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Abstract

Predicates are used in a variety of formal specification languages,
though a predicate does not always mean the same thing in each ap-
proach. For example, the predicate false in Z means the same thing
as true in the predicative calculus of Hehner.

In this paper, we compare the specification languages Z, Morgan’s
Refinement Calculus, and Parnas’s Limited Domain relations, using
the timed predicative calculus (TP) of Hehner as an underlying frame-
work. In particular, we show that TP is more expressive than the other
languages. We also show that refinement in TP is strictly weaker than
the refinement relations associated with the other languages. As a re-
sult, refinement laws from the other languages can be reused in TP.

We conject that the simplicity of TP makes it a good candidate
as a specification language and program development method for the
refinement of procedural specifications, as well as real-time object ori-
ented specifications.
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1 Introduction

Predicates are used in a variety of formal specification methods though a
predicate does not always mean the same thing in each approach. For exam-
ple, the predicate false in Z means the same thing as true in the predicative
calculus of Hehner (as explained in the sequel). The meaning of a predicate
has a substantial impact on the complexity of a method’s refinement rule
and the expressiveness of its specification language.

Our original motivation for this paper is work we have recently done on a
predicative refinement calculus for object-oriented software development [23,
24]. We would like the simplest possible semantics and refinement relation
for such a calculus, while allowing for the calculus to be easily extended to
real-time reactive systems. Since refinement is what we must prove at each
step when we are programming, it is best to make refinement as simple as
possible. It is also advantageous to make the semantics of such a language
as simple as possible, if we desire to use supporting automated tools to abet
the specification and refinement process, and if we want the language to be
explainable and understandable.

The purpose of this paper is to briefly review the timed predicative cal-
culus (TP) of Hehner [11] and to show that it is more expressive than other
refinement calculi while having a strictly weaker (and hence easier to prove
and simpler) refinement rule. We also demonstrate that specification and re-
finement by parts is simpler in TP than in other specification and refinement
calculi. Thus, a key conclusion of this paper is that TP is an appropriate
basis to use for the formal development of procedural software, and we also
conject that it is appropriate to develop real-time, object-oriented software
as well.

The paper is organised as follows:

• We describe how TP is built from the untimed predicative calculus
(UP) of Hehner [11] by adding to it a time variable t ∈ R ∪ {∞}. The
notion of an execution, a specification, and an execution satisfying a
specification can all be expressed as predicates in TP.

• We show how specifications in Z [27], Morgan’s refinement calculus
(MRC) [22], and Parnas’s Limited Domain relations (LD) can be trans-
lated to TP without loss of expressiveness. Thus, TP can be used as an
underlying framework for expressing the semantics of the other calculi,
and for comparing the calculi.
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• We show that the TP refinement relation is strictly weaker (and hence
easier to prove) than simple refinement (as used in Eiffel [21]) and Z
refinement. LD refinement has the same form as that of Z. MRC refine-
ment is defined in terms of weakest preconditions. We prove that MRC
refinement also has the same form as that of Z and LD (Theorem 1);
to our knowledge, such a proof has not previously appeared in the lit-
erature. Thus, we show that TP refinement is strictly weaker than the
others. A consequence of the simpler TP notions of specification and
refinement is that specification and refinement by parts is simpler in
TP.

• We show that TP is more expressive than other calculi (Theorem 2).
In particular, we use extreme specifications to illustrate the differences
between the calculi (Table 2).

• We discuss our work in relation to other comparisons in the literature.

