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Abstract

Attending to multiple speakers in a video teleconferencing setting is a complex
task. From a visual point of view, multiple speakers can occur at different loca-
tions and present radically different appearances. From an audio point of view,
multiple speakers may be speaking at the same time, and background noise may
make it difficult to localize sound sources without some a priori estimate of the
sound source locations. This paper presents a novel sensor and corresponding
sensing algorithms to address the task of attending simultaneously to multiple
speakers for video teleconferencing. A panoramic visual sensor is used to capture
a 3600 view of the speakers in the environment, and from this view potential
speakers are identified via a color histogram approach. A directional audio sys-
tem based on beamforming is then used to confirm potential speakers and attend
to them. Experimental evaluation of the sensor and its algorithms are presented
including sample performance of the entire system in a teleconferencing setting.

!The financial support of NSERC (Natural Sciences and Engineering Research Council of
Canada), CRESTech (Centre for Research in Earth and Space Technology) and CITO (Com-
munications and Information Technology Ontario) is gratefully acknowledged.
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Chapter 1

Introduction

1.1 Teleconferencing Systems

With the advent of the “Global Village”, teleconferencing has found a wide range
of applications. From facilitating business meetings to aiding in remote medical
diagnoses, it is used by corporate, university, medical, government and military
organizations. Teleconferencing enables new operational efficiencies resulting in
reduced travel costs, faster business decision making, increased productivity, re-

duced time to market and remote classroom teaching [13].

Various commercial teleconferencing systems exist, including basic static sys-
tems for use by two participants (one at each end of the connection). For example,
Microsoft’s NetMeeting [17], allows for continuous video and speech transmission,
document sharing and a “white-board” by the two participants (see [7, 9] for
further examples). Systems intended for multiple speakers have also been devel-
oped, however, these systems typically focus on a single user and provide limited,

if any, automatic speaker tracking. Development of more general teleconferenc-



ing systems, systems that can localize multiple parallel speakers, is hampered
by the technology used to acquire the visual scene and the complexities involved
in attending to multiple speakers in the audio domain. Existing teleconferenc-
ing systems utilize conventional cameras, thereby providing a limited number of
static or manually tracked views. As a consequence, in a multiple speaker set-
ting, either the speaker must move into the camera’s view or a camera operator
is used to manually locate and track and choose between speakers. This is both
bothersome and inconvenient for the participants and has deterred many from
using such systems. In addition to the cost overhead, the presence of a cam-
era/equipment operator during a teleconferencing session may interfere with the
group dynamics [43]. Although visual based systems capable of detecting and
tracking human faces exist, they also employ conventional camera lenses, which

capture only a narrow field of view.

1.2 Problems with Existing Teleconferencing Sys-
tems

Teleconferencing systems must be able to capture and transfer audio (e.g. the
speaker’s voice) as well as the video signal. In order to capture the speech of mul-
tiple participants, popular methods include; having each participant wear their
own ”tie-clip” microphone and having a human operator determine which micro-
phone to monitor, and having speakers physically move to a location where they

can speak into a shared microphone. Although sound localization systems exist,



most rely on extensive microphone arrays [5, 33, 45, 14] which require expen-
sive specialized equipment, are computationally intensive and are non-portable.
Several systems have been developed in an attempt to overcome some of these
limitations. For example, the PictureTel 900 teleconferencing system [31] em-
ploys a microphone array capable of localizing a speaker over a 360° field of view.
Once the speaker has been localized, a software controllable pan-tilt-zoom cam-
era is steered to focus on the speaker. Although this is definitely an improvement
over the traditional manually operated camera systems, moving the pan-tilt-zoom
camera so that it is focused on the speaker is time consuming and therefore, may
negatively interfere with the meeting. Moreover, in order for the sound local-
ization system to be most effective, it must be positioned as close as possible to
the users. Finally, this system is incapable of capturing the speech and video of

multiple participants simultaneously.

1.2.1 Overcoming the Problems

Because a single standard video camera needs to be fixated on the speaker, it
is not an effective sensor for the multi-speaker teleconferencing task. In order
to address this issue, a novel hardware device was constructed to provide the
raw sensor data. Figure 1.1 illustrates the hardware components comprising
the “Eyes 'n Ears” sensor. Eyes 'n Ears consists of a Cyclovision Paracamera
omnidirectional video system [30] coupled with a four microphone array. The

system is compact, lightweight, portable and is meant to be placed in the center
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Figure 1.1: Eyes 'n Ears Sensor.

of a table with the participants of the teleconference session seated around it.

Cyclovision’s Paracamera omni-directional camera system consists of a high
precision paraboloidal mirror and a combination of special purpose lenses. By
aiming a suitably equipped camera at the face of the paraboloidal mirror, the
optics assembly permits the Paracamera to capture a 360° hemispherical view
of all potential speakers from a single viewpoint. Once the hemispherical view
has been obtained, it may be easily un-warped [30] producing a panoramic view.
From this panoramic view, perspective views of any size corresponding to different
portions of the scene can be easily extracted (see Figure 1.2). The ability of the

Paracamera to capture an image of the entire hemisphere makes it very attractive
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Figure 1.2: Paracamera Images. A panoramic view is easily generated by un-
warping the hemispherical view obtained by the Paracamera. Perspective Images
of any size may then be extracted from the panoramic.

for a number of different applications. For example, in Stiefelhagen et al. [37] and
Yong et al.[43], an omni-directional camera is used to capture the simultaneous
video of each participant in a small group meeting. Omnidirectional devices have
also been used in many other vision based applications, including surveillance
[4, 19], autonomous robot navigation [44], virtual reality [42], telepresence [42],

remote view from a Dolphin [3], and pipe inspection [2].

1.3 Overview of the Eyes 'n Ears System

In the Eyes 'n Ears system, the Paracamera is used to identify potential speakers
in the environment. Using a statistical color model, the video system locates

regions of human skin present within the Paracamera’s view. These skin regions



correspond to faces, arms and other exposed skin regions, as well as other skin-
colored distracters in the image. Regions of skin in the camera image are then
grouped together to form a cluster. Each cluster of skin regions is assumed
to correspond to one particular person. Under the assumption that the face
of a person in the Paracamera image is further away from the center of the
image relative to the other skin regions, the locations within the camera image
of potential speakers are identified. Once each face has been found, an estimate
of its direction in the real world relative to the Paracamera is computed and
provided to the audio system as the direction to a potential sound source (e.g.

voice of a speaking person).

The audio system consists of four omni-directional microphones (m;y, msg, mg
and my), mounted in a static pyramidal shape about the base of the Paracamera,
which provide an economical and portable acoustic array capable of localizing
a sound source in 3-space [18]. Given the initial estimate of the direction to
each speaker’s face in the real world as identified by the visual system, using
beamforming [24] and sound detection techniques, the audio system detects and
validates each speaker and focuses on the speech of each individual thus reducing

unwanted noise and sounds propagating from other directions.



