
            

Holes in Joins

Jarek Gryz and Dongming Liang

Technical Report CS-2001-03

June 18, 2001

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada



Holes in Joins

Jarek Gryz and Dongming Liang
York University

Toronto

Abstract

A join of two relations in real databases is usually much smaller than their cartesian product.

This means that most of the combinations of tuples in the crossproduct of the respective relations

do not appear together in the join result. We characterize these combinations as ranges of

attributes that do not appear together. We sketch an algorithm for �nding such combinations

and present experimental results from two real data sets. We then explore potential applications

of this knowledge to query optimization. By modeling empty joins as materialized views, we

show how knowledge of these regions can be used to improve query performance.

1 Introduction

A join of relations in real databases is usually much smaller than their cartesian product. For exam-

ple, the OLAP Benchmark from [10] with a star schema of six dimension tables with, respectively,

12, 15, 16, 86, 1000, and 10,000 tuples, has a fact table of the size of 2.4 milions tuples. The size

of the fact table is thus 0.00009% of the size of the cartesian product of the dimension tables.

This, rather trivial, observation about the relative size of the join and the respective cartesian

product, gives rise to the following questions: Can the non-joining portions of the tables (which

we call empty joins in this paper) be characterized in an interesting way? And secondly: Can this

knowledge be useful in query processing? Consider the following example.

Example 1 Consider Lineitem and Order tables in TPC-H [29]. The o orderdate attribute in

the Order table stores information about the time an item was ordered, the l shipdate attribute

in the Lineitem table stores information about the time an item was shipped. The two attributes

are correlated: an item cannot be shipped before it is ordered and it is likely to be shipped within

a short period of time after it is ordered. Assume that an item is always shipped within a year

from the time it is ordered. This is depicted graphically in Figure 1. Thus, for a given range of

o orderdate, only the tuples from that range extended by one year of l shipdate will be in the

join of Lineitem and Order. The remaining portions of the tables will not appear together in the

join result.

Knowledge of empty joins may be valuable in and of itself as it may reveal unknown correlations

between data values which can be exploited in applications. For example, if a DBA determines

that a certain empty join is a time invariant constraint, then it may be modeled as an integrity

constraint. Indeed, the fact that an item cannot be shipped before it is ordered is de�ned in TPC-H

as a check constraint [29].
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Figure 1: Distribution of tuples with respect to the values of shipdate and orderdate.

But even if the discovered empty joins are not the result of a time invariant property or con-

straint, knowledge of these regions may be exploited in query optimization. Consider the following

example.

Example 2 Consider the following query over TPC-H.

select sum(l totalprice)

from lineitem l, order o

where l orderkey = o orderkey

AND o orderdate BETWEEN `1995.01.01' AND `1996.01.01'

Given the correlation of Figure 1, this query can be rewritten as:

select sum(l totalprice)

from lineitem l, order o

where l orderkey = o orderkey

AND o orderdate BETWEEN `1995.01.01' AND `1996.01.01'

AND l shipdate BETWEEN `1995.01.01' AND `1997.01.01'

By reducing the range of one or more of the attributes or by adding a range predicate (hence

reducing an attribute's range), we reduce the number of tuples that participate in the join execution

thus providing optimization.1 In the extreme case, when the predicates in the query fall within

the ranges of an empty region, the query would not have to be evaluated at all, since the result is

necessarily empty.