Notation

To avoid unnecessary brackets, we apply the following operator precedence
from highest (level 0) to lowest precedence (level 8):

0. unary prefix operators: +, −, ¬ , pre
1. ∗, /
2. +, −, ∩, ∪ etc.
3. relations: =, 6=, <, ≤ etc. and ∈
4. logical operators: ∧, ∨
5. →, ←,

t ,t ′→ , v, vs , vm

6. ≡, 6≡
7. assignment: :=, and quantification: ∀, ∃
8. definition: =̂

We use x, y, . . . for program variables. We let σ =̂ x , y , · · · where x , y , . . .
represent the initial state of the program variables respectively, and we let
σ′ =̂ x ′, y ′, . . . where x ′, y ′, . . . represent the final state of the program vari-
ables respectively. P ,P1,P2,Q ,Q1,Q2 are predicates (representing specifi-
cations) with free variables in σ and σ′. We use S , S1, S2 for single state
predicates, and D ,D1,D2 for double state predicates (defined in the sequel).
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2 The predicative calculus (UP and TP)

The untimed predicative calculus (UP) was introduced in [11] as a specifica-
tion and refinement calculus for sequential, parallel, interactive, or functional
programs. It is the precursor to TP. In UP, a single predicate such as

x ′ < x ∧ y ′ = y (1)

is used to specify a required program. The predicate asserts that program
variable x should be decreased while keeping y the same (notation will be
described below). Assuming that x , x ′, y , y ′ : Z, the specification is satisfied
by many different programs including program x := x - 1, program x := x

- 2, program x := x - 3 etc. If we add a precondition to the specification
so that the specification now reads x > 0 → x ′ < x ∧ y ′ = y , we thereby
enlarge the number of satisfying programs, e.g. if x >= 0 then x := x -

1 else x := 100.
In order to define the relationship between programs, their executions,

and specifications we proceed as follows:

• We first identify the quantities of interest (e.g. memory locations in the
computer, termination, etc.) and introduce a variable for each quantity
of interest. This allows us to describe program execution (behaviour)
in terms of the variables.

• An observation is a predicate that precisely describes the pre-state and
post-state of a program. For example, the predicate

x = 4 ∧ y = 4 ∧ x ′ = 3 ∧ y ′ = 4 (2)

is an observation where the program variables x , y denote the value of
the memory locations in the pre-state, and x ′, y ′ denote their values in
the post-state. An observation ignores all the intermediate states of an
execution and specifies only the initial and final states.

• A specification is a set of observations that describe the required be-
haviour of the program. We use predicates in the program variables
that relate the pre-state to the post-state for specifications. Thus, the
predicate

(x = 4 = y) ∧ (1 ≤ x − x ′ ≤ 2) ∧ (y ′ = y)
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is a specification that corresponds to two observations viz. x = 4 ∧
y = 4 ∧ x ′ = 3 ∧ y ′ = 4 and x = 4 ∧ y = 4 ∧ x ′ = 2 ∧ y ′ = 4, given
that x , y : Z.

• A program is a specification that has been implemented. We include
programs in our specification language as follows

skip =̂ x ′ = x ∧ y ′ = y ∧ . . .

x := e =̂ x ′ = e ∧ y ′ = y ∧ . . .

if b then P else Q =̂ (b → P ) ∧ (¬ b → Q)

P; Q =̂ ∃σ′′ • P [σ′ := σ′′] ∧ Q [σ := σ′′]

P and Q can themselves be specifications or programs; hence, we mix
programs and specifications because they are all described by predi-
cates. A full range of program constructs is defined in [11].

• From the program definitions many useful laws of programming can be
derived. For example, a simple proof using the definitions justifies

if b then P else P ≡ P

• If we have a particular observation Obs of program execution and we
want to know if it satisfies a specification Spec , then we must show
that

Obs → Spec (3)

is a theorem. The above definition of satisfaction provides a criterion
for distinguishing between observations that satisfy the specification
and those that do not. An observation of the states of an executing
program can never be equivalent to false , so the satisfaction criterion
will never be vacuous.

• A specification Spec1 is refined by a specification Spec2 (written Spec1 v
Spec2) if all the observations represented by Spec2 are also observations
of Spec1. This leads to a very simple definition of refinement

Spec1 v Spec2 =̂ (∀σ, σ′ • Spec2 → Spec1) (4)
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The idea behind refinement is that we gradually transform an abstract
program (possibly a specification) into a concrete implementation. If the
initial abstract program is correct, and the transformation steps preserve
correctness, then the resulting steps will be correct by construction. An
abstract program is usually easier to prove correct – i.e., that it satisfies
its requirements – than an implementation. Our definition of refinement
above captures the essential notion that we want, viz., no client of the more
concrete program can observe that it is not using the more abstract version of
the program. The notion of abstractness is a relative term, i.e. the direction
of refinement is from a higher level (the specification on the left of v) to
a lower level (the one on the right); the higher level is called the abstract
specification.

