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Introduction

In this paper, we consider probabilistic transition systems. We view a probabilistic transition system as
consisting of a set of states and a set of labels. At any one time the system is in a particular state. When the
environment selects an action (indicated by a label) the system reacts by either refusing the action or making
a transition to a new state. This reaction—whether to terminate or which state to move to—is determined
by a probability measure. We restrict ourselves to probabilistic transition systems without labels to simplify
the presentation. However, all our results can easily be generalized to a setting with labels. Some details
will be provided in the concluding section. Consider the following system.

ll / \
0 1 2
1 51 PR Y 1 51
0 1 1 3 4 2
3| 3 13
53 53 83

Observe, for example, that in state s{ the transitions to states sJ and s} are each taken with probability 1.
Also, note that the probability of termination in, for example, state s is %

Larsen and Skou [LS91] introduced probabilistic bisimulation as a notion of behavioural equivalence for
such systems. Briefly, a probabilistic bisimulation is an equivalence relation such that for any two related
states their probability of making a transition to any equivalence class is equal. In the above system, states
with the same colour /subscript are behaviourally equivalent. One problem with this notion is that it is not
robust: two states are either bisimilar or they are not bisimilar, and a slight change in the probabilities
associated to a system can cause bisimilar states to become non-bisimilar and vice-versa. Consider, for
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example, the following system.

0 €
S0 1 50
0 1 1 3
S1 So 51 Sy
1] 1
0 2
82 52

The states sJ and s§ are only bisimilar if € is 0. However, the states give rise to almost the same behaviour
for very small e different from 0.

To address this problem Giacalone, Jou and Smolka [GJS90] suggested to define a pseudometric on
the states of a probabilistic transition system. This yields a smooth, quantitative notion of behavioural
equivalence. A pseudometric differs from an ordinary metric in that different elements, i.e., states, can
have distance 0. The distance between states, a real number between 0 and 1, can be used to express the
similarity of the behaviour of the system started in those states. The smaller the distance, the more alike the
behaviour is. In particular, the distance between states is 0 if they are indistinguishable, i.e., probabilistic
bisimilar. In [BWO01], we presented such a pseudometric. For example, in our pseudometric the states s
and s§ are CF - € apart where CF is a constant between 0 and 1 (we will discuss the role of this constant
later). Desharnais, Gupta, Jagadeesan and Panangaden [DGJP99, Des99], Giacalone et al. [GJS90], and
Kwiatkowska and Norman [KN96, Nor97, KN98] also presented pseudometrics for probabilistic systems. For
a comparison of these pseudometrics with ours, we refer the reader to [BWO01].

At CONCUR’99, Desharnais et al. [DGJP99] presented an algorithm to calculate their distances up to
a prescribed degree of accuracy. We have shown in [BWO01] that our pseudometric is very closely related to
theirs. In this paper, we present an algorithm to approximate our pseudometric. Whereas their algorithm
approximates the distances in exponential time, we will show that our algorithm calculates the distances in
polynomial time. The key ingredients of our pseudometric and algorithm are coalgebras, the Hutchinson
metric and linear programming. We will discuss these ingredients next.

Many different kinds of transition system can be viewed as coalgebras; Rutten [Rut00] provides numerous
examples. De Vink and Rutten [VR99] have shown that probabilistic transition systems correspond to
P'-coalgebras, where P’ is an endofunctor on the category of 1-bounded complete ultrametric spaces and
nonexpansive functions. Furthermore, they have proved that the functor P’ is locally contractive. Hence,
according to Rutten and Turi’s (ultra)metric terminal coalgebra theorem [RT92], there exists a terminal P’'-
coalgebra. By definition, there is a unique map from an arbitrary P'-coalgebra, i.e., a probabilistic transition
system, to the terminal P'-coalgebra. De Vink and Rutten have also shown that the kernel of this unique
map is probabilistic bisimilarity on the states of the probabilistic transition system. That is, two states
are mapped to the same element in the terminal P'-coalgebra by the unique map if and only if they are
probabilistic bisimilar.

