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Abstract

This report contains solutions to the exercises in [Bre].

Solutions

SoLuTION TO EXERCISE 5 We define
X ={X C (Staty x ¥) x T x (Staty x ¥) | X satisfies the axioms and rules of Definition 4 }.

Next, we show that (X also satisfies the axioms and rules of Definition 4. Obviously, this is the smallest
set satisfying them.
Since every X € X satisfies the axioms (1) and (2), that is, for all v € Var, e € Ezp, and ¢ € X,
([v:i=e,c],s{"},[E, s{"}]) € X, where n = & (e)(s), and ([skip, <],,[E, <]) € X, also [] & satisfies them.
(X also satisfies the rules (3) and (4). For example, assume that ([s1, <],<', [E, ¢"]) € X for some
s1 € Stat and ¢, ¢', ¢" € ¥. Then, ([s1, s],¢',[E, ¢"]) € X for all X € X. Since X satisfies rule (3), we can
conclude that {[s1 ; s2, ¢],¢',[s2, ¢"']) € X. Hence, ([s1 ; 82, <],¢’, [s2, <"]) € N X. J

SOLUTION TO EXERCISE 7 We prove (1) by induction on the proof of
[5, ] =[5, <"].

We consider only one typical case. Assume the proof is of the form

[51, 6] = [s1, <"

7
[s1; 82, <] = [} 52, ¢"]

By induction, ¢’ = ¢".

The implication from right to left of (2) follows immediately from the fact that there is no axiom or rule
for the empty statement E. The other implication is proved by showing that if § # E then [8, <] —. This is
shown by structural induction on s. For example, assume that § = if b then s; else so fi and suppose that
B (b)(s) = true. By induction, [s1, <] —. Hence, we can conclude that [if b then s1 else sy fi, ¢] —. 4

SOLUTION TO EXERCISE 10 We prove (1) by induction on the proof. First observe that for all s € Stat,
comp (s) > 0. We only consider two typical cases.



x Let the proof be of the form

[s1, <] - [E, <]

[51; 82, 6] = [s2, ¢']
Then

comp (81 ; 82)
= comp (s1) + comp (s2)
> comp (s2) [comp (s1)> 0]

x Assume the proof is of the form

[317 §] ; [3117 gJ]

[s1 5 52, 6] = [s] ; 89, <]
In this case,
comp (81 ; $2)
= comp (s1) + comp (s2)
> comp (s}) + comp (s2) [induction]
= comp (s} ; 82).

SOLUTION TO EXERCISE 14 We define the function A : Stat -+ ¥ — X by
A(s)(s) = <" if [s, <] = [50, 0] == [51, 1] == --- = [B, 6] = [B, <]

From Exercise 7(2) we can conclude that for all s € Stat and ¢ € %, O (s)(s) € Lt. To link O and A we
introduce the function last : ¥+ — ¥ defined by

_J s ifo=¢
last (o) = { last (¢') if o =¢o'.

From the definitions of O and A immediately follows that for all s € Stat and ¢ € X,
last (O (s)(s)) = A(s)(<)-

SOLUTION TO EXERCISE 20 Let 5§ = 51 ; s2 and assume that [s1, ] < [s1, ¢']- In this case,
O ([s1 82, <))
= ¢ O([s};52,¢']) [Proposition 12]
D ([s} : 82,¢']) [induction]
= ' (D([s1, 5D 5 D(s2))
= (' D([s1, D) 5 D(s2)
= ('O([s1,<']) 5s D(s2) [induction]
= O([s1,¢]);c D(s2) [Proposition 12]
= D([s1,5]);c D(s2) [induction]
= D([s1:s2, <))



SoLUTION TO EXERCISE 24 We show that a transition can be proved by (1)—(5) if and only if it can be
proved by (1)—(4), (6).

