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Abstract. We describe a tool-supported integration of an object-oriented formal
method, BON, with an object-oriented formal modelling language, JML. The
integration is bothartifactual — carried out so as to exploit JML's existing and
planned tool support — areffectual in order to provide a graphical syntax and
process support for JML. The integration is characterised using the meta-method
of [13, 14] which provides a general approach for combining software develop-
ment methods and modelling languages. A CASE tool is described that supports
the integrated techniques.

1 Introduction and Motivation

Object-oriented (OO) modelling languages, such as UML [3], BON [27], Object-Z [23],
and JML [9] are seeing increased use and research interest. The most widely used of
these is UML, which presents a broad collection of modelling constructs, and is sup-
ported by compatible processes and tools. More specialised modelling languages, such
as JML (aimed at specifying Java applications) and BON (particularly useful for spec-
ifying Eiffel applications, but more specifically for reliable, seamless, and reversible
software development) see use in specific contexts and software development projects.
In general, we are seeing two disparate types of modelling languages for OO devel-
opment: general-purpose languages, such as UML; and specialised languages, such as
BON and JML. It is the latter that we focus on in this paper.

BON and JML each have the following properties.

— They have their origins in formal specification languages. Each language includes
documentation, in the form afontracts(pre- and postconditions of methods, and
invariants of classes), which is never separated from the modelling abstractions
themselves.

— They are relatively small languages that provide only a subset of the modelling
constructs available in UML.

— Each approach has limitations. BON, in particular, provides no analytic tool sup-
port, e.g., for reasoning. Nor is guidance provided with the BON process on how
to implement BON detailed designs in Java. JML, on the other hand, is a purely
text-based modelling language, and provides no compatible process.

Much recent research has been carried outn@thod integrationthe process of
combining two or more independent methods to produce a new one. Method integration



has been proposed as an appropriate way to remove limitations with methods, to develop
new methods, to acquire use of new modelling techniques and tools, and to assess the
complementary nature of software development techniques. It also provides a rationale
and mechanisms for constructisgmpler, smalleisoftware development methods that
tackle one specific class of development problem: if a technique, modelling construct,
or tool is not present or available in a method, then the method can be integrated with
another that possesses the desired mechanisms.

In this paper, we present a loose tool-supported integration of BON and JML, in or-
der to address the limitations of each approach. The integration is loose in two senses:
the BON and JML languages can be used independently, without change, or they can
be used in an integrated manner; and, the tools are integrated via use of file-sharing and
APIs. In the terminology of Stirewalt and Dillon [24], the integration is battifactual
(it is done to exploit tools) andffectual(it is done so as to carry out tasks that could
not be carried out with one or both of the separate techniques). The approaches are
integrated using the meta-method of [13, 14], which provides a general approach for
combining methods and modelling languages. We emphasize that the integration pro-
duces a new method: we consider integration of modelling languages and development
process issues as well.

1.1 Overview

In Section 2, we provide an overview of BON and JML, focussing on the modelling
languages, but also explaining the recommended, iterative BON development process.
This process will be generalised to use the JML modelling language and its tools. The
meta-method of [13, 14] is also explained. In Section 3, we integrate BON and JML.
The complementary nature of the approaches is explained, the modelling languages are
integrated, and the BON process generalised. We discuss complications with integrating
the modelling languages, particularly due to the expressive differences between BON
and JML (e.g., due to multiple inheritance, covariance, and genericity). We also discuss
validation of the integration. Section 4 describes tool support for the integrated method,
provided via a CASE tool for BON. Finally, in Section 5, we discuss lessons learned
about integration, and consider future work.

2 Background

We provide a brief overview of BON and JML, focussing on explaining the nota-
tional differences, so as to provide justification for the complementary nature of the
approaches. As well, we explain the approach we take to integrating BON and JML,
via the meta-method of [13, 14].

2.1 BON

BON is an OO method possessing a recommended process as well as a graphical lan-
guage for specifying object-oriented systems. The language provides mechanisms for



specifying classes and objects, their relationships, and assertions (written in first-order
predicate logic) for specifying the behaviour of routines and invariants of classes.

The fundamental construct in BON is the class. A class has a name, an optional
class invariant, and zero or more features. A feature may hatahute a query—
which returns a value and does not change the system state-eammandwhich
does change system state but returns nothing. Fig. 1(a) contains an example of a BON
model for the interface of a clas® TIZEN. Features are in the middle section of the
diagram (there may be an arbitrary number of feature sections, annotated with names
of classes that may access the features). Features may optionally have contracts (pre-
and postconditions) written in the BON assertion language. Class invariants may also
be specified; these capture properties that must be true whenever an instance of the
class has one of its features called by a client. The assertion syntax is a dialect of first-
order predicate logic, with sugar introduced (e@uyrent, Result) to make it easier to
specify object-oriented systems.

In Fig. 1(a), clasCITIZEN has six attributes, one query, and one command. For
example,single is a BOOLEAN query while divorce is a parameterless command
that changes the state of an objefET[G] is a generic predefined class with generic
parameterG and the usual operators (e.g,,add). The classSET[CITIZEN] thus
denotes a set of objects each of typEI'IZEN .

CITIZEN

name, sex, age : VALUE
spouse : CITIZEN
children, parents : SET[CITIZEN]

single : BOOLEAN
[ 1] Result <-> (spouse=Void)

divorce

not single
SUPPLIERL
m single and (old spouse).single }

—— invariant ———

single or spouse.spouse=Current;
parents.count=2;
Oc e childrene Ope c.parent® p=Current SUPPLIER2

(a) Citizen interface (b) BON relationships

Fig.1. BON syntax for interfaces and relationships

BON models consist of classes organizectinsters(drawn as dashed rounded
rectangles that may encapsulate classes and other clusters). Classes and clusters interact
via two general kinds of relationships.