In this paper, we study a variation on the endofunctor P'. Our endofunctor P on the category CMet; of 1-
bounded complete metric spaces and nonexpansive function is based on the Hutchinson metric on probability
measures. This metric arises in very different contexts including statistics and fractal geometry, and under
different names including the Kantorovich metric and the Wasserstein metric. Like P’-coalgebras, also P-
coalgebras can be seen as probabilistic transition systems, as we will show. Furthermore, we will prove that
the functor P is locally contractive as well. Hence, there exists a terminal P-coalgebra. Since the terminal
P-coalgebra carries a metric, we can also consider the metric kernel of the unique map from a P-coalgebra
to the terminal P-coalgebra. This is a pseudometric on the carrier of the P-coalgebra. The distance between
two states of a P-coalgebra, i.e., a probabilistic transition system, is the distance in the terminal P-coalgebra
of their images under the unique map. Since our functor is similar to the one considered by De Vink and
Rutten, we still have that two states are bisimilar if and only if they are mapped to the same element in the
terminal P-coalgebra and hence have distance 0.

As Rutten and Turi [RT92] have shown, the unique map from an F-coalgebra to the terminal F-coalgebra,
where F' is a locally contractive endofunctor on the category CMet;, can be defined as the unique fixed point
fiz (@) of a function @ from a complete metric space to itself. Since the functor F' is locally contractive,
the function @ is contractive. Hence, according to Banach’s fixed point theorem, ¢ has a unique fixed point



fix ($). This fixed point can be approximated by a sequence of functions (¢,),. The function @g is an
arbitrary function from the F-coalgebra to the terminal F-coalgebra and the other functions are defined by
¢n = @ (¢n—1). Not only the metric kernel of the unique map fiz (&) defines a pseudometric dg, (¢) on the
carrier of the F-coalgebra. Also the metric kernels of the approximations ¢, induce pseudometrics dy,,. We
will show that the pseudometric dg; (¢) can be approximated by the pseudometrics dy,,. In particular, to
calculate the dg, (g)-distances to a prescribed degree of accuracy a, we only have to calculate the ¢y, ...,
¢10gCF(%)—distances.

Next, we discuss how to compute the distance dy, (s;, sj), where s; and s; are elements of the carrier
of the P-coalgebra, i.e., states of the probabilistic transition system. We will show that this problem can
be reduced a particular linear programming problem: the transshipment problem. For a detailed discussion
of this problem and algorithms which can solve this problem in polynomial time we refer the reader to,
for example, Chvétal’s textbook [Chv83]. The transshipment problem is to find the cheapest way to ship
a prescribed amount of a commodity from specified origins to specified destinations through a concrete
transportation network. This network is represented by a directed graph. There is a demand for some
commodity at some nodes and a supply (or negative demand) of some commodity at other nodes. In our
setting, the total supply equals the total demand. This allows for a simpler and more elegant solution. With
each edge, we associate the cost of shipping a unit amount along the edge.

The rest of this paper is organized as follows. In Section 1, we introduce probabilistic transition systems
and probabilistic bisimilarity. Our algorithm is presented in Section 2. The other sections contain its
correctness proof. Coalgebras and Rutten and Turi’s terminal coalgebra theorem are presented in Section 3.
In Section 4, we study metric kernels. The Hutchinson metric and its extension to a functor are the topics
of Section 5. In Section 6, we focus on metric kernels for P-coalgebras. The reduction of the calculation
of the dy, -distances to the transshipment problem is presented in Section 7. In Section 8, we compare our
algorithm with the one of Desharnais et al. and we discuss some future work.
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1 Probabilistic Transition Systems

In this section, we introduce the probabilistic analog of transition systems. Furthermore, we present a
behavioural equivalence on the states of these systems.
Probabilistic transition systems are introduced in

DEFINITION 1 A probabilistic transition system consists of a finite set S of states together with a transition
function 7 : § x S — [0,1] such that >, g7 (s,s') < 1forall s €S. 4

The transition function 7 is a conditional probability: = (s,—) assigns to each state s’ the probability of
making a transition to state s’ given that it was in state s before the transition. On the transition function we
impose the restriction ), g7 (s,s') < 1 instead of the more common, but also more restrictive, condition
Y sesT(s,8") =1 or 0—the latter corresponding to termination. We interpret 1 — ), 57 (s,s') as the
probability that the system terminates in state s. To simplify our presentation we add a special state 0 for
termination: 7 (s,0) =1—-3, g7 (s,s).

Larsen and Skou [LS91] adapted bisimulation for probabilistic transition systems as follows.

DEFINITION 2 Let (S, 7) be a probabilistic transition system. An equivalence relation R on the set of states
S is a probabilistic bisimulation if s; R sa implies ), p 7 (s1,8") = Y, cp7(s2,5') for all R-equivalence
classes E. States s; and s are probabilistic bisimilar if s; R s for some probabilistic bisimulation R. g

This notion has been shown to be canonical both from the coalgebraic point of view, as demonstrated by De
Vink and Rutten in [VR99], and in the setting of open maps, as illustrated by Cheng and Nielsen [CN95].



