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Abstract. We present a refinement calculus for transforming object-oriented specifi-
cations into immediately executable, correct programs in Eiffel. The calculus includes
a collection of algorithm refinement rules, in particular rules for introducing feature
calls, which can be used to refine a specification to a program in a subset of Eiffel,
thus assisting in the seamless development of programs from specifications. We pro-
vide a modular process for partwise refinement of object-oriented specifications into
programs, in the sense that specifications can be transformed to code class-by-class and
feature-by-feature. And we discuss how automated support for such a process can be
developed based on existing tools.

1. Introduction

It has always been desired for formal methods to be applicable to specifying, designing,
and verifying large software systems. While important theoretical gains and some prac-
tical benefits have been achieved, the application of formal methods to industrial-scale
software development has been for the most part limited to critical components of fairly
small subsystems, or to safety-critical domains.

Object-oriented (OO) software development has been suggested as an important
technique for building large, reliable, and maintainable software systems [Lan95, Mey97].
However, the most popular formal notations and methods such as Z [Spi92], VDM
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[Jon90], CSP [Hoa85] and B [Abr96] do not apply directly to OO software develop-
ment, since they lack fundamental features like classes, inheritance, and feature re-
definition. OO extensions of these languages, such as Object-Z [DR94] and VDM++
[Lan95], while removing many of these limitations, do not have realistic target imple-
mentation languages, and thus further translation is necessary to produce executable
code from refined specifications. Yet many software developers either already are or
plan on using OO programming languages for their projects. What guidance can formal
methodologists offer these developers?

There is a method already available that casts many of the benefits of conventional
formal methods — and refinement in particular — into the OO realm. This method
is applicable to specification and to the development of immediately executable code.
The method is Eiffel [Mey92]. Formal methodologists have paid little attention to Eiffel
despite the fact that it appears to be an viable platform for making formal methods
directly usable in large-scale software development.

A key element of Eiffel is design-by-contract (DbC) [Mey97]. The premise of DbC,
in an OO setting, is that routines (e.g., functions or procedures) of a class are given
contracts. Contracts (a) describe the benefits offered by the class to its clients without
describing how these benefits are delivered; (b) define the obligations of the author or
supplier of the class to the clients, and the obligations of the clients when using the
class; (c) allow for better testing via assertion checking at runtime; (d) define precisely
what an exception is (behaviour that does not satisfy the contract); (e) allow for sub-
contracting so that the meaning of a redefined routine remains consistent with inherited
behaviour; and (f) provide documentation to both clients and suppliers of classes.

What is missing from Eiffel is the notion of refining an abstract specification of a
class or set of classes with contracts to an immediately executable Eiffel program along
with a proof that the program satisfies the specification.

What is missing in conventional formal languages and methods such as Z, B or tab-
ular specifications [Par92] are the techniques and benefits provided by OO that promote
reusability and maintainability, viz., the structuring of large systems via classes and the
client-supplier and inheritance relationships between classes (described in more detail
in the sequel), and use of dynamic dispatch and polymorphism. Object-oriented exten-
sions of formal methods such as Object-Z, VDM++, and Larch/C++ [Lea97] do not
have comprehensive refinement rules that can be used to transform specifications into
implemented code in an OO programming language that has seen wide industrial use.

The purpose of this paper is to present a refinement calculus for generating Eiffel
programs. The calculus benefits from use of Eiffel’s OO features for structuring speci-
fications and programs. The calculus also targets an immediately executable, industrial-
strength programming language with compiler and tool support. The refinement process
is modular: systems are refined class by class. The refinement of a class proceeds in
an environment where only the specifications (and not implementations) of dependent
classes, defined in the sequel, need be used. A class itself is refined routine-by-routine.

Informally, suppose that we have an OO system constructed from a universe of
classes. One of these classes is the root [Mey92]; all classes on which the root depends
must be in the system. The root class provides a routine from which execution of the
OO system will commence. Any class C in this universe can be refined using only its
contracts and the contracts of the classes that C depends upon via a restricted set of
directed relationships.

Because of modularity, we need only the contracts, and not the implementations, of
a few classes to refine the specification of C to an executable program. This is the OO
version of the modularity principle of conventional program development: the correct-
ness of a system can be determined from the correctness of its parts without the need to
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know the internal structure of its parts. In the case of an OO system constructed from the
aforementioned universe of classes, it is sufficient to refine the root class of the system.
Doing this will recursively trigger a process wherein all other classes in the system are
eventually refined. At each step of the process, modularity applies, and we can refine a
class by using only the contracts of related classes.

1.1. Organization of the paper

In Section 2 we provide an overview of a significant subset of Eiffel’s syntax and se-
mantics, concentrating on those elements used for the specification of systems, as well
as those that will be generated as output of the refinement calculus. We also describe key
elements of BON [WN95], a graphical modelling language that can be used to visualize
structural and behavioural aspects of Eiffel programs.

Sections 3 and 4 contain the main contributions of the paper. Section 3 provides a
fundamental set of refinement rules for Eiffel, focussing on procedural language con-
structs, e.g., loops and sequencing. An important contribution of Section 3 is a theorem
that allows us to re-use Z and Morgan refinement rules, tranformed into the predica-
tive calculus of Hehner. Section 4 extends the rule set to include ones for introducing
feature calls. As will be explained in Section 2, Eiffel possesses both reference types
and expanded types (sometimes referred to as “subobject types”). We will formulate a
theory of reference types in Section 4, and will by default assume that all types – except
primitives such as integers and booleans – are references. We will also suggest how our
approach can be extended to handle full expanded types as defined in Eiffel. In Sec-
tion 5, we explain the modular nature of refinement in Eiffel, and provide a process for
refining a specification into executable Eiffel code. We illustrate the refinement process
with a short example, in Section 6. In Section 7, we discuss automation, and our goal of
supporting refinement and verification with Eiffel using PVS. Finally, in Section 8, we
discuss related work.

2. Eiffel and BON

Eiffel is an object-oriented programming language and method [Mey92, Mey97]; it pro-
vides constructs typical of the object-oriented paradigm, including classes, objects, in-
heritance and client-supplier relationships, generic types, polymorphism and dynamic
binding, and automatic memory management. However, Eiffel is not just a program-
ming language — the notation also includes the notion of a contract. Since contracts
can be used to specify software, Eiffel can also be used as a notation for analysis and
design. The basic unit of modularity in Eiffel is the class, whose features can be speci-
fied via contracts. The notation is seamless in the sense that a single type of abstraction
- the class - can be used throughout development, and the contracts of classes can be
refined and extended to implementation within the same semantic framework. The basic
concepts needed to model objects representing such external concepts as hospitals and
nuclear reactors are not essentially different from what is needed for objects represent-
ing floating point numbers, stacks and queues.

The BON modelling language [WN95] developed the software engineering ideas
of Eiffel to their logical conclusion in the area of analysis and design. The result is
a method which contains a set of concepts and corresponding graphical notations to
support object-oriented modeling centered around the three principles of seamlessness,
reversibility (the ability to automatically produce BON diagrams from Eiffel programs),
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and contracting. BON can be used independently of Eiffel. It has been used successfully
over the years at Enea in Sweden in industrial projects with such diverse languages as
C++, SmallTalk and Object Pascal. Although BON is a language independent method,
its basic concepts are close enough to Eiffel that its graphical notation may be viewed
as a graphical dialect of Eiffel for the purpose of this article.

We start with a brief overview of Eiffel/BON, focussing on the programming con-
structs that can be introduced during refinement. In order to understand these constructs
and how to refine specifications, we need to understand the effect that program con-
structs have when they execute. Thus, we provide a brief description of Eiffel’s syntax
and semantics.

2.1. Runtime structure of Eiffel programs

At runtime, Eiffel programs create values — which are either objects or references to
objects — in the memory of a machine. Objects can be basic (e.g., booleans, characters,
integers and reals), or complex, in which case they have zero or more fields. In turn, a
field also consists of a value. Every object is an instance of a type, e.g., the values ‘1’,
‘2’ etc., are all of type INTEGER.

A reference is a value which is either Void or attached to an object. If a reference is
Void, then no further information is available about it. If it is attached, then the reference
gives access to the object. A reference is thus attached to zero or one objects. An object
may in turn be attached to zero, one or more objects because its fields may be references.

Computation proceeds by the creation of values, the attachment (or re-attachment)
of references to objects, accessing objects or their fields, and routine computation,
which might involve changing object fields. Hence, at any instance during its execution,
a machine executing an OO program will have created a runtime structure consisting of
a number of references and objects, and a computation step (via creation, attachments
and feature calls) will take us from one such runtime structure to a new one.

Procedural programming languages have the notion of a variable. An entity is the
object-oriented generalization of the notion of a variable. An entity is a name in a soft-
ware text, meant to be associated at run-time with one or more successive values, under
the control of attachment and reattachment operations such as creation, assignment and
argument passing. Every entity is declared to be a particular type, and thus every object
(accessed via entities) is a direct instance of some type.

An entity is either an attribute, the argument of a feature call, or a local entity of
a routine (including the local entity Result of a function routine, as will be discussed
in the sequel). Entities must be declared in the program text before they are used, e.g.
e : BOOLEAN . Eiffel also provides support for expressions involving prefix and infix
operators, but these are just syntactic sugar for query calls. An entity can be declared
expanded (using the notation e1 : expanded C ), or reference (e2 : C ), where C is
a type (i.e. a class). Entity e1 denotes a reference which may become attached to an
instance of C , whereas the expanded entity e1 directly denotes an object which is an
instance of C .

Two consequences follow for the expanded entity e1: (a) the expression e1 = Void
always yields the value false , and (b) If e1 is associated with an instance of C called
obj , then obj cannot be shared, i.e., no other references may be attached to obj .

An entity is associated with a value, and a value is either a reference or an object
(basic or complex). In the sequel, we use the notation refs(e1, e2) if both entities are
references, objs(e1, e2) if both entities are simple objects, and objc(e1, e2) if both
entities are associated with complex objects. If refs(e1, e2) holds and e1 and e2 are
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attached to the same object, or are both void, then we write e1 r
= e2 using the equality

symbol shown for reference equality. The weaker notion of object equality (field-by-
field equality) is denoted by equal(e1, e2) — this notion will be defined in the sequel.