In UP, we do not need to distinguish between the specification language
and its semantics; a single predicate fulfills the role of both. All the funda-
mental definitions and notions such as observations (behaviour), specifica-
tions, programs, satisfaction (3), and refinement (4) are defined in terms of
predicates with free variables in σ and σ′.

2.1 The timed predicative calculus (TP)

UP only deals with partial correctness. This is because we have not intro-
duced any variables for the main quantity of interest in total correctness —
termination. The UP specification

x > 0 → x ′ < x ∧ y ′ = y (5)

simply means that if a computation starts in a state satisfying x > 0 then
the terminating state, if there is one, will satisfy x ′ < x ∧ y ′ = y . If x does
not have a positive value in the prestate then any behaviour is allowed. Since
there is no mention of time t in the specification, nothing is asserted about
the time taken by the computation.

To obtain a timed predicative calculus (TP) we just add a time variable
t of type R ∪ {∞}. We use t for the time at which execution starts, and
t ′ for the time at which execution ends. To allow for non-termination, we
allow the domain of time to be a number system that includes ∞. Axioms
such as ∞ + 1 = 1 and −∞ < x < ∞ → x ∗ 0 = 0 are needed to deal with
infinity — see [11] for the complete list. No changes to the UP notions of
satisfaction and refinement are needed. We do need to make the following
two stipulations:
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1. σ = t , x , y , . . ., i.e. t must be added to the state space (e.g. when
defining sequential composition we need to existentially quantify over
a state space that includes t). t may appear in the text of a program
(e.g. to refer to the current time), but any changes that are made to
t in the program must be according to a coherent timing policy. Two
such policies — real-time and recursive time — are described in [11].

2. A specification can be any predicate with free variables in σ and σ′

including the predicate false . However, not every specification is im-
plementable. We say that a specification Spec is implementable if

(∀σ ∃σ′ • Spec ∧ t ′ ≥ t) (6)

The definition asserts two important facts. First, every prestate must
have at least one corresponding well-defined post-state. This means
that false cannot be implementable, but it also means that x ≥ 0 ∧
y ′ = 0 is not implementable. If the initial value of x is non-negative,
then the specification can be satisfied by setting y to zero. But if the
initial value of x is negative, there is no way to set y in such a way
as to satisfy the specification. Perhaps the specifier has no intention
of providing a negative input, but to the implementor, every input is a
possibility. The specifier should have written

x ≥ 0 → y ′ = 0

which means that for negative input the implementor is free to do
anything. He can provide an error message or just let the program
crash.

The second important assertion in the definition of implementability
is that time cannot decrease between the input and the output. This
makes the specification Q : x ′ = 2 ∧ t ′ < ∞ unimplementable, be-
cause Q ∧ t ′ ≥ t is unsatisfiable for an initial value of t = ∞. It
may seem strange to reject the specification just because it won’t work
at time t = ∞; after all, no actual implementation will start at an
infinite time in the future. But consider the sequential composition
infiniteloop ; Q . In this case Q starts at infinite time (i.e. it never
starts). The theory has to cover this runaway case as well. Thus Q
must be checked for a non-decrease in time at infinity as well.
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The following example illustrates how we equip specifications with termi-
nation.

x > 0 ∧ t = 0 → x ′ < x ∧ y ′ = y ∧ t ′ = 6 (7)

Any observation in which initially t = 0 with x > 0 will terminate in ex-
actly 6 ticks. Any other observation can behave arbitrarily, including never
terminating.

In Hoare [18], termination is described by the introduction of a new vari-
able ok which is true of a program that has started in a fully defined state,
and ok ′ which is true of a program that has stopped in a fully defined state.
To indicate termination, specifications are written: pre ∧ ok → post ∧ ok ′.
This allows for termination but does not describe real-time.