2 The Algorithm

We present our algorithm to calculate the distances between the states of a probabilistic transition system
up to a prescribed degree of accuracy.

The distance between states is a trade-off between the depth of observations needed to distinguish the
states and the amount each observation differentiates the states. The relative weight given to these two
factors is determined by the constant CF lying between 0 and 1: the smaller the value of CF the greater the
discount on observations made at greater depth. The constant CF corresponds to the contraction factor of
our functor P which we will introduce in Section 5. This constants also appears in the work of Desharnais
et al. It plays a crucial role in the metrics used to model programming languages as well (see, for example,
the textbook [BV96] of De Bakker and De Vink).

For the second system presented in the introduction, the distances are given in the table below. Since
the states with the same colour/subscript (different from 0) are probabilistic bisimilar, they have distance 0
and are therefore identified.

0 €

S0 s 51
s €-CF
s1 -cF (L+e€-cF
89 1 1 1

Next, we present the algorithm
Distance(probability, accuracy)
Input:

- probability matrix: for all 0 < i < N and 0 < j < N, probability[i][j] is the probability of going from
state s; to state s;;

- accuracy of the distance function to be computed: the actual distances are greater than or equal to
the computed distances and differ by at most accuracy from the computed distances.

Output:

- distance matrix: for all 0 <i< N and 0 < j < N, distance[i][;] is the computed distance from state s;
to state s;.

—_

for £k <+ 0 to N do
for [+ 0to N2+ N —1do
ifk=(10+1+(div(N +1))) mod (N + 1) then
matriz[k][l] + 1
else if k = [ div N then
matriz[k][l] + —1
else
matriz[k][l] + 0
fori< 0to N —-1do
stop[i] + 1
for j < 0to N —1do
stopli] « stop[i] — probability[i][j]
fori< 0to N —-1do
for j < 0to N —1do
for k<~ 0to N —1do
demandli][j][k] + probability[i][k] — probability[j][k]
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(17) demand[i][j][N] « stop[i] — stop[j]

(18) fori+ O0to N—1do

(19) for j < 0to N —1do

(20) distance[i][j] < 0

(21) for n « 0 to [logcr (accuracy/2)] do

(22) for/ < 0to N>+ N —1do

(23) cost[l] < CF - distance[(l + 1 + (I div (N + 1))) mod (N + 1)][I div N]
(24) fori < 0toN—1do

(25) for j«1toi—1do

(26) distanceli][j], distance[j][i] « Transshipment(matriz, cost, demand][i][j])
(27)

return distance

In (1)—(8) we initialize the matrix which represents the graph of the transshipment problem. In (9)—(12) we
set stop[i] to the probability of termination in state s;. In (13)—(16), we assign to demand][i][j] the demand
vector used to calculate the distance between states s; and s;. In (18)—(20) we initialize all distances to 0.
As we will see, this corresponds to the pseudometric dg,. In (21)-(26) we compute the pseudometrics dg, ,

Tt d¢rlosCF (accuracy/2)1 *
Transshipment(matriz, cost, demand)
Input:
- an m X n-matrix matriz with each column consisting of one 1, one —1 and 0’s;
- an n-vector cost;
- an m-vector demand.
Output:
- minimal value of cost-vectorT for n-vector vector satisfying matriz-vector™ = demand” and 0 < wvector.
For an algorithm which solves the transshipment problem in polynomial time we refer the reader to Chvétal’s

textbook [Chv83] for example. The remaining sections of this paper contain the correctness proof of the
algorithm Distance.

3 A Metric Terminal Coalgebra Theorem

In this section, we introduce coalgebras and Rutten and Turi’s metric terminal coalgebra theorem [RT92].
For more details about the theory of coalgebra we refer the reader to, for example, the tutorial [JRO7] of
Jacobs and Rutten.

DEFINITION 3 Let C be a category. Let F': C — C be a functor. An F'-coalgebra consists of an object C
in C together with an arrow f: C — F (C) in C. The object C' is called the carrier. An F-homomorphism
from F-coalgebra (C, f) to F-coalgebra (D, g) is an arrow ¢ : C — D in C such that F (¢) o f = go ¢.

c—2—bp

; Js

F(0) WF(D)

The F-coalgebras and F-homomorphisms form a category. If this category has a terminal object, then this
object is called the terminal F'-coalgebra. a



We restrict our attention to the category CMet: of 1-bounded complete metric spaces and nonexpansive
functions. A metric space is 1-bounded if all its distances are bounded by 1. A function is nonexpansive if
it does not increase any distances. We denote the collection of nonexpansive functions from the space X to
the space Y by X - Y. This collection can be turned into a metric space by endowing the functions with
the supremum metric.