1We are assuming that the selection is done before the join execution.
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An empty join can be characterized in di�erent ways. The most straightforward way is to

describe it negatively by de�ning a correlation between data points that do join. Thus, for the two

attributes from Example 1 we can specify their relationship as a linear correlation:

l shipdate = o orderdate+ [0; 1 year]

where [0, 1 year] is the correlation error. We explored this idea in [15] and showed how such

correlations can be used in query optimization. We also learned, however, that such correlations

are rare in the real data that we explored. Real data is likely to be distributed more randomly,

yet not uniformly. In this paper, we propose an alternative, but complementary approach to

characterizing empty joins as ranges of attributes that do not appear together in the join. For

example, there are no tuples with l orderdate > `1995.01.01' and l shipdate < `1995.01.01' in the

join of Lineitem and Order. In other words, the join of Lineitem and Order with thus speci�ed

ranges of l orderdate and l shipdate is empty. To maximize the use of empty joins knowledge, our

goal in this work is to not only to �nd empty joins in the data, but to fully characterize that empty

space. Speci�cally, we discover the set of all maximal empty joins in a two dimensional data set

(that is, a two-way join). Maximal empty joins represent the ranges of the two attributes for which

the join is empty and such that they cannot be extended without making the join non-empty.

We suggest that empty joins can be thought of as another characteristic of data skew. By

characterizing ranges of attributes that do not appear together, we provide another description

of data distribution in a universal relation. Indeed, we show that data skew - a curse of query

optimization - can have a straightforward, practical application for that very query optimization.

In Section 2, we formally introduce this problem and sketch an algorithm (which appears origi-

nally in [12]) for �nding the set of all maximal empty joins in a dataset. In Section 3, we present the

results of experiments performed on real data, showing the nature and quantity of empty joins that

can occur in large, real databases. In Section 4, we describe a technique illustrating how knowledge

of empty joins can be used in query processing. We model the empty joins as materialized views,

and so we exploit existing work on using and maintaining materialized views. Our solution therefore

has the highly desirable property that it provides new optimization method without requiring any

change to the underlying query optimization and processing engine. We also present experiments

showing how the quality of optimization depends on the types and number of empty joins used in

a rewrite. Related work is described in Section 5. Conclusions and future work are presented in

Section 6.

2 Discovery of Empty Joins

In this section we introduce a formal representation of empty joins and present a sketch of an

algorithm for �nding all maximal empty joins within a two dimensional data set (two-way join).2

2We make the restriction to two-way joins only for simplicity. Indeed, empty joins can be discovered for any pair
of attributes from a multi-way join.
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2.1 Empty Join Representation

Consider a join of two relations R 1 S. Let A and B be attributes of R and S respectively

over two totally ordered domains. (Note that A and B are not the join attributes.) We are

interested in �nding ranges of A and B for which the join R 1 S is empty. De�ne the data set

D = �R:A;S:B(R 1 S). Let X and Y denote the set of distinct values for attributes A and B

respectively. The set D consists of a set of tuples hvx; vyi over two ordered domains. We can

depict the data set as an jXj � jY j matrix M of 0's and 1's. There is a 1 in position hx; yi of the

matrix if and only if hvx; vyi 2 D where vx is the xth smallest value in X and vy the yth smallest

in Y . An empty join is represented in M as a rectangle containing only 0's and no 1's. The

coordinates (x0; x1); (y0; y1) of the rectangle specify the endpoints of the ranges of attributes A and

B for which the join is empty. Since there is a one-to-one correspondence between an empty join

and a 0-rectangle in the corresponding matrix M , we will sometimes refer to empty joins as empty

rectangles in the remainder of this paper.

An empty rectangle is maximal3 if it cannot be extended along either the X or Y axis because

there is at least one 1-entry lying on each of the borders of the rectangle.

Example 3 Let A be an attribute of R with the domain X = (1; 2; 3) and let B be an attribute

with domain Y = (6; 7; 8). Assume that �R:A;S:B(R 1 S) = f(3; 6); (1; 7); (3; 8)g. The matrix M for

the data set is shown in Figure 2a. Figure 2b shows all maximal empty rectangles.
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Figure 2: The matrix and some of the empty rectangles (marked with thick lines) for Example 3

Knowledge of large empty rectangles in a data set can help query optimization because such

regions do not need to be considered during query processing. If a query can be optimized with

respect to some empty join J , then it can be optimized at least as well with respect to a larger

empty join J 0 that contains J (but not vice versa). In addition, having many empty rectangles,

even if they overlap, enhances the query optimization potential of the discovered regions. For these

3It is important here not to confuse maximal with maximum (largest).
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reasons, we consider the problem of �nding all maximal empty rectangles. (In practice we keep

only those that are su�ciently large.)