Assume that a transition can be proved by (1)—(5). Then there also exists a proof of the transition using
(1)—(4), (6) as we show next by induction on the proof. We distinguish the following three cases.

x Let B (b) = true and consider the proof

[s, §] < [E, <"

[while b do s od, <] ~— [while b do s od, <]

By induction,

[s, 5] =5 [E, <"

[s ; while b do s od, <] —— [while b do s od, ¢"]

[if b then s ; while b do s od else skip fi, ¢] < [while b do s od, ¢"]

[while b do s od, <] — [while b do s od, ¢"]

* Let B (b) = true and consider the proof

[s, ] = [s', "]

[while b do s od, <] ~ [s' ; while b do s od, <"

By induction,

[s, 6] = [s', ¢"]

[s ; while b do s od, ¢] < [s"; while b do s od, ¢"']

[if b then s ; while b do s od else skip fi, ] —— [s' ; while b do s od, <"

[while b do s od, ¢] - [s' ; while b do s od, <]
* Let B (b) = false and consider the proof
[while b do s od, ¢] = [E, ¢]
In this case we have the corresponding proof

[skip, <] = [, ]

[if b then s ; while b do s od else skip fi, <] = [E, ]

[while b do s od, ¢] = [E, <]



The other implication can be proved similarly. For example, assume that B (b) = false and consider the
proof

[if b then s ; while b do s od else skip fi, <] ~ [5, <"

[while b do s od, <] <, 3, "]
From (1)-(4), (6) we can deduce that this proof is of the form

[skip, 5] = [E, ]

[if b then s ; while b do s od else skip fi, 5] = [E, ¢]

[while b do s od, 5] = [E, <]
Obviously, we can also prove this transition by means of (1)-(5). 4
SOLUTION TO EXERCISE 33 Let (x,), and (y,), be converging sequences in a metric space X. Let € > 0.

Assume that for all n € IN, dx (z,,yn) < €. To conclude that dx (lim, z,,lim, y,) <€, it suffices to show
that for all § > 0, dx (lim, z,,lim, y,) <e+J. Let 6 > 0. We have that

AM € N:Vm > M : dx (2, lim, z,) < %
dN € N:Vn > N :dx (yn,lim, y,) < §
Consequently,
dx (lim z,,lim y,)
n n
= dx (lirrbn Tns Tmax{M,N}) + dX (Tmax{M,N}> Ymax{M,N}) + dx (ymax{M,N}ahTILn Yn)
= gttt

Next, we prove Proposition 32. A function ¢ : ¥ x £ x (¥ — ¥°) — X satisfies the property P (¢)
if for all ¢ € State, 0 € X°°, and fi, fo € ¥ = X,

d(f1, f2) ifo=¢
d(¢ (§,0', fl)a‘b(g:U:fZ)) < { % d(fl,fQ) otherwise.

In order to prove P (;) we exploit Banach’s theorem and the above fact. Let
by = Xs,o,f).e fn=0
"7 | #(pn_1) otherwise.

According to Banach’s theorem and the above fact, it suffices to show that for all n € IN, P (¢,) holds.
This is shown by induction on n. Obviously, P (¢o) is valid. Assume P (¢,) holds. In order to verify that
P (¢pp41) is satisfied, we distinguish the following two cases.

* Let 0 = e. Then

d(Pn+1 (S, f1), bnt1 (S, €55 f2))
d (2 (#4)(s;€, f1), 2 (9n) (s, €, f2))
= d(f1(s), f2())
< d(fi, f2)-
x If 0 = ¢'o’ then

d (11 (S,5"0", f1), ny1 (5,6'0", f2))

= d(®(¢n)(s,5'0", 1), P (¢0n)(s,5"0", f2))

d(s" on (s',0', f1),5" bn (', 0", f2))
d(¢n (0", f1),¢n (¢'s0', f2))  [Example 120(3)]
d(f1, f2) [induction]

ININ
D= D=



SOLUTION TO EXERCISE 37 We prove this fact by structural induction on s. We only consider the two
most important cases.

* Let s = 81 ; s5. We have that
D (s1;82)(s) = D (51)(c) 3¢ D (s2)-
By induction, D (s1)(s) # €. From the definition of the semantic sequential composition we can
conclude that D (s1 ; $2)(s) # €.
* For while b do s od and B (b)(s) = true we have that
D (while b do s od)(s)

= fix (T (B(b),D(s))(s)
= D(s)(s) 55 fix (T (B (b), D (s)))-

The rest of the proof is similar to the previous case. If B (b)(s) = true then

D (while b do s od)(c)
fiz ( (B (b),D(s)))(s)

= g,

which is a nonempty sequence.

SoLuTION TO EXERCISE 47 We distinguish the following cases.
* Let § = E. Obviously, the set 8 ([E, ]) = 0 is finite.

*x Let § = v:=e and assume n = £ (e)(s). Clearly, also the set 8 ([v:=e, ¢]) = {{s{"},[E, s{?}])} is
finite.

x If 5 = skip then 8 ([skip, <]) = {{s, [E, ¢])}. This is a finite set.