— Inheritance: Inheritance defines a subtype relationship between a child and one or
more parents. The inheritance relationship is drawn between cl@$sdsD and



ANCESTOR in Fig. 1(b), with the arrow directed from the child to the parent
class. In this figure, classes have been drawn in their compressed form, as ellipses,
with their interface details hidden.

— Client-supplier: there are two client-supplier relationships, association and ag-
gregation. Both relationships are directed froncl@nt to a supplier Associa-
tion depicts reference relationships, while aggregation depicts subobject (or part-
of) relationships. Client-supplier relationships can be drawn between classes and
clusters; recursive rules are given in [27] to explain the meaning of cluster re-
lationships. The aggregation relationship is drawn between clasgésD and
SUPPLIER? in Fig. 1(b), whereas an association is drawn fra®CESTOR to
classSUPPLIER].

BON also provides notation for dynamic models, showing the communication be-
tween objects. This notation is very similar to collaboration diagrams in UML [3]. BON
is similar in many respects to the core of UML.

2.1.1 The BON processThe BON development process is iterative, risk-driven, and
idealised; compatibility with the BON process is defined in terms of producing a re-
quired set of document deliverables, including class diagrams, dynamic diagrams, sce-
narios and charts, etc. Each task in the process has a set of input sources, produces a
set of deliverables, and is controlled by acceptance criteria, which take into account the
risk of proceeding. Each task may be iterated several times; feedback may occur from
successive tasks to preceding tasks. Unlike the Rational Unified Process [8], the BON
process is not use-case driven, but it is architecture-centric; use-cases can but are not
required to be applied in the process’s early stages. The process also emphasises using
contracts to capture the behaviour of modelling abstractions, instead of statecharts. The
process is sketched in Fig. 2.
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Description

Delineate system borderline.

List candidate classes.

Select classes and group into clusters.

Define classes and their features.

Sketch system behaviours using dynamic models.
Define public features and contracts.

Refine system.

Factor out common behaviour.

Complete and review system.

O©COoO~NOO UL WNPEP

Fig.2. The BON idealised process

Task #7, refinement, involves taking a preliminary design and finding new design
classes, as well as new features for existing classes; it is intended to iterate with Task
#6. Task #8 is step aimed at producing reusable classes — it is sometimes called gen-
eralisation. A BON static model is first produced as a deliverable from Task #6. The



integration of BON and JML will extend this process by an additional, potentially iter-
ated task introduced in between Task #6 and Task #7.

2.2 JML

The Java Modelling Language, JML, is a behavioural interface specification language
that is tailored to Java [9]. It is an ASCII-based specification language that can be used
to specify Java modules. It can be used as a stand-alone specification language, captur-
ing constraints on methods, classes, and interfaces. It can also be used in combination
with Java, allowing contracts to be embedded as comments within Java code as an aid
to verification and debugging. JML supports a number of features common to specifica-
tion languages, such as quantifiers, specification-only variables, and frame conditions.
As well, it provides features that are useful in specifying Java classes and interfaces.

Fig. 3 provides an example of an abstract class specification in pure JML: the un-
bounded stack.

public abstract class UnboundedStack {

/*@ public model JMLObjectSequence contents
@ initially: contents != null && contents.isEmpty();
@+

//@ public invariant: contents != null

public abstract void pop();
/*@ public_normal_behavior
@ requires: !contents.isEmpty();
@ modifiable: contents;
@ ensures: contents.equals(\old(contents.trailer()));
@*/

public abstract void push(Object x);

/*@ public_normal_behavior
@ modifiable: contents;
@ ensures: contents.equals(\old(contents.insertFront(x)));
@*/

public abstract Object top();

/*@ public_normal_behavior
@ requires: !contents.isEmpty();
@ ensures: \result == contents.first();
@*/

Fig.3. JML specification of an unbounded stack



Abstract values of stack objects are specified by the model datactietgénts ;
this field does not have to be implemented in Java code, i.e., it is a specification-only
variable. Theinitially clause provides an abstract initialisation tmmtents
The class invariant specifies properties that must hold true in each visible state. The
three methodspop, push, andtop have their usual preconditions, postconditions,
and frames (the latter given byodifiable  clauses). An omitted frame (e.g., in
top ) indicates that no fields can have their state modified. In postconditions, the syntax
\old(E) can be used to evaluate expresdioim the prestate. As well, IML distin-
guishes between reference equaligals , used in the postcondition giop) and
value equality €=, used intop ). This JML specification could be placed injava
file for a Java implementation of an unbounded stack.

The JML constructs that we have seen so far are similar to those provided with
BON. JML provides a number of constructs, useful for specifying Java modules, that
are not provided with BON, such depend clausg$or expressing field dependencies),
history constraintsandexceptionswhich are particularly critical for specifying Java
propgrams, where exception handlers are widely used.

Several tools have been developed for JML, including a JML type checker, a JML
run-time assertion checker, and a documentation generator [10]. The run-time checker
is currently limited to checking preconditions of methods and whether a class invariant
holds at run-time. JML is also patrtially supported by the Extended Static Checker (ESC)
[4] (the syntax of ESC/Java is very similar to JML), and by the LOOP tool [2]. LOOP is
a special-purpose compiler that incorporates the semantics of Java and JML. The output
of LOOP is a set of logical theories for the theorem provers PVS [12] and Isabelle.

JML was chosen for the integration with BON because of its utility in developing
Java programs (no guidance is provided with BON for producing Java code from mod-
els), because of its existing tool support, and with the intent of leveraging future tool
support as well.