Hehner argues that total correctness, without explicit time, is wasteful
[12]. In a total correctness formalism, one does a lot of work with variants
or least fixpoints (including an indirect calculation of a time bound which is
later thrown away) to gain one bit of information (termination ok ′) which is
of dubious value. This is because termination without a specified bound is
unobservable. How will you know that termination has happened? If nothing
has happened for 5 minutes can you report termination? No; perhaps the
machine is computing Ackermann(6, 6) and still has a century to go. In this
paper we will not hesitate to write total correctness or liveness properties
such as

S → D ∧ t ′ ≥ t ∧ t ′ 6= ∞ (8)

which asserts that there will be termination at some unspecified future time.
The above predicate is equivalent to

S ∧ t 6= ∞ → D ∧ t ′ ≥ t ∧ t ′ 6= ∞

because t ′ ≥ t ∧ t ′ 6= ∞ ≡ t ′ ≥ t ∧ t ′ 6= ∞ ∧ t 6= ∞. The abbreviation

S
t ,t ′→ D defined by

S
t ,t ′→ D =̂ S → D ∧ t ′ ≥ t ∧ t ′ 6= ∞ (9)

will be used in the sequel to describe timed behaviour in TP.

3 Other programming calculi

The well-known Hoare calculus [17] uses the triple {S }PROG{D} to assert
that: “an execution of PROG begun in a prestate satisfying the predicate S
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must terminate in a post-state satisfying the predicate DÔ. As an example,
consider program PROG 1 described by

{S1 : x > 0}
x := x - 1

y := y

{D1 : x
′ < x ∧ y ′ = y}

Postcondition D1 is a double-state predicate because it has occurrences of
initial and final variables. Precondition S1 is a single-state predicate because
it only has initial variables.

Suppose program PROG 2 has precondition S2 and postcondition D2, and
let PROG 1 v PROG 2 denote that PROG 1 is refined by PROG 2. A simple
minded definition of refinement is

PROG 1 vs PROG 2 =̂ (∀σ, σ′ • (S1 → S2) ∧ (D2 → D1)) (10)

i.e. in PROG 2 we may weaken the precondition and/or strengthen the post-
condition of PROG 1. This is the method used for redefining the contract of
an inherited feature in the Eiffel programming language [21]. In Eiffel, classes
possess procedures and functions (also called features), which can be given
contracts (pre- and postconditions). A contract of a feature can be changed
when the feature is inherited. Particularly, the inherited precondition can be
weakened and the postcondition can be strengthened. Such a requirement
permits refinement of specifications and implementations in a class, without
changing a client’s view of the class1.

3.1 Morgan Refinement Calculus (MRC)

The above Hoare triple mixes the implementation (programs) with specifica-
tions. It is useful to be able to deal with pure specifications, as well as code,
in refinement, so that specifications can be reasoned about, and programs
can be developed in a piece-by-piece and step-by-step manner. Morgan [22]
introduced the notation x : 〈|S , D |〉 to denote specifications2, where x is the

1Eiffel uses a syntactic convention to ensure that if a contract is changed when it is
inherited, it is guaranteed to be a refinement of the original. This eliminates the need for
theorems to be proved at compile-time.

2Morgan’s syntax is actually x : [S ,D ], but we use the square brackets for substitution,
e.g. P [x := e ] means replace all free occurrences of x in P by e . Also, we use primed vari-
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frame (the list of variables that may change between the pre-state and post-
state), S is the precondition, and D is the postcondition. A specification
x : 〈| S , D |〉 may be combined with other specifications or programs, using
program combinators like sequencing. PROG 1 is thus specified in MRC by

x :〈|x > 0, x ′ < x |〉

The predicate y ′ = y is not needed in the postcondition as the frame takes
care of this constraint. The specification x : 〈| S , D |〉 thus means “if the
prestate satisfies the precondition S then change only the variables listed in
the frame so that there is a terminating poststate that satisfies DÔ.