Although it appears that there may be a huge number of overlapping maximal rectangles, [23]

prove that the number is at most O(jDj2), and that for a random placement of the 1-entries, the

expected value is O(jDj log jDj). We proved in [12] that the number is at most O(jXjjY j).)

A related problem attempts to �nd the minimum number of rectangles (either overlapping or

not) that covers all the 0's in the matrix. (It is a special case of the problem known as Rectilinear

Picture Compression [13].) This problem is NP-complete, and hence is impractical for use in large

data sets. Besides, as we shall show in Section 4 that for the purpose of query optimization, it is

more important to have large rectangles than to have the minimum number of rectangles.

2.2 Overview of the Algorithm

The algorithm for �nding all maximal empty rectangles in a given data set is scalable to large

data sets because it uses relatively little memory and keeps disk access to a minimum. The input

consists of a two dimensional data set D of tuples hvx; vyi is stored on disk sorted with respect to

the Y domain. The algorithm requires only a single scan over this data. The output consists of

the coordinates of the empty rectangles and can be written to disk, as generated. The memory

requirements are �(jXj), which is an order of magnitude smaller than the size O(jXjjY j) of both the

input and the output. (We assume without loss of generality that jXj � jY j.) The time complexity

of the algorithm, O(jXjjY j), is linear in the size of the underlying matrix.

The matrix representation M of the data set D is never actually constructed. For simplicity,

however, we describe the algorithm completely in terms of M . (The reader is referred to [12] for

the details of the algorithm). We shall insure that only one pass is made through the data set D.

The main strategy of the algorithm is to consider each 0-element hx; yi of M one at a time, row

by row. Although the 0-elements are not explicitly stored, this is simulated as follows. We assume

that the set X of distinct values in the (smaller) dimension is small enough to store in memory.

The data set D is stored on disk sorted with respect to the Y domain. Tuples from D are read

sequentially o� the disk in this sorted order. When the next tuple hvx; vyi 2 D is read from disk,

we are able to deduce the block of 0-elements in the row before this 1-element.

When considering the 0-element hx; yi, the algorithm needs to look ahead by querying the

matrix elements hx+ 1; yi and hx; y + 1i. This is handled by having the single pass through the

data set actually occur one row in advance. Similarly, when considering the 0-element hx; yi, the

algorithm looks back and queries information about the parts of the matrix already read. To avoid

re-reading the data set, all such information is retained in memory.

The algorithm sketched above has a straightforward generalization to higher dimensions (also

described in detail in [12]). However, in all experiments described in the remainder of this paper,

we only consider two dimensional datasets. This is a consequence of the following result.

Theorem 2.1 The number of maximal 0-hyper-rectangles in a d-dimensional matrix is �(n2d�2),

for which n = jXj = jY j.
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The number of such maximal hyper-rectangles (which represent multi-way empty joins) and

hence the complexity of an algorithm to produce them increases exponentially with d. For d = 2

dimensions, this is �(n2), which is linear in the size �(n2) of the input matrix. For d = 3 dimensions,

it is already �(n4), which is not likely practical in general for large data sets. A heuristic is required

to discover hyper-rectangles. We do not address this issue here.

3 Characteristics of Empty Joins

We would expect real data sets to exhibit di�erent characteristics than synthetic data sets such as

the TPC-H benchmark. Hence, to characterize empty joins we used two real databases, the �rst

an insurance database, the second a department of motor vehicles database. We ran the empty

joins mining algorithm on 12 pairs of attributes. The pairs of attributes came from the workload

queries provided with the databases. These were the attributes frequently referenced together in

the queries. For consiseness, we only present the results of �ve representative4 tests here. For all

reported tests the mining algorithm ran in less than 2 minutes.