It is normally clear from the context what we mean when use the unadorned equality
symbol, i.e. e1 = e2. We mean e1 r

= e2 if refs(e1, e2). In all other cases we mean
equal(e1, e2).

2.2. Specification constructs in Eiffel

The fundamental specification construct in Eiffel is the class. A class is both a module
and a type2. A class has a name, an optional class invariant, and a collection of features
that must preserve the invariant (as will be described in the sequel).

A system results from the assembly of one or more classes to produce an executable
unit. A cluster is a set of related classes. A universe is a set of clusters, out of which de-
velopers will pick classes to build systems. Of these, only the class corresponds directly
to a construct of the language. Clusters and universes are not language constructs, but
mechanisms for grouping and storing classes using facilities provided by the underlying
operating system such as files and directories.

Viewed as a type, a class describes the properties of a set of possible data structures
(objects) which are instances of the class. Viewed as a module, the class has a set of
features. Some features, called attributes, represent fields of the class’s direct instances;
others, called routines, represent computations applicable to these instances.

Features can also be categorized as either queries or commands. A query is a side
effect-free function3 that returns a value, but does not change the runtime structure. A
command may change the runtime structure but returns nothing. A query is either a
function (i.e., it returns a computed value) or an attribute.

Fig. 1 contains a short example of an interface of class CITIZEN . Each feature
section, introduced with the key word feature, is followed by a selective export clause
that specifies a list of accessor classes. The feature salary , for example, can only be
accessed by client classes EMPLOYER and GOVERNMENT , or by clients that are
descendants of them.

Routines may optionally have contracts, written in the Eiffel assertion language, as
preconditions (require clauses), postconditions (ensure clauses) and class invariants.
In postconditions, the keyword old can be used to refer to the value of an expression
when the feature was called. Query routines always have a local entity Result of the
same type as the return value of the query — the result returned by a call to the query is
the final value of Result .

The modifies clause of a routine is a frame indicating those attributes that may be
changed by the routine4. Preconditions and class invariants are called single-state as-
sertions as they have no occurrences of old, whereas the postcondition is a double-state
assertion as it refers to the old state as well as the new state. The assertion language is

2 This definition of a class has received criticism; however, it makes the theory and programming language
simple and practical.
3 Technically, functions can also change the values of objects and references, but for the purposes of this
paper we disallow such changes and require that a query be a pure function. Functions in any case may
change local entities including Result (defined in the sequel).
4 Eiffel version 4.5 supports require and ensure assertions, but modifies is our addition. The modifies clause
can be enforced by a suitable postcondition. It is adopted from [Mor94, LB00], among others.
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class CITIZEN
feature {ANY }

name, sex : STRING
age : INTEGER
spouse : CITIZEN
children, parents : SET [CITIZEN ]
single : BOOLEAN

ensure Result = (spouse = Void)
divorce

modifies single, spouse
require¬ single
ensure single ∧ (old spouse).single

feature {EMPLOYER,GOVERNMENT}
salary : REAL

invariant
single or married: single ∨ spouse.spouse = Current ;
number of parents: parents.count ≤ 2;
symmetry: ∀ c ∈ children • ∃ p ∈ c.parents • p = Current

end

Fig. 1. Class CITIZEN

enhanced by the fact that assertions may refer to any query (e.g., the postcondition of
divorce refers to the queries single and spouse).

A class invariant is an assertion (conjoined terms are separated by semicolons) that
must be true whenever an instance of the class is used by another object (i.e., whenever
a client can call an accessible feature). Private features local to a class may temporarily
invalidate the class invariant. In the invariant, the symbol Current refers to the current
object; it corresponds to this in C++ and Java. Clauses in the invariant may be given
text labels (see Fig. 1).

The basic mechanism of object-oriented computation is the feature call target .f (x )
where target is an expression and f a feature. The feature may have zero or more argu-
ments. Current is always attached to the current object. Current thus means “the target
of the current call”. Thus, for the duration of the call target .f (x ), Current denotes the
object attached to target .

The Eiffel assertion language allows quantified expressions such as ∀ e : T | R • P
where variable e of type T is the bound variable, R is the domain restriction, and P is
the predicate part. The “it holds” operator • is right associative5.

In Fig. 1, class CITIZEN has eight queries and one command. The attributes are
name , sex , age , spouse , children , parents , and salary . The first three attributes are
of expanded type, while the next three are of reference types. The query single returns
a value of type BOOLEAN (but does not change any attributes), while divorce is a
parameterless command that changes the state of a citizen object (i.e. changes the at-
tributes). Class SET [G ] is a generic predefined class with generic parameter G and the
usual operators (e.g., ∈, add ). The class SET [CITIZEN ] thus denotes a set of objects
each of type CITIZEN .

Short forms of assertions are permitted. For example, consider a query children :

5 Our assertion language uses the BON notation for quantifiers; quantifiers can be implemented in the current
version of the Eiffel compiler using tuples and agents [Mey00].
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SET [CITIZEN ]. Then ∀ c ∈ children•P is an abbreviation of ∀ c : SET [CITIZEN ] |
c ∈ children • P . The last invariant clause of CITIZEN (Fig. 1) thus asserts that each
child of a citizen has the citizen as one of its parents. The first invariant asserts that if
you are a citizen then you are either single or married to somebody who is married to
you. The second invariant asserts that a citizen has no more than two parents6.

Eiffel syntactic constructs may be divided into expressions (denoting values) and
instructions (performing computations). In contrast to instructions, expressions denote
values (references or objects) determined at runtime, but their evaluations do not change
the runtime structure; in other words, expressions, including query calls, do not have
side-effects.

As mentioned earlier, an entity is either an attribute, the argument of a feature call,
or a local entity of a routine (including the local entity Result of a function routine).
More complicated expressions are built from entities using queries, e.g. e1.q(e2) or
e1.q1(e2.q2(e3)). Entities must be declared in the program text before they are used.
Eiffel also provides support for expressions involving prefix and infix operators, but
these are just syntactic sugar for query calls. Table 1 defines the notation that we will
use throughout the rest of the paper for describing entities and features. Table 2 defines
the precedence of operators in Eiffel.

e entities (includes attributes a , arguments of routines x , local variables, Current , Result)
e.type the static type of the object attached to entity e
e. µ the syntactically legal multi-dots associated with e (see sequel)
c commands
q queries (including attributes)
f features, i.e., queries (including attributes) and commands
r routines (computation)
r .ρ bunch of reference entities associated with r (see sequel)
r .π bunch of entity partitions associated with r (see seqel)
S single state formulae
D double state formulae
P ,Q predicates including single and double state formulae

Table 1. Notation for entities and features

0. +, −, ¬ , pre, old (unary prefix operators), . (dot notation)
1. ∗, /
2. +, −, ∩, ∪ etc.
3. relations: =, r

=, 6=, <, ≤ etc. and ∈
4. ∧, ∨ (logical operators)
5. →, ←, v
6. ≡, 6≡
7. •, |
8. := (assignment), ∀, ∃
9. =̂ (definition), ; (conjunction that separates assertion clauses)

Table 2. Precedences from highest (level 0) to lowest (level 9)

6 If we declared parents.count = 2, then it would make implementation of the specification difficult, as
every parent would (recursively) have to be created with references to their parents, leading to a possibly
infinite data structure. With the current definition, a parent field can be Void indicating that we don’t know
yet who the parent is
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By default, e : C is a reference declaration of entity e unless C is a basic type
INTEGER, REAL, BOOLEAN, CHARACTER, in which case it is expanded by default.

 

Fig. 2. BON diagram for aggregations, associations, inheritance, and clusters

BON provides graphical syntax for representing expanded and reference types. In
BON, expanded types are called aggregations. For example, a class VEHICLE might
have an attribute propulsion defined as propulsion : expanded MOTOR. An engine
belongs only to the specified vehicle. An expanded entity faithfully models the fact that
a motor is an integral and internal part of a particular vehicle and is not shared with any
other vehicle. The aggregation relation between VEHICLE and MOTOR is shown in
Fig. 2.

The BON notation for representing reference types is called an association. In the
figure, class VEHICLE has a reference attribute owner with type ASSET HOLDER.

A child class can inherit properties from one or more parent classes, thus defin-
ing a behavioural subtyping relationship between child and parents. Eiffel supports
only strong behavioural subtyping [DL01]. Child classes are always subtypes of parent
classes, class invariants may be strengthened by child classes, preconditions of routines
may be weakened, and postconditions may be strengthened. The BON notation for rep-
resenting inheritance is drawn with a single line arrow. Thus CAR and BUS inherit
from VEHICLE . The compressed cluster OWNERS contains a number of classes
(e.g., PERSON , COMPANY etc.) that all inherit from ASSET OWNER. All ar-
rows, whether aggregation, association or inheritance, point in such a way as to show
dependencies. Thus CAR depends on VEHICLE , but not vice versa.

2.2.1. Routines

All features of a class other than attributes are routines. The syntax of a routine of a class
is shown in Fig. 3. Constructs in curly parentheses are optional, and bool denotes
an expression of type BOOLEAN . The Eiffel assertion language is used to express
preconditions, postconditions, and class and loop invariants of routines. A routine has
zero or more parameters (though for conciseness, the grammar in Fig. 3 shows only one
parameter).