For the rest of this paper, we fix ¢ to be a constant between 0 and 1. This constant is the contraction
factor of the functor we will consider and of the function that it induces. A function is c-contractive if it
decreases all distances by at least a factor ¢. As we will see later, the constant ¢ corresponds to the constant
CF used in our algorithm.

DEFINITION 4 A functor F : CMet; — CMet; is locally c-contractive if for all 1-bounded complete metric
spaces X and Y, the function Fxy : (X 2Y) — (F (X) = F(Y)) defined by

Fxy (f)=F(f)
is c-contractive. a
In the rest of this section, we restrict ourselves to locally c-contractive functors. For these functors, we have

THEOREM 5 There exists a terminal F-coalgebra (fiz (F),).

PROOF See [RT92, Theorem 4.8]. O

For the rest of this section, we fix (X, u) to be an F-coalgebra. To characterize the unique map from the
F-coalgebra (X, u) to the terminal F-coalgebra (fiz (F'),:) we introduce the following function.

DEFINITION 6 The function @ : (X - fix (F)) = (X - fix (F)) is defined by
P (¢) =10 F(¢)op.

X —2 s fin (F)

F(X)——F F
(X) —5t F (fin ()
Since the functor F' is locally c-contractive, we have that the function @ is c-contractive.

PROPOSITION 7 The function @ is c-contractive.

PROOF See proof of [RT92, Theorem 4.5]. O

Since @ is a contractive function from a complete metric space to itself, we can conclude from Banach’s
theorem that it has a unique fixed point fiz ().

PROPOSITION 8 The function fir (®) is the unique F-homomorphism from the F-coalgebra (X, u) to the
terminal F-coalgebra (fiz (F), ).

PROOF See proof of [RT92, Theorem 4.5]. O
We conclude this section by showing that the unique map fiz (€) can be approximated by the maps ¢,.

DEFINITION 9 Let ¢o : X — fiz (F') be some constant function. For n >0, the function ¢, : X — fiz (F) is
defined by

¢n =9 ((ﬁnfl)-

ProrosiTION 10 For alln > 0,
dXT)ﬁa: (F) (¢n, fiz () < ™.

Proor By induction on n. O



4 Metric Kernels

Our pseudometric on the states of a probabilistic transition system will be defined as the so-called metric
kernel induced by the unique map from the probabilistic transition system, viewed as a coalgebra, to the
terminal coalgebra. In this section, we introduce metric kernels. Furthermore, we show that the metric
kernel induced by fiz () can be approximated by the metric kernels induced by ¢,,.

A function ¢ from the space X to the space fiz (F') defines a distance function dy on X. We call this
distance function the metric kernel induced by ¢. The distance between z; and z2 in X is defined as the
distance of their ¢-images in the metric space fiz (F).

DEFINITION 11 Let ¢ € X — fiz (F). The distance function dy : X x X — [0,1] is defined by

dg (71,72) = dfiz (r) (¢ (1), b (72))-

]

One can easily verify that the metric kernel dy is a pseudometric. Note that z; and x5 have distance 0 only
if they are mapped by ¢ to the same element in fiz (F).
The pseudometric dg, () can be approximated by the pseudometrics dg, as is shown in

PROPOSITION 12 For alln > 0 and x1, 2 € X,
|dg,, (w1,22) — dfig (a) (T1,22)| < 2- .
Proor

dg,, (z1,22) — dfiz (3) (T1,22)]
|dfiz () (P (1), D (72)) — dfig (7) (fiz (P) (w1) , fiz (P) (w2))]
dfiz (F) (Pn (21), fix (P) (21)) + dfig (7) (n (22 ), fix (P) (z2)) [triangle inequality]

<
< 2-dx i () (00, fiz (2))
< 2-c" [Proposition 10]
O
To compute the dg; (#)-distances up to accuracy «, it suffices to calculate the dg, ., -distances.
PRrROPOSITION 13 For all 0 < aa< 1 and x1, 22 € X,
|d¢|'logc (a/2)1 ('/1"17 x2) - dﬁx (@) (.’L‘1,$2)| <a.
Proor
1D 10, (ay2y7 (T1,T2) — dfig (3) (T1, T2)]
< 2. close (@/2)] [Proposition 12]
< 2. lose(@/2)
= a.
O

The above proposition is reflected in line (21) of our algorithm.