1.4 Overview of thie Report

Chapterss two and three provide details of the vision and audio systems respec-
tively that make up the Eyes 'n Ears sensor. Chapter four describes the system
in operation and presents experimental results of the two subsystems. Chapter
five discusses the approach and presents potential directions for future research.
Finally, technical details regarding the Eyes 'n Ears system are provided in the

appendices.



Chapter 2

Video System

2.1 Color Based Face Detection

Skin color is often proposed as an economical and efficient cue to face detection.
Color is one of the simplest attributes in a set of pixels comprising the image
[25]. Color does not require extensive computational processing to compute, the
color of an object may be used as an identifying feature that is local to the object
and color is largely independent of the view and resolution. In general, color
is invariant to partial occlusion, rotation in depth, scale and resolution changes
[34]. Furthermore, there are fast and simple color based human detection and

tracking systems available (see [6, 20, 21, 25, 26, 40, 41]).

A major difficulty in using color information as a cue is the lack of color
constancy [16]. As a result changes in lighting conditions lead to variations in
the colors of an image (e.g. the color of an object in an image may change under
different lighting conditions even when the object itself does not change). The
lack of color constancy is most apparent in the RGB (red, green, blue) color space

8



where intensity is distributed equally to all three color channels [34]. In order to
reduce these effects, in this work color is represented in HSV (hue, saturation,
value) color space [15]. Furthermore, skin color of different people varies primarily
in intensity [37]. Therefore, if value is ignored, the skin color of people regardless

of race forms a tight cluster in HS (hue-saturation) space [11, 34].

2.1.1 Color Histograms

Color histograms [38] have been found to be an effective mechanism for repre-
senting colored objects in an image. A color histogram is a representation of
the distribution of the discrete colors available in an image, i.e. for each possible
color a pixel of an image may take on, the color histogram provides a count of the
number of pixels in the image (or in an image region) with that corresponding
value. Color histograms are invariant to translation, rotation about an axis per-
pendicular to the image and change only slightly with rotations about other axis,
occlusion and change of distance to the object. Furthermore, the color histogram
of different objects can differ extensively [38]. Color histograms have proven to
be effective representations of two and three dimensional objects and have been
used in a wide variety of computer vision applications, including image matching

and retrieval [27, 38], face detection and tracking [21] and skin detection [25].

Color histogram models for skin and non-skin color classes for traditional

cameras have been constructed previously and are freely available [25]. These



models are constructed using data from images obtained with normal cameras.
However, the non-standard lens and curved mirror assembly of the Paracamera
was found to distort the colors of skin tones and thus the Jones and Rehg model
was found to be unsuitable for the Paracamera sensor. Instead, two-dimensional
hue-saturation model histograms for both skin and non-skin color classes were
constructed by manually classifying portions of images obtained with the Para-
camera. Value was ignored, while hue and saturation values were discretized to
32 and eight discrete values respectively (e.g. each color histogram contains a

total of 32 x 8 = 256 possible HS (hue-saturation) pairs).

Constructing Skin and Non-Skin Color Histograms

To construct color histograms for skin and non-skin regions, a total of 154, 310
skin pixels were obtained from 35 subjects of various racial groups to ensure a
wide variety of skin colors. For each subject, samples of their hands, face (and
in several cases legs) were obtained over multiple images. The subjects were
asked to change both their pose and their distance relative to the Paracamera to
ensure samples in different lighting and orientation conditions were obtained. A
total of 307,546 non-skin pixel samples were obtained by sampling portions of
images obtained with the Paracamera that did not contain human skin. Once
again, the samples were obtained in different locations and under a variety of

lighting conditions. Figures 2.1 and 2.2 illustrate the resulting Hue-Saturation

10
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Figure 2.1: Hue-Saturation Skin Histogram. The histogram is constructed by
sampling 154,310 skin color pixels in Paracamera images obtained from 35 sub-
jects of diverse ethnic background, under various lighting conditions.

histograms for both the skin and non-skin classes. For each “bin”, the axis labeled

Distribution, records the number of pixels from the samples with corresponding

hue-saturation values.

2.2 Finding the Skin Regions

Given the skin and non-skin histograms described above, the estimated probabil-
ity that a particular hue and saturation pair (referred to as HS) belongs to either
the skin, P(H S|skin) or non-skin P(HS|—skin) classes may be found using ba-
sic probability theory (see [32] for a review of probability theory and [25] for an

earlier application of probability theory to the skin detection problem)

11
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Figure 2.2: Hue-Saturation Non-Skin Histogram. The is constructed from 307,546

non-skin color pixels obtained under various lighting conditions. Note the differ-
ence in distribution with the skin color histogram plotted in Figure 2.1.

P(HS|skin) = Sk#[HS] (2.1)

P(HS|~skin) = %m[m (2.2)

where skin[H S| and non-skin[HS] is the count in bin HS of the skin and non-
skin histograms respectively. T is the total number of pixels contained in the

skin histogram while 7}, is the total number of pixels contained in the non-skin

histogram.

When skin[H S| is greater than a pre-defined threshold value §, the probability

12



that a pixel in the hue-saturation color space is skin color P(skin|HS), may be

determined using Bayes rule, otherwise, P(skin|HS) is set to zero

0 if skin[HS] < 0
P(skin|HS) = (2.3)

P(HS|skin)P(skin) . .
P(HS|skin)P(skin)+ P(HS|~skin)P(—skin) if skin[HS]) > 6

where P(skin) = TS?LSTTL and P(-skin) = TS?Tn is the probability of a pixel

belonging to the skin and non-skin color classes respectively. Once the probability
that a particular HS pixel value corresponds to skin has been calculated, the pixel

is classified as skin if

P(skin|HS) > A (2.4)

where A is a pre-defined threshold.

2.3 Eliminating “Noisy” Regions

In order to enhance the efficacy of the color histogram skin detection process a

number of pre- and post-filtering stages are applied. These are:

1. Prior to applying the color histogram skin detection process, an image dif-
ferencing process is used to remove static (background) image locations

from further processing. A time-averaged background image is computed

13



and portions of the image that do not differ significantly from this back-

ground are ignored.

2. Once individual pixels have been labeled as skin pixels, these pixels are
combined into skin regions. Holes or concavities that may be present in

these skin regions are reduced by applying dilation and erosion operations.

3. Following the dilation and erosion operations, a unique identifier is assigned
to each region or connected component. Components smaller than a pre-

defined threshold are ignored.