The behaviour of create, the assignment, and procedure call instructions will be
described more precisely in later sections. A loop in Eiffel is executed as follows: the
initialization (the from statement) is executed; then the condition bool is evaluated, and
the loop terminates if it is true; if it is false, the body of the loop is executed, and then the
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condition is re-evaluated. The invariant, a double-state assertion7, must be established
by the initialization and must be true when the loop body finishes its execution. The
variant must be decreased by each execution of the loop body. A selection statement is
executed in the usual way.

routine ::= routine name(expression : TYPE){: TYPE} is
{ modifies entity list }
{ require single state assertion }
deferred | body
{ ensure double state assertion }
end

body ::= {local entity list} do instruction

instruction ::= skip | create e | e.c(expression) | e := expression |
instruction; instruction | selection | loop

selection ::= if bool then instruction

elseif bool then instruction . . . else instruction end

loop ::= modifies entity list

from instruction

invariant double state assertion

variant integer expression

until bool

loop instruction end

Fig. 3. Syntax of a routine

All computation is performed either by (a) object creation, (b) attachment and de-
tachment (e.g., via an assignment statement) or (c) by feature calls. A feature call
target .f (x1, x2), where target is an expression, f is a feature name of the appropri-
ate class, and the arguments x1, x2 are expressions, means apply feature f to the ob-
ject represented by target using arguments x1 and x2. For simplicity, we can assume
that target is either an entity or a single-dot call. By not considering multi-dot expres-
sions we are simply assuming that e1.e2.f (x1, x2) is equivalent to the compound code
(local e3; e3 := e1.e2 ; e3.f (x1, x2)). If the target is a complex expression, then we
can replace target .f (x1, x2) by

(local e : T ; e := target ; e.f (x1, x2))

where an appropriate type T has been chosen for entity e .
In the sequel, we will link Eiffel expressions to values (objects and references),

and Eiffel instructions to computation via object creation, attachment and feature call.
The informal semantics provided in this section will be used to motivate the axiomatic
refinement calculus of Eiffel programs and specifications in the next section.

7 In the implemented Eiffel language, invariants are single state assertions. The use of a double state assertion
allows us to verify more properties without having to use auxiliary variables.
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3. Fundamentals of the Eiffel Refinement Calculus

In order to be able to refine Eiffel specifications (consisting of classes with precondi-
tions, postconditions, and invariants) into programs, we need a theory of Eiffel program-
ming. We call our theory the Eiffel Refinement Calculus (ERC). ERC is based on the
predicative calculus of Hehner [Heh93]. To Hehner’s calculus, we provide a refinement
rule for introducing loops. We will also add new machinery for introducing Eiffel’s OO
constructs, such as object creation and feature calls.

3.1. Specifications and programs

In ERC, a specification of a feature is expressed as a double-state predicate. The quan-
tities of interest in specifying the behaviour Eiffel construct are the poststate σ after the
construct’s computation terminates (the output), as well as the prestate oldσ (the input).
Given a routine r of a class C , we let r .σ denote the state space of the routine, which in-
cludes the attributes of the class containing r , the routine arguments, the local variables
of the routine, and a conceptual global time variable t . Thus, σ is a bunch8 of entities
σ =̂ e1, e2, . . . , en, t . Correspondingly, oldσ = old e1,old e2, . . . ,old en,old t
(note that old e is also an entity different from e). If σ̄ is a sub-bunch of σ, then we
define same(σ̄) by same(σ̄) =̂ (∀ e ′ ∈ σ̄ • e ′ = old e ′).

A specification of a program construct (e.g., an assignment statement or feature call)
should identify the set of computations that the construct can execute. A computation is
described by a given prestate and a computed poststate that must make the specification
true. Thus, suppose the routine r has a precondition r .pre (a single-state predicate with
free variables in σ) identifying the prestates, and a postcondition r .post (a double-state
predicate with free variables in oldσ and σ) indicating the computed poststates, then
the specification of the routine r .spec is defined as [Heh93]

r .spec =̂ old r .pre → r .post ∧ time (1)
time =̂ t ≥ old t ∧ t 6= ∞ (2)

where t is a conceptual global clock representing time, and t ∈ σ. Operator precedences
are given in Table 2. Various ontologies of time can be used (e.g., recursive time, real-
time [Heh93]) but for our purposes we simply require that the execution of each program
construct terminates in finite time (t 6= ∞).

The specification r .spec is true iff (a) the precondition is not satisfied (in which case
any behaviour is permitted); and (b) if the precondition is satisfied then the routine’s
execution must terminate in finite time with the postcondition true. A program is a
specification that has been implemented. We describe programs in ERC as follows

skip =̂ e1 = old e1 ∧ e2 = old e2 ∧ . . . ∧ en = old en ∧ time (3)

e1:=exp =̂ old defined(exp) → e1 = old exp ∧ e2 = old e2 ∧ . . . ∧ time

if b then P else Q =̂ (old b → P) ∧ (¬ old b → Q) ∧ time

P ; Q =̂ ∃σ′ • P [σ := σ′] ∧ Q [oldσ := σ′]
(local e : T ; P) =̂ (∃ e,old e : T • P)

8 The notion of a bunch is taken from [Heh93]. A set s , e.g., s = {e1, e2, e2} is a collection of entities in a
package. A bunch is the contents of a set, e.g., e1, e2, e3. The standard operations of set theory will be used
for bunches, e.g. given a bunch b2 = e4, e5, then b ∪ b1 = e1, e2, e2, e4, e5 — we also write this union
as “b, b1” — and e5 ∈ b2 expresses the fact that bunch b2 contains e5. The symbol ∼ is used to obtain the
contents of a set; thus, if b is a bunch, then ∼ {b} = b.
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where P and Q can themselves be specifications or programs; we can mix programs and
specifications because they are both described by predicates. The predicate defined(exp)
describes the conditions under which the expression exp can be evaluated (so, for exam-
ple, defined(e1÷e2) =̂ e2 6= 0). The notation P [e := exp] means safely replace every
free occurrence of variable e in predicate P by the expression exp. A full range of pro-
gram constructs is defined in [Heh93]. The semantics of assignment defined in (3) only
covers the case where both the entity e1 and the expression exp are expanded. In the
sequel, we will develop special machinery for Eiffel reference assignments. Note that
for the local variable declaration, it is necessary to quantify over both pre- and poststate
because specification P may be a sequence of specifications.

It is tedious to always write out the entities that do not change in a specification,
so we will use the Morgan specification statement [Mor94] for writing specifications,
and will take advantage of its notation for writing frames. However, we will define
the meaning of specification statements using timed predicates (rather than weakest
preconditions). The notation

e : 〈| S ,D |〉 =̂ old S → D ∧ time ∧ same(σ − e)

will denote a specification9 for which e is the frame (the bunch of entities that may
change between the pre-state and post-state), S is the precondition, and D is the post-
condition. An equivalent (Larch-like) syntax for writing specifications which cannot be
written conveniently on one line is:

modifies e
require S
ensure D

Note that the variable e in the frame means that it may change, not that it must change.
Using the specification syntax, we can describe the program constructs in (3) more
concisely. For example, the expanded assignment statement e1 := exp can be written
as e1, t : 〈| defined(exp), e1 = old exp |〉. From the definitions of programs in (3),
many useful laws of programming can be derived. For example, it is straightforward to
provide a proof using the relevant predicative definitions for the following laws.

if b then P else P ≡ P (4)

If (D1[σ := σ′] → S2[oldσ := σ′]) (5)
then (D1 ∧ time ; S2 → D2 ∧ time) ≡ (D1 ; D2) ∧ time

where D1,D2 are double state-assertions and S2 is a single state assertion. The time
sequencing rule (5) asserts that we can ignore the embedded time components under
the stated assumption, provided that the execution of each construct in the sequence
itself terminates in finite time.

The simple substitution rule is derived from the assignment definition and sequenc-
ing (3) and is similar to a corresponding rule in [Heh93]. It is particularly useful in
simplifying long sequences of assignments.

9 Morgan’s syntax is actually x : [S ,D ], but we use the square brackets for substitution.
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Rule 3.1. (Simple Substitution) For any expanded entity e1 not in bunch e , and ex-
pression exp whose type conforms to e1,

e1 := exp; e : 〈| S ,D |〉 ≡ e, e1 : 〈|S [e1 := exp],
(D ∧ e1 = old e1)[old e1 := old exp ] |〉

An ERC specification spec can, in general, be any predicate with free variables in
oldσ and σ. The specification false describes no computations, while true describes
arbitrary behaviour, including non-terminating computations. In order to know if it is
feasible to refine a specification to an executable program, we need to know when a
specification is implementable.

spec is implementable =̂ (∀oldσ • ∃σ • spec ∧ t ≥ old t) (6)

The definition asserts two thing. First, every prestate of an implementable specification
must have at least one poststate. Second, time cannot decrease between the input and
the output. This makes, for example, the specification Q =̂ x = 2 ∧ t < ∞ unimple-
mentable, because Q ∧ t ≥ old t is unsatisfiable for an initial value of old t = ∞.

3.2. Refinement

A specification spec is refined by an implementation impl if all the observations rep-
resented by impl are also observations of spec. We write this as spec v impl . Our
treatment of specifications as predicates leads to a very simple definition of refinement:

spec v impl =̂ (∀oldσ, σ • impl → spec) (7)

3.3. Reuse of rules and loops in ERC

Given a specification e : 〈| S , D |〉, we would like to know under what condition we
can write e : 〈| S , D |〉 v Loop, where Loop is an Eiffel loop. Although there is a
loop structure in Hehner [Heh93], the semantics is given in terms of least fixed points.
An alternative rule in [Heh93] unfolds loops using recursive calls (and this is actually
the recommended technique used for producing looping computations). We desire a
refinement rule stated in terms of a variant and invariant of the loop, which is the way it
appears in Eiffel. Morgan [Mor94] provides a loop refinement rule in terms of a single-
state invariant whereas we want the convenience of being able to use a double-state
invariant (since it allows us to include frame conditions in invariants, and it makes it
easier to show that a loop establishes a double-state postcondition). Z has such a loop
refinement rule [Wor94], and we will thus reuse the Z rule in this work. However, we
must first justify the fact that we can use Z refinement rules in ERC.

Assuming σ = e1, e2, t , we mentioned earlier that a specification statement can
be translated into a timed predicate as follows (assuming that semantically equivalent
expressions and operators can be translated appropriately):

e1, t :〈|S , D |〉 =̂ S → D ∧ (e2 = old e2) ∧ time (8)

Consider a Z schema specification, with predicate P (this predicate is just the conjunc-
tion of the type declarations, precondition, and postcondition of the Z schema). The
precondition P .pre of a Z predicate P is defined as P .pre =̂ (∃σ′ • P). Thus, the
Z schema can also be thought of as specified by a pair (P .pre,P). We can translate
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any Z predicate P into ERC notation by prefixing the unprimed entities by old, and by
removing the primes from all primed entities.