Table 1 contains relevant information about the tables and attributes considered in the tests:

the number of tuples in each of the joined tables jRj and jSj, the size of the cartesian product of the

tables jR� Sj, the size of the join jR 1 Sj, and the number of distinct values of the two attributes

of interest, jXj and jY j (where X is the domain of A and Y is the domain of B).

Test jRj jSj jR� Sj jR 1 Sj jXj jY j

1 931,174 1,654,700 1.5 * 1012 7,610,723 525 8

2 624,473 1,654,700 1012 1,654,700 6 37,716

3 931,174 624,473 :5 � 1012 907,736 525 423

4 931,174 1,654,700 1.5 * 1012 7,610,723 47 7

5 624,473 1,654,700 1012 1,654,700 5 38,203

Table 1: Input Data

Table 2 contains the mining results: the number of discovered empty joins E and the sizes of

the 5 largest empty joins measured by two di�erent metrics SA and ST . The �rst metric de�nes

the size of an empty join as the area it covers with respect to the domains of values of the two

attributes. It is de�ned formally in the following way.

Let E be an empty join with the coordinates (x0; x1); (y0; y1) over attributes A and B with

domains X and Y respectively in tables R and S respectively. The relative size of the join with

respect to the covered area, SA(E), is de�ned as:

SA(E) =
(x1 � x0) � (y1 � y0)

[max(X)�min(X)] � [max(Y )�min(Y )]
� 100% (1)

4They are representative in the sense that they cover the spectrum of results in terms of the number and sizes of
the discovered empty joins.
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Test E Size of largest 5 empty joins measured by the two metrics
SA ST

1 269 74 73 69 7 7 .02 .016 .008 .008 .004
2 29,323 68 58 40 37 28 .05 .03 .03 .03 .03
3 13,850 91.6 91.6 91.3 91.3 83.1 1.85 1.84 1.11 .03 .03
4 7 8.8 2.1 1.2 0.6 0.3 9.8 5.4 3.9 2.4 1*10�8

5 25,307 39.9 39.8 24 20 20 50 6 4.4 3.9 2.2

Table 2: Number and Sizes of Empty Joins

The reason we de�ne a second metric, ST (E), is that the �rst metric, SA(E), can be misleading

as a measure of empty joins. What we discovered was that some of the \empty" joins were empty,

because there were no tuples falling in one or both of the respective ranges of the two attributes,

and not beacase the tuples would not join. Measuring area using SA measures how many domain

values do not participate in the join. However, an empty join might exist solely because no tuples

in R (or S) exist for those domain values in A (or B). Hence, we devise a more meaningful ranking

of the empty joins. We measure now how many contiguous (with respect to the domains of each of

the attributes) tuples in essence do not join. From this perspective, the \size" of an empty join is

de�ned as the product of the number of tuples within the ranges of the two attributes relative to

the size of the cartesian product of the two tables. It is de�ned formally as follows.

Let jRx1
x0
j be the number of tuples in the range (x0; x1) of attribute A, and jS

y1
y0
j be the number

of tuples in the range (y0; y1) of attribute B. Then the relative size of the empty join E with respect

to the number of tuples in the cartesian product of the two tables R and S is de�ned as:

ST (E) =
jRx1

x0
� Sy0y1 j

jR � Sj
� 100% (2)

We note that for uniform data distribution with su�ciently dense attribute domains,5 ST and

SA yield identical results.

We make the following observations:6

1. The number of empty joins discovered in the tested data sets is very large. In some cases

(see Test 3) it is on the order of magnitude of the theoretical limit of the possible number of

empty joins [12].

2. In virtually all tests, extremely large empty joins (measured by SA) were discovered. Usually,

however, only a few are very large and the sizes drop dramatically to a fraction of a percentage

point (see Figure 3) for the others.