2.4 Locating the Face

Components in close proximity are grouped together, to form a cluster. The
component in each cluster furthest from the center of the Paracamera image is
identified as a potential face. Figure 2.3 shows (a) a sample image of users in a
teleconferencing setting, and (b) the identified skin regions (yellow) and potential
faces (red crosses). Given the center of a face or skin region as identified by
the visual system, the direction to the face is computed in world co-ordinates.
Since the focus of the paraboloidal mirror is also its centre of projection, it is
straightforward to convert camera pixel locations to 3D direction vectors (see
Appendix D for greater details). Once potential speaker directions have been

determined, each direction is probed by the audio system to determine if the

14



Figure 2.3: Faces identified in the input omnidirectional image. Pixels identified
as skin are colored yellow and the centers of the identified faces are indicated
with a red cross.

speaker direction has a corresponding signal in the audio domain.
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Chapter 3

Audio System

3.1 Microphone Arrays and teleconferencing

The audio system is responsible for confirming the presence of speakers in the
directions estimated by the video system. Since the participants of a telecon-
ference session will generally be speaking, confirmation of the face is achieved
by detecting the presence of a sound source within a small set of directions cen-
tered on the direction obtained by the video system. Due to various acoustical
factors including reverberation, a propagating speech signal may be degraded
or altered extensively before reaching a microphone. Furthermore, this degra-
dation increases as the distance between the sound source and the microphone
becomes greater [36]. As a result, the information captured by a microphone and
transferred to the other parties may be incomplete and may lead to confusion

amongst the participants. This has made teleconferencing a poor substitute for

16



person to person contact [45]. To reduce this problem the microphone should
be positioned close to the person speaking ensuring the Signal-to-Noise Ratio
(SNR) of the captured speech is very large (e.g. the power of any captured noise
is negligible relative to the power of the speech signal) [28]. Unfortunately, this
is not always practical, especially in large rooms where the distance between the
participants and the microphone is large and when participants at different loca-
tions in the room need to speak and be heard. Traditional methods to overcome
this problem provide each participant with their own microphone. However, an
operator is then needed to determine who is speaking and turn on the speaker’s
microphone while turning all other microphones off [33]. Alternatively, the task
of determining who is speaking and turning off all other microphones may be
performed using speaker detection software (e.g. the signal of each microphone
containing the greatest energy may be used to indicate the speaker). However,
such an approach is limited by the number of audio input channels available and
since the microphone of each participant requires its own input channel such an

approach is certainly not scalable.

There are many situations in which a physical signal present in our environ-
ment is monitored by some appropriate sensor, providing us with information
about the surroundings. The examples are many and include both artificial sen-
sors (e.g. satellites, microphones, antennas etc.), as well as our own senses (e.g.

eyes, ears etc.). In many situations, a single sensor may not be able provide

17



sufficient information. To increase the effectiveness of a sensor, rather than rely-
ing on a single sensor, an array of sensors may be used instead. A sensor array
is a set of sensors placed at different locations to spatially sample a propagat-
ing wave-field (e.g. sample a wave-field emanating from a particular direction),
which may be electromagnetic, acoustic, seismic etc. [24]. Using the array allows
a speech signal to be captured from any location in the room while greatly at-
tenuating background noise, reverberation and sounds from other sound sources.
In addition, it eliminates the need for the participants to carry a microphone
with them and the need for an operator to control the microphones. Most im-
portantly however, it allows for the automatic speech acquisition with minimal
noise and detection and tracking of an active speaker regardless of their position
in the room [28]. Greater details and specifications regarding the microphone

array used in this work are available in Appendix C.

3.2 Beamforming with the Microphone Array

Although various methods of beamforming have been developed, the simplest and
most common is referred to as delay and sum beamforming [24]. Consider a sound
source located at some position z; in three dimensional space. Furthermore,
consider an array of m microphones (each microphone is denoted by m; for i =
1...m) where each microphone is at a unique position z; and each is in the path

of the propagating waves emitted by this sound source. In general, the time taken

18



for the propagating sound wave wave to reach each microphone will differ and

the signal received by each microphone will not have the same phase.

The differences in the time of arrival of the propagating wave at the sensors
depend on the direction from which the wave arrives, the positions of the sensors
relative to one another, and the speed of sound v;y,nq- Beamforming takes ad-
vantage of these time differences between the time of arrival of a sound to each
sensor [33], and allows the array to be “aligned” so as to be tuned to the partic-
ular sound source. As shown in equation 3.1, beamforming consists of applying
a delay A; and amplitude weighting! w; to the signal received by each sensor s;
and then summing the resulting signals [24]

M-1

1=

where z(t) is the beamformed signal at time ¢ and M is the number of sensors.

Since the output of the beamformer will be maximized when it is steered to
the location of the source, the beamformer may also be used to determine the
location of a sound source(s) without any knowledge of the source’s location.
This may be accomplished by focusing the beamformer to every possible location
and recording the location of the strongest beamformer output. The locations
of maximum output will correspond to the location of a propagating source.

Unfortunately, such an approach however is generally not feasible. It will take

'For this application, the amplitude weighting is ignored e.g. , w; = 1 for all i.
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far too much time and processing effort to actually focus the beamformer to
every possible location. However, when the number of potential sound source
locations is restricted in some manner, beamforming is an effective method of
audio detection. Essentially, this is the purpose of the video system. For this
application the speech of the participants is the signal of interest. By locating the
face of each person present in the Paracamera’s view, the video system reduces
the number of potential sound sources from many thousands to several (e.g. under

10), making the audio system’s task tractable.

3.2.1 Filter Delay and Sum Beamforming

In voice recognition and detection applications, the signals of interest fall within
a small frequency region. Although humans are capable of perceiving sounds
from 20 — 20000Hz [1], most speech falls within a very small frequency range
(200 — 4000Hz) [22]. By filtering the signal received by each of the microphones,
frequencies which do not lie in the region of interest, can be attenuated. This
reduces noise present in the original signal and leads to more accurate sound
detection. Filtering is accomplished entirely in the software domain using a low

and high pass digital FIR filter.
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3.3 Far Field Acoustical Model

If the direction of propagation between the sound source and each microphone
of the array are assumed to be the same (far-field assumption), then to focus the

array in some direction ﬁ, the delays A; are computed as:

:_?‘xi_ ?xz

Vsound _345m/5

A; (3.2)

where ? is the unit vector denoting the direction of propagation relative to the
array’s origin, z; is the vector from the array reference and the " microphone

and the speed of sound vs,unqg is assumed to be constant at 345m/s [35].

Geometrically, the time delay is determined by projecting x;, onto the unit
vector ﬁ This projection gives the difference in distance the sound must travel
to reach the array reference and the i* microphone. Dividing this distance by

the speed of sound v,eynq4, gives the appropriate time delay.

When the delays have been determined correctly (e.g. to accurately match the
source location relative to the array) and applied to each microphone signal, the
resulting microphone signals will be in phase. As a result, when the signals are
summed together to form the beamformed signal, they will reinforce each other
causing the energy of the beamformed signal to reach a maximum (see Figure

3.1). Delays that do not correspond to a true sound source direction (e.g. the
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Figure 3.1: Forming the Beamformed Signal. Summing the appropriately delayed
signal from each microphone will lead to a beamformed signal with maximized
energy output.

beamformer is incorrectly steered to some other direction), will cause a reduction

in the energy level of the beamformed signal.