Given two Z schemas with predicates P1 and P2, respectively, then refinement,
under the abovementioned syntax translation, is [Wor94]

P1 vz P2 =̂ (∀oldσ, σ • P1.pre → P2.pre ∧ (P2 → P1)) (9)

whereas the ERC version of refinement (7) was expressed as

P1 v P2 =̂ (∀oldσ, σ • (P2.pre → P2) → (P1.pre → P1)) (10)

Since (9) entails (10), we have the following theorem:

Theorem 1. (Refinement Rule Reuse) Given two Z specifications expressed (under
syntax translation) as specification statements e : 〈| S1, D1 |〉 and e : 〈| S2, D2 |〉, it
follows that

e :〈|S1, D1 |〉 vz e :〈|S2, D2 |〉 → e :〈|S1, D1 |〉 v e :〈|S2, D2 |〉

Since refinement in Morgan’s calculus is equivalent to Z refinement, it follows that
any refinement rule from [Mor94, Wor94] will also work in ERC. For example, we can
reuse the frame change and local variable introduction rules (Rule 3.2) from [Mor94].

Rule 3.2. (Morgan Refinement Rules)
(a) Frame Change Rule: Let e1 and e2 be disjoint bunches of variables. Then:

e1:〈|S , D |〉 ≡ e1, e2:〈|S , D ∧ e2 = old e2 |〉
(b) Local variable introduction: Let x be a fresh variable. Then

e :〈|S , D |〉 v local x : T ; e, x :〈|S , D |〉

We now consider loops. Before we present the refinement rule, we introduce some
notation, allowing us to talk about the intermediate states that arise during a loop compu-
tation. We annotate specifications with primes (e.g., Q ′) to indicate systematic addition
of primes to free variable names used within the specification. A prime applied to an
old expression removes the old keyword. Here is an example.

(x = old y ∧ y = old (x + y))′

= (x ′ = y) ∧ (y ′ = (x + y))

We can now state the refinement rule for loops; it is shown in Rule 3.3. The rule is a
reformulation of the corresponding Z rule [Wor94, p218], and relies on Theorem 1.
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Rule 3.3. (Initialized Loop Rule). Suppose we have an Eiffel loop as follows

Loop ::= modifies e, t
from Init
invariant I
variant v
until b
loop

Body
end

where Init is e, t : 〈| Sinit , Dinit |〉, Body is e, t : 〈| Sbody , Dbody |〉, b is a boolean
expression, I is a double-state loop invariant, and integer expression v is the loop
variant. Let σ̄ = σ − e, t . Then, given a specification e, t :〈|S , D |〉 it follows that:

e, t :〈|S , D |〉 v Loop

provided that

S → Sinit

oldS ∧ Dinit ∧ same(σ̄) → I
oldS ∧ I ∧ b → D ∧ same(σ̄)

oldS ∧ I ∧ ¬ b → Sbody

oldS ∧ I ∧ ¬ b ∧ (Dbody ∧ same(σ̄))′ → I [ := ′]
oldS ∧ I ∧ ¬ b → v ≥ 0

oldS ∧ I ∧ ¬ b ∧ (Dbody ∧ same(σ̄))′ → v ′ < v

The notation I [ := ′] means “textually substitute primed versions of free variables
for unprimed versions (and don’t change the old variables)”.

The invariant I in Rule 3.3 is a relation between two points in the execution of the
loop — the first point is before the loop execution begins (at which point the state is
denoted by oldσ), and the second point is when the “until” exit test is made (and the
state is σ). The invariant must always hold true when the “until” test is made at the exit
point.

The loop first executes the initialization instruction Init . The first “provided that”
clause is a safety condition that says that any circumstances acceptable to the specifica-
tion (precondition S ), must also be acceptable to the initialization (precondition Sinit).
The second clause in the loop rule says that the initialization must establish the invariant.

The third clause says that on exit (i.e., b true) the invariant must establish the re-
quired specification postcondition D . If the exit condition is false, then the body must
be executed while preserving the invariant.

The fourth clause asserts that the body is only executed when it is safe to do so (i.e.,
when its precondition Sbody holds). The fifth clause is a three-state formula. We assume
that the invariant holds between the starting state oldσ and the exit test state σ. If under
these conditions the body is executed taking us to a new state σ′, then the invariant must
still continue to hold between oldσ and the new state σ′.

The final two clauses assert that the variant must never be less than zero, and that
every execution of the body must decrease the variant. If the last two clauses hold,
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then the loop terminates in finite time and hence the time condition (2) of the loop
is satisfied. The loop is the only construct where termination is a problem. Provided
we have justified the clauses in the loop rule, we can henceforth ignore time in our
derivations, by appealing to (5).

4. Refinement Rules for Feature Calls

The preceding sections laid the groundwork for the Eiffel refinement calculus including
refinement rules for introducing typical imperative constructs, such as assignments and
loops. These rules, while adequate for the refinement of specifications to imperative
programs, are inadequate in an OO setting. In object-oriented programs, there are two
fundamental instructions – command and query calls – which are introduced to effect
changes in or test the state of objects. Techniques are therefore needed to introduce
calls. In this section, we provide refinement rules for feature calls. To accomplish this,
we first define a theory of Eiffel reference types, and build the rules atop this theory.

It is possible to define refinement rules for introducing command and query calls by
reverting to an imperative setting, and using functions. A call e.r would be transformed
to a call r(e), and refinement could proceed using rules and techniques that appear in
imperative refinement calculi. We desire to carry out refinement in a purely OO style,
so that no further translation is needed to produce an OO program, and so as to maintain
the level of abstraction provided by OO technology.

We commence presentation of the rules with some notation and syntax. The rules,
and our theory of reference types, will be given in terms of the BON class diagrams
shown in Fig. 4. TYPE in Fig. 4 represents an arbitrary type: the type of argument x1
may differ from x2 (and these in turn may be different from attributes a and a5).

a,a5: TYPE

c(x1:TYPE) is
modifies a,t
require c.rqr(a,x1,Current)

do
local e3: TYPE
...

end
ensure c.ens(old a,old Current,a,x1,Current)

q(x2:TYPE): TYPE is
modifies  t
require q.rqr(a,x2,Current)
ensure q.ens(a,x2,Current,Result)

invariant SUPPLIER.inv

SUPPLIER

a1: SUPPLIER
a2,a3,a4: TYPE

r is
do

...
a1.c(a2);
a2 := a1.q(a3);
a2 := a1.q(a2.q2(a4));
...

end

CLIENT

a1

Fig. 4. BON diagram with feature notation

Let C .inv denote the invariant of class C , and given routine r , let r .modifies denote
the bunch of variables in the modifies clause of the routine, and let r .rqr and r .ens de-
note the require and ensure clauses respectively. Then, the full pre- and postconditions
for each routine10 are defined as follows:

r .pre =̂ r .rqr ∧ C .inv (11)

10 Except for creation routines, which are called when an object is created and attached to an entity. For such
routines r , the invariant C .inv need not be true to start with, and as such r .pre =̂ r .rqr .
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r .post =̂ r .ens ∧ C .inv ∧ r .same
r .same =̂ ∀ e ∈ (σ − r .modifies) • e = old e

The routine specification r .spec defined in (1) uses the above definitions.
The state space σ in the context of routine r of class CLIENT will include time t ,

attributes a1, a2, a3, a4 of class SUPPLIER once they are created, local entities of the
routine (including Result if the routine is a query), and any further dotted or multi-dot
entities (such as a1.a and a1.a5) already in existence or brought into existence by fea-
ture calls within the body of r . If the class TYPE has attributes a6 and a7, then we can
have multi-dot accesses, such as a1.a.a6 and a1.a.a7, appearing in contracts; this set
of multi-dot feature accesses is of arbitrary size. We let a1. µ denote the bunch of le-
gal multi-dot feature accesses of a1, i.e. a1. µ = a1, a1.a, a1.a5, a1.a.a6, a1.a.a7 . . .
etc. In general, given an entity e1, we let e1. µ denote the bunch of syntactically legal
multi-dots [Mey92] associated with entity e1.

The declaration e : C merely declares the static type of entity e , but does not cause
an object to be created at run time [Mey97, p235]. The create e instruction in a routine
creates a new instance of C , initializes each field to a default value (e.g., BOOLEAN s
to false , a reference to Void ), attaches e to the instance, and calls the creation feature
if there is one for that class. The creation feature must ensure that the instance satisfies
the class invariant if the default values do not suffice.

4.1. Entity partitions for reference types

Reference types are critical for any theory of object-oriented programming. Our theory
of reference types, based on so-called entity partitions, will be used by assignment
statements, create statements, and also by feature calls.

To model reference types, we could declare a memory store relation memory :
entity ↔ object , to keep track of entities and their attachments. Commands like store
and select could be used to update and access memory. This approximate approach
is taken in the LOOP project [BJ01] for reasoning about Java programs in PVS and
Isabelle. However, we prefer not to model memory explicitly, as it leads to lengthy ex-
presions (involving storage arrays and sequences of element overridings) in refinement,
although an automated tool could help hide some of the complexity. Consequently, we
introduce below an approach based on entity partitions, which does not explicitly model
main memory, and which, in our experience, leads to simpler expressions when used in
refinement.

Consider a reference declaration e : C . On declaration, e refers to no object, i.e.
e = Void . Objects may be attached to e in one of three ways.

1. Via the instruction create e , which generates a new object of type C and attaches
it to entity e .

2. Via a type-valid assignment statement e := exp, where exp is an expression (e.g., an
entity or a query) that evaluates to an object reference, so that the type of the object
conforms to C , or exp = Void . Both e and exp refer to values that are references
(the sequel will deal with the case in which e is reference and exp is expanded).