5 The Hutchinson Functor

We introduce the Hutchinson metric on Borel probability measures of a metric space and its extension to
a functor. From this Hutchinson functor we build the functor P using standard constructions. We show
that every probabilistic transition system can be represented as a P-coalgebra. Furthermore, we prove that
the Hutchinson functor is locally nonexpansive. This implies that the functor P is locally contractive. And,



hence, a terminal P-coalgebra exists according to Theorem 5. The metric kernel of the unique map to the
terminal P-coalgebra defines a pseudometric on the carrier of a P-coalgebra and hence on the states of a
probabilistic transition system. In Section 6 and 7 we will show that this is the pseudometric approximated
by the algorithm presented in Section 2.

In [Hut81], Hutchinson introduced a metric on the set of Borel probability measures on a metric space.
We restrict ourselves to spaces in which the distances are bounded by 1, since they serve our purpose. Let
X be a 1-bounded metric space. We denote the set of Borel probability measures on X by M (X). The
Hutchinson distance on M (X) is introduced in

DEFINITION 14 The distance function dps(x) : M (X) x M (X) — [0,1] is defined by

dr (x) (1, p2) = sup {/deﬂl—/xfdﬂﬂfGX—l*[oaOO)}-

-

For a proof that dy; (x) is a 1-bounded metric, we refer the reader to, for example, Edgar’s textbook [Edg98,
Proposition 2.5.14].

In the rest of this paper, we focus on Borel probability measures which are completely determined by
their values for the compact subsets of the space X.

DEFINITION 15 A Borel probability measure p on X is tight if for all € > 0 there exists a compact subset
K, of X such that (X \ K¢) <e. a

Under quite mild conditions on the space, for example, completeness and separability, every measure is
tight (see, for example, Parthasarathy’s textbook [Par67, Theorem II.3.2]). In particular, all probabilistic
transition systems can be represented using tight measures as we will see in Example 21. We denote the set
of tight Borel probability measures on X by M; (X). We are interested in these tight measures because of
the following

THEOREM 16 X is complete if and only if My (X) is complete.
PROOF See, for example, [Edg98, Theorem 2.5.25]. O

Using a standard construction, M; can be extended to an endofunctor on the category CMet;. Let X and
Y be 1-bounded complete metric spaces. Let f : X — Y be a nonexpansive function. We have to define a
nonexpansive function My (f) : My (X) — M (Y) satisfying the usual axioms.

DEFINITION 17 The function M, (f) : My (X) — M (Y) is defined by
My (f)(u) = po f71

PROPOSITION 18 The Borel probability measure My (f)(u) is tight.

PrROOF Let € > 0. Since p is tight, there exists a compact subset K. of X such that p(X \ K,) < e.
Because f is nonexpansive, f (K,) is a compact subset of Y. Since f~1 (Y \ f(K.)) is a subset of X \ K,
(o f7H (Y \ f (K.)) <e. Hence, po f~1 is tight. O

PROPOSITION 19 The function M, (f) is nonexpansive.

Proor For all pg, ps € My (X),
dar, (vy (My (F)(pa), My (£)(p2))

= swp { [ gduor )~ [ gdio ) 1gev 50,00 )
= sw { [@ondu - [ Gondulger .0}

sup{/ hdul—/ hd,u2|h€X—l>[0,oo)}
X X
du, (x) (H1, p2)-

IN



O

For a proof that M, (f) satisfies the usual axioms we refer the reader to, for example, Giry’s paper [Gir81,
Section 1]. Next, we will show that the functor M; is locally nonexpansive.

PROPOSITION 20 The functor M is locally nonexpansive.