2.3 A method for formal method integration

A method for formal method integration was presented in [13, 14]. It describes a precise
approach to integrating software development methods, via combining the modelling
languages of the methods, and by relating their development processes. At least one of
the methods being combined has to be formal, in the sense that its modelling language
must have a formal grammar specifying its syntax, and a formal semantics for modelling
constructs is provided. The method of [13, 14] is general, in that it can integrate any
number of methods. It emphasizes combining modelling languages while providing
assistance in linking and combining processes. The usefulness of the method has been
validated on a number of integration case studies, combining industrially applicable
languages and methods such as UML (with a compatible process), Z, BON, Structured
Analysis, and Larch. In turn, these integrations have been applied to a number of case
studies in software development.

The method is based on the construction of heterogeneous languages [13], and on
defining relationships between tasks in processes. We first give a brief overview of het-
erogeneous languages and their construction, and then discuss the steps of the method



(which will indicate how relationships between processes can be defined and docu-
mented).

2.3.1 Heterogeneous languages and bas&todelling languages play a critical role

in software development methods, for writing descriptions of requirements, architec-
tures, designs, and programs, and in documenting the development process. Modelling
languages (which consist of a notation as well as structural well-formedness rules, i.e., a
grammar or a metamodel) play a key part in how we integrate methods: we combine lan-
guages as the first step in combining methodbeferogeneous languagecomposed

from several different languages and is used to write heterogeneous specifications.

Definition 1. A heterogeneous specificatiecomposed from parts written in two or
more different modelling languages.

As the name suggests, heterogeneous languages are an integration of both notation and
metamodel. Heterogeneous languages are useful for a number of reasons: for extending
expressive capabilities of individual languages; for producing simpler specification lan-
guages [28]; for writing simpler specifications than might be produced using a single
language [28]; for ease of expression; and because they have been proven successful
in practice. Heterogeneous languages are ideally applied in a setting where the com-
plementarity of the separate languages is evident [17], and when the languages being
combined can be used together without significant alteration, in part so as to not alienate
users of the individual languages.

A semantics for a heterogeneous specification can be given by formally defining
the meaning of the composition of partial specifications in some notation. If we com-
bine two languages, where one is formal and the other informal, we can formally define
specification compositions by formalizing the semantics of the informal notation in the
formal one. This approach lets specifiers treat the compositions as if they were written
in the formal language. More generally, we may want to build a heterogeneous language
from more than two formal or informal languages. In this case, we can constnett a
erogeneous basid 3], a set of languages and translations between languages, which
can be used to give a formal semantics to heterogeneous specifications via translation
to a homogeneous specification. The language used to provide the semantics for a het-
erogeneous specification may be one of the languages used to write the specification, or
it may be an entirely different language altogether. This allows semi-formal languages,
e.g., data flow diagrams or variants of object modelling languages, to be given an ap-
propriate semantics depending on the context in which they are used. This is consistent
with the work of Baresi and PeeZ1] on formalising families of languages, such as
those available in Structured Analysis.

Fig. 4 depicts an example of a heterogeneous basis. A preliminary version was first
presented in [13]. It has since been extended to include further languages, such as BON
[18] and now JML.

In Fig. 4, the arrows represent syntax-directed translations that have been defined
between the languages. The arrembetween languages represents a partial translation.

A translation may be partial in one of two senses: there may exist constructs in the
source language that are inexpressible — and thus, are not translated — in the target



UML class diagrams
UML object diagrams|
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Larch LSL

data flow diagrams|
structure charts

Fig.4. Heterogeneous basis

language; or, a translation of every construct in the metamodel of the source language
is simply not presented or currently available. Translations are given in terms of the
metamodel of a source language: each construct that appears in the metamodel of the
source language is mapped to a construct or set of constructs in the metamodel of the
target language. In this manner, translations can be defined for text-based languages
(they are expressed in terms of constructs that appear in a context-free grammar), and
for visual languages.

Translations between the formal languages are documented in [13, 14]. Mappings
from elements of UML to predicative programming are in [16]. A mapping from Z to
BON is given in [18]. The basis is extendible (as we discuss in the next section), which
is critical in defining a general method for formal method integration.

Constructing a heterogeneous basis is usually hard, and requires careful understand-
ing of the semantics and interpretations of all the constructs in the individual languages,
as well as a means to resolve syntactic and semantic incompatibilities and differences
in expressiveness across the languages. General discussion on these issues is in [21].

2.3.2 A method for formal method integration We recap the steps of the method
here for the sake of completeness.

1. Ensure complementarity of the methodsIt must be demonstrated that the meth-
ods being integrated are complementary. This is done in order to provide motivation
and intent for the integration. Patterns of method complementarity are discussed in
[17]. Generally, methods may be complementary in terms of their modelling lan-
guages, their processes, and their supplementary tools, but other rationales for in-
tegration may be provided as well, e.g., for non-technical reasons, such as to best
make use of developer expertise and familiarity.

2. Select a base methodA base method provides a process that is to be supported
and complemented by other (invasive) methods. Selecting a base method is aimed
at assisting integrators in determining the roles that the separate methods can play
in the integrated approach.



3. Choose invasive methodsThe processes of invasive methods augment, are em-
bedded in, or are interleaved with that of the base method. The invasive methods
are chosen to complement the base methods, through notation, through process,
through tools, or through user preferences. The invasive methods may overlap with
the base method; that is, the invasive methods may duplicate notations or process
tasks provided by the base method. In choosing the invasive methods, it must also
be decided how to reconcile these overlaps, for example, by restricting the use of a
method, or by synthesizing the documentation deliverables produced.