3. Via the binding of formal arguments to actual parameters in feature calls (similar to
the case of assignment).

We point out that create can be applied to an entity at any time during the execution
of a program; this adds complexity to the theory of reference types that we provide.
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At the heart of our theory of references is the notion of entity partitions. Given rou-
tine r of class C , we let r .ρ denote the set of reference entities that could appear in
the routine body (including attributes of C , arguments and local variables of r , and
syntactically legal dots and multi-dots). If routine r is a query then Result ∈ r .ρ be-
cause Result is a predefined local variable of the query. Each entity in r .ρ is potentially
the subject of a creation instruction either directly in the body of r itself, or in a rou-
tine called by r . The bunch of reference entities r .ρ for routine r in Fig. 5 is given by
r .ρ = e1, e2, e3.

class C1 feature {ANY }
a, b : INTEGER
c(x : INTEGER) is

modifies a
ensure a = x

end

class C feature {ANY }
e1, e2, e3 : C1
r is

modifies e1, e2, e3, t
do

create e1;
create e3;
e2 := e1;
e1.c(1);
e1 := e3;
e3.c(3);

ensure e1.a = 3 = e3.a ∧ e2.a = 1 ∧ e1.b = old b
end

end

Fig. 5. Aliasing and feature calls for references

Associated with each entity e ∈ r .ρ there is a corresponding entity partition which
we denote by e . Before the first creation statement in the body of r , the partition is an
empty set. After a create e instruction, e = {e}, and this entity partition is used to keep
track of all reference entities in σ that point to the same object as e . We let r .π denote the
bunch of all entity partitions of routine r , and we require that these partitions be disjoint
(this will be formalized in the sequel). As an example, in Fig. 5, r .π = e1, e2, e3. After
the assignment e2 := e1 in the body of r , we have that e1 = {e1, e2}, e2 = e1 and
e3 = {e3}.

For the sake of convenience, we introduce a shorthand for referring to entity parti-
tions. Suppose e = {e, e2, e3}, i.e. the three entities e , e2, and e3 all refer to the same
object. Then

e[e2, e3] =̂ e = {e, e2, e3} (12)

We also write the entity partition e1[e1] as e1[], to avoid repetition.
The notation in (12) is just syntactic sugar for an ERC assertion. For example, sup-

pose σ = t , e, e2, e3, e4. Then e[e2, e3] can be expressed in ERC as (e = e2 = e3) ∧
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(e4 6= e), where the equality symbol is automatically interpreted in the Eiffel asser-
tion language as reference equality ( r

=), as the elements of e are all reference entities.
When we reason using reference types, we will carry around set expressions of the form
(12), which describe the attachments of objects to entities. We can now define reference
equality using our notion of partitions:

(e1 r
= e2) =̂ (e1 = e2) (13)

where e1 and e2 are both references.
As mentioned earlier, the boolean expression equal(e1, e2) is used for object equal-

ity. It can be defined recursively using reference equality, provided that its occurrence
in a program is syntactically legal, as follows:

equal(e1, e2) =̂


 (refs(e1, e2) → e1

r
= e2)

∧ (objs(e1, e2) → e1 = e2)
∧ (objc(e1, e2) → (∀ e1.a | attribute(a, e1) • equal(e1.a, e2.a))


(14)

where attribute(a, e1) means that a is an attribute of the object associated with e1.
The above definition captures the meaning of the standard equality operator of Eiffel
[Mey92] as follows:

1. If both e1 and e2 are void then the result of equal(e1, e2) is true. If one is void and
the other is not then the result is false.

2. If e2 is a basic type (INTEGER,BOOLAN etc.), then the result is true if both
objects have the same value.11

3. If e2 is associated with a complex object, then the fields must be identical, i.e. every
corresponding reference field of e1 and e2 must point to the same object, and every
object field of e2 is recursively equal to the corresponding field of e1, i.e.

equal(e1, e2) → (∀m ∈ e1. µ • e1.m = e2.m) (15)

where e1. µ is, as before, the bunch of syntactically legal multi-dots associated with
entity e1.

Finally, we need an axiom that asserts that reference equality is at least as strong as
object equality:

e1 r
= e2 → equal(e1, e2) (16)

The remaining axioms defining entity partitions are as follows. Consider a routine r
with bunch of entity partitions r .π:

∀ ei , ej ∈ r .π | (ei 6= ej ) • ei ∩ ej = ∅ (17)

Axiom (17) states that two different entity partitions do not intersect, because they refer
to different objects; any entity can refer to at most one object at any time - this captures
the precisely specified semantics of Eiffel entities described in Section 2. In the example
of Fig. 5, after the assignment e2 := e1 in the body of r , e1[e2] and e3 are clearly
disjoint.

∀ e ∈ r .π • (∀ e1, e2 ∈ e • e1 r
= e2) (18)

11 After possible coercion of the heavier type, an issue which we have neglected for simplicity. In Eiffel,
there are actually two kinds of objects: standard and special. Special objects are bit sequences, strings and
arrays. Bit sequence equality is determined by bit-by-bit equality. Strings and array equality holds if if they
have the same length and each field is (recursively) equal.
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Axiom (18) states that if two entities are in the same entity partition, they refer to the
same object. In the example of Fig. 5, if at a certain execution point e1[e2] holds, then
e1 = e2, e1.a = e2.a , and e1.b = e2.b.

∀ e ∈ r .π • ∀ e ∈ e • e 6= Void (19)
∀ e ∈ r .ρ | (∀ e ′ ∈ r .π • e 6∈ e ′) • e = Void (20)

∀ e ∈ r .ρ • (e = Void) ≡ (e = ∅) (21)

Axiom (19) states that any entity in an entity partition is attached to an object, and thus
cannot be Void . Axiom (20) states that if an entity e is in no entity partition, then it is
Void . This is the state an entity is in after declaration, or after an assignment e := Void .
Axiom (21) equates a Void reference with an empty entity partition.

∀ e ∈ r .π • ∀ e1, e2 ∈ e • e1 = e2 (22)

Axiom (22) asserts that if two entities are in the same partition, then the partition can
be called by either name.

Our notion of entity partitions can be used to define the semantics of instructions that
use reference types in ERC such as the create statement, assignment and feature call.
Partitions may appear in frames. e in the modifies clause means that we may modify
the partition e as well as any other partitions ei such that ei ∈ old e or ei ∈ e .

The create e instruction creates a new object and attaches it to entity e; any previ-
ous reference or attachment via entity e is lost; however, any other entities that referred
to the object originally attached to e remain. The semantics of create e is given in
Definition 4.1.

Definition 4.1. (Entity creation semantics) The instruction

create e

is defined as

modifies e, t
ensure e = {e} ∧ remove(e) ∧ nochange(e) ∧ default(e)

where

remove(e) =̂ ∀ ei ∈ old e | ei 6= e • ei = old ei − {e},
and where

nochange(e) =̂ ∀ ei | ei 6= e ∧ ei 6∈ old e • ei = old ei ,

The default(e) clause asserts that each e.a is set to its default value on creation as
described in [Mey97] (e.g., if a is a BOOLEAN it is set to false, if it’s a reference it
is set to Void etc.). The nochange clause is not strictly necessary, as it follows from
the frame; however, it is inserted for clarity to indicate that all other partitions do not
change. If the class e.type has a creation routine r (whose purpose is to establish the
class invariant), then we must execute this routine after the creation statement, i.e.,
create e; e.r .

The postcondition of create says that the entity partition e contains a single entity
e (i.e., only e refers to the new object), and that its prior entity partition old e does not
contain e . We note that if old e = ∅ or old e = {e} then remove(e) ≡ true .

As an example, assume that we are in a state in which e1[e2] holds and we then
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execute create e1. Definition 4.1 reduces to

modifies e1, e2, t
ensure e1 = {e1} ∧ e2 = {e2}

After executing create e1, e1 refers to a new object, while e2 refers to the original
object (which now has the name e2).

The type-compatible reference assignment statement e1 := e2 changes entity e1
to refer to the same object as entity e2. Definition 4.2 provides the semantics for the
reference assignment (i.e., assigning references to references), leaving assignments in-
volving both references and expanded types for the sequel.

Definition 4.2. (Reference assignment semantics) Suppose e1 and e2 are refer-
ences and their declared types are compatible according to [Mey97], so that e2 can be
assigned to e1. Then

e1 := e2
is defined as

modifies e1, e2, t
ensure put(e1, e2) ∧ remove(e1)

where remove(e1) is as in Definition 4.1, and

put(e1, e2) =̂ (if old e2 = Void then e1 = e2 = Void
else e2 = old e2 ∪ {e1}).

The definition states that if e2 is Void , then e1 is also set to Void . Otherwise, e1 is
added to the entity partition of e2 and removed from its old entity partition.

We now present the meaning of query and command calls, focussing on how these
calls can effect changes in the state of objects and entity partitions. Definition 4.3 pro-
vides the semantics of query calls where the result of a query is assigned to an entity.

Definition 4.3. (Assigned Query Call) The query call
e1 := e2.q(e3)

for query q of SUPPLIER in (in Fig. 4) means

modifies e1, t
require e2 6= Void ;

q .pre[a := e2.a,Current := e2, x2 := e3]
ensure q .post [a := old e2.a,Current := old e2, x := e3,Result := e1];

e1 = old e2.q(e3)

Since it is possible for e1 to be e2 itself, we must use old in q .post . The target of the
call to query q in e2.q(e3) is e2, and hence Current := e2. We can recursively treat
queries of arbitrary complexity using (23)

e1 := e2.q(exp) =̂ (∃ e • e := exp; e1 := e2.q(e)) (23)

where e is a fresh entity of the appropriate type and exp is itself a query.

Definition 4.3 deals only with the case where a query is called and the result assigned
to an entity; this is an extremely common way to effect state changes in object-oriented
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programs. However, queries can also be called in pre- or postconditions associated with
other features, and in class invariants. If a query call e2.q(e3) appears in a contract P ,
then P can be evaluated by replacing it as shown in equation 24.

P ≡ (q .pre[α] → q .post [α]) → P (24)
α =̂ a := e2.a,Current := e2, x2 := e3,Result := e2.q(e3) (25)

i.e., we may use the targeted contract of q to evaluate e2.q(e3) in P . We do not need
“old” in the substitution because queries are side-effect free.