5More precisely: ST and SA yield identical results for an empty join (x0; x1); (y0; y1) if there is at least one tuple
in the range (x0; x1) if attribute A and at least one tuple in the range (y0; y1) of attribute B in uniformly distributed
data.

6Due to con�dentiality of the data we are unable, unfortunately, to describe the meaning of some of the discovered
empty joins.
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Figure 3: Distribution (with respect to SA) of empty joins in Test 1.

3. The empty joins overlap substantially. The �ve SA-largest empty joins from Test 1 overlap

with, respectively, 7, 11, 16, 7, and 8 other empty joins discovered in that data set. These

overlaps are a consequence of our decision to �nd all maximal empty joins. They also cover

a large a large area of the join matrix, that is, the combination of values from the domains

of the two attributes (see Figure 4).

R.A

S.B

Figure 4: The area (in dark) covered by thr �ve SA-largest empty joins in Test 1 indicates no tuples
in the join for the respective ranges of attributes A and B.

4. The metrics SA and ST lead to very di�erent rankings of empty joins. Indeed, none the SA-

largest join is among the ten ST -largest joins in any of the experiments. For example, for Test

1, the SA-largest empty join is ST -ranked at 250-th; the ST -largest is 267-th in SA-ranking.

5. The \sizes" of the ST -largest empty joins appear as much smaller than the SA-largest joins.

Some of them, however, can be objectively large as well (see Test 5 and Figure 5). This is

important, as the quality of optimization achieved by the use of empty joins is determined

primarily by the number of tuples removed from the tables before the join execution.

6. The experiments reveal two types of data skew. The �rst one is non-uniformity of data

distribution within a domain of one (or both) attribute. This is indicated by SA-large empty

joins without corresponding ST empty joins (that is, the same empty join measured by the

ST metric is of size zero) for the same range of attributes. Consider an empty join E with
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Figure 5: The sizes (with respect to ST ) of the largest empty joins in Test 5.

the coordinates (x0; x1); (y0; y1). If no empty joins have been discovered for this combination

of the ranges of the attributes using metric ST , then there are no tuples in the range (x0; x1)

or (y0; y1).

The second type of data skew is non-uniform distribution of the values of the two attributes

with respect to each other in the universal relation. The very existence of ST -large empty

joins means that there are ranges of each attribute with many tuples in the respective two

tables, yet no tuples in the join.

4 Using Empty Joins in Query Optimization

4.1 Query Rewriting

Using the algorithm of the previous section, we can discover empty joins in any two dimensional

dataset. We now turn to the question of how to use this knowledge e�ectively in query optimization.

Our approach is to model the empty joins as materialized views. The only extra storage required

is the storage required for the view de�nition since the actual materialized view will be empty.

Let Q be a SELECT-FROM-WHERE query representing a two-way join with two projected

attributes X and Y .

select X;Y

from R1; R2

where JoinCond(Q)

Suppose we have mined the result of this query for empty joins and determined that the region

(x0 � X � x1, y0 � Y � y1) is empty. We model this region using the following view.

create view empty as

select *

from R1; R2

where JoinCond(Q)

and X between x0 and x1

and Y between y0 and y1

9



We can now use existing results on determining whether a view can be used to answer a query

and on rewriting queries using such views [28]. Rather than restating these results, we present an

example of how they would be used in our context.

Example 4 Suppose that we mined for empty joins in a join represented by the following query:

J: select o orderdate, l extendedprice,

from Lineitem l, Order o

where l orderkey = o orderkey

Suppose we detected that there are no items priced over 1,000,000 ordered before 01.01.95. We

represent this information in the following view.7

V: create view empty as

select *

from Lineitem l, Order o

where l orderkey = o orderkey

AND l extendedprice > 1,000,000

AND o orderdate < `1995.01.01'

Now, consider a variant of the query of Example 2.