4. Construct or extend a heterogeneous basig his is accomplished by defining
translations, or by adding languages from the base and invasive methods to an ex-
isting one. At this point, &asis languagean be selected. This language is chosen
from the heterogeneous basis and is used to provide a formal semantics to heteroge-
neous specifications. This semantics will be used when reasoning about heteroge-
neous specifications; thus, the basis language should be chosen to make the desired
kind of reasoning as simple as possible to do. Note that the basis language does
not have to be fixed permanently once it is chosen; the heterogeneous basis and its
translations can be used to change it later on. One might want to do this to be able
to make use of new tools.

It may be determined that the languages being combined overlap syntactically or
semantically. The language integrator must decide how to deal with such overlap,
e.g., by restricting use of one notation.

5. Define how the individual processes cooperatdt is informally described how
the processes of the methods are to work together in the new method. Process co-
operation can be specified using activity diagrams (an example is in Section 3.5),
or workflows. Two forms of cooperation are particularly common.

— Generalisation.The process of the base method is generalized to use hetero-
geneous notations constructed from those of the base and invasive methods.
Effectively, notations are added to an existing method, and its process is gen-
eralized to use the new notations.

— Interleaving of processesRelationships between the process of the base method
and the processes of the invasive methods are defined. Examples of relation-
ships include the following.

¢ Linkingof processes, by defining a translation between notations of differ-
ent methods. An example is in [18], in which a translation from Z to the
Business Object Notation links the Z ‘established strategy’ with the BON
method.

¢ Replacementf entire process steps in a base method by process steps of
an invasive method. The invariant in such a replacement is that the steps
being added must do at least the tasks of the steps they are replacing.

e Supplementationf process. Specific phases of one process are identified
and are supplemented by phases from a second process. The integration
of Z and predicative programming in [15] provides an example; the Z es-
tablished strategy is supplemented by refinement rules for reasoning about
time and space.

o Parallel useof processes, by describing relationships that interleave the
use of two or more separate processes.



6. Guidance to the user.Hints, examples, and suggestions on how the integrated
method can be used is provided.

The meta-method has been applied in a number of examples. We refer the reader to
[13,18, 16] for instances. Each example integration is also illustrated with an example
of applying the integrated method in a non-trivial case study.

3 Integrating BON and JML

We now describe the integration of BON and JML, following the method presented in
the previous section. The integration will generalise the BON process, by adding JML
to it. To carry this out, we will show how to translate BON to JML, thereby allowing us
to combine BON and JML models and to introduce JML into the BON process.

3.1 Ensure complementarity

For any integration of languages or methods, it is critical to justify the complementary
nature of the techniques, so as to help justify the usefulness of the integration. BON and
JML are complementary techniques in the following ways:

— BON provides a CASE tool-supported graphical language for modelling, whereas
JML is text-based. By integrating BON and JML, we provide a tool-supported
graphical syntax for JML.

— JML provides richer tool support for reasoning than does BON. Integrating the
techniques will allow developers to use the JML type checker, run-time assertion
checker, static checkers like ESC/Java, and, eventually, theorem provers like PVS
and Isabelle with their BON models.

— JML provides aricher set of modelling constructs for modelling, particularly mech-
anisms for specifying exceptional behaviour and dependencies. BON provides no
such techniques.

— BON is a method, whereas JML is a modelling language. Integrating BON and
JML effectively adds process support to JML, thus enriching it to a full software
development method.

— By integrating BON and JML, we also provide a method, with tool support, that can
help in producing Java programs from BON models: the integration tailors BON
for developing Java programs.

3.2 Select a base method

The base method in the integration will be BON, in part because it provides a process
that spans requirements analysis, through detailed design, generalisation, and valida-
tion. The BON process will be generalised with the use of JML and its tools. Tools for
BON will be applied throughout tasks 1-5 of the suggested BON process from Fig. 2,
while tools for IML will be used in task 6, and in a new task that will be added later.



3.3 Select the invasive techniques

The invasive technique in this integration is JML. The BON process will be extended to
make use of IML specifications, and thereafter JML tools, during task 6 of the suggested
BON process.

3.4 Extend a heterogeneous basis

The next step is to combine the languages of the techniques of interest. We will thus
add JML to the heterogeneous basis presented in Fig. 4. The extension will occur by
defining a rigorous translation from to JML. The details of the translation are quite long,
and are presented in full in [7]. We provide an overview here. The translation will be
presented in terms of the metamodels of BON and JML.

BON and JML are both based on OO concepts, and are thus founded on the specifi-
cation of classes, features of classes, properties of features and classes, and relationships
on classes. We describe the translation from BON to JML in terms of these four basic
specification concepts.

3.4.1 Translating classesAll BON classes (except primitives, and generic sets) are
translated into JML public interfaces; this is done since a BON class cannot contain
feature implementations, only feature specifications. A BON class may be annotated
with stereotypes, e.g., deferred, effective, reused, interfaced, persistent, root, etc. These
stereotypes are in most cases dropped in translation to JML: the deferred stereotype is
captured by the JML notion of a public abstract interface; effective, reused, external, and
interfaced stereotypes in BON are given only to aid the reader — these could be and are
translated as comments. The persistent stereotype indicates that instances of the BON
class persist between executions of the system. We translate this for now by adding
a comment to the resultant JML class indicating that instances should persist. This
could be implemented in Java usigrializable,but this is not the only mechanism
that can be used for persistence. The BON root stereotype indicates a class from which
execution of a resultant system may begin. This class is mapped to a public interface
with a method callednain .

BON built-in types (e.gJNTEGER, REAL, STRING, BOOLEAN) are mapped
to their JIML equivalents (i.eint ,float ,String ,boolean ). The only significant
change needs to be made with BON generic sets SET;[ G]. These must be mapped
to JML's JMLObjectSet . This latter type is less restrictive than BON generic sets,
in that it allows heterogeneous sets of objects, whereas S#tfi[G], all objects in
the set must be of compatible types. We discuss translating arbitrary generic types in
Section 3.4.6.

