impossible, to find a
reasonable utility function. Thus work in multiple criteria optimization focused on how to find all optimal
solutions in the space with respect to the multiple criteria [17]. The definition of solution in this context is
often the same as our definition for skyline: no other potential solution is better across all the criteria. This
is referred to often as Pareto optimal.

Multiple-criterion optimization usually assumes an implicit solution space from which the optimal so-
lutions are to be found. Often, this space is quite large, but also has properties that help to devise good
techniques. For skyline queries, the space is explicit: it is the input relation of tuples. Also, one knows no
particular properties of the space. The skyline idea has been studied before in this context of an explicit
solution space as the mazimal vector problem. In [12], the first algorithm to find the maximal vectors (or
skyline tuples) from a set of vectors (or relation) was devised. In [13], the maximal vector problem is ad-
dressed in the context of computational geometry. In [1], they established that the average number of skyline
tuples, 84, is O((Inn)¢~1).2 This is not useful for cardinality estimation, though, which is our endeavor.?
Note that (Inn)?~! is exceedingly greater than n, even for relatively small d and large n. It is true that
(Inn)?-! for any fixed d is O(n), but the ng at which the functions cross is very large. It was not established
also whether O((Inn)?"1) is a tight (“©”) or loose (“0”) bound. (We shall demonstrate it is loose.)

In a way, interest has returned to the maximal vector problem recently in the guise of skyline queries.
Previous work was main-memory based, however, and not well suited to databases. Progress has been
made as of recent on how to compute efficiently such queries in a relational system and over large datasets
[3, 5, 11, 18]. In [3], the skyline operator is introduced. They posed two algorithms for it, a block-nested
loops style algorithm (and variations) and a divide-and-conquer approach derived from work in [12, 13]. In
[18], an algorithm for skyline evaluation is introduced that uses specialized indexing. In [5], we develop a
general skyline algorithm based on the “block-nested loops” algorithm of [3] that is faster, pipelinable, and
more amenable, we believe, to use in a relational query optimizer.

Steps remain, however, before a skyline operator can be realistically incorporated into today’s relational
systems. We need to understand better how the skyline operator composes with the other relational op-
erators, both logically and algorithmically. The query optimizer must be able to incorporate the skyline
operator without damaging its overall effectiveness, as well as being able to optimize queries that employ
the skyline of clause. This will require a cost model for skyline queries, and a critical component of the cost
model must be an estimator of the cardinalities of skyline queries’ result sets.

A related topic is nearest-neighbors search. This has been studied in the context of relational systems too
[16]. In [2], elements of a cost model for nearest-neighbor searches are considered, but for high-dimensional
cases. In [11], they employ nearest-neighbors algorithms to pipeline the generation of skyline tuples.

Interest in skyline queries arises in most part from the desire to support queries with preferences in
relational systems. In [4], a more general operator called winnow is introduced for the purpose of expressing
preference queries. Skyline is a special case of winnow. Skyline and related techniques could make it possible
to integrate easily certain cooperative query answering, query relazation, and preference query techniques
which have been proposed [6, 7, 9].%

Other than [1], there has not been effort to establish the expected cardinality of skyline (or maximal
vector) sets, to our knowledge.

2For this, they made essentially the same assumptions that we shall make in Definition 1 about attributes’ distributions and
pair-wise independence.

3We should note that cardinality estimation was not the goal of [1]. They used the O((Inn)?~1) result to establish a
theoretical bound on the complexity of computing the “skyline”.