3.4 Implementation Details

The delay derivation described in the previous section assumes a continuous time
signal and a delay of any arbitrary time. In reality however, this luxury does
not exist! The signal obtained by each of the microphones is actually a sampled
version of the original propagating signal and therefore, only integer delays may
be easily achieved. As a result, the beamformer may not be able to focus directly
to locations corresponding to non-integer delays. For this work, the delays are
calculated as described earlier, assuming a continuous time signal. After com-
puting the time delay, as shown in equation 3.2, the discrete time delay A;,.

is obtained by “rounding” the continuous time delay to the nearest integer. Once
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the discrete delays have been calculated, the beamformed signal Speqmform can be

constructed as

N

Sbeamform = 2(81[]] + SQ[j + A2discrete]
=0

+ SS[j + A3discrete] + 84[j + A4disc7‘ete]) (33)

where N = 2048 is the size of the sample “time window”.

3.4.1 Processing the Signal

Two measures are used to determine if the beamformed signal corresponds to a

speaker, the signal variance and signal difference.

Signal Variance Criterion The variance of the beamformed signal must be
substantially higher than that of the background noise. Generally, the sig-
nal variation associated with a signal emanating from sound sources such as
speech, music and impulsive sounds, is greater than the variance of back-
ground noise. Following the approach of [18], the variance is computed
based on 32 sample sub-windows. The variance of each sub-window is com-
puted and finally, the variance for the entire window is estimated by the

mean variance of the 52 sub-windows.

23



i=M-1 Ej:j+k—1 |s[§]—35]2

1=0 j=tXk k—1
3.4
i (3.4)

Vtsignal =

During system calibration, the variance of the background noise is com-
puted, and this is used to establish a threshold value (Vjpyesn) for the back-
ground noise. A potential speaker is only confirmed when the variance of

the beamformed signal V;gna is greater than Vip,esn-

Signal Difference Criterion The difference in magnitude levels between the
“correctly steered” beamformed signal and an “incorrectly steered” beam-
formed signal that is obtained by averaging the signal of each microphone
with zero delay must exceed a threshold. An average signal sq,, is com-
puted by summing the signals received by each of the microphones without
introducing any delay. The energy of this signal (E,,, ) is compared with

the energy associated with the beamformed signal (Epeam):

Fpean —Fas if (Ebeam - E(w ) >0
Sdif = Fasean ! (3.5)

0 if (Ebeam - E(wg) S 0

The presence of a sound source is confirmed only when both the signal vari-
ance and signal difference exceed specific thresholds, (Vipresn and Di fipresh

respectively).

Sdif 2 Difthresh and ‘/signal 2 V;fh,resh
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3.5 Calibration

Beamforming with a far field acoustical model requires that the position of each
microphone z; relative to the array origin must be known. Rather than using
a global coordinate system, the coordinate system defined by the Paracamera
system is used. This eliminates the need to calibrate to some arbitrary global
reference frame, however the audio and video systems do need to be calibrated
with respect to each other. The vertical distance between the plane of the lower
three microphones and the optical centre of the Paracamera system is measured.
The direction to each of these three microphones is easily measured as they ap-
pear in the view of the Paracamera. Under the assumption that the plane defined
by these three microphones is perpendicular to the Paracamera optical axis per-
mits the microphones’ position to be easily estimated. The fourth microphone
is mounted in line with the optical axis of the Paracamera system and its po-
sition is measured directly. Greater details regarding this calibration procedure

are provided in Appenix C.
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Chapter 4

Experimental Results

The video system is responsible for detecting visible skin regions within the visual
view of the Paracamera; grouping together the regions corresponding to each
person; finding the region of each group that corresponds to the face; and finally,
determining the direction to each potential face. Given this information, the
audio system is focused to the direction of each potential face in order to detect
sound (speech) emanating from the person when they are speaking. As described
in the previous sections, both the audio and video systems can be used alone to
locate potential speakers in a teleconference setting. However, by combining the
two systems, each one is able to complement the other and therefore overcome
some of the limitations inherent in each system when used alone. This provides a
much more robust system of automatic speaker detection. This section describes
two experiments that illustrate the effectiveness of the ability of the combined

system to detect and focus on potential speakers in a teleconferencing session
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when used together.

The first experiment is a demonstration of the combined system to detect
multiple speakers in a typical group meeting scenario while the second experiment
quantifies the accuracy of the system’s ability to locate and focus on the face of

a participant.

4.1 Experimental Room Set-Up

Both experiments were conducted in a meeting room at York University. The
room is 3.7m long, 5.8m wide, with a height of 3.0m and is used for group
meetings. As illustrated in Figures 4.1 and 4.2, one wall of the room contains
several windows facing a hallway, while the other wall contains two windows
facing outdoors. The windows facing outdoors are covered with black curtains.
There is a counter running the length of one wall approximately 0.8m in height,
a white-board (with a wooden cover that was closed during the duration of the
experiments) mounted on one wall and a corkboard mounted on the opposite wall.
The room also contains a black filing cabinet and a large table with several chars
in the middle of the room. Furthermore, the room contains standard flooring
tiles, concrete ceiling and normal fluorescent lighting. No effort was made to limit
audio reverberation or modify the lighting conditions in any manner. This room
is a good representation of the environment of a typical teleconferencing room.

Both the audio and video systems rely on several pre-defined (and dynamically
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Figure 4.1: The actual meeting room in which both experiments took place.

computed) threshold values. Tables 4.1 and 4.2 summarize these threshold values
for both the audio and video systems. Both experiments described in this section

were conducted with these threshold values.

Parameter Parameter Value
Sampling Frequency 44100Hz

Sample Resolution 16 bits

Band Pass Filter Frequency Range 200-4000Hz

Filter Coefficients 128

Difthresh 0.10

Vinresh Dynamically Determined

Table 4.1: Audio system parameter specifications for both experiments.
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Figure 4.2: Schematic diagram of the meeting room in which both experiments
took place.

Threshold Threshold Value
Skin Pixel Classification (A) 0.8

Min. Pixels per Histogram Bin () 50

Size Filter 300 (pixels)

Table 4.2: Video system threshold values used for both experiments.
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4.2 Experiment One - Demonstration

The purpose of this experiment is to demonstrate the ability of the Eyes 'n Ears
system to detect and focus on the participants who are speaking in a typical
multiple person group meeting setting. As illustrated in Figure 4.3, four male
subjects (where the i subject is denoted by s;, for i = 1...4), were seated
around the sensor in the meeting room described in Section 4.1. Subjects were
instructed to perform several tasks (the actual tasks are listed in Table 4.3),
while the system was operating. The tasks involved different scenarios of the
participants speaking in a meeting. For example, two of the scenarios involved
having all subjects remain silent for the duration of the test, while in another
scenario, two of the subjects would speak at the same time while the others
remained silent. The subjects which did speak were free to choose their own
words and phrases for the duration of the experiment and spoke in a “normal”
loudness level (e.g. they did not speak purposely louder than they normally do).
In addition, the subjects were free to change their pose as they wished (e.g. raise
their hands, move their head etc.). In each scenario, the system was started,
the appropriate subjects began speaking, and 15 seconds later, the system would

locate the speakers.