3.4.2 Translating features A feature in BON is either an attribute (representing part
of the state of an object), a query, or a command. Attributes in BON are translated
into JML model instance s;the keywordnodel indicates that the instance need
not appear in an implementation. By default, the translation assumes an attribute is
a specification-only variable; the developer can remove this tag if desired. Queries in



BON are side-effect free functions, and thus they are translated intopilvit. func-
tions. Commands in BON can change the state of an object, but cannot return a value.
Thus, they are translated to JML procedures, wittoid return type.

BON classes may also possekferredfeatures, which are routines that are to be
implemented by child classes. These are translated toalddtract methods.

Each feature in BON has a list of accessors, client classes that have permission to
call the feature. This list may allow any clients to access the featurepiilglicaccess),
may allow only routines local to the class to access the featurepiieate access), or
may allow certain specifically named clients to access the feature. The former two kinds
of access lists are mapped directly to IMhigblic methods angrotected meth-
ods'. The last kind of access list is inexpressible in IML and in Java: it is not possible
to restrict access to a method to a list of specific classes. Thus, to translate these access
lists, we first (a) check that the BON model obeys the information hiding rules (the
BON-CASE tool, described in Section 4, guarantees this); and (b) translate the feature
to apublic one, thereby relaxing the specification. This is not ideal, but it is the only
simple way to translate such BON constructs to JML. Of course, this effects round-trip
engineering — if we were to reverse-engineer a BON model from an automatically gen-
erated JML specification, we would lose full export policy information. The integration
of BON and JML has effectively suggested to us that when developing Java programs
from BON, we should restrict use of information hiding in BONA&Y and NONE
access.

3.4.3 Translating properties of features and classesA BON feature may have a
precondition and postcondition, and a class may have an invariant. As well, features
may possess a frame, indicating the attributes that may be changed by the routine. These
constructs exist in JIML as well, and thus the mapping is direct: each BON construct is
translated to its JML equivalent. This will require some minor syntactic adjustments
(e.g., replacing BOMId expressions with IMhold()  expressions). A full descrip-

tion of the syntactic rewriting of expressions and assertions is given in [7].

This direct translation is possible, in part, because the semantics of pre- and post-
conditions in BON is identical to their semantics in JML. It is important to note that
the BON semantics for contracts says nothing about the behaviour of a call made in a
state that does not satisfy the precondition: any behaviour is acceptable (including non-
termination). JML allows specification of exceptional behaviour. As this is a stronger
specification of behaviour than is made in BON, it is sound to map BON feature pre-
and postconditions to JML method pre- and postconditions.

A BON class invariant can be mapped directly to a Jpliblic invariant
The two constructs have the same semantics, with respect to when the invariant must be
true, and when it can be (temporarily) false.

Fig. 5 shows the JML translation of the invariant@fTIZEN shown in Fig. 1(a).

3.4.4 Translating relationships BON possesses three kinds of class relationships:
inheritance, association, and aggregation. The latter two relationships, which define

! We useprotected  instead ofprivate  because BON'®NONE access means that while
clients cannot access the feature, child classes may make use of it.



public invariant: single() || spouse.spouse == this;
public invariant: parents.count == 2;
public invariant: (\forall (Person c) (children.has(c))
==> (\exists (Person p) (c.parents.has(p))
==> (p==this)))

Fig.5. JML translation of CITIZEN invariant

has-aandpart-of relations between client and supplier classes, are translated directly
to attributes of the client class. This accurately captures the precise semantics of as-
sociation (which indicates that the client object refers to one or more instances of the
supplier class), but does not adequately capture the semantics of aggregation. With ag-
gregation, a supplier object is part of the “whole” client object: this part cannot be
shared, nor can a client exist without its supplier part. Thus, we must add to the invari-
ant of the client the clauseipplier_object # null. This is still not sufficient. But IML

(and Java, for that matter) is not expressive enough to distinguish part/whole and has-a
relationships. Thus, developers must take great care when using JML specifications that
result from translating BON aggregation relationships that they do not misuse supplier
objects, e.g., by allowing multiple references to a subobject. The integration of BON
and JML suggests to us that we should avoid use of aggregation in BON, whenever we
develop JML specifications or Java programs.

Inheritance in BON defines a subtyping relationship. It is mapped into the JML
extends relationship. When a feature is inherited, it can be renamed (via BON's
renameclause) andedefine(i.e., its behaviour can be changed). In translating to JML,
we automatically apply all renamings that appear in the BON specification. Thus, child
classes will use the renamed version of a feature, and this renamed version appears in
the interface of the JML child class. Any occurrences of the old name of the feature that
appears in contracts will be replaced by the new name.

Redefined features are translated to overridden methods in JML. BON redefini-
tion allows the modification of a contract: preconditions can be weakened and post-
conditions can be strengthened; this is the strong behavioural subtyping requirement of
Liskov and Wing. JML places the same requirements on redefinition. To enforce this
“subcontracting”, BON allows preconditions to be weakened only by disjoining new
assertions (via eequire elseclause), and postconditions can be strengthened only be
conjoining new assertions (via ansure thenclause). This BON syntax is mapped
directly to JML'salso clauses, which have the same meaning.

3.4.5 Example Here is a small example demonstrating the translation. BON class
EMPLOYEE is shown in Fig. 6. It would be translated into the JML specification
shown in Fig. 7.