4See [8] for an older survey of cooperative answering.
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1.3 Outline

Skyline cardinality estimation is the focus of this paper. We establish results via both analytical and
experimental means. In Section 2, we prove that the expected skyline cardinality is ©((Inn)?~1/(d—1)!), in
which n is the number of tuples in the input relation and d is the number of skyline attributes, under a basic
model with assumptions of sparseness over attributes’ domains (namely that there are virtually no duplicate
values) and statistical independence across attributes. We prove more specifically that the expected skyline
cardinality for two-dimensional skyline queries is the harmonic of the number of input tuples, and we prove
the expected cardinality for multi-dimensional skyline queries is a higher-order harmonic—(a particular two
parameter extension of the harmonic numbers—with respect to the number dimensions (skyline attributes)
and the number of input tuples. This allows us to derive concrete size estimations that could be used in a
cost model. We consider further the distribution of the value of the skyline cardinality itself, and show the
distribution as derived by experiment. In Section 3, we consider the ramifications on the estimates, some
counter-intuitive, as we relax the assumptions of the basic model. We consider the effects of the distributions
of the values over attribute domains, when attributes are restricted to small finite domains, and pair-wise
correlation of attributes. In Section 4, we conclude.

2 Skyline Cardinality
2.1 The Basic Model

We want to estimate the cardinality of the output relation of the skyline operator based upon its input
relation. The input can be a base table of the database or a virtual table which is the intermediate result in
a query’s evaluation. Let us establish a basic model of assumptions about the input relation under which it
will be possible for us to establish analytically the cardinality.

Definition 1 Basic model of the input relation and skyline query.

Let dimension refer to an attribute of the relation that participates in the skyline criteria.

(a) Domain assumption (sparseness). For each dimension, we assume that there are no duplicate values
on the attribute across the tuples of the relation.
(b) Independence assumption. The dimensions are pair-wise statistically independent.

Consider a skyline operation with d dimensions over such an input relation of n tuples. (So the relation
has at least d attributes, which obey the assumptions above.) Let s4 5, be the random variable which measures
the number of tuples (the cardinality) of the output relation (that is, the set of the resulting skyline tuples).
Let 84,5, denote the expected value of sg,p,.

2.2 Expected Cardinality

We are interested to determine 84 ,,. Since under our basic model, no two input tuples share a value over any
dimension, the tuples can be ordered totally on any given dimension. It is not necessary then to consider
the actual values of the tuples. Instead, we can conceptually replace the value on, say, dimension i of a
tuple by its rank in the total ordering along dimension i. Without loss of generality, we assume that we are
minimizing over the dimensions for the skyline. Let rank 1 refer to the tuple with the smallest value (on
that dimension), and n the one with the largest (n is the number of input tuples). We can now just refer to
a tuple’s rank on a dimension and ignore the actual value.

Lemma 2 [1] The skyline expected value §4,,, for d > 1 and n > 0 obeys the following recurrence equation.
§d,n = _gd—l,n + §d,n—l
n
Forn>0,8,,=1.

Proof Consider §; ,,. Since no two tuples share the same value on the dimension, only the tuple with rank
1 is in the skyline.
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Consider 84,5, for d > 1. One tuple has rank n on dimension 1. This tuple cannot dominate any other
tuple, since it has a higher value on dimension 1 than any other. What is the probability that this tuple
itself is a skyline tuple? It is the probability that no other tuple dominates it on dimensions 2,...,d, given
the independence assumption. As 8;_1,y is the expected value of the number of skyline tuples out of n tuples
on d — 1 dimensions, then %§d_1,n represents the probability that this one tuple is part of the skyline.

Since the n-th ranked tuple on dimension 1 cannot dominate any other tuple, the estimated number of
skyline tuples of the remaining n —1is 84, 1. O

The recurrence for 8,4, is related with harmonic numbers.

Definition 3 Harmonic numbers.

n
1
(a) The harmonic of n, for integers n > 0: H,, = Z z

(b) The k-th order harmonic of n, for integers k > 0 and integers n > 0: Hy,,, = Z %

i=1
Define Hy,, =1, for n > 0. Define Hy o = 0, for & > 0.
"1
(c) The k-th hyper-harmonic of n, for integers k > 0 and integers n > 0: Hy, ., = Z i
i=1

Note that hm ‘Hp,n converges, for all k > 1. Let Hj, o, denote hm Hin-
k— oo
Note that H,, = H1 n = Hin, for all n > 0.