Q: select *

from Lineitem l, Order o

where l orderkey = o orderkey

AND o orderdate BETWEEN `1985.01.01' AND `1996.01.01'

AND l extendedprice > 1,000,000

Using the rewrite algorithm of [28], we can rewrite Q as Q0 which uses V .

Q0: select *

from Lineitem l, Order o

where l orderkey = o orderkey

AND o orderdate BETWEEN `1995.01.01' AND `1996.01.01'

AND l extendedprice > 1,000,000

union

select *

from empty

7Note that the missing endpoints of the ranges are implicit as the maximum and the minimum value of
l extendedprice and o orderdate respectively.
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Figure 6: Query Q overlaps the empty View V .

Given that the view is empty the second block of Q0 will also be empty. What we have done is

notice that the Query Q and the View V overlap as depicted in Figure 6. Using this information,

we further rewrite the query by dropping the second block to obtain simply the following:

Q00: select *

from Lineitem l, Order o

where l orderkey = o orderkey

AND o orderdate BETWEEN `1995.01.01' AND `1996.01.01'

AND l extendedprice > 1,000,000

E�ectively, we are using the empty joins to reduce the ranges of the attributes in the query

predicates. This, in turn, reduces the size(s) of the tables participating in the join, thus reducing

the cost of computing the join.

4.2 Choosing Among Possible Rewrites

There are several ways such rewrites of the ranges can be done depending on the types of overlap

between the ranges of the attributes in the query and the empty joins available. Previous work on

rewriting queries using views can be used to decide when a view, in this case an empty view, can

be used to rewrite the query [22, 28]. However, this work does not give us a way of enumerating

and prioritizing the possible alternative rewrites for the inequality predicates used in our queries

and views.

As shown in Figure 6, a pair of range predicates in a query can be represented as a rectangle in

a two dimensional matrix. Since the goal of the rewrite is to \remove" (that is, not to reference)

the combination of ranges covered by an empty join, we need to represent the non-empty portion

of the query, which we will call the remainder query [11]. Consider Figure 7, which illustrates �ve

fundamentally di�erent ways a query, represented as a rectangle with thick lines, can overlap with

an empty join marked as a �lled rectangle.
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Figure 7: Overlaps of increasing complexity between the query and empty joins.

In Case (a), the remainder query can be still represented as a single rectangle. Hence, the

rewritten SQL query has a single non-empty query block. In Case (b), however, the remainder

query has to be represented by at least two rectangles, which implies that the rewritten SQL

query will be the UNION ALL of two non-empty query blocks (or an appropriate OR condition).

Cases (c), (d), and (e) illustrate even more complex scenarios where three or four rectangles are

needed to describe the remainder query. Indeed, it has been shown in [6] that blind application

of materialized views may result in worse plans compared to alternative plans that do not use

materialized views. This is also true about empty views. Our experiments reported below suggest

that using rewrites containing multiple non-empty query blocks usually degrade rather than improve

query performance. The decision about which empty joins to use in a rewrite must be made within

the optimizer in a cost-based way. There are cases, however, when cost-based optimization can

be avoided. For example, a rewrite of type (a) in Figure 9 is guaranteed not to produce worse

performance than in the original query provided this rewrite can be found e�ciently. We believe

that other cases of this type can be identi�ed.

We investigate how the following factors a�ect the quality of optimization:

1. The size of the overlap between an empty join and a query.

2. The type of the overlap.

3. The number of empty joins overlapping the query used in the rewrite.

To demonstrate the usability of empty joins for query optimization under various overlap con-

ditions, we performed several sets of experiments.

4.3 Quality of Optimization

The experiments described below were run on a PC with PII-700MHz, 320M Memory under Win-

dows 2000, DB2 UDB V7.1 for NT.