(JML actually allows invariant clauses to appear anywhere in the interface of a class.
We include it at the end of the class because it simplifies automatic translation from
BON.) In Fig. 6, gross_salary is exported only to the clasBVLAND_REVENUE,
whereas in the JML specification, it is public. But because the remainder of the JML



classEMPLOYEE
feature {ANY}
name : STRING
age : INTEGER
feature {INLAND_REVENUE}

gross_salary : INTEGER
feature {ANY'}

net_salary(taz_rate : INTEGER) : REAL

require taz_rate > 0 A taz_rate < 100

ensure Result = gross_salary — (taz_rate/100) * gross_salary
invariant age > 0 A name # Void

end

Fig.6. Employee in ASCII BON

public interface Employee {

/*@ public model instance String name; @*/

/*@ public model int age; @*/

/*@ public_normal_behavior
@ requires: tax_rate >= 0 && tax_rate <= 100;
@ ensures: \result==gross_salary-(tax_rate/100)*gross_salary;
@*/

public pure float net_salary(int tax_rate);

/*@ public model int gross_salary; @*/

*@ public invariant: age >= 0 && name != null @/

Fig.7.Employee in IML



specification has been automatically translated from BON, and because we know that
the BON specification obeyed the information hiding model, we know that only in-
terfacelnlandRevenue , of all automatically generated clients, will try to use this
field. However, a more expressive notion of information hiding, along the lines of BON
would be useful in JIML (and in Java, for that matter).

We now discuss complications in translating BON to JML, particularly with map-
ping multiple inheritance, genericity, and covariant feature redefinition.

3.4.6 Complications and expressivenesthe potential for problems arises in trans-
lating four BON constructs into JML.

1. Multiple inheritanceln BON, a class may have one or more parents, thus defin-
ing one or more subtype relationships. In JML and Java, multiple inheritance is
only permitted on interfaces. Fortunately, a BON class cannot possess an imple-
mentation (i.e., only feature specifications can be given), and so each BON class
is mapped to a JML interface, and thus multiple inheritance in BON can be trans-
lated directly to multiple interface inheritance in JML. This only works because
JML permits interfaces to contain fields, whereas in Java only method interfaces
are allowed in interfaces.

We experimented with using automatic delegation, via the Jamie tool [26], for map-
ping BON multiple inheritance into single inheritance (with use of a private field).
This would not work since Jamie requires method implementations in order to ap-
ply the delegation design pattern, and JML does not support method implementa-
tions. This information can be added to Java method bodies integrated with the JIML
specifications, but since the JML toolset does not examine method bodies, this is
not entirely useful since it will not permit accurate reasoning. When JML and Java
are combined, and expressed in PVS using the LOOP tool, then accurate reasoning
will be possible.

2. Generic typesBON supports generic classes, e$ET[G], etc., while JML and
Java do nét The most commonly used BON generic classes, 86| G], can be
translated to JML built-in object types, e.dMLObjectSet . Object types allow
heterogeneous collections of data to be stored, and thus they are less restrictive than
the BON classes. User-defined generic classes cannot be mapped automatically to
JML without user assistance: generic parameters would have to be replaced by use
of Object , strong typing would be lost, and formerly homogeneous data structures
would be translated to heterogeneous data structures. The current implementation
of the BON to JML translation allows use of generic classes in BON diagrams, but
warns the user that problems will arise when they are translated to JML: generic
parameters are not mapped@bject types, though this could be implemented
easily. Currently, translated generic classes are not accepted by JML tools.

3. Covariant redefinitionBON is a covariant language, in the sense that signatures
of features can be covariantly redefined as they are inherited: types that appear in
a routine signature can be replaced with a subtype. This applies to parameters, re-
sult types of functions, and types of attributes. JML and Java are strictly no-variant

2 Though as announced at JavaOne 2001, Java 1.5 will provide support for generics, and so we
expect JML will eventually provide the same.



(with the exception, in Java, of arrays which are contravariant). A developer trans-
lating BON to JML may choose not to apply covariant redefinition (which they may
very well do if they anticipate implementing their specification in Java). The BON-
CASE tool, discussed in the next section, allows developers to covariantly redefine
routines. When translating to JML, a covariantly redefined routine is translated to
an overloaded method. This does not permit use of polymorphic attachments and
dynamic dispatch on the method.

4. Information hiding.We have already discussed the differences in the information
hiding models of BON and JML. A list of feature client classes that differs from
NONE or ANY in BON is mapped tgublic in JML. This is not satisfactory,
so we envision that perhaps the JML toolset could be extended to check that the
information hiding model is obeyed (i.e., that only permitted clients are accessing
methods and attributes), and suitable comments could be embedded in JML speci-
fications.

In constructing the translation from BON to JML, we have had to address the ex-
pressive differences — both syntactic and semantic — between the two languages. As a
result, due to the similarities between JML and Java, we have captured precisely the
core difficulties that will arise when trying to translate a BON specification into JML,
and therefore have revealed potential problems in mapping a BON model into Java.

We have not proven the soundness of the translation. This is challenging in part
because only a partial formal semantics has been defined for BON (see [19]) and the
semantics for JML is still evolving. Soundness will be challenging to establish, given
the nature of the two modelling languages, which provide many modelling constructs.
Still, we have confidence in the validity of the translation for two reasons.

— We have systematically described how each BON construct is to be translated to
JML. While this description is only semi-formal, it is precise enough to give a
reader confidence in its soundness. Such a presentation will be useful in later veri-
fications of the translation.

— We have applied the JML checker to a humber of translated BON specifications
(both specifications we expect to be accepted by the checker, and those we expect
to not be accepted). In all cases, the expected results corresponded with the results
provided by the checker.