The harmonic series in Definition 3(a) is well known. There is no consensus on a two-parameter gener-
alization of the harmonic series. A common extension is that of Definition 3(c). These are less important
for our work here, and we call these the hyper-harmonics. The Hy, ,, converge for k > 1. There is a second
two-parameter generalization as given in Definition 3(b). This was introduced in [14, 15] in work on the
logarithmic binomial formula. While this generalization is not common, it is a natural extension of the
harmonic series, and it is useful for us.® The Hy, do not converge for k > 1. Let us enumerate some of the
properties of these.

Lemma 4 Properties of harmonic numbers. Let k and n be positive integers.
(a) [10] Hp =Inn+ v+ % and lim H,—-Inn—-vy=0
(b) [15] Hg,m < m, fora11k>0andn>0 and hm Hin=n
(c) Hin monotomcally increases with respect to k and with respect to n.
(d) [15) Hgpm = EHk—l,n + Hpn—1
Recall Hp,, =1 and Hy o = 0. (Thus, Hy , = H,,.)
n i—1._
© 03]t =30 () -0t

i=1
Note that v is the Euler-Mascheroni constant, v = .577.

It is possible immediately to relate 85, and Hy ;.
Theorem 5 §;, = Hg—1 .

Any particular Hy ,, can be solved in terms of #H;,’s (1 < j < k). The H,, and #y,,, are easy to compute,
or approximate, and so could be used within a cost model on-the-fly. (Recall that H,, = #1 ,,.) For instance,
we can derive that

b H2,n = %Hi + %HQ,TH

L4 H3,n =1 H3 %Hn’HZn + %HB,na and

e Hy, = 214Hi + tH Hsn + 3HE, + THE Mo + $Ham.

5What is effectively a generalization of the Hy, ,,’s appears in [10] (in Section 1.2.9).
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Figure 3: Plot of $4,, (A) and HZ™'/(d - 1)! (B).

This can be generalized as follows.

k C;
Theorem 6 Hy, = E H — ”n' for k > 1 and n > 1, with the ¢;’s as integers.
. 1™ - Gyl
=1

C1y05Ck 20 A
1-c14+2-co+...+k-cr=Fk

For any k, the coeflicients of the terms in the summation sum to one. The number of terms to express Hy ,
in terms of H; ,’s is p(k), the number of ways to partition the positive integer k as a sum of positive integers.
Since p(k) grows quickly—for instance, p(10) = 42 and p(20) = 627—it is not a viable to solve for Hy ,’s in
this way.

We can study properties of Hg ,, to establish bounds on skyline cardinality estimation.®

Theorem 7 Bounds on Hy,,,, and hence, 4,5,
( ) n/k' < Hk n < min(Hk )
(b) HI71/(d —1)! < 84, < min(HI™! )
(c) Hkn is ©((Inn)*/k!)

(d) 84,0 is O((Inn)*/(d - 1))

This improves on the asymptotic bound established in [1]. While §4,, is ©((lnn)?¢1/(d — 1)!), for larger
d’s, it requires very large n’s before §4, converges closely on Hi1/(d —1)!. For d = 3 and n = 107,
Hio7/2 = 139.37 and §3197 = Ha19r = 140.19, whereas, for d = 10 and n = 107, H{;;/9! = 277,708 and
810,107 = Hg 107 = 357,604. Interestingly, while Hfl /k! is monotonically increasing with respect to n, it is
not with respect to k. So HY ™' /(d — 1)! is not a good concrete estimate (but it can be used when no better
estimate is available).

Of course, the Hy, ,, can be numerically approximated off-line, and then a look-up table used at run-time.
We computed Hy 1, for d =2,...,20 and n = 10,...,107 by factors of ten.” Figure 3 plots this, along with
H2™1/(d — 1)!. As with logarithms, interpolation can be safely used to estimate values that are not in the
look-up table.