* Let § = 81 ; 82. Then

8 ([s11 82, ¢]) = {(' [s2, ¢']) (", &, ¢']) € 8([s1, ]) JU
{5 [s1 582, N [ (", [s1, <) € 8 ([s1, <) }-

By induction, the set 8 ([s1, <]) is finite. Consequently, also the above set is finite.

* Let § = if b then s; else sy fi and suppose B (b)(s) = true. Then
8 ([if b then s else sy fi, <]) = 8 ([s1, <])-

By induction, 8 ([s1, ¢]) is a finite set.
x Let 3§ = if b then s; else s, fi and let B (b)(s) = false. Similar to the previous case.

*x Let § = while b do s od and assume B (b)(s) = true. In this case, we have that

8 ([while b do s od, ¢]) = { (¢, [while b do s od, ¢'])
{(¢',[s" ; while b do s od, ¢'])

(", [5, ¢ € 8([s, <) Ju

|
[ (" [s", <] € 8([s, <]) }-

Since the set 8 ([s, ¢]) is finite by induction, the above set is also finite.



* If § = while b do s od and B (b)(s) = false then
8 ([while b do s od, <]) = {(,[E, <])}
Obviously, this set is finite.

* Let § = s || s2. Then

8 ([s1 [l s2, s]) = {("[s2, ') [ (' [B, ¢']) € 8([s1, <]) JU
{(sfs1, <) ([, <) € 8 ([s2, <]) JU
{("s[s1 Il s2, ') | (<" [s1, <']) € 8 ([s1, ]) JU
{ (", 51 1] 5, ') | (<", [5%, ¢']) € 8 ([52, <]) }-
Because the sets 8 ([s1, s]) and 8 ([s2, ¢]) are finite by induction, the above set is also finite.

.

SOLUTION TO EXERCISE 49 Assume that the operational semantics O is compositional. Then there exists
a semantic parallel composition

|- (2 = Pn(E%)) x (£ = P (£%)) = (£ = Py (%))
such that for all sy, so € Stat,
O (51l s2) = O(s1) [| O (52)-
Clearly
Ow:==1;v:=2)=0w:=1;v:=v+1)
and
O((v:i=1,v:=2)|v:=3)#0((v:=1;v:=v+1)[|v:=3).
The existence of a semantic parallel composition leads to
O((v:=1;v:=2)||v:=3)
= Ow:==1;v:=2)||O(w:=3)
= Ow:=1v=v+1)]|O(w:=3)
= O(w:=1;v:=v+1)[|v:=3),
a contradiction. a
SoLuTION TO EXERCISE 54 Let € > 0. Since ((gé(n),p's(n)))n converges to (', p'),
AN € IN:Vn > N :d ({Sy(ny» Pis(my): (S P)) <€
Let n > N. Then
d ((S5(ny» @ Pl(ny» D) <<';¢(P';Q)>)

= max{d«;(n),c' ,

IN
B
I
]

—
IS

A

E\
32

= max {d( s(n)a ) (ps(n)ap )}
= d(<gs(n)7ps(n)) gJ?I)I))
< e
Hence, ((Cé(n),¢(p's(n),q)))n converges to (¢’, ¢ (p',q)). J

SOLUTION TO EXERCISE 58 We show that for all ¢1, ¢ € P x P =P, and p, ¢ € P,

d (P (¢1)(p,0), P ($2)(p;0)) < 5 - d(d1,62).

We distinguish the following two cases.



x If p =4/ then

d(® (1)), @ (62)(v> )
d(q,q)
0

(VAN [

-d (1, ¢2).
x If p# 4/, then for all ¢ € ¥,

d (@ (¢1)(p,9)(s), ® (¢2)(p,9)())
= d{ {1 (0,0) 1 (",P) €p() 1, {2 (P, 0) [ (',P)) €p(9) })-

The observation that for all (¢’,p') € p(s),

d({s", 1 (0, 0)), (', 02 (¥, @)))

max {d(s',¢'), 5 -d(¢1 (', q), 42 (¥, 0))}
5-d(o (0',0), 92 (0, 0))

-d (o1, 92)

completes the proof.