In addition to the participants speaking, as shown in Figure 4.3, a radio was
also placed in the room and remained “ON” during the duration of the entire

experiment. The radio was tuned to an all news radio station (CFTR 680 News

30



Radio
Speaker

Subject 1
Sy

Subject 2

Figure 4.3: Experiment one set-up (left) and sample output (right). Four partic-
ipants in a typical group meeting, seated around the Eyes 'n Ears sensor. The
radio distracter is located counter clockwise of the participant on the right s;

Toronto, Ontario) where several different announcers, both male and female, were
heard. The volume of the radio was set to a moderate level (6 out of 10 possible
volume settings) and was very similar, in loudness, to the level of the subject’s
speech. The radio loudspeaker was placed on the counter close to the sensor (and
close to subject s;) and was meant to simulate audio “distracters” (noise) which

may occur in a regular meeting.

The video system detected correctly all participants in the six scenarios. Fur-
thermore, given the real world direction to each detected face (relative to the
Paracamera coordinate system), the audio system was capable of localizing par-

ticipants that were actually speaking in each of the scenarios. It did incorrectly
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Scenario Number | Task Description

Subject s, speaking only.

No subjects speaking.

Subjects so and s, speaking concurrently .
No subjects speaking.

Subjects s3 and s, speaking concurrently .
6 Subject s, speaking only.

OY = | W DN =

Table 4.3: Different scenarios examined in experiment one.

determine that one participant was speaking (s; in scenario one and scenario six),
when in fact this participant was not speaking. However, subject s; was close to
the loudspeaker and audio from the radio was associated with the nearby silent
participant. In addition to the correctly classified faces, the video system incor-
rectly classified several non-face skin regions as faces, however, in each of these
cases, the audio system correctly determined there was no speech emanating from

the direction of the incorrectly detected face.

4.3 Experiment Two - Accuracy

This experiment investigates the accuracy with which the Eyes 'n Ears system
locates a speaker in the environment. In order to quantify the results of the
experiments, rather than using a human subject, a test dummy speaker was used
instead. Using a test dummy ensured certain parameters remained constant over
the entire duration of the experiment, and permitted much longer experimental

trials to be conducted. After being placed in the appropriate position, the dummy
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did not move in any manner ensuring its height above the table and its pose
relative to the Paracamera remained static, allowing quantitative measurements

to be made.

The test face used in this experiment was a color image of a face. The pic-
ture was mounted on an “L” shaped wooden stand and the region of the image
corresponding to the mouth on the picture was cut out. A small audio speaker
was mounted directly behind it. The speaker was connected to a radio that was
tuned to an all news radio station (CFTR 680 News, as in experiment one) for
the entire duration of the experiment. This allowed the output of the speaker to
emanate from the opening in the mouth simulating a person talking. The volume
of the radio was set to six (out 10 possible volume levels, where 10 is the loudest

setting).

A 10cm x 10cm grid was laid out on the table shown in Figures 4.4 and
4.5. The Eyes 'n ears sensor was then centered on the table. The test face was
then placed at specific grid locations and face localization was performed at 18
discrete locations. For each location, the image coordinates of the face in the
Paracamera were manually obtained by identifying the nose of the test face in
the video image. For each test position, the test face was then located three times

using the audio and video detection algorithm and these values were averaged.

Figure 4.6 shows the actual (measured) direction to each face position (de-

noted by ﬁacmal vs. the computed direction to the face (denoted by ﬁcomputed)
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Figure 4.4: Location of test face during each of the tests.

Figure 4.5: Actual image of the experimental setup for experiment two.
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Figure 4.6: Comparison between the actual direction to the face ﬁactual and the

computed direction to the face gcomputed- The tips of the direction vector, from
the origin, are plotted.

in the test (provided that the face was detected). Figure 4.7 plots the differ-
ence between the actual and computed directions for each face location (¢ =
1— ﬁactual 'gcomputed)- The video system correctly detected the skin region present
in each of the (18 x 3 = 54) tests (100%). A total of nine false positive potential
faces were identified by the vision system. The audio system confirmed 45 of the
54 true faces (83% of the true faces were correctly identified by both the audio
and video systems), and one false positive face was confirmed by the audio sys-
tem. In Figures 4.6 and 4.7, only those faces which were confirmed by the audio

system are plotted.
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Chapter 5

Summary and Future Work

5.1 Summary

This paper describes a lightweight and portable face detection system that utilizes
audio and video cues. The system is intended primarily for use in teleconferenc-
ing applications in which the sensor (consisting of the combined audio and video
components) is placed on a table and the participants are seated around it. An
omni-directional camera (Paracamera), allows the video component to capture
dynamic views of all participants from a single viewpoint, eliminating the need
for a camera operator or having each speaker move within the camera’s view.
Using a statistical color model constructed from 35 individuals of various eth-
nic backgrounds, the pixels of each incoming Paracamera image are classified as
either skin or non-skin. Skin classified pixels are grouped into labeled regions.

Skin labeled regions, which are spatially close, are further grouped into clusters.
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Assuming there is an appropriate amount of space between the people in view,
each cluster corresponds to one particular person. The region in each cluster
furthest from the center of the Paracamera image is chosen as the face and an
estimate of its direction in the real world, relative to the Paracamera coordinate
system, is made and provided to the audio system. Beamforming and sound
detection techniques with a small, compact microphone array (consisting of four
omni-directional microphones), allows the audio system to be steered in the di-
rection of potential faces, and then to focus on the speech of each participant.
The detection of sound allows the audio system to confirm and therefore validate,

the presence of a speaker in the direction determined by the video system.

Experiments performed in a normal meeting room environment indicate that
by working together the audio and video system are capable of overcoming some
of the limitations inherent in each component. Various factors may negatively
affect each component, but these factors are usually specific to either the audio
or video system. For example, a reverberant environment may result in the
incorrect localization of a sound source, but will not affect the video system.
Similarly, the color of objects in the environment has no bearing on the audio
system whereas it may negatively affect the video system and lead to the incorrect
classification of non-skin regions as skin (e.g. certain yellow objects, such as a
cardboard box or a standard corkboard may be incorrectly classified as skin).

By locating the direction to potential faces within the Paracamera’s view, the
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video system essentially reduces the workspace of the audio system from many

thousands of directions to only a few, making the audio system’s task tractable.