2.3 Skyline Distribution

We have solved for the expected value of skyline cardinality, §4,, (with respect to basic model in Definition
1), but we do not know the distribution of the random variable sq . If its variance were huge, for instance,

80ur notational convention is that superscripts are exponentiation and subscripts are parameters.
7One must take care to avoid overflow and accumulated round-off when approximating these.
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Figure 4: Distributions of s4 106 (for d =3, 5, and 7).

our use of §4 ,, in a cost model would be of limited utility. It is also possible for the median to be less than the
mean, with along tail towards n. We are really interested in likely values the optimizer will encounter, not the
expected value, per se, which itself as a value might never occur. In a cost model, it is important to anticipate
the chance of being significantly off the estimation, and especially when the actual cardinality is exceedingly
large in comparison with the estimate. The query plan can be made to accommodate contingencies, to
varying degrees.

It is possible to infer some properties of the distribution just given what we know of §;,. The domain
of sqn is 1...n, of course. For d and n combinations that are likely in skyline queries in practice, 84,5 is
close to the 1-end of the spectrum. (See Figure 4(d).) This statistically limits how large the variance can
be. (There cannot be much probability that sq, is near n, since this would serve to inflate §4,5,.)

It would be interesting—but a major undertaking—to develop a good statistical understanding of the
distribution of sq,,. In the meantime, we can study experimentally the distribution. For each dimension (d)
of 3, 5, and 7, we ran numerical “simulations” as follows. For each trial, we generated one million tuples
of d attributes randomly. Each attribute was of type integer and its value was randomly chosen across all
values.® The number of skyline tuples (minimizing over the d values) was then determined. A simulation
then consisted of 10,000 trials. Figures 4(a), (b), and (c) show the distributions of the 10,000 trials for
sq106 for d = 3, 5, and 7, respectively. The data points were binned into about sixty bins in each case to
approximate the distribution via a histogram. We normalize the y-axis to probability so the area covered by
the histogram is one. In each case, the error-bar represents the mean and spans one standard deviation to

8The values range over 1, ..., 2,147,483 ,647.



October 2002 Skyline Cardinality—Godfrey p. 8 of 12

the leaf and to the right of the mean. The super-imposed curve is a bezier fit of the data. The distributions
of sq, are well behaved and resemble normal (Gaussian) distributions. That the medians are so near the
means in the simulations offers evidence that the true distributions have little if no skew.

3 Generalizing from the Basic Model

Next, we explore the effects of relaxing the assumptions of our basic model from Definition 1.

3.1 Domain Distributions

In the basic model, we make no assumption about attributes’ distributions, beyond the assumption of sparse-
ness (that there are, virtually, no tuples that share a value on an attribute). Remarkably, the distributions are
immaterial. The skyline operator compares tuples always by the same attribute (for each skyline attribute),
so the two values being compared at any given point are drawn from the same distribution. Under sparseness,
there are no ties; one or the other tuple trumps on any attribute comparison with equal probability.

The skyline is no longer independent of the attributes’ distributions when the sparseness condition does
not hold, thus allowing tuples to tie on values. We consider relaxing the sparseness condition next.

3.2 Sparseness versus Repeated Values

Many attribute domains are small. For instance, a Boolean type only allows the values true and false.
Furthermore, we are really interested in the range of values that occur over an attribute, rather than the
domain, per se. For a given distribution of tuples, the values may cluster on just a few of the possible
values. When we relax the sparseness assumption from Definition 1, it allows for tuples to share values.
Furthermore, it allows for duplicate tuples (at least with respect to the skyline attributes). Since most real
data is like this, we are interested in how this affects the number of skyline tuples.

Definition 8 Let s(,;),, denote the random variable that measures the number of skyline tuples from a
relation of n tuples, with respect to a two-dimensional skyline query. Each of the skyline attributes range over
p values, the tuples’ values are uniformally distributed over them, and the skyline attributes are pair-wise
statistically independent.

Let spay,, more generally denote the number of skyline tuples with respect to a d-dimensional skyline
query under the same conditions. Let §.,a ,, denote the expected value.

It is straightforward to establish § 4y ,,’s behavior in the limit, for d, p, and n.

Theorem 9 Bounds on S,y , and Sipay .
(a) 1< Sipdyn SN
(b) dlin;o §(pd),n =N
(C) pllg)lo §(pd),n = §d,n
@ lim @ L

n—oo n pd

We are more specifically interested in how §,ay ,, relates to §4,,. Does value repetition (non-sparseness)
increase the number of expected skyline tuples, or decrease it?