IA
N N

SOLUTION TO EXERCISE 70 Let 5 = s1 || s2. Then

2(D)(s1 || 52) (<)

= {(, D)) |51, 6] = 8, STHUL(, D51 1l 92)) | [, <] = [sh, <]} U
{(s',D (1)) | [52, 5] = [B, 1 FUL (" D (su ] sh)) | [s2, ] = [sh, ']}
= {("D®) D (s2)) | [s1, 5] - [B, STHUL, D () 1D () | [sn, 6] = [51, <] }U
{(,D(s1) 1D ()} | [s2, 6] =[5, THU {6, D (1) [ D (s5)) | [s2, 6] = [sh, <']}
= {(\DE) 1D (2)) | [s1, 6] = [51, 1 UL D (1) [ D(52) | [52, 6] = [52, <']}
= {(, D) | 2(D)(s2)) | [s1, 5] = [51, 1 UL (S, 2 (D)(s1) [| D (32)) | [32, 6] = [52, ¢']}
[induction

]
(£2(D)(s1) || £2(D)(s2)) (<)
(D(s1) || D(s2))(s) [induction]
D (s1 || 52)(s)-

SoLuTION TO EXERCISE 83 Clearly, the set
S([tin[0, 1], ¢, 7]) = { (&, {r/t}), [E, <, {"/e}]) | r € [0, 1] }
is infinite.
SoLUTION TO EXERCISE 88 We show that for all {¢,7) € ¥, 0 € A® and f1, f2 € X = Pre (A*>),

d(®(9)(s,7,0)(f1), @ (8)(s,7,0)(f2)) < d(f1, f2):

We distinguish the following cases.



* Let 0 = ¢. Then

d(¢ (¢)(§77—7 E)(f1)=¢ (d))(ga']—a 6)(f2))
= d(fl (§,T),f2 (§,7‘))
< d(f1, f2)-

x If o = (¢', 7)o’ then

d(@(8)(s, 7, (', 7)) (f1), 8 (9) (s, 7, (", 7)o" ) (f2))
= d((", ) o (" 70 (1) (s T o (S T ") (f2)
< 5-d(o( T o) (1), 0 (T 0") (f2))

< % d(fi, f2) [p(,7,0)is nonexpansive]

x The case that ¢ = ro’ is similar to the previous one.

SOLUTION TO EXERCISE 98 We show that for all s € Stat,
x for all (¢,7) € X, the set D (s)(s,7) is compact, and
x for all (¢, 1), (¢, =) € X, d(D(s)(s,71),D(s)(s,m2)) <d(m1,72)
by structural induction on s. We distinguish the following cases.
* Let s =v:=eand n =& (e)(s). Clearly, the set {(s{"v},7)} is compact. Furthermore,
d(D(v:=e)(s,m1),D(v:=€)(s,72))
= d({{c{"}, )} {{c{} m2)})
= d(n,m).
* The case s = skip is similar to the previous one.

*x The case tin [r1, r2] is dealt with as follows. One can easily verify that the function Ar.(s,7{7k}) is
nonexpansive. Because the set [rq, r2] is compact (Proposition 127), we can deduce from Alexandroff’s
theorem that the set {{s,7{7}) | 7 € [r1, 72] } is compact as well. For all r € [rq, 73],

d ({5, {"/e}), (s, {7/t }))
= d(n{h},n{"})
< d(m,m).

Consequently,

d(D(tin[ry, r2])(s,m1),D (tin[r, m2])(s,72))
= d({{&,n{e}) |7 € [r1, r2] }, {{s; {7/t}) | 7 € [r1, m2] })

< d(’l’l,Tz).

* Let s = waitt. Obviously, the set {7 ()} is compact. Furthermore,

d (D (waitt)(s, 1), D (waitt)(s, 72))
= d({n@®)}{=(®)})

< d(n,m).



x Let s = s1; s2. The compactness of the set D (s1; s2)(s, 7) can be proved along the lines of the second
part of the proof of Proposition 94. Furthermore,

d(D(s1:82)(s,71),D(s1:82)(s,T2))
= d((J{o156,m) D(s2) o1 € D(s1)(5,7) }, ({02 (6,mm) D (52) | 02 € D (51)(5,72) })
< d({o15¢,m) D(s2) |01 €D (51)(s,71) },{ 02 3(6,m) D (52) | 02 € D (51)(s,72) })
[Michael’s theorem]
Let 01 € D (s1)(s,71). Then there exists a oo € D (s1)(s, 72) such that
d(0'1,0'2)
< d(D(s1)(s, 1), D (s1)(s, 72))
< d(m,72) [induction]
Hence,

d (01 5(6,m) D (52),02 3(¢,7s) D (52))

< max{d(01,02),d(71,72)} [;is nonexpansive]
<

d(m1,72) [see above]
*x Assume s = if b then s; else sy fi. The compactness of D (if b then s; else s2 fi)(s, 7) follows immediately
by induction. If B (b)(s) = true then
d (D (if b then s else sz fi)(s,71), D (if b then s; else s5 fi)(s, 72))
= d(D(s1)(s;m), D (51)(s, 7))
< d(m,m2) [induction]
The case that B (b)(s1) = false can be dealt with similarly.