3.5 Define the integrated process

The next step in combining BON and JML is provide an integrated development process
that captures how the techniques are to be used together. In general, if we are integrat-
ing two methods that each provide their own processes, we will be required to define
how these processes interact. This will involve, typically, addition of process steps from
one method to another method, replacement of process steps, defining synchronisation
points between parallel processes, or defining where one process will leave off during
development, and where a second process will commence. However, JML is a mod-
elling language and provides de factoprocess. Thus, we must explain how the BON
process is to bgeneralisedo make use of JML.



The BON process was described in Section 2.1.1. Task #6 of the process, defining
public features and contracts, is the first place wherein precise assertions are added to
features and classes. Itis at this step where we choose to extend the process to use JML.

The generalised process is sketched in Fig. 8, using an activity diagram. New tasks
have been introduced between defining public features and contracts, and refining the
system. In these new tasks, we produce JML specifications from BON (automatically,
using the BON-CASE tool described in the next section), and apply the JML checker
to them. The checker will provide feedback on the specification. For now, this feedback
is limited to syntax and type checking, but eventually it will be possible to reason about
JML specifications using theorem provers like PVS and Isabelle. Any feedback pro-
vided by the checker that reveals flaws or errors in the specification can be fed back in
to the BON specification. ThRefine systentask is an extension of a similarly named
task from the original BON process. There are two paths that the new task can generate.
In one path, we take the feedback provided by the JML checker and revise the BON
model. We can then apply task #7 again, and iterate this process until we are satisfied
with the BON specification. At this point, we continue with the standard BON process,
factor out common behaviour, complete the system, and generate code — likely in Eif-
fel. In the second path, we remain within the JML/Java setting. After producing and
checking JML specifications, we continue the development by refining the JML speci-
fications to Java code. Thus, the generalised process can effectively help us target two
possible implementation languages using BON: Eiffel and Java.

The process we have shown relies on tools for checking JML specifications, and for
producing BON models in the first place. We next describe a tool, called BON-CASE,
which not only supports the construction of BON models, but also helps to automate
task #7 in the generalised process of Fig. 8.

4 Tool Support for the Integrated Method

The BON-CASE tool [7] is an open-source CASE tool for BON. It is implemented in
JFC/Swing, atop the GEF framework. The CASE tool (version 1.1) supports the full
BON notation, including static diagrams (classes and interfaces, clusters, relationships,
and assertions), and dynamic diagrams (objects, messages, and scenarios). Its persis-
tence mechanism supports storing diagrams in the ASCII dialect of BON, XML, and
JPEG, amongst other formats (which we discuss shortly). The CASE tool implements
a large portion of the BON metamodel, which was formally specified and partly vali-
dated in [20]. Thus, BON models produced using the CASE tool satisfy the syntactic
well-formedness constraints of BON, as well as a number of lightweight semantic con-
straints (e.g., that feature calls are made according to the information hiding model).
The exact list of metamodel constraints that are implemented can be found in [7].

Fig. 9 gives an overview of the tool's user interface for producing static diagrams.
A static diagram, without class interface details, can be produced using one drawing
canvas, and when the user desires to add interface details (e.g., feature names, con-
tracts, signatures, etc.) to a class, a further dialog is displayed. The tool also supports
class interfaces, using the notation in Fig. 1(a), as well as collaboration and use-case
diagrams.
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The abstract package architecture of the tool is shown in Fig. 10. The main com-
ponents of the tool are the diagram editor, the BON parser (which generates abstract
syntax trees), the code generator (which is an abstract interface that is implemented by
specialised code generators for target languages) and the metamodel, which encapsu-
lates the well-formedness constraints on BON models.
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Fig.10. Architecture of the BON-CASE tool

A critical component of the tool is its code generation engine. The code generator,
designed using the Template pattern [5], abstracts the code generation process from
concrete implementations of abstract syntax tree walkers. Thus, it is straightforward to
add new code generators to the tool without affecting the other subsystems. The engine



was recently extended with generators for producing Java and Eiffel code skeletons (as-
sertions in the BON models are transformed to iContract assertions or Eiffel assertions
directly). The architecture of the code generator package is shown in Fig. 11. A redesign
of this package is currently being considered, based on the use of the Visitor pattern as
suggested in [24]. We are considering this redesign in part because the concrete ele-
ments (the abstract syntax tree) being accessed by tree walkers are stable and unlikely
to change over time, and because the Visitor pattern will lead to easier extension and
future tool integration.

CODE_GENERATOR*

generate_system code
generate_descenndent_code
generate_cluster_code*
generate _class_code*
generate _class_invariant*
generate class_feature _code*

HIERARCHY_GENERATOR*

generate_cluster_code+

generate _class_code+

generate _class_features+
generate class_declaration_start*
generate class_declaration_end*

BON_GENERATOR+ JML_GENERATOR+

Fig.11.The code generator cluster

BON-CASE provides a code generator for JIML, which implements the translation
rules discussed in Section 3. The JML code generator is implemented by first generating
ASCII BON from a graphical BON model. In this process, an abstract syntax tree is
produced. The JML code generator, implemented using the ANTLR tool [22], walks
the abstract syntax tree and emits JML code. A number of examples of generated JML
specifications can be found in [7]; these automatically generated specifications have
been processed and checked by the JML checker.

The BON-CASE tool can be used during the first six tasks of the generalised BON
process. The JML code generator can be applied during task #7, and the results of
applying the JML checker to the automatically generated JML code can be fed back
in to the BON process in task #8. The feedback provided by the JML checker is, of
course, given in terms of JML syntax, but the relative closeness of this syntax to that of



BON does not make it difficult to utilize this feedback in modifying the original BON
models. Adding reverse engineering facilities to BON-CASE will help here (we are
currently working on adding these facilities). We note as well that, at least informally,

the semantics of BON and JML have much in common (e.g., in terms of contracts,
reference types, classes, etc.) so that we can expect and have received useful feedback
from the JML checker about errors or problems with our BON models.