PROOF We have to show that for all fi, fo € X - Y,
dy, (X)=> M, (¥) (M (f1), My (f2)) < dX—l)Y (f1, f2)-

This immediate follows from the fact that we have for all y € M; (X),
dur, (v) (Mg (f1) (1), My (f2) (1))

= sw { [adguo ;)= [ gdwo ;) 1gev 5 0.0}
= sw { [Gomau— [ ordulger 500 |

sup {/X(g°f1 —g°fz)du|g€Y—1>[0,00)}
dx -y (fi, f2),
since for all x € X,

(gofi—gofo)(x)

< dy (f1 (%), f2(z)) [g is nonexpansive]
< dxoy (fi, f2)-

IN

O

Now, we are ready to present the functor P. But first we introduce the functor 7' which models termi-
nation:

T=1+c-—:CMety — CMety,

where 1 is the terminal object! functor, + is the coproduct? functor, and c- is the scaling® functor. The
functor P is defined by

P = Mt oT : CMet, — CMet;.
Every probabilistic transition system can be seen as a P-coalgebra as is demonstrated in

EXAMPLE 21 Let (S, ) be a probabilistic transition system. We endow the set of states S with the discrete
metric. Consequently, every subset of the 1-bounded complete metric space T (S) is a Borel set. For every
state s, the Borel probability measure u; is the discrete Borel probability measure determined by

ps (1) = m(s,0)
ps ({s'}) = w(s,s")
Obviously, the measure ps is tight. Because S is endowed with the discrete metric, the function g mapping

the state s to the measure u, is nonexpansive. Hence, every probabilistic transition system can be viewed
as a P-coalgebra. a

I The terminal object of CMet; is the singleton space 1 whose single element we denote by 0.
2The coproduct object of the objects X and Y in CMet; is the disjoint union of the sets underlying the spaces X and Y
endowed with the metric
dx (v,w) ifveXandweX
dxyy (v,w) =< dy (v,w) ifveYandweY
1 otherwise.

3The scaling by c- of an object in CMet; leaves the set unchanged and multiplies all distances by c.



To exploit the metric terminal coalgebra theorem of Section 3 and the metric kernels of Section 4, we
have to show that the functor P is locally contractive.

PROPOSITION 22 The functor P is locally c-contractive.

PROOF Since the functor ¢ - is locally c-contractive and the functors + and M; are locally nonexpansive,
the functor P is locally c-contractive. O

According to Theorem 5, there exists a terminal P-coalgebra. Our pseudometric on a probabilistic transition
system is defined as the metric kernel dg, (¢) where fiz (&) is the unique map from the probabilistic transition
system, viewed as a P-coalgebra, to the terminal P-coalgebra. In this pseudometric, states have distance 0
only if they are probabilistic bisimilar.

PROPOSITION 23 For all states s1, Sa,
s1 and sy are probabilistic bisimilar if and only if dg, () (51,52) = 0.
Proor

s1 and s» are probabilistic bisimilar
iff  fix (#)(s1) = fix ($)(s2) [Corollary 5.12 of [VRII]]
iff  dpz (a) (51,82) = 0.

6 Metric Kernels for P-coalgebras

Our pseudometric on a probabilistic transition system is defined as the metric kernel dg, () Where fiz ()
is the unique map from the probabilistic transition system, viewed as a P-coalgebra, to the terminal P-
coalgebra. As we have already seen in Section 4, dg, () can be approximated by the metric kernels dy,, .
In this section, we present a characterization of the pseudometrics dg, for P-coalgebras in general and for
probabilistic transitions systems in particular. Furthermore, we will show that the dg,-distances are smaller
than or equal to the dg; (¢)-distances.

To prove our characterizations, we need the following

PROPOSITION 24 Let ¢ € X—fiz (P). Then composition with T (¢) defines a surjection between T (fiz (P))—
[0, 00) and T' (X, dy) — [0, 00).

PROOF ¢ may be regarded as an isometric embedding of the pseudometric space (X,dy) in fiz (P). Thus
T (¢) is an isometric embedding of T' (X, dy) into T (fiz (P)). Now [Law73, Corollary on page 162] tells us
that any nonexpansive map f : T (X,ds) — [0,00) has an extension g : T (fix (P)) — [0,00) in the sense
that go T (¢) = f. O

We can characterize the pseudometric dy, on the carrier of a P-coalgebra (X, u) as follows.

THEOREM 25 For all 1, z2 € X,
d¢0 (.’171,.23'2) = 0.