Definition 4.4 provides the meaning of a targeted command call e1.c(e2), where e1
and e2 are reference entities and c is a command of class SUPPLIER (see Fig. 4). The
meaning of this call is supplied by the precondition and postcondition of c, targeted to
the entities e1 and e2.

Definition 4.4. (Targeted command call) The call
e1.c(e2)

for command c(x1 : TYPE ) in SUPPLIER having attributes a and b (in Fig. 4)
means

modifies e1.a, e2, t
require e1 6= Void ;

c.pre[x1 := e2, a := e1.a,Current := e1]
ensure c.post [old a := old e1.a,oldCurrent := old e1,

x1 := e2, a := e1.a,Current := e1]

(23) can be used to treat complex commands of the form e1.c(exp)

The modifies clause states that the command changes only time and the attributes
of entities in the entity partition of e1. This also allows the reference e1 to change to
point at a new object. The require clause establishes that any call must be to a non-
Void entity. As well, the clause includes the precondition of c, targeted to entity e1. The
ensure clause is the postcondition of c, targeted to e1 and with e2 as the argument.

A final useful axiom captures the notion that once a reference entity is created, it
always satisfies its invariant. Let e : C and let class C have invariant C .ι. Let e.ι be
the invariant targeted to e , i.e. e.ι = C .ι[f := e.f ,Current := e], where f is a feature
(or bunch of features) of C . Then, once e is created (e 6= Void ) it always satisfies its
invariant, i.e

e 6= Void → e.ι (26)

A simple verification example using partitions and reference types is presented in Ap-
pendix A.

4.2. Expanded types

If entities e1 and e2 are both expanded (i.e., they refer either to a basic value such
as integer or boolean, or to a sub-object), then the standard rule for assignment in (3)
suffices. If both are references, then the theory developed in Section 4.1 can be used.
However, we have not yet discussed the effect of assigning an expanded object to a
reference, and vice versa. The table in Fig. 6 suggests how to extend our approach to
handle them, leaving a full treatment (e.g., expanded parameters) for later work.
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e1 expanded and e2 reference e1 reference and e2 expanded
e1 := e2 equivalent to e1.copy(e2) e1 := e2 equivalent to e1 := clone(e2)

modifies t , e1 modifies t , e1
require e2 6= Void require true
ensure equal(e1, e2) ensure e1 = {e1} ∧ remove(e1) ∧ equal(e1, e2)

Fig. 6. Hybrid assignments

5. Class Compositionality

Refinement can be applied in a modular way to large software systems composed from
classes by inheritance and client-supplier relationships. A specification (i.e., contracts)
of a class A, that depends upon various other classes, can be refined to code just by
appealing to the specifications of the other classes, and without the need to know the
class implementations. To illustrate this process, we examine, without loss of generality,
the OO system shown in Fig. 5.

B

A

f
c : C

C D

d : D foo:INTEGER
AA

Fig. 7. System structure for demonstrating the modular refinement process

Suppose that we want to refine class A to code, where A depends directly on class B
and class C , and indirectly on class D (via association with class C ). In order to refine
features of A to code, we will need to know which features of classes that A is related
to can be used in the refinement process. A includes features inherited from B and all
of B ’s ancestors. A may make direct use of features of C that are exported to it. It may
also make indirect use of features of D through C , as follows. Suppose that A has a
feature f . Due to the relationship between A and C , A also has a feature c : C ; the
relationship between C and D means that C has a feature d : D . If feature d of class
C is exported to A, and feature foo of class D is also exported to A, then the following
is an acceptable precondition for f .

c.d .foo ≥ 0

Thus, A can make use of features of D through C ’s subobject, even though there is no
direct relationship drawn in Fig. 5 between A and D . It is also possible that c.d .foo
will enter the refinement even less directly. For example, the contract of c may contain
a reference to d , and the contract of d might in turn contain a reference to d .foo. So we
will need to define a transitive closure of the inheritance, association, and aggregation
relationships, which takes into account information hiding, in order to determine the
features needed to correctly carry out refinement.
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The precise definition of the short-flat form of a class is defined in [Mey92]. Briefly,
the short form is the interface of the class consisting of all exported features and their
contracts (but not their implementations). The flat form of the class includes all the
features obtained from proper ancestors, putting them at the same level as the immediate
features of the class (taking into account both renaming and redefinition). If C is a
class, then we let C̄ denote the short-flat form of C . We define depend A recursively
as follows12:

• Ā ∈ depend A
• If X̄ ∈ depend A and the arguments, contracts or return values of a feature of X̄

has an association or aggregation with class Y , then Ȳ ∈ depend A.
• Nothing else is in depend A.

In the case of Fig. 5, depend A = {Ā, C̄ , D̄}
To refine A to an implementation, we must carry out the following steps, in order.

1. Determine depend A.
2. Determine spec A, the set of contracts for all routines in Ā that need refining. Only

contracts that are newly declared in A, as well as contracts that redefine ones inher-
ited from ancestors, are included in spec A.

3. Show that each element of spec A is implementable. Alternatively, refining each
contract in spec A to an Eiffel program itself demonstrates implementability.

4. To refine class A to a program, refine each specification s of spec A by refinement
steps to code s , an Eiffel implementation. In other words, it must be shown that

∀ s ∈ spec A • s v code s

In the refinement, we need only use the contracts (not the implementations) of
classes in depend A.

The important thing to note in this process is that to refine A to code, we only need
spec A and the contracts of features belonging to depend A. No implementations
of the features of depend A are needed. In most cases, the entire system need not be
considered when refining a class, since depend A will only involve the contracts of a
subset of all classes in the system. Thus, refinement can be done class-by-class, and
thereafter feature-by-feature.

To refine the complete system, consisting of a number of classes, to a program,
we must start from the root class. The root is refined to code, using the contracts of
the classes in depend ROOT . Then, each class that the root depends upon (i.e., all
elements of depend ROOT ) must in turn be refined to code, using only the contracts
of the classes it depends upon. This process recursively continues until all classes in the
system have been refined to programs. In this process, there is no system-level validity
check that has to be discharged to show that the entire system is correct. Once all classes
have been refined, then the system is implemented and a proof has been discharged to
show its correctness.

The efficiency and validity of this process hinges on using directed object-oriented
relationships, and information hiding. In particular, information hiding as it exists in
Eiffel requires that only the procedures of a class can effect changes in the state of
objects of that class; clients of a class cannot change state directly via assignment to
attributes of an object. In other words, the attributes of a class are read-only to clients.

12 This is similar to Leino’s notion of dependency relation in [Lei95].
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If this level of information hiding [Par72] was not used in Eiffel, then clients could
change attributes of a class, and hence depend A would possibly need to contain all
classes in the system. Similarly, if undirected relationships, as present in modelling
languages like UML [RJ99] were used, then it would not, in general, be possible to
refine a class to code because no class would have been given responsibility for the
relationship – that is, neither class would be responsible for providing an attribute or a
routine to represent the relationship. Thus, refinement would have to be carried out after
all undirected relationships in the OO specification had been replaced by directed ones.

This style of modular reasoning is also inherent in Object-Z [DR94]; in fact, the
semantics of Object-Z has been defined precisely for this kind of so-called modular
reasoning. We discuss this more in Section 8.

6. Example

This section illustrates a simple example of refinement in Eiffel. The problem we will
solve is a simple one, taken from [Wor94], to find the maximum of a non-empty array s
of integers. This problem in fact illustrates the main feature call interactions that arise in
OO refinement, including the subtle case in which the target of an assignment invokes
a query call on the target itself. We suppose that we have a class, FOO , that includes a
feature that will be used to determine the maximum of the array. We now provide the
Eiffel specification for the class FOO .

class FOO
feature

s : ARRAY [INTEGER]

max array : INTEGER
-- calculate maximum of array s
-- s.good =̂ s 6= Void ∧ ¬ s.empty

require s.good
ensure Result = (↑ j : INTEGER | s.valid index(j ) • s.item(j ))

end

Fig. 8. Class FOO for refinement example

We use ↑ in the specification to represent the mathematical operator that gives the
maximum of two or more integers. We use the generalized quantifier notation of Gries
and Schneider [GS93] to take the maximum of a set of integers; the postcondition of
the max array routine demonstrates this syntax. We will use several logical laws for
reasoning taken from [GS93] as well.

Class FOO has one association with class ARRAY and an aggregation with class
INTEGER, via the return value of query max array , which calculates the maximum
of the array s . A local variable Result , automatically declared for the query, will hold
the result of the computation. We make use of the following features of classes ARRAY
and INTEGER; for the sake of completeness, we present fragments of the specification
of each class.

The notation s.item(j ) is the Eiffel syntax for the array index operation. s.lower
and s.upper are the lower and upper bounds of the array s , respectively. Note that
item , a query of ARRAY , has no postcondition; in this sense, we can view item as
an atomic specification unit, one whose meaning is not denoted by any other, perhaps
more concrete, representation.
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class ARRAY [G] feature class INTEGER feature
lower , upper : INTEGER max(x : INTEGER) : INTEGER
count , capacity : INTEGER ensure Result = Current ↑ x

end
valid index(x : INTEGER) : BOOLEAN
ensure Result = (lower ≤ x ≤ upper)

item(x : INTEGER) : G
require valid index(x)

empty : BOOLEAN
ensure Result = (count = 0)

invariant lower ≤ upper ∧ count ≥ 0
end

Fig. 9. Excerpt from interfaces of ARRAY and INTEGER classes

We can now refine the specification of FOO to code. In the process, we will use
the contracts, but not the implementations, of the classes on which FOO depends. The
process of Section 5 starts by calculating the classes on which FOO depends. Thus

depend FOO = {FOO , INTEGER,ARRAY [INTEGER],BOOLEAN }
Then, we calculate spec FOO which consists of the contract for max array . Now, we
must refine each element of spec FOO , i.e., spec max array , using the contracts of
features in depend FOO that are accessible to FOO (in this example, we have shown
only public features of INTEGER and ARRAY [G ] that will be needed in the refine-
ment; in general, all public features can be used in refinement of a client or descendent
class).