5.2 Future Work

Various improvements could be made to the Eyes 'n Ears system. Faster com-
puters, and especially more sensitive microphones would enhance system speed
and performance. One specific advantage of more powerful computers would be
the ability to probe via audio beamforming every large skin region cluster as an
audio source, rather than only probing large skin region clusters distant from the
centre of the video image. Future extensions to the Eyes 'n Ears systems include
incorporating the system within an audio-video tracking system to permit speak-
ers to be attended to and then tracked as they participate in teleconferencing
applications, and to apply the system to distance learning applications. Specifi-
cally, to use the sensor as a device to enable a remote instructor to interact with

his or her remote class.
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Appendix A

Eyes 'n Ears Hardware and
Software

A.1 Overview

Figure A.1 illustrates the hardware comprising the Eyes 'n Ears system. As
shown, the audio and video system communicate as two separate components,
connected together through the Internet connection using a client-server model.
The video system (server) continuously locates human faces present in the Para-
Camera image and provides an estimate to their direction in the real world rela-
tive to the Paracamera. The direction information of each face is then provided
to the audio system over the Internet connection as possible directions to sound
sources (speech of a participant). Upon determining whether there is a source
propogating in the direction of each potential sound source, the audio system will

provide this information to the video system.

The following sections provide greater detail of the components illustrated in
Figure A.1.
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Figure A.1: Eyes 'n Ears Hardware Components.
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A.1.1 Video System
Computer

Control of the entire video system is achieved with an Apple Power Macintosh

G3 with the specifications given in Table A.1.

Processor Main Memory | Operating System
Power PC G3 400MHz 128MB Mac OS 9.0

Table A.1: Video System Computer Specifications.

Video Card

An ATT Xclaim VR 128 video card is used to obtain the images from the camera
system. This video card contains the ATI 3D Rage 128-bit accelerator chip
allowing for advanced 3-D graphics capabilities (e.g. alpha blending, fog effects,
z-buffer, Gouraud shading etc. ). It is capable of providing 30 frames per second
at a resolution of 320 x 240 and can support a maximum display resolution of
1600 x 1200. Finally, the card supports S-Video or Composite Video input,

however, for this application, only S-Video input is used.

Video Camera

A Panasonic model GP-KR222 color CCD Camera is used. The camera contains

7 CCD with a 640 x 480 resolution and is predominantly used for

a single 3
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surveillance purposes.

ParaCamera Lens System

The ParaCamera optical system [29] consists of a high precision paraboloidal
mirror and a combination of special purpose lenses (see Figure A.2). By aiming
a camera to the face of the paraboloidal mirror, the combination of these optics
permit the ParaCamera to capture the entire hemisphere surrounding it from a
single viewpoint!. The single viewpoint feature allows for fast and simple gener-
ation of perspective views from the original hemispherical image. As described

in Appendix B, it also allows for simple and problem free calibration [39].

Software

The entire software portion of the video system has been developed with Java
SDK 2.1 for the Macintosh (equivalent to the Java 1.6 on the Windows/Sun
platforms) using Code Warrior IDE version Pro 4.0 programming environment
for the Macintosh. The QuickTime 4 for Java API is used to obtain images from
the camera. This API is fairly simple to use and certainly abstracts much of
the low level details involved with such a process. Further information regarding

QuickTime 4 for JAVA may be found on the Internet at:

hitp:/ /www. apple. com/quicktime/qtjava/index. html

I Except for a small “polar cap”.
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Figure A.2: ParaCamera Optical System.
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A.1.2 Audio System

Computer

Control of the audio system is achieved with an Apple Power Macintosh G3 with

the specifications listed in Table A.2:

Processor

Main Memory

Operating System

Power PC G3 266 MHz

96MB

Mac OS 8.6

Table A.2: Audio System Computer Specifications.

Omni-directional Tie Clip Microphone

Four Genexxa 33-3003 tie-clip electret condenser microphones are used. They are

manufactured by Genexxa and purchased from a commercial electronics store for

approximately $60.00 (CDN) each. Each microphone contains an acoustic ‘wind

screen” which according to the manufacturer, minimizes “voice popping” and

background noise. Further specifications are provided in Table A.3.

Frequency Response

Sensitivity

Impedance

Dimensions

Power Supply

70-16000Hz

65dB

100092

17.5mm long x 8mm dia.

1.5V

Table A.3: Omni-directional Microphone Specifications.
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Figure A.3: Layla Multi-Track Recorder.

Sound Card (Layla)

Since the Power G3 supports stereo audio input only, an external sound card is
required to allow for the simultaneous input of data from the four microphones.
The ‘Layla’ (see Figure A.3), manufactured by Echo [8] is used. Layla is a profes-
sional digital multi-track recording system for both PCs and Macintosh platforms.
It allows for 20-bit multi-track audio recording simultaneously from eight input
channels and for the simultaneous audio output from 10 output channels. Soft-
ware control of the Layla is accomplished using the ASIO API. The following

section describes the API in greater detail.

ASIO API

Personal computers currently available are very restricted in terms of their audio
capabilities as they allow for stereo input and stereo output only. Although
the number of input and output channels can be increased, using for example
various DSP boards, this is a complex task with the potential for major problems.

In particular, it is very difficult to synchronize the various input and output

46



channels. To overcome these limitations, Steinberg? has developed the Audio
Stream Input Output (ASIO) API which allows for efficient audio processing,
high data throughput, synchronization and extendibility on the audio hardware
side [10]. The ASIO API does not place a limit on the number of input/output
channels, sample rate (32K Hz to 96K Hz or greater) or sample format (16, 32,
64 bit or 16/32 floating point), thereby allowing the 10 input and 12 output
channels available on the Layla audio card to be accessed simultaneously without
concern for synchronization issues etc. The API C++ source code is in the Public

Domain and free for download from the following Internet site:

http://www.steinberg.net/developers/ASIO2SDK About. phtml

It includes routines to initialize the channels (e.g. set the number of channels,
sampling rate, sample format etc. ); allow simultaneous input/output from the
channels, and routines to terminate the session and return any allocated resource
(e.g. memory) to the system. Since all software for both the audio and video
systems in this thesis is written entirely in Java, the Java Native Interface [23] is

used to incorporate the ASIO API C++ source code into this application.

The Layla must be powered on before the G3. In addition, before using the
Layla, the application “Echo Console” must be executed (this application allows

one to control the audio Input/Output and clocking functions of Layla). Sound

2Steinberg is a trademark of Steinberg Soft-und Hardware GmbH.
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will not be recorded unless this is done! Further details regarding Layla, including

documentation may be found from the manufacturer’s web site:

http:/ /www.event1.com/download/MacLayla.html

Software

Similar to the video system, the software portion of the audio system was also
developed with Java SDK 2.1 for the Macintosh using Code Warrior version
3.2. However, as discussed in Section A.1.2 above, the ASIO API obtained from
Steinberg, is written in C++ and was modified slightly and incorporated into the

Java applications using the Java Native Interface.

Sound System Specifications

Although the ASIO API supports a variety of sampling frequencies, ranging from
32kHz — —96kH z, the Layla is much more restrictive and supports a sampling
frequency of 44.1kHz only. Similarly, the Layla is also restrictive with respect
to the sample type and number of samples recorded from each channel (“window
size”). Each sample is represented by a double precision value requiring 32 bits,
while the window size is restricted to 2048% (e.g. 2048 samples are obtained after

requesting data from a channel).