For alln >0 and z1, z2 € X,

dd’n (wlva)zsup {/ gd/l’:h_/ gdlllzw |g€T<X,d¢n_1)—1>[O,OO)}.
T (X) T (X)

10



Proor Obviously,

dg, (21, 22)
= dﬁz (P) (¢0 (xl)a ¢0 (.732))

= 0 [¢o is a constant function]
For all n > 0,

dg, (x1,22)
= dfz(p) (fn (1), Jn (22))
= dfz(p) (@ (Pn-1)(z1), ® (Pn—1)(z2))
= dpo(p) (7" 0 P(¢n1) o) (x1), (¢ " 0 P (¢n1) o ) (22))
= dp(fix () (P (Pn-1) o p) (x1), (P (¢n—1) o p) (x2)) [v is isometric]

- sup{ / FA((P ($nr) 0 ) (@1)) - / fd((P<¢n_1)ou)(x2))|feT<ﬁx<P)>7[o,oo)}
T (fiz (P)) T (fiz (P))

p— { / (f o T ($u_r)) e, — / (f o (G 1)) dpes | £ €T (fiz (P)) = [o,oo)}
T (X) T (X)

= sup { / gdpg, —/ gdpg, | 9 € T(X,dg,_,) - [0, 00) } [Proposition 24]
T(X) T (X)

O

Next, we refine the above characterization for the case that the P-coalgebra represents a probabilistic tran-
sition system (S, 7).

PROPOSITION 26 For alln >0 and s;, 55 € S,

dy, (si,s;) =sup & > (w(si,s") =7 (s;,8))-g(s) | g € T(S,dp, _,) = [0,00) p.
s'eT (S)

PRroOOF

dg sz,sj

n

sup gdus;, — / gdus; | g€ T(S,dy,_,) - [0, 00) } [Theorem 25]
T(S) T(S)

s eT(S) s'€T(S)

= { s ({5 = Y 9(8) s, ((8')) | 9 € T (S, dg,_,) - [0,00) }

7r(s,i7s')— Z g(sl)-W(Sj,Sl)|g€T<S,d¢n_1>—1)[O,OO)}

s ET(S) s'€T (S)

sup { ( (3173) W(Sjasl))'g(sl) |g€T<S,d¢n_1>—1)[O,OO)}.
'eT (S)

O

We conclude this section with a proof that the d;,-distances are smaller than or equal to the dg; (4)-
distances. This result is proved for P-coalgebras in general.

11



PROPOSITION 27 For alln > 0,
dd’n < d¢n+1'
Proor By induction on n. The case n = 0 is trivial. Let n > 0. For all z1, 22 € X,

dg, (z1,72)

sup { / gdpg, —/ 9dps, | 9 € T(X,dg,_,) - [0, 00) } [Theorem 25]
T (X) T (X)

sup {/ gduzl—/ 9dps, |g€T<X,d¢n)—1>[0,00)}
T(X) T(X)

[by induction dy,_, < dg, and hence T (X,dy__,) - [0,00) C T (X, dy, ) - [0, oo)]
= d¢n+1 ($17x2) [Theorem 25]

IN

O
ProposITION 28 For alln > 0,
dg, < dfig (a)-
ProOF Immediate consequence of Proposition 27. a

In our algorithm, we compute dg, ., ,.,,- From the above result we can conclude that the computed

A 10, (o)) ~distances are smaller than or equal to the actual dg, (g)-distances.

7 Linear Programming

In this section, we show that the computation of the dy,-distances can be reduced to the transshipment
problem. We already discussed this linear programming problem in the introduction.

Let ({so,.--,5n—-1},7) be a probabilistic transition system. According to Proposition 26, to compute
dg.,, (si,85) we need to

maximize Z (7 (si,8%) — 7 (85,5k)) - yr + (7 (54,0) — 7 (s;,0)) - yn 1)
0<k<N

such that for all 0 < k< N and 0 <[ < N with k # 1,

yr —yr < c-dg,_, (Sk,51) (2)
and for all 0 < k< N,

yr —yn < land yy —y < 1 3)
and for all0 <k < N,
yr > 0. (4)

Note that yi, for 0 < k < N, and yy play the role of g (sx) and g (0), respectively. Constraints (2) and
(3) reflect that the function g is nonexpansive. The fact that g maps states and 0 to nonnegative real
numbers is captured by constraint (4). The above is a linear programming problem. If all y;’s are 0 then
the constraints (2), (3) and (4) are satisfied. Hence, the linear programming problem has a feasible origin.
As we have already seen, (1) is bounded by 1. According to the fundamental theorem of linear programming
(see [Chv83, Theorem 3.4] for example), the linear programming problem has an optimal solution.