The quantities of interest in the above definition are the prestate of
the memory (S ), the poststate of the memory (D), and termination. No
statement of termination appears explicitly in the specification statement
x : 〈| S , D |〉, so the formal semantics will have to somehow take it into
account.

The semantics of MRC specifications is given using the weakest precon-
dition calculus [5] which can be used to justify the consistency of the trans-
formation laws used in the process of refinement. The semantics of the spec-
ification statement is given by [22]3

wp(x :〈|S , D |〉, P ) =̂ S ∧ (∀ x ′ • D ∧ y ′ = y → P ) (11)

given that σ = x , y . The meaning of refinement is justified by

P1 vm P2 =̂ (∀σ, σ′,P • wp(P1,P ) → wp(P2,P )) (12)

where vm is the Morgan refinement relation. This seems to be the only
reasonable way to define refinement using weakest preconditions.

We claimed in the introduction that TP can be used as an underlying
foundation for the various calculi. We can transform MRC specifications to
TP as follows:

x :〈|S , D |〉 =̂ S
t ,t ′→ D ∧ y ′ = y (13)

This TP semantics explicitly mentions timing and is much simpler than the
corresponding wp-semantics (no quantifiers are needed). Furthermore, there

ables for poststates and unprimed variables for prestates, whereas Morgan uses unprimed
variables for poststates.

3The formulation in Morgan is more complicated, and initial variables are not allowed
to occur in the predicate P . We do not see the need for this restriction.
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is no need to separate the specification language from its semantics: all spec-
ifications and programs are, as argued earlier, given in terms of predicates.

The semantics of Morgan refinement can also be expressed more easily
in terms of a predicate in TP (the proof format and justifications follow the
approach used in [7]).

Theorem 1 (MRC refinement in TP) Without loss of generality, let σ =
x , y. Then

x :〈|S1, D1 |〉 vm x :〈|S2, D2 |〉 ≡ (∀σ, σ′ • S1 → S2 ∧ (D̃2 → D̃1))

where D̃1 =̂ (D1 ∧ y ′ = y) and D̃2 =̂ (D2 ∧ y ′ = y).

Proof (sufficiency)
x :〈|S1, D1 |〉 vm x :〈|S2, D2 |〉

= 〈 definition of vm (12) 〉
(∀σ, σ′,P • wp(x :〈|S1, D1 |〉,P ) → wp(x :〈|S2, D2 |〉,P ))

= 〈 definition of wp (11) 〉
(∀σ, σ′,P • S1 ∧ (∀ x ′ • D̃1 → P ) → S2 ∧ (∀ x ′ • D̃2 → P ))

⇒ 〈 instantiation (9.13) with P := D̃1 〉
(∀σ, σ′ • S1 ∧ (∀ x ′ • D̃1 → D̃1) → S2 ∧ (∀ x ′ • D̃2 → D̃1))

= 〈 reflexivity of → (3.71); identity of ∧ (3.39) 〉
(∀σ, σ′ • S1 → S2 ∧ (∀ x ′ • D̃2 → D̃1))

= 〈 ¬ occurs(‘x ′’, S1, S2); distributivity of ∀ over → as in (9.5) 〉
(∀σ, σ′, x ′ • S1 → S2 ∧ (D̃2 → D̃1))

= 〈 σ′ already contains x ′ by assumption 〉
(∀σ, σ′ • S1 → S2 ∧ (D̃2 → D̃1))

(necessity)
(∀σ, σ′ • S1 → S2 ∧ (D̃2 → D̃1))

= 〈 (∀P • pred ) ≡ pred by (9.5) if P is a fresh dummy 〉
(∀σ, σ′,P • S1 → S2 ∧ (D̃2 → D̃1))

⇒ 〈 prop. logic (p → q) → (p ∧ r → q ∧ r) and monotonicity 〉
(∀σ, σ′,P • S1 ∧ (D̃1 → P ) → S2 ∧ (D̃2 → D̃1) ∧ (D̃1 → P ))

⇒ 〈 transitivity of → (3.82a) and MON 〉
(∀σ, σ′,P • S1 ∧ (D̃1 → P ) → S2 ∧ (D̃2 → P ))