We created two tables R(id int;X int; J int) and S(id int;X int; J int), where J is a join

column and X and Y are attributes with totally ordered domains. The range of values for both X

and Y is 0� 10; 000. R has 100k tuples, S has 10M tuples uniformly distributed over the domains

of X and Y (hence SA = ST ). The join method used in the queries below is sort-merge join.8 No

indexes have been created or used.
8Similar results were obtained for nested-loops join. No optimization can be achieved for index nested-loops, since

the join is executed before the selections.
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In all experiments the query had the form:

select �

from R;S

where R:J = S:J

and X between 4; 000 and 6; 000

and Y between 2; 000 and 8; 000

In the �rst experiment, we created empty joins with an increasing overlap with query. This was

done by changing the values of one of the join attributes so that the tuples in the designed range

do not join with any tuples in the other table. The empty joins had the following form:

create view empty as

select �

from R;S

where R:J = S:J

and X between 4; 000 and 6; 000

and Y between 2; 000 and par

with par set to : 2,300, 2,600, 3,250, 3,500, 4,000, 5,000, 6,000, and 7,000. The overlaps of the

query and the empty join are graphically presented in Figure 8.

Figure 8: Increasing overlaps between a query and an empty join.

Experiment 1 2 3 4 5 6 7 8

Reduction of the size of the table(%) 5 10 20 25 33 50 66 83

Reduction of execution time (%) 2.4 6.6 16 39 41 48 56 67

Table 3: Improvement in query execution time (in %) as the overlap with the empty join is increased.

As we expected, the reduction in query execution time grows monotonically with the increase

of the overlap. On the other hand, the size of the overlap does not provide equivalent reduction
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in the query execution time. This is understandable, as the query evaluation involves not only the

join execution, but also scanning of the two tables which is a constant factor for all tests. The only

surprising result came from Test 4 (and later in Test 5): the reduction of the query execution time

jumps above the reduction of the table's size. As it turns out, the table became su�ciently small

to be sorted in memory, whereas before it required an external sort.

In the second experiment we kept the size of the overlap constant, at 25% of the size of the

query, but changed the type of an overlap as shown in Figure 9.

a b c d e

Figure 9: Overlaps of increasing complexity between the query and empty joins.

Experiment a b c d e

Reduction of execution time (%) 39 37 4.6 0 -13

Table 4: Impact of the type of the overlap used in rewrite on query performance.

As shown in Table 4, only the �rst two types of the overlap provide substantial performace

improvement. As the number of OR conditions (or UNION's) necessary to express the remainder

query increases, the performance deteriorates. For example, in Case (e), the query rewritten with

ORs would have the following structure:

select �

from R;S

where R:J = S:J and

[(X between 4; 000 and 6; 000

and Y between 2; 000 and 3; 000)

or

(X between 4; 000 and 6; 000

and Y between 6; 000 and 8; 000)

or

(X between 4; 000 and 4; 500

and Y between 3; 000 and 6; 000)

or
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(X between 5; 500 and 6; 000

and Y between 3; 000 and 6; 000)]

If the remainder query were expressed using UNIONs, it would have four separate blocks. Exe-

cuting these blocks requires multiple scanning of relations R ans S. Indeed, in all our experiments

only the rewrites using overlaps of type (a) or (b) consistently led to performance improvement.

In the third experiment we kept the size of the overlap constant at 25% and used only type

(a) and (b) of the overlap from the previous experiment. This time, however, we changed the

number of overlapping empty joins with the query. We varied the number of empty joins used in a

rewrite from 1 to 8 decreasing their sizes accordingly (to keep the total overlap at 25%) as shown

in Figure 10. The results are shown in Table 5.

a b c d e

Figure 10: Overlaps with increasing number of empty joins.

Experiment a b c d e

Reduction of execution time (%) 39 38.4 38.3 35.9 34.3

Table 5: Impact of the type of the increasing number of overlaps used in rewrite on query perfor-
mance.