3 Although limiting the window size to 2048 samples may seem restrictive, it could be over-
come by recording and combining consecutive windows to obtain a window size of any arbitrary
length.
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According to the Nyquist theorem [22], when a signal is sampled at a rate
at least twice the highest frequency it contains, the original signal can be recon-
structed. A sampling rate of 44.1kHz allows signals containing frequencies up to
22,050H z to be sampled and recovered with ideally, no distortion. As a result,
since the frequency range of human speech is in the range of 20Hz—20kHz* [1],
any speech signals may be recovered. Such a high frequency rate however results
in a large number of samples the system has to process. For example, each second
of a sampled signal will generate 44100 samples whereas using half the sampling
frequency (22050H z) will result in half the samples to be processed (22050 sam-
ples). With the simultaneous recording of four channels, and the large size of

each sample, it results in a substantial amount of data processing.

To keep the data processing performed on the sampled signals simple, the 32
bit double precision sample values are converted to a 16 bit integer representation.
This may be accomplished by simply casting the double precision value to an
integer (truncating and ignoring any decimal portion) and then shifting the bits

of this newly formed value 16 places to the left.

4The majority of speech signals occur in a much smaller range. For example, the band-
width of most telephone lines is 300Hz — —3.4kH z [22], however, we are clearly capable of
communicating with each other using telephones.
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Appendix B

ParaCamera Image Calibration

B.1 Description

Given the ParaCamera’s single viewpoint constraint, calibration is simple and
straightforward and involves determining the size (in pixels) of the following four

parameters (see figure B.1):
Touter Lhe radius of the outermost circle of the ParaCamera image.
Tinner 1 he radius of the innermost circle of the ParaCamera image.

ci, ¢; The image coordinates of the center of the circular portion of the Para-

Camera image.

The values of the above parameters must be determined in order to generate a
correct panoramic or perspective view. The following section describes how these
values are obtained.
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Figure B.1: ParaCamera Image and Paraboloidal Mirror Geometry.

B.1.1 Performing the Calibration

Referring to Figure B.2, determining ¢; and c¢; is simply a matter of moving
(dragging) the “cross hairs” until they are the center of the circular portion of
the ParaCamera. After the these two parameters have been determined, 7;,per
and 7,y are found. Each value is determined by “sizing” an expandable circle

until it is slightly larger than the inner or outer circle respectively.

A simple software application was written allowing the values of the four
parameters to be easily determined. A ParaCamera image is obtained and both
the cross hair and expandable circle are overlayed on top of it. Using the mouse,

the cross hair as well as the expandable circle may dragged to the appropriate
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Figure B.2: ParaCamera Image Calibration.
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position. Once they are in place, the user may choose to save the corresponding

parameter values.

93



Appendix C

Eyes 'n Ears Microphone Array

C.1 The Array Used in this Work

Figures C.1 and C.2 provide details regarding the microphone array used in this
work. As with the video system, the origin of the array coordinate system is
located at the vertex of the paraboloidal mirror!. In addition, to avoid a com-
plicated calibration procedure and the problems associated with it, the position
of each microphone in the array is defined relative to the video system (Para-
camera) coordinate system. The position of the microphones will remain fixed
in place (e.g. the microphones are not physically moved in any manner). How-
ever, their position in the image (i, j coordinates) may change depending on the
orientation (e.g. rotation about the z-axis of the Eyes 'n Ears Sensor. This will
lead to a change in their real world position (z, y and z coordinates) relative to

the Paracamera coordinate system and must therefore be determined once the

LA sensor (microphone) does not have to be present at the origin of the array however
when it is, it usually simplifies the mathematics required to focus the array to some particular
location.
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Figure C.1: Overview of the Audio System Microphone Array. The vertex of
the paraboloidal mirror defines the origin of the microphone array. The position
of microphones m;, my and msz (microphone mgs is not shown in the figure but
lies behind and parallel to ms) are determined using a simple “point and click”
method. The position of microphone my is a simple translation about the z-axis.

sensor has been placed in its desired location and orientation. The position of
the microphones can then be determined using the simple initialization procedure

described in in the following sections.

C.2 Microphone Array Coordinates

As Equation 3.2 illustrates, when beamforming with a far field acoustical model,
the position of each microphone (z;) relative to the array origin must be known.

In this work, the direction to each potential face in the real world (relative to the
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Figure C.2: Microphone Array Base and Microphone Close-Up.
Paracamera) will be determined by the video system. Since a direction will be
given relative to the Paracamera coordinate system, rather than defining separate
coordinate systems, beamforming will be performed using the same coordinate
system. Therefore, the position of each microphone (z, y and z coordinates) must

be given relative to the array origin (the vertex of the paraboloidal mirror).

Using the same coordinate system eliminates the need for complex calibration
between the audio and video systems required to ensure their coordinate systems
are “aligned”. However, determining the coordinates of each microphone relative
to the Paracamera may also require a complex calibration procedure. Fortunately
for this application this is not the case. Rather, a simple “point and click”
procedure has been developed allowing one to easily determine the position of

the microphones during system initialization.
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C.2.1 Determining the Position of Each Microphone

As previously mentioned, the microphones of the array will remain fixed (e.g. they
will not be moved in any manner), and therefore, their height relative to the origin
(vertex of the paraboloidal mirror) will also remain stationary. As described in
Appendix D, the real world position of an object in the Paracamera image can be
determined by assuming the point of interest in the object lies on a groundplane
perpendicular to the optical axis of the Paracamera at some specific height. Since
the height of the microphones remains static and can be easily determined (by
physically measuring it), the method described in Appendix D can be used to
determine the position of the microphones relative to the coordinate system of
the video system. This is precisely the approach taken in this work in order to
determine the position of microphones m;, ms and ms. As shown in Figure C.3,
these three microphones are visible in an image obtained with the video system.
During system initialization, an image obtained by the video system (see the left
image in Figure C.3) is presented and the coordinates of the microphones in the
image must be specified by manually “pointing and clicking” (e.g. pointing the
mouse and clicking on the position of the microphone in the image). Once the
image coordinates have been specified, the method described in Appendix D is
used to determine the position (z, y and z coordinates) of the three microphones

in the real world relative to the video system coordinate system.

Since microphone four is not visible in an image obtained by the video system,
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Microphone 1
my

Close-Up

Microphone2 | Microphone 3

my m,
Figure C.3: Determining the Position of the Microphones. Image coordinates of
the three microphones are obtained by clicking to the center of each individual
microphone in the image. The position of the microphones in the real world can
then be determined using the procedure described Section D.
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this procedure cannot be used to determine its position. However, as shown in
Figure C.1, microphone four is directly above the vertex of the paraboloidal mir-
ror and therefore corresponds to a simple translation (which is easily measured)
on the z-axis of the video system coordinate system. Therefore, its real world

position can also be determined.