= 〈 by assumption σ′ = x ′, y ′ 〉
(∀σ, σ′,P , x ′ • S1 ∧ (D̃1 → P ) → S2 ∧ (D̃2 → P ))
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⇒ 〈 monotonicity of ∀ (9.12); distributivity of ∀ over ∧ (8.15) 〉
(∀σ, σ′,P • S1 ∧ (∀ x ′ • D̃1 → P ) → S2 ∧ (∀ x ′ • D̃2 → P ))

= 〈 definition of wp (11) 〉
(∀σ, σ′,P • wp(x :〈|S1, D1 |〉,P ) → wp(x :〈|S2, D2 |〉,P ))

= 〈 definition of vm (12) 〉
x :〈|S1, D1 |〉 vm x :〈|S2, D2 |〉 ¤

3.2 Z

Z is based on typed set theory, and provides a structuring mechanism: the
schema. The schema is used to introduce a named collection of variables and
provides a predicate to show how the variables are related. PROG 1 from
Section 3 may be specified by

Decrease
x , x ′, y , y ′ : N

x > 0
x ′ < x ∧ y ′ = y

The predicate P corresponding to the schemaDecrease is just the conjunction
of the type declarations, the precondition, and the postcondition, i.e. P =̂
(x , x ′, y , y ′ : N) ∧ x > 0 ∧ x ′ < x ∧ y ′ = y . In general, the precondition of a
Z schema need not be explicitly given in the predicate part; it may have to
be calculated.

Z also provides a schema calculus that can be used to combine schemas.
Operators like schema conjunction, schema disjunction, and schema com-
position have been defined that allow large specifications to be constructed
by parts. The schema calculus operators all combine the declarations and
predicates of the schema operands.

Strangely, the interpretation of Z predicates as specifications of behaviour
is just a convention and we are free to make our own convention if we like.
That being said, what are the usual conventions for these matters? Accord-
ing to Spivey [27] on page 129: “if the (initial) state is related to at least
one possible state after the operation, then the operation must terminate
successfully ... If the predicate relates the state before the operation to no
possible state afterwards, then nothing is guaranteed ... the operation may
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fail to terminate, may terminate abnormally, or may terminate successfully
in any state at all.Ô This convention, in essence, is the same as MRC, except
that we will need to extract the precondition associated with the predicate
in order to talk about the initial states.

The precondition (preP ) of a Z predicate P is defined as follows4: preP =̂
(∃σ′ • P ). The semantics of the Z schema in TP can then be given as

(preP )
t ,t ′→ P (14)

Given two schemas with predicates P1 and P2, respectively, the Z refine-
ment rule is [30]:

P1 vz P2 =̂ (∀σ, σ′ • preP1 → preP2 ∧ (P2 → P1)) (15)

Z refinement is equivalent to MRC refinement, once we split the Z predicate
into two predicates (the precondition preP and the original predicate P ).

We can now begin to contrast Z and MRC refinement with simple refine-
ment (a more thorough comparison is presented in Section 4). Consider the
following example. The schema

DownOne
x , x ′, y , y ′ : N

x ′ = x − 1 ∧ y ′ = y

refines the schema Decrease whether we use the simple refinement rule (10),
or the Z refinement rule (15). The schema

DownInt
x , x ′, y , y ′ : Z

x ′ = x − 1 ∧ y ′ = y

does refine Decrease under Z refinement. However, the Z version of simple
refinement (10) which is

(preDecrease → preDownInt) ∧ (DownInt → Decrease)

4If the schema also has an included state schema with a corresponding predicate inv ,
then the precondition is defined as (∃σ′ | inv • P )
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does not hold, as we cannot prove DownInt → Decrease , i.e. x ′ = x − 1 ∧
y ′ = y → x > 0 ∧ x ′ < x ∧ y ′ = y is not a theorem, as can be seen by using
the substitutions x := 0, x ′ := −1, y := 2, y ′ := 2.5 We seek the weakest
possible refinement rule that preserves the essential notions of refinement,
which is that no client of the more concrete program can observe that it is
not using the more abstract version of the program that it refines. By that
criterion, MRC/Z refinement is superior to simple refinement. We can now
compare Z and MRC.