Interestingly, query performance degrades very slowly with the increasing number of empty

joins used in a rewrite. The reason is, that despite an appearance of an increased complexity of the

query after the rewrite (see the query of Test (c) below), a single scan of each table is still su�cient

to evaluate the join.

select �

from R;S

where R:J = S:J and

X between 4; 000 and 6; 000 and

[(Y between 2; 000 and 2; 400)

or
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(Y between 3; 000 and 3; 400)

or

(Y between 4; 000 and 4; 400)

or

(Y between 5; 000 and 5; 550)]

4.4 Selection and Maintenance of Empty Joins

Since the number of empty joins discovered in real datasets is large, they cannot all be maintained.

The decision on which joins to maintain depends primarily on the stability of the query workload

and the frequency of updates. In an environment with a stable workload of queries and frequent

updates, only a few empty joins which provide the best optimization for the workload queries

should be kept. Since empty joins can be modeled as materialized views, the choice of the \best"

empty joins could be determined by the same considerations that are used in choosing standard

materialized views for query optimization [1, 16, 2].

Although empty joins do not take space to store (except for their descriptions), there is an

associated maintenance cost. Techniques developed for the maintenance of materialized views [16]

can be applied here as well. Since empty joins are a special case of matrialized views, more e�cient

maintenance techniques can be devised for them. For example, empty joins are immune to deletions

(they may become non-maximal, but they still correctly describe empty regions). For an insertion

- if it falls within a range of an empty rectangle - the rectangle can be simply divided into smaller

ones (again, at the expense of losing optimality). Still, to maintain an optimal set of empty views

in the face of frequent updates would be prohibitive. However, the bene�t of using empty views in a

warehousing environment - where updates are infrequent - could be tremendous as our experiments

show. Furthermore, there is a growing trend in industry [24, 14] to store and use new forms of

integrity constraints and materialized views that are not veri�ed or updated (because no updates are

expected to violate them). The need for such constraints arises from the bene�ts they can have in

many applications, in particular, for query optimization through query rewrites. The maintenance

of such constraints is essentially free.

5 Related Work

We are not aware of any work on discovery or application of empty joins.

Extracting semantic information from database schemas and contents, often called rule dis-

covery, has been studied over the last several years. Rules can be inferred from integrity con-

straints [4, 3, 30] or can be discovered from database content using machine learning or data

mining approaches [7, 9, 18, 25, 27, 30]. It has also been suggested that such rules be used for

query optimization [19, 25, 27, 30]. None of this work, however, addressed the speci�c problem we

solve here.

Another area of research related to our work is answering queries using views. Since we model
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empty joins as a special case of materialized views (that are also empty), essentially all techniques

developed for maintaining, and using materialized views for query answering apply here as well [16,

22, 6, 28].

Also, since empty regions describe semantic regularities in data, they are similar to integrity

constraints [14]. They describe what is true in a database in its current state, as do integrity

constraints, but can be invalidated by updates, unlike integrity constraints. Using empty joins for

query optimization is thus similar to semantic query optimization [5, 17, 20, 21, 26, 8], which uses

integrity constraints for that purpose.

6 Conclusions and Future Work

We presented a novel approach to characterizing data that is not based on detecting and measuring

similarity of values within the data, but is instead based on the discovery of empty regions. We

sketched an e�cient and scalable algorithm that discovers all maximal empty joins with a single

scan over sorted two dimensional data set. We presented results from experiments performed on

real data, showing the nature and quantity of empty joins that can occur in large, real databases.

Knowledge of empty joins may be valuable in and of itself as it may reveal unknown correlations

between data values. In this paper, we considered using this knowledge for query optimization. We

model the empty joins as materialized views, and so we exploit existing work on using and main-

taining materialized views. We also presented experiments showing how the quality of optimization

depends on the types and number of empty joins used in a rewrite.

We are currently working on another way of modelling empty joins, this time as statistical soft

constraints [14]. A statistical soft constraint is a constraint statement which is valid - with some

error allowed - with respect to the current state of the database. We showed that soft constraints

can be useful for better cardinality estimation as they reveal regularities within data that may be

unknown to the optimizer.
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