C.2.2 Advantages of the “Point and Click” Method

In addition to eliminating the need for complex calibration ensuring the coordi-
nate systems of both the audio and video systems are aligned, the “point and
click” method previously described allows the Eyes 'n Ears sensor to be placed
on a table (or any surface) in any orientation (rotation about the z-axis of the
video system coordinate system). Regardless of the orientation of the sensor, de-
termining the the direction to a face in the real world relative to the Paracamera
can be easily determined. This allows beamforming relative to the Paracamera
coordinate system to be performed without any transformation (translations and
rotations) of the direction information provided by the video system, thereby
reducing the potential for errors associated with such transformations and sim-

plifying the procedure.
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C.2.3 Drawbacks (Problems) with the “Point and Click”
Procedure

As illustrated in Figure C.3, the main drawback of the “point and click” method
is actually determining the position of the microphones in the image during ini-
tialization. As shown, the microphones in the image are rather small (but never-
theless consist of several pixels in the image) and appear blurry, making the task
of locating the exact center of the microphone in the image a difficult and error
prone?. As a result, the actual image coordinate may not necessarily correspond

to the actual center of the microphone leading to errors in the position estimate.

Despite the potential for the errors, this does not pose any significant prob-
lems. The microphone itself occupies a very small portion of the image and as
long as the center of the microphone is chosen to be somewhere in the image
region corresponding to it, the error will be rather small. Furthermore, informal
lab surveys indicate that after repeating the “point and click” operation several
times, the difference in the image coordinates of the microphone center is actually
small, usually between one or two pixels in each of the 7, 7 image coordinates.
Finally, the exact center of the microphone in the image may not actually be
required. the microphone itself is certainly not a “point receiver” and as a re-
sult, the center of the microphone may not necessarily define its position in the

real world correctly. Therefore, it is sufficient to chose the image coordinates

2Even if a higher resolution and sharper image was provided, clicking at the exact center of
the microphone may still be a difficult task given the microphone consists of several pixels and
their small size.
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anywhere in the region occupied by the microphone in the Paracamera image.
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Appendix D

Converting Image Coordinates to
Directions in the “Real World”

Given the coordinates (i, j) of an object in a single Paracamera image, its
position (z, y and z) in the real world can be determined only if a “ground-plane”
perpendicular to the optical axis of the Paracamera is assumed [12]. Given this
assumption, real world coordinates can be determined using the method described
in [19], where tracking of multiple people using a Paracamera is achieved by
detecting changes between an adaptive background model and foreground objects.
In [19], the Paracamera was mounted on the ceiling and the floor directly beneath
the Paracamera was perpendicular to the optical axis of the camera. World
coordinates of the point at which each person being tracked touch the floor (“floor
pixels”) were then determined by extending the line from the point the person
was touching the floor in the Paracamera image so that it intersected the floor

in the real world.

For this application, the Paracamera is placed on a table with the participants
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seated around it. It is the real world direction of the face of each participant
being sought in order to supply the audio system with potential directions to
sound sources (speech of the participants). When the actual height of the face
of each seated participant is known, the method described in [19] can be used to
determine the real world position (z, y and z coordinates) of each participants face
(given the position, the direction can easily be found). However, determining the
height of persons face in the real world by physically making this measurement, is
clearly impractical. In addition, even if the height measurements were obtained,
the seated participants will surely not remain motionless and will undoubtedly
move their head, change their posture or adjust the height of the chair, making
the initial height measurement invalid. Finally, rather than physically measuring
the height of each seated participant’s face, an average height may be assumed
for each participant. Once again, this assumption is impractical and will lead to
errors, as the seated participants will not remain motionless causing their height
to vary due to the considerations listed above. Furthermore, the height of the

participants may vary substantially making such a height assumption invalid.

The ground-plane assumption may be relaxed thereby eliminating the need to
make any height measurements of the participant’s face or removing any height
assumptions in place, by determining a direction (unit vector) to the face of each
participant as opposed to an actual (z, y and z) position. This corresponds to the

far field acoustical model as opposed to the near field model which requires the
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position of the sound source as opposed to a direction only. The following section
provides greater details regarding the calculation of both the position (with the
ground-plane perpendicular assumed to be at some height g) of and the direction

to a face in the real world.

D.1 Determining the Position of a Face in the
Real World

As illustrated in Figure D.1 and described in [19], since the focus of the
paraboloidal mirror is also the center of projection, the line r,.; (reflection line),
between the focus of the paraboloidal mirror and the point of the reflection of
the head (face) on the mirror’s surface, will intersect the head’s location in the
real world. Furthermore, the azimuth angle in this ground-plane is the same as
the azimuth angle in the image. By extending this line so that intersects the
ground-plane, the world coordinates at this point of intersection may be found,

as described below.

World coordinates of a pixel in the Paracamera image with coordinates (i, j)
are obtained by first converting Paracamera image coordinates (i, j) into polar

coordinates (r,0).

r=yli—c)?+ (- ) (D.1)
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. focus r reflection
Parabol oidal .
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Groundplane
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Origin
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Figure D.1: Geometry to Convert Paracamera Image Coordinates to Positions in
the Real World.

6 = sin (4, §) (D.2)

where ¢; and c; refer to the center of the Paracamera image. Once the polar
coordinates have been determined, the z and y world coordinates of the point
of intersection obtained by extending line r,.¢ until it hits the ground-plane are

found using

z(r) = m (D.3)
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g X rsinf

Tworld = > (D.4)
g X rcosf

Yworld = — (D.5)

“world = 9 (D.6)

where z(r) represents the surface equation of the Paracamera’s paraboloidal mir-

ror, rp, is the radius (in pixels) of the Paracamera image, r, = ™2, Zyorq and

25
Yworta are the z and y world (room) coordinates respectively. In addition, g is
the assumed height of the ground-plane perpendicular and A is the is the height
(in meters) of the focus of the paraboloidal mirror and the point corresponding
to z(r).

D.2 Determining the Direction of a Face in the
Real World

As shown in Figure D.1 and as previously described, the line r,.s (reflection
line), between the focus of the paraboloidal mirror and the point of the reflection
of the head (face) on the mirror’s surface, will intersect the head’s location in the
real world. In other words, the line 7,.; “points” in the direction of the head in
the real world. Given the image coordinates i, j of the object of interest in the

Paracamera image, the Paracamera coordinates (Zparacam; Yparacam 304 Zparacam,)
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of the “tip” of this line (e.g. the point the line intersects the paraboloidal mirror),

can be determined as follows:

Tparacam = 1= C
_ Yy
Yparacam = ] — ng
Zparacam = Z(T') (D?)

where, as previously described, z(r) represents the surface equation of the Para-
camera’s paraboloidal mirror and ¢; and ¢; are the coordinates of the center of
the Paracamera image. Finally, the real world direction vector (unit vector),
with individual components Zg;, Yair and zg; is determined by normalizing the

components listed in Equation D.7:

s = \/(x%aracam) + (ygamcam) + (Zgaracam)

_ Lparacam
Ldir =
S
o Yparacam
Ydir = —
S
o Zparacam D
Zdir — T ( 8)
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