* For the case while b do s od we first have to check that for all {¢,7) € X, € & D (s)(s, 7). This can be
proved by structural induction on s (see Exercise 37). The compactness and nonexpansiveness follow
from the definition of ¥.

SOLUTION TO EXERCISE 99 One has that
D(tin [0, 1))(s,7) = {{(s,7{"/}) [ r € [0,1] }.

Clearly, this set is not a compact subset of (X UIR,)*™ endowed with the Baire metric, since, for example,
the sequence ({5, 7{%/t})), does not have a converging subsequence (all elements of the sequence are distance
1 apart). 4

SOLUTION TO EXERCISE 108 Clearly, da~ satisfies (1) and (2). We have left to prove that for all oy, o2,
o3 € AOO,
d(01,03) < max{d(o1,02),d(02,03)}. ()

Assume that 01, 02, and o3 are all different (otherwise (3) is vacuously true). Let n1 2 and ne 3 be the length
of the longest common prefix of o; and o2, and of o2 and o3, respectively.

n1,2

01

02

03

n2,3



The longest common prefix of o1 and o3 is at least min {n »,n23}. Since
949 3
27 min {”1,2,”2,3} — ma.x{27"1’2, 27”2,3}7

we can conclude (3). N

SoLuTiON TO EXERCISE 121 Let the function f : X — Y be a-Lipschitz. If @ = 0 then f is a constant
function which is clearly continuous. Let o > 0. Assume that the sequence (), converges to z. Let € > 0.
Since (x,), converges to z,

AN eN:Vn > N :dx (zn,z) <

Because f is a-Lipschitz,
AN e N:Vn > N :dy (f (z,), f (z)) <e.

Hence, the sequence (f (z,)). converges to f (z). a

SOLUTION TO EXERCISE 124 For all n € IN,

inf {dge (a”,a™) |/m e NU{w}}=inf{1,1, L ... ,27(»1 g 2"} =0

79943 "
and for all m € IN,

inf { d (a™,a") | n € N} =inf {1,},3,...,27"),0,27m} =0,

Furthermore,

inf {dae (a¥,a™) |[n € N} =inf{1,5,1,...} = 0.
Consequently,
dp, (a=) ({a" | n € N}, {a" [ n € N} U{a*}) =0.

-

SoLUTION TO EXERCISE 131 Because the sequence (am,n)n converges to a.,, there exists a strictly increasing
sequence (Np, n)n such that for all n,

dx (am,Nm,n,dm) < gt (1)
According to (A.3), we can find an ay, , € A, such that
dX (a’lrn,’IL?amaNm,n) S 2_n+1' (2)

The sequence (ay, ,,)n is Cauchy, since

dx (afm,rn a;n,n—i-l)
dx (alm,rw am,Nm,n) +dx (am,Nm,n ) C_lm) +dx ((_lm7 am,Nm,n+1) +dx (am,Nm,n+17alm,n+1)

<
< 27l pomndl L 9mm L 97 [(1) and (2)]

Clearly, this sequence also converges to a,,, because

dX (a;n,n’am)
< dx (A, 1 Om N, ) + dx (@m N, > Gm)
< 27 L9 (1) and (2)]

2—n+2

10



SoLUTION TO EXERCISE 133 Let A, B € Py (Pre (X)). We have to show that

dp,. x) ([ A B) < dp,.(p..(x)) (4, B).

Let 2 € |J A. Then there exists an A € A such that z € A. Furthermore, there exist a B € B satisfying
dp,. (x) (A, B) < dp,, (p,.(x)) (A, B). Hence, there exists a y € B such that

dX (xay)
< dp,. (x)(4,B)
< dp,. (P..(x)) (A, B).

.