5 Discussion and Lessons Learned

Method, modelling language, and tool integration can be done for a number of reasons:
to increase the expressive power of software development languages; to add a process
to a modelling language; to generalise, extend, or improve a process through addition of
tasks from other processes; to help smooth the adoption of new techniques in a project;
and to acquire use of hitherto unavailable tools.

The integration of BON and JML presented in this paper fits under the last cate-
gory. The primary motivation for defining the translation from BON to JML, and for
implementing the translation within the BON-CASE tool, was to be able to use the JIML
toolset with BON. Previously, BON had only very limited support for reasoning about
specifications; this integration provided the means to use JML's existing tools — and,
inevitably, future tools — for reasoning. However, there were other reasons for carrying
out the integration as well.

— Targetting Java codeBON is particularly useful when applied in concert with the
Eiffel programming language. However, much recent software development has
been carried out with other languages, particularly Java and C++. We desired to
make it easier for developers to build Java applications while still making use of
BON. Since JML is a modelling language for Java applications, defining an in-
tegration of BON and JML provides methodological support for producing Java
applications from BON specifications. We mention that the current version of the
BON-CASE tool, on generation of Java code from BON models, is capable of gen-
erating iContract specifications as well, and it will be easy to extend the tool to
generate Java 1.4 code.

— Graphical views of JML specificationdML is strictly an ASCIlI-based language.
For building large systems, graphical views are particularly helpful, and are popular
with developers. This integration provides, effectively, a visual front-end for JIML.
This will be particularly helpful in producing large JML specifications. We point
out that the integration and the BON-CASE tool provides a simple way to produce
JML interfaces quickly: a BON model is drawn using BON-CASE. Then, JML
interfaces are automatically generated. The JML interfaces can then be extended
with desired details that are more efficient to add using an editor.

A critical issue in integrating methods and languages is in dealing with differences
in expressiveness. BON and JML provide different modelling constructs, some of which
are inexpressible in the other language. For example, BON provides an aggregation
(part-of) relationship that cannot be directly mapped to JML; it also provides renam-
ing and covariant redefinition that are inexpressible in JML. JML proviltggends



relations and exceptional behaviour specifications that have no equivalent in BON. In
practical terms, we have to decide how to deal with these differences when using the
languages together. Our perspective on this issue is as follows.

— It is absolutely critical to know where problems may arise in translating from one
language to another. We have catalogued the core constructs in BON and JML
that are not directly translatable to equivalent constructs, and which must first be
refined in order to be translatable. Given this catalogue, tool builders will know
where problems will arise in implementing code generators.

— Restricting use of a modelling language to enable translation is a useful technique,
but it is not always possible, nor is it always convenient. Developers should not be
forced to restrict use of a modelling language just so as to permit translation. Any
method integration technique should allow developers to best select how to deal
with differences in expressiveness.

— It must be determined by the developers how to best refine a BON model that cannot
be expressed in JML, to a specification that can be translated. Developers will have
to rely on their own experience and skill in order to carry this out.

We learned the following important lessons about method integration and tool sup-
port for integration techniques in the course of this work.

— If we are not able to prove the soundness of a translation (perhaps due to an incom-
plete formal semantics for one or both of the languages), then we can be convincing
about the translation’s reasonableness by presenting the translation in a systematic
fashion. This is an appropriate technique for large-scale translations (involving lan-
guages with many features) as well as languages with an incomplete formal seman-
tics.

— The Template design pattern is useful in defining an extendible mechanism for
loosely integrating tools via file-sharing. The pattern is also an appropriate mech-
anism for a low-cost implementation of an extendible heterogeneous basis. The
pattern was used in implementing the BON-CASE tool's code generator compo-
nent, and it was found to be useful in extending the tool to automatic generation of
Eiffel code as well as iContract-annotated Java code.

— It is typically difficult, if not impossible, to define complete translations between
languages that are semantics-preserving, because of the differences in expressive-
ness of the languages. A semantics-preserving translation may be definable on a
subset of a language.

— A useful language translation will bstructure preservingi.e., a homomorphism
in the sense of [11]), wherein the translation will be monotonic over language com-
binators;refinement preservingndsemantics preservingn an identified (though
not necessarily strict) subset of the source language.

We have taken a very pragmatic approach to integration in this paper: we desired
to use the JML toolset with BON, and we developed and implemented a translation to
effect this. We have not yet proven the soundness of the translation, nor the correctness
of its implementation. Our experiments with the JML checker have given us greater
confidence in the correctness of the translation. Also, the systematic way in which we



have structured and presented the translation adds to our confidence. It would be bene-
ficial to have a proof of soundness for the translation. This is made more challenging by
the size of the BON and JML languages, and the relative imprecision that still remains
in the semantics of each language.

A key limitation with the integration — and the implementation in the BON-CASE
tool — is the inability to reverse the translation, i.e., to take manually modified JML
specifications and reverse engineer a BON specification from it. Currently, changes in
JML specifications have to be manually inserted into the original BON specification.
The BON-CASE tool currently does not support reverse engineering, though the in-
frastructure to allow this is present in its design. We are currently defining a reverse
mapping, from JML to BON, and plan to implement it along with other reverse engi-
neering facilities in the tool in the near future. We are also experimenting with extending
the basis and the tool with further languages, e.g., Object-Z written in LaTeX source,
and Object-Z documents expressed in the XML markup of [25]. The latter, in partic-
ular, should be reasonably straightforward to implement since the CASE tool already
supports generation of XML documents.
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