Fig. 10 provides a refinement from the specification of max array to final code. As
argued at the end of Section 3.3 and in (5), we ignore time. In Fig. 10, we define several
terms: P (defined in step (b)) is the specification for the initialization of the loop; I and
V are a loop invariant and variant respectively; and W is the specification for the body
of the loop.

Step (a) in Fig. 10 just uses the local variable introduction rule. For step (b) we must
discharge all the provisos in the loop rule. Some of the provisos are simple, e.g., the first
loop proviso S → Sinit reduces to s 6= Void → s 6= Void which is trivially true. The
second proviso is proved with the use of the invariant axiom (26). The other provisos
are relatively straightforward. As an example, the fifth proviso can be discharged as
follows:
Assume I ∧ ¬ b. Then:

(Dbody ∧ same(σ̄))′
= 〈 definition 〉

i ′ = i + 1 ∧ s ′ = s ∧ (Result ′ = Result ↑ s ′.item(i ′))
= 〈 Leibniz and i ′ = i + 1 ∧ s ′ = s 〉

i ′ = i + 1 ∧ s ′ = s ∧ (Result ′ = Result ↑ s.item(i + 1))
= 〈 from the invariant, Result = (↑ j : INTEGER | s.lower ≤ j ≤ i • s.item(j ));

split off term (8.23) 〉
i ′ = i + 1 ∧ s ′ = s ∧ Result ′ = (↑ j : INTEGER | s.lower ≤ j ≤

i + 1 • s.item(j ))
= 〈 Leibniz and i ′ = i + 1 ∧ s ′ = s 〉

i ′ = i + 1 ∧ s ′ = s ∧ Result ′ = (↑ j : INTEGER | s ′.lower ≤ j ≤
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spec max array

= < definition of max array >

Result : 〈| s.good ,
Result = (↑ j : INTEGER | s.valid index(j ) • s.item(j )) |〉

v < (a) : Local variable introduction Rule 3.2(b) >

local i : INTEGER;

i ,Result : 〈| s.good ,
Result = (↑ j : INTEGER | s.valid index(j ) • s.item(j )) |〉

v < (b) : introduce loop Rule 3.3 – all seven provisos hold >

local i : INTEGER;

modifies i ,Result

from P : i ,Result : 〈| s.good ,
i = old s.lower ∧ Result = s.item(i) |〉

invariant I : s.valid index(i) ∧ same(s) ∧
Result = (↑ j : INTEGER | s.lower ≤ j ≤ i • s.item(j ))

variant V : s.upper − i

until i = s.upper

loop W :

i ,Result : 〈| s.good ∧ s.valid index(i) ∧ i < s.upper ,

i = old i + 1 ∧ Result = old Result ↑ s.item(i) |〉
end

v < (c) : refine initialization P (see Fig. 12); refine loop body W (see Fig. 13) >

local i : INTEGER;

modifies i ,Result

from i := s.lower ; Result := s.item(i)

invariant I : s.valid index(i) ∧ same(s) ∧
Result = (↑ j : INTEGER | s.lower ≤ j ≤ i • s.item(j ))

variant V : s.upper − i

until i = s.upper

loop

i := i + 1; Result := Result .max(s.item(i))

end

Fig. 10. Refinement tree for max array (the last step produces executable Eiffel code)
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i ′ • s ′.item(j ))
= 〈 from invariant same(s), i.e. s = old s 〉

i ′ = i + 1 ∧ s ′ = s ∧ s ′ = old s ∧ Result ′ = (↑ j : INTEGER | s ′.lower ≤
j ≤ i ′ • s ′.item(j ))

⇒ 〈 From invariant, s.valid index (i); ¬ b =̂ i 6= s.upper ; i ′ = i + 1 ∧
s ′ = s 〉

s ′.valid index (i ′) ∧ s ′ = old s ∧ Result ′ = (↑ j : INTEGER | s ′.lower ≤
j ≤ i ′ • s ′.item(j ))

= 〈 definition 〉
I [ := ′]

The refinement steps for implementing the loop initialization P and the loop body
W are detailed in the appendix, along with proofs of the resultant obligations.

Many of the proof obligations and refinement steps shown in Fig. 10 are very similar
to refinement steps in imperative program design calculi. For example, the steps for
introducing an initialized loop, or a simple assignment statement, pattern those seen in
[Heh93, Mor94]. The exact proof obligations required to discharge steps (a), (b), and
(c) can easily be mechanically produced by applying the quoted refinement rules. As
examples, we discharge proof obligations for the loop initialization refinement and the
loop body refinement in Appendix A.

A step unique to object-oriented refinement occurs in refining the loop body to a
sequence of assignments. The second assignment is:

Result := Result .max (s.item(i))

which is a nested query call. The refinement and proof obligations are explained in de-
tail in Appendix B. However, we point out that in all of these proof steps, including
those for the query calls, no complicated mathematics is required: the proofs primarily
use substitutions, and there is only one quantifier – that to introduce the local variable.
A theorem prover like PVS would discharge most of the provisos for this proof auto-
matically.

One might expect that the conjunct containing the maximum quantifier in the loop
invariant would have to be a comment in Eiffel. However, the latest implementations
of Eiffel support the notion of an agent [Mey00] which can be used to equip assertions
with executable predicates with quantifiers.

To complete the process, classes INTEGER and ARRAY (and all their dependent
classes) should now be refined. However, these classes belong to a standard library, and
so we can assume that they have been implemented and their correctness ensured.

7. Automation

Discharge of the proof obligations that arise during a refinement can benefit from auto-
mated support. We are currently experimenting with using PVS to reason about Eiffel
specifications. Our eventual goal is to use PVS to discharge the (automatically gener-
ated) proof obligations that arise in a refinement of a specification to an Eiffel program.

Currently, we have developed a mapping of Eiffel specifications into PVS theories,
based on a representation of a class as a datatype, a representation of routines as PVS
functions, and a representation of class invariants as either subtype constraints or axioms
(the latter being used whenever invariant clauses on self-referential classes occur). This
representation can be extended to support client-supplier and inheritance relationships,
and has allowed non-trivial theorems to be discharged. A particular benefit of translating
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Eiffel to PVS is that it lets us use the tool to deal with reference types without difficulty.
A new tool is being designed and implemented to automate the translation process.
Thereafter, a tool will be developed to assist in the refinement process. The tool will
pass proof obligations generated in refinement to PVS. This is discussed more elsewhere
[PO99].

For examples of using PVS to reason about object-oriented models, we refer the
reader to [PO01], wherein the metamodel of BON is expressed in the PVS language,
and it is shown how to use the PVS system to prove that BON models conform to (or
fail to conform to) the BON metamodel.

8. Related Work and Conclusions

In this paper, we have provided rules for refinement of object-oriented specifications in
Eiffel into immediately executable Eiffel programs. The rules include ones for intro-
ducing feature calls and object creation statements during refinement. The refinement
rules that we have presented are modular, and can be applied partwise over object-
oriented models consisting of a number of classes, where each class contains a number
of features with contracts. Thus, the refinement process, combined with OO structur-
ing mechanisms – i.e., client-supplier relationships and inheritance relationships – is
applicable to large-scale systems.

We are not aware of any other OO approaches that yet provide refinement rules
(which do not require OO specifications to be transformed to procedural specifica-
tions) down to an actual industrial-strength programming language, though several ap-
proaches, such as JML and Larch, provide suitable foundations for such refinement
calculi. There is, however, a rich collection of work on specification, verification and
static checking of OO software. We now discuss this work.

Object-Z is solely a specification language, and contains no immediately executable
programming language. Algorithm refinement rules remain to be fully worked out for
Object-Z, primarily with regards to rules for introducing routine calls within a refine-
ment. The semantics of Object-Z supports strict modular reasoning [Gri97]: the mean-
ing of an operation in an Object-Z specification is a transition on the local state of
an object, together with an external message. Modular reasoning is thus supported by
the semantics, which provides object identities and mechanisms for achieving indepen-
dence of behaviour of operations. This kind of semantics is useful for reasoning about
the properties of an OO system as a whole [Smi95], but may not be as convenient for
algorithm refinement, and in particular producing executable code from specifications.
Finally, the semantics of Object-Z is based on labeled transition systems. The semantics
of routines in Eiffel is based on first-order logic, making it easier to support reasoning
via available tools, such as the PVS system.

The work on the Extended Static Checker [DL98] for Java has resulted in the de-
velopment of a tool for the automatic verification of Java programs. This tool works by
taking annotated Java programs, with specifications very similar to the contracts used
in this paper, and by checking that the programs satisfy the annotations. This approach
focuses on automatic verification of programs, rather than refinement of specifications
to programs. A great advantage of this work is that it is already implemented as a tool
and (with annotation) can work on regular Java programs. Although it works above the
“decidability ceiling” (and can thus catch errors that regular typecheckers cannot), it
focuses on catching the kinds of errors in programs that can be automatically detected.
Hence it does not catch all possible errors. It handles reference types as well as prim-
itive types. The Escher language and tool [Es00] is also used for static checking and
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automatic verification. With Escher, a new language, Perfect, must be used for writing
specifications, but target code in a number of different programming languages (e.g.,
C++) can be automatically generated.

We view such static checking techniques as complementary to the refinement calcu-
lus in this paper: in some cases, we may want to refine contracts or classes to programs;
in other cases, we may prefer to use static checking to help find errors in programs. The
latter approach will be more appropriate when verifying library classes or pre-existing
applications, rather than when developing new classes or applications.

Work has been carried out on validating UML object-oriented models against con-
straints, via simulation. The work of Richters and Gogolla on the USE tool [RG00] is a
particular example of this. In the USE tool, a UML model is imported, a snapshot (an
instance) of the model is taken, and the snapshot is checked against OCL constraints that
are evaluated. A subset of UML and OCL is supported by the USE tool. Validation of
object-oriented models against metamodel constraints via automated theorem proving
is demonstrated by Paige and Ostroff using PVS [PO01].