One way to view this is to consider a relation that starts as sparse, but we bin, or partition, the tuple’s
values for each attribute into just a few bins (values). So the tuples in the initial relation share no values,
but after binning, they do. Also, after binning, there can be duplicate tuples. Figure 5 shows two effects
that occur. In some cases, a pair of tuples that were incomparable before can be comparable after binning.
Figure 5(a) shows this. Tuples A and B were incomparable before. (They both might be skyline.) But after,
A trumps B. (So only A could be in the skyline of the binned relation.) It is possible to lose skyline tuples
by this effect. In other cases, all the skyline attribute values of the two tuples become the same. Figure 5(b)
shows this. It is possible to gain skyline tuples (due to duplicates) by this effect.
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Figure 6: Choose two edges.

The probability of value sharing occurring, as in Figure 5(a), is much greater generally than that of the
tuples becoming identical, as in 5(b).? That is, there is a higher probability that tuples will share values on
some dimensions, but not on all. This gap increases with the number of dimensions. So we would expect
the first effect to dominate the second, and for the number of skyline to go down due to binning.

There is the case when there are many more tuples than possible value combinations (p?). In this case,
duplicates reign. By uniformity, there is with high probability, for each possible value combination, a tuple
that matches it. So there is a tuple with the best p on each dimension, and so this is the only possibility for
skyline. How many skyline tuples there are depends on how many duplicates of this there are. The limit in
Theorem 9(d) shows this effect.

Consider the case of two tuples of two dimensions, with each dimension as Boolean. This is the same
as considering two edges placed on a 2 x 2 bipartite grid, as in Figure 6. If no vertex (value) sharing is
allowed, the only possibilities are as in Figure 6(a). Allowing vertex sharing, there are sixteen possibilities as
in Figure 6(b) (choosing two possible edges, with replacement). By our assumptions of uniform distributions
and independence, all sixteen possibilities are equally likely.

The dark-hued diagonal in Figure 6(b) represents the cases in which there are no repeated values. These
behave exactly as sy 2. The light-hued diagonal are the duplicate cases, so § = 2 over these. The rest are
cases of repeats, but no duplicates. For these, § = 1. Note there are twice as many cases of repeats (but no
duplicates) than of duplicates.

We can solve via the probabilities for 8., ) » (and for higher values of n, although it becomes increasingly
cumbersome).

1 3
Lemma 10 $¢,xp) 2 = He — — + —

p 2p?

For p > 1, §(pxp),2 < 82p.

9Except in the very extreme, of course. When we bin all values to a single bin for each dimension, all the tuples become
identical.
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Figure 7: Varying p, the partition degree (for d = 5.)

Conjecture 11 For n < Pde,n, S(pdy,n < Sd,n-

This conjecture may be hard to prove, especially for cases of small n’s and p’s. For instance, while
Spxp),2 < 82,2 (for p > 1), §(,5py 2 is not monotone with respect to p. Of course, for our purposes, we are
only mterested in relatively large n. To ascertain experimentally $,4y , and the distribution of s(,4) ,,, as
in Section 2.3, we ran 10,000 trials for each of p = 2 to 22° (by doubling) for d = 5 and n = 10°. Figure
7(a) shows this. The error-bars represent the standard deviations. Figure 7(b) shows the distribution of
S(325),106, and is constructed in the same way as those in Figure 4.

To the left of the nadir in Figure 7(a), the number of tuples dominates the possible value combinations,
and the distribution counts the number of duplicates of that best scoring combination. These distributions
are true Gaussian, by the central limit theorem. Around the nadir is the balance point between the duplicate
effect and value sharing. Here, the distributions are odder, as in Figure 7(b). That distribution is bimodal,
in which many trials hit the “best” value combination once (and so have a skyline of one) and many do not.
As we move to the right, the distributions become well behaved and Gaussian-like again. The number of
skyline is diminished due to the value-sharing effect, which acts as dimensional reduction. The distributions
converge on that of s5 196 as p grows and the relation becomes virtually sparse.