SoLuTioN TO EXERCISE 155 The labelled transition system introduced in Example 146 induces the oper-
ational semantics O defined by

O(c)={an|neN}

and, for all n € IN,

O (cn) = {e}.
Because the set { a,, | n € IN } is not compact, we can conclude that the above defined operational semantics
is not compact. -

SoLuTION TO EXERCISE 165 The labelled transition system introduced in Example 146 induces a semantics
transformation T which is not compactness preserving. Let S be a semantics satisfying

S(Cn) = {5}
Then
T(S)(e) = {an |n e N}.

Since the set { a, | n € IN } is not compact, the semantics transformation 7 is not compactness preserving.
A

SOLUTION TO EXERCISE 168 Consider the semantics transformation T induced by the labelled transition
system of Example 137 and the semantics Si, Sz : {c1,c2} = P, ({a1,a2}>) defined by

Si(e1) =10 Sa (1) = {e}
Si(c2) =10 Sz (e2) = {e}

Then
d(T(81),T(S2))

> d(T(S1)(e1), T (S2)(er))
= d(@;{GI;U/Q})
= 1
> d(81,5),
that is, T is not contractive. 1

SOLUTION TO EXERCISE 179 We define the function dge : A® x A* — [0,1] by
da (01,02) = max {2 " -y (1) (01 (), 0 (m) | n > 1},
where o (n) is the n-th element of ¢ if n < |o| and L (undefined) otherwise. One can easily verify that this

function is a metric.

11



Next, we define the function f: A — ({e} + (4 x § - A®)) by

if 0 = ao’.

€ ifo=c¢
1@0={
Clearly, this function is bijective. We have left to prove that for all oy, o5 € A™,
d(f(01), f (02)) = d(01,02).
If o1 = o9 this is of course the case. Assume that o1 # 02. We consider the following three cases.
x If 01 = ¢ and 02 = a0}, then

d(f (e), f (az03))
= d(Ea <a270—é>)
=1

!
= d(g,a20%).
x The case that o1 = aj0] and o2 = € can be proved similar to the previous one.

x Let 01 = a10] and o3 = azo). Then

d(f (a101), f (a203))
= d(<a1701>7<a250'l2>)
= max{d(al,ag),%-d(a{,a;)}
— max{d(a,a2), 4 -max {271 -d (0} (n), 0 (m)) | n > 1}}

= d(ala'l,azaé).

SoLUTION TO EXERCISE 184 The compactly branching metric labelled transition system

{0&0
1
0%% forn>0

depicted by
oL

[N
=
W= <~—O

1 2
with the set of configurations {1 | n >0} U {0} and the set of actions {1 | n >0} U {0} both endowed
with the Euclidean metric, does not induce a compact operational semantics. Note that the function 8§ is

not nonexpansive. 1

SoLUTION TO EXERCISE 186 For a nonterminal configuration ¢, 8 (¢) # @) and for a terminal configuration ¢/,
8(c') = . Since the metric labelled transition system is nonexpansive,

1=d(8(c),8(c")) <d(c, ).

SOLUTION TO EXERCISE 191 Let o € O, (¢). We distinguish two cases.
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x If 0 =ayas---ap with k <n and
c:coi)clﬂ)...&)akﬁ

then o € O (c).

* If o =a1a9---a, and
a1 as an
C=Cy—>CL —> " —> Qp —

then oo’ € O (¢) for some o' € A®, and d(0,00') =27".
The fact that o € O (c) implies that there exists a ¢/ € O, (c¢) such that d(o,0') < 27" can be proved

similarly. r

SoLUTION TO EXERCISE 206 We define the function f: A% — ({e} + (4 x § - A*)) by
€ ifo=c¢
f(a)—{ (a,0")y if 0 =ao'.

Clearly, this function is bijective. We have left to prove that for all oy, g2 € A™,

d(f (Ul)a f (02)) =d (017 02)'
If o1 = o9 this is of course the case. Assume that o1 # o2. We consider the following three cases.

x If 01 = ¢ and 02 = ax0) then

d(f (), f (az203))
= d(E: <a2,0'é>)
= 1

!
= d(e,a205).
x The case that o1 = ajo] and o3 = € can be proved similar to the previous one.

x Let 01 = a10] and 0y = ay0). Then

d(f (a101), f (a203))
d({a1,01), (az,03))
= max{d(ai,a2),%-d(o},0%)}

% 'd(O’i,O’é) if a; = ag
1 otherwise

= d(a107,a20).
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