VDM++ is an OO dialect of VDM. It is based on a three-valued logic. [Lan95]
presents data and algorithm refinement rules for VDM++, but these rules focus on re-
finement of the imperative and concurrent constructs, and do not present mechanisms
for introducing command or query calls. Furthermore, the results of the refinement re-
quire further translation to produce executable code in C++, Java, Eiffel, etc. [Lan95]
also presents informal procedures for carrying out these translations.

An approach to OO development similar to Eiffel is Larch/C++ [Lea97], which aims
at supporting formal specification, as well as reducing the gap between specification
and working code. A key distinction between Larch/C++ and Eiffel is that with Larch,
a two-tiered approach is used. Specifications of mathematical toolkit features (e.g., li-
brary modules such as arrays, lists, and function types) are provided algebraically using
abstract data types. These specifications can then be used in Larch/C++ behavioural
interface specifications, wherein the abstract data type functions can appear in precon-
ditions, postconditions, and invariant clauses. By keeping the abstract data type spec-
ifications separate from behavioural interface specifications, formal reasoning on the
shared language specifications can be carried out, and the formal specifications can
be reused specifying for different behavioural interface languages. Eiffel uses only OO
techniques: in place of the Larch Shared Language specifications, only classes with con-
tracts are used instead, including for the specification of mathematical toolkit features.
By using only classes, software development can proceed seamlessly (and if neces-
sary reversibly) within the same semantic framework. Larch/C++ does not support re-
versibility. Further, Larch/C++ does not have rules for refinement, though they could in
principle be developed. We would expect these rules to be more complex than those for
Eiffel because C++ is a hybrid language having both object-oriented and conventional
constructs. Also, implementing a Larch/C++ specification will require the Larch Shared
Language specifications to be implemented, perhaps using built-in libraries; an impe-
dence mismatch between abstract data types and C++ classes arises here. Larch/C++
does possess mature tool support for formal manipulation and reasoning. Reasoning
will typically be done within the algebraic framework, using functions of the algebraic
specifications. With Eiffel, reasoning is done using first-order logic.

JML [LB00] is a modeling language for Java, with many similarities to Larch/C++.
It supports the specification of contracts in a pre- and postcondition style; class invari-
ants can also be specified. JML has been designed to work seamlessly with Java. Unlike
BON, it is a text-based modeling language and is syntactically similar to Java. JML is
a richer language than BON, in that it supports history constraints and modeling excep-
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tions. It has no refinement rules defined, although such rules are feasible to produce.
Work is underway on integrating JML with the Extended Static Checker [DL98].

This paper did not deal completely with expanded types nor did it show how to
automate the refinement procedures. Automation and the extension to expanded types
are currently under investigation; Section 7 reported on the current status of some of
this work. We also intend to expand the framework to concurrent and real-time soft-
ware. The use of the predicative calculus of [Heh93], which supports concurrency and
communication, as the underlying specification formalism should make the extension
to concurrent and real-time systems feasible.

A. Use of reference type theory

Fig. 11 contains a short example demonstrating how to reason with our simple theory
of reference types, presented in Section 4. We assume that we have a class CELL and a
class C with interfaces and implementations as shown in the figure. We want to prove
that the body of feature r of class C establishes its postcondition e3 = 6. We do
this by replacing each statement in the implementation of r with its meaning in terms
of specification statements, and then simplify. Each proof step involves many smaller
steps. For example, in the first step, we have

create e1; create e2
⇒ 〈 entity creation Defn. 4.1 〉

e1[] ; e2[] ∧ e1 = old e1
= 〈 sequential composition (3) 〉

∃ e1′ • e1′[] ∧ e2[] ∧ e1 = e1′
= 〈 one-point rule using e1 = e1′ 〉

e1[] ∧ e2[]
where we ignored time using (5) as our justification. Using Defn. 4.4, the targeted call
e1.m(5) reduces to e1 6= Void → e1.a = 5 ∧ same(e1, e2) ∧ time, so that

e1[] ∧ e2[]; e1.m(5)
⇒ 〈 Defn. 4.4; e1[] → e1 6= Void using (19); sequential composition (3) 〉

e1[] ∧ e2[] ∧ e1.a = 5
The rest of the proof in Fig. 11 continues along the same lines.

B. Proof of Refinement Steps for Section 6

We present the refinement steps and corresponding proofs that are required in imple-
menting the loop initialization and loop body. These refinement steps were omitted, for
the sake of brevity, from Fig. 10. It is useful to consider the refinement steps, since they
illustrate how to introduce the fundamental constructs in OO computing, namely fea-
ture calls. The first step is the refinement of the loop initialization, P , by the sequential
composition

i := s.lower ; Result := s.item(s.lower)

is shown in Fig. 12.
The final step in the refinement example of Section 6 is to implement the loop body

specification, W , by an assignment statement (which is a simple increment) and a com-
mand call. Fig. 13 shows the tree for the refinement of W .

Most of the proof obligations that arise from this refinement tree are straightforward
to discharge. In the second last step of Fig. 13, the justification is proved as follows:
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class C feature class CELL feature
e1, e2 : CELL; e3 : INTEGER a : INTEGER; b : CELL
r is do

create e1; n(x : CELL) is
create e2; modifies b, x , t
e1.m(5); require x 6= Void
e2.m(6); ensure b = x
e1.n(e2);
e3 := e1.a.max (e1.b.a); m(x : INTEGER)

ensure e3 = 6 modifies a, t
end ensure a = x

end end

Body of routine r in class C
→ < create Defn. 4.1; composition (3); Defn. 4.4; (19); (5) and logic >

e1.a = 5 ∧ e2.a = 6 ∧ e1[] ∧ e2[];
e1.n(e2);
e3 := e1.a.max (e1.b.a)

= < semantics of e1.n(e2) using Defn. 4.4 >

e1.a = 5 ∧ e2.a = 6 ∧ e1[] ∧ e2[];
e1.b, e2, t : 〈| e2 6= Void , e1.b = e2 |〉;
e3 := e1.a.max (e1.b.a)

→ < e2[] → e2 6= Void and (5) >

e1[] ∧ e2[] ∧ e1.a = 5 ∧ e1.b = e2 ∧ e2.a = 6;

e3 := e1.a.max (e1.b.a)
→ < assignment (3) , entities are expanded >

e1[] ∧ e2[] ∧ e1.a = 5 ∧ e1.b = e2 ∧ e2.a = 6;

e3 = old (e1.a.max (e1.b.a)) ∧ same(e1.a, e2.a, e1.b.a)
< composition (3) ; one-point; (15): e1.b = e2 → e.1b.a = e2.a >

e1[] ∧ e2[] ∧ e1.a = 5 ∧ e1.b = e2 ∧ e2.a = 6 ∧
e3 = 5.max (6)

→ < (24) and postcondition of max in Fig. 9 >

ensure clause of r

Fig. 11. Example of reasoning using reference types
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P

= 〈 definition 〉
i,Result :〈|s.good, i = old s.lower ∧ Result = s.item(i) |〉

= 〈 textual substitution [GS93] 〉
i,Result :〈|s.good[i := s.lower ], (i = old i ∧ Result = s.item(i))[old i := old s.lower ] |〉

= 〈 simple substitution Rule 3.1 〉
i := s.lower ; Result :〈|s.good, Result = s.item(i) |〉

v 〈 (26) and (24): s.good → s 6= Void ∧ s.valid index(s.lower); pre. weakening 〉
i := s.lower ; Result :〈|s 6= Void ∧ s.valid index(s.lower), Result = s.item(i) |〉

v 〈 assigned query call Defn. 4.3 〉
i := s.lower ; Result = s.item(i)

Fig. 12. Proof of refinement for loop initialization

W

v < textual substitution [GS93] >

i ,Result : 〈| (s.good ∧ s.valid index(i − 1) ∧ i − 1 < s.upper)[i := i + 1],

(i = old i ∧
Result = old Result ↑ s.item(i))[old i := old i + 1] |〉

v < simple substitution Rule 3.1 >

i := i + 1;

Result : 〈| s.good ∧ s.valid index(i − 1) ∧ i − 1 < s.upper ,

i = old i ∧ Result = old Result ↑ s.item(i) |〉
v < s.good ∧ s.valid index(i − 1) ∧ i − 1 < s.upper → s 6= Void ∧ s.valid index(i);

precondition weakening (Morgan Rule 1.2 [Mor94]) >

Result : 〈| s 6= Void ∧ s.valid index(i),

Result = old Result ↑ s.item(i) |〉
v < proof described in Fig. 14 >

Result := Result .max(s.item(i))

Fig. 13. Refinement tree for the loop body

s.good ∧ s.valid index (i − 1) ∧ i − 1 < s.upper
⇒ 〈 (24) 〉

s.good ∧ s.lower ≤ i − 1 ≤ s.upper ∧ i − 1 < s.upper
⇒ 〈 i − 1 < s.upper → i ≤ upper ; s.lower ≤ i − 1 → s.lower ≤ i 〉

s.good ∧ s.lower ≤ i ≤ s.upper
⇒ 〈 propositional logic 〉

s.valid index (i) = s.lower ≤ i ≤ s.upper → s.good ∧ s.valid index (i)
⇒ 〈 24 〉

s.good ∧ s.valid index (i)
⇒ 〈 by definition of s.good 〉

s 6= Void ∧ s.valid index (i)
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The most interesting obligation comes in the last step of the refinement, where we
want to introduce a nested query call in an assignment. The proof is shown in Fig. 14.

Result := Result .max(s.item(i))

= < meaning of a nested query call (23) in Defn. 4.3 >

local v : INTEGER; v := s.item(i); Result := Result .max(v)

= < semantics of query assignments Defn. 4.3 >

local v : INTEGER;

v : 〈| s 6= Void ∧ s.valid index(i), v = old s.item(i) |〉;
Result : 〈| true,Result = old Result ↑ v |〉

→ < sequential composition (3) >

Result : 〈| s 6= Void ∧ s.valid index(i),Result = old Result ↑ s.item(i) |〉

Fig. 14. Proof of final refinement step
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