This discovery that § diminishes as p does has ramifications for users of skyline queries, not just for the
cost model. A tempting strategy when the skyline query returns too few results (for the user’s liking) is
to bin the dimensions’ values further. For instance, we might see little difference between a restaurant at
which the average meal is $25 and one at which it is $22. So we might not want one restaurant trumping
another on cost unless it were at least $5 dollars less expensive. This could lead us to bin price into five
dollar brackets. However, this reasonable-seeming strategy backfires. As we have just seen, binning would
only reduce further the number of skyline.

3.3 Correlation and Anti-correlation

Our other assumption in the basic model in Definition 1 is that of statistical independence of the dimensions
(skyline attributes). This is rarely true for real data, and the skyline operator is sensitive to correlation.

Definition 12 Let sfi) denote the random variable that measures the number of skyline tuples of an n-
tuple relation with respect to a d-dimensional skyline query, for which the d skyline attributes are pair-wise
statistically independent, save for one pair that are correlated at r.

The skyline is affected quite differently by correlation and anti-correlation. High correlation between two
skyline attributes acts as dimensional reduction. If tuple A has a better value on one of the dimensions than
B, with high probability, it also does on the other dimension. At r = 1.0, that probability is one, so one of
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Figure 8: Varying r, the correlation (for d = 5.)

the dimensions is effectively eliminated. Anti-correlation is the antithesis of skyline, however. If A is better
than B on one dimension, it is likely that B is better than A on the other. At r = —1.0, all tuples are in
the skyline. In a way, skyline queries with highly anti-correlated skyline attributes do not make much sense.
One is trying to optimize two values that are strictly trade-offs. Nevertheless, any realistic implementation
of the skyline operator would have to accommodate such cases.

To ascertain experimentally §1(1TZL and the distribution of s‘(irzb, as in Section 2.3, we ran 10,000 trials for

each of r = —0.9 to 1.0 (and —0.95) by steps of 0.1 for d = 5 and n = 105. Figure 8(a) shows this. The
error-bars represent the standard deviations. Figure 8(b) shows the distribution of 55(37_1336) , and is constructed
in the same way as those in Figure 4. The correlated cases behave as expected. Note that a simple linear
interpolation between d = 5 and d = 4 would not be accurate to model the correlation. However, it would
be easy to fit a function for the interpolation. The § grow rapidly under anti-correlation, but not as fast
as people expected, and the distributions remain remarkably well behaved and Gaussian-like. The standard

deviations also do not diverge rapidly. Only in extreme anti-correlation does § become really large.

4 Conclusions

Skyline queries offer a natural extension to min and max aggregation, and allow for one to query for nearest
matches to one’s objectives. The skyline operator, and potential extensions, may offer support for richer
classes of queries with preferences. It may soon be worthwhile to add the skyline clause—and the underlying
skyline operator—to relational systems.

Progress has been made recently to develop good methods for evaluating skyline queries in a relational
setting. In this paper, we have made some initial progress in understanding the cardinality of the results of
skyline queries. This offers a basis for what would be required in the optimizer’s cost model to accommodate
the skyline operator. To be sure, work remains, and many details to resolve, to extend adequately the cost
model for skyline. We need a fuller understanding of skyline under correlation, for instance how multiple
correlations affect the skyline, and how the attributes’ distributions affect the skyline’s cardinality when
their domains are small (that is, p is small).

Our analyses and insights should help us to understand better the uses of skyline queries, and help us
in this next stage to build better, more robust algorithms for skyline’s computation. We hope this work
also yields more general insights into the nature of multi-dimensional data. In the longterm, skyline may
provide us, in turn, tools for the relational model and systems. Once integrated, the skyline operator might
provide the query optimizer sometimes with more efficient plans for evaluating queries with self-joins. Since
the skyline has the property that it is independent of attributes’ domains (for large p), skyline statistics may
provide a new type of useful database statistics that could yield better cost estimations for queries generally.
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Skyline work opens up many new avenues.
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