The dual of this linear programming problem is

minimize E c- dd>n—1 (Sk, Sl) “Zpg+ E Zk,N + 2N,k (5)
0<k<NAO<I<NAk#L 0<k<N

12



such that for all 0 < k< N,

Z 2k = 2k 2 T (8i;8%) — (85, Sk) (6)
0<I<SNAk#£L
and
Z Zng — 2,8 > 7 (83,0) — m (s5,0) (7)
0<I<N

and for all 0 < k< N and 0 <! < N with k # 1,
k] > 0. (8)
Since the sum of the left hand sides of the constraints (6) and (7)

Z Z Zpp — 21k =0

0<k<N 0<ISNAkAL
and the sum of the right hand sides of the constraints (6) and (7)
D (w(siysk) =7 (55, %)) + (w (5:,0) — 7 (s5,0)) =0,
0<k<N

we may simplify the constraints (6) and (7) to

Z Rkl — R,k = 7F(Sz'78k) - W(sjask)
0<I<NAk#£L

for all 0 < k< N, and

Z ZNg — 2N =7 (si,0) — 7 (s5,0).
0<I<N

According to the duality theorem of linear programming (see [Chv83, Theorem 5.1] for example), this dual
problem also has an optimal solution with the same optimal value for (5) as the primal problem has for (1).
The above dual problem can be formulated in terms of matrices and vectors as follows.

minimize cost - vector -
such that
matriz - vector’ = demand "
and
vector > 0
where the (N2 + N)-vector cost is defined by

cost_{ if Imod N =0or N2 <I<N?+N
e dg,,_1 (8(1414(1div(N+1)))mod(N+1)> Sidivy)  otherwise

and the (N + 1)-vector demand is defined by
| 7 (si,sk) —7(sj,sp) HO<Ek<N
demandy, = { m(5:,0) —w(s;,0) ifk=N
and the (N + 1) x (N2 + N)-matrix matriz is defined by

1 fk=(0{+1+(div(N+1))mod (N +1)
matrizy,; = -1 ifk=1[divN
0 otherwise

13



For N = 3, the matrix looks as follows.

Note that each column consists of one 1 and one —1 and the rest 0’s. Consequently, the above is an instance
of the transshipment problem.

8 Related and Future Work

At CONCUR’99, Desharnais et al. presented a pseudometric for probabilistic transition systems. Their
pseudometric is defined by means of a real-valued modal logic where, in particular, the modal connective is
interpreted by integration. Also in their setting, states have distance 0 if and only if they are probabilistic
bisimilar.

We believe that our distances are more intuitive than theirs. For example, consider the following system.

als

The probability of termination when started in state sg, s1, s2 and s3 is 1, 1%, 1 and 0, respectively. The

probability that the system makes, for example, at most three transitions when started in state sg, s1, S2
and sz is %, 1%, 1 and 0, respectively. Based on these kind of observations, one may infer that (the system
started in) state s3 behaves more like state s; than state sg. This is reflected by our pseudometric, since the
states s3 and s; are % apart (if cr = %) whereas the states s3 and sg are at distance %. However, in the
pseudometric introduced by Desharnais et al. both s3 and s; and also s3 and sg are % apart. However, by
adding negation® to their real-valued model logic, the two pseudometrics differ by a factor 4 (cf. [BWO1]).

Desharnais et al. present an algorithm to calculate their distances up to a prescribed degree of accuracy.
Their algorithm involves the generation of a representative set of formulas of their logic. They only consider
formulas with a restricted number of nested occurrences of the modal connective. This corresponds to
our approximation of dg; () by dg,. Both restrict the depth at which observations are considered. Their
algorithm calculates the distances in exponential time, whereas our algorithm computes them in polynomial
time. Furthermore, it is not clear to us whether their algorithm can be adapted (in a straight forward
manner) for the logic with negation (so that it can compute the more intuitive distances).

We have implemented our algorithm (see http://www.cs.yorku.ca/~franck). We are confident that we
can improve our algorithm a little by exploiting the fact that dy, is a pseudometric and hence satisfies the
triangle inequality.

Many process combinators, like parallel composition, prefixing and probabilistic choice, can be shown
to be nonexpansive with respect to our pseudometric. This quantitative analogue of congruence allows for
compositional verification (see also [GJS90, DGJP99]).

In this paper, we considered probabilistic transition systems without labels to simplify the presentation.
However, all our results can easily be generalized to a setting with labels. The coalgebras of the functor

L — P:CMet; = CMetl,

where L is the finite set of labels, represent labelled probabilistic transition systems. To compute the dy, -
distance between states of a labelled system, for each label we consider only the transitions with that label
and compute the dy,-distance between the states, and take the maximum of all the computed distances.

4In a draft version, but not in the final version, of [DGJP00] negation was considered.
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