• MRC specifications contain two predicates. Z specifications consist of
a single predicate.

• Z specifications also have a precondition like MRC, but the precondi-
tion is fully determined by the Z predicate. This means that Z is less
expressive than MRC. For example, by (14) we see that Z cannot be
used to express miracles (i.e. the TP predicate false).

• The Z refinement rule (15) has the same form as the MRC refinement
rule by Theorem 1.

• Z does not have a frame to facilitate writing postconditions that need to
assert that a set of variables do not change. However, the Ξ convention
can be used to achieve the same thing.

3.3 Limited domain relations (LD)

A Limited Domain (LD) relation is a pair (R ,C ) where R is a binary relation
and C (the competence set) is a subset of the domain of R . LD relations
are described using predicate logic, i.e. an LD relation can be described by
the characteristic predicate of the relation, the domain and a competence
set. A logic for partial functions [25] is used to ensure that specifications are
well-defined in every state.

The semantics of LD relations is different from MRC and Z. We may
use a pair of predicates (S ,D) to represent the characteristic predicates of
the competence set and relation respectively. The meaning of such an LD

5In the case of DecreaseOne , the type information viz., x , x ′ : N can be used to
guarantee x > 0, i.e. (x , x ′ : N ∧ x ′ = x − 1 ∧ y ′ = y) → (x , x ′ : N ∧ x > 0 ∧ x ′ <
x ∧ y ′ = y). We thank John Wordsworth for pointing out these simple but illustrative
counter-examples.
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Simple Refinement vs (∀σ, σ′ • (S1 → S2) ∧ (D2 → D1))
Standard refinement vm

(used by MRC, Z and LD)
(∀σ, σ′ • S1 → (S2 ∧ (D2 → D1)))

TP refinement v (∀σ, σ′ • (S2 → D2) → (S1 → D1))

Table 1: Refinement relations for (S1,P1) v (S2,P2)

description is as follows: (a) if execution terminates in state σ′, starting from
some initial state σ, then (σ, σ′) must satisfy D , and (b) if the program
starts in a state satisfying S , then it must terminate. We can rephrase this
as follows:

• if execution starts in initial state σ satisfying S , then it must terminate
in a state σ′ so that (σ, σ′) satisfies D .

• if execution starts in a state σ not satisfying S , then it will either fail
to terminate or it will terminate in a state σ′ so that (σ, σ′) satisfies D .

The semantics of (S ,D can thus be translated to TP as follows

(S
t ,t ′→ D) ∧ (¬ S → (D ∧ t ′ ≥ t ∧ t ′ 6= ∞) ∨ t ′ = ∞) (16)

The refinement relation is the same as for MRC.

4 Comparison

4.1 Refinement comparison

The simplest way to compare refinement rules for the various calculi is, with-
out loss of generality, to use a pair of predicates (S ,D), where S is a pre-
condition and D a postcondition, to represent specifications in various the
calculi. MRC and LD are already based on a pair of predicates, and the sin-
gle predicate formalism Z (with predicate P ) can be translated into the pair
(preP ,P ), using the precondition operator provided in the Z toolkit and in
(14). The three refinement rules of the specification languages are expressed
as predicates in TP in Table 1.

We now classify the refinement relations in terms of their complexity.
In particular, we provide a hierarchy of refinement relations, based on the

16



expression of the relations in TP. Before classifying the relations, we define
the notion of strictly weaker predicates.

Definition 1 (Strictly weaker) A predicate P2 is strictly weaker than a
predicate P1 if (a) P1 → P2 is a theorem, and (b) P2 → P1 is not a theorem.

The notion of one predicate being strictly weaker than another can be
used to produce a refinement hierarchy. This hierarchy will be useful in
classifying the refinement relationships, so that users of refinement can best
select the most appropriate refinement relationship for their work. Given the
TP expressions of the refinement relations, we can prove the following.

Theorem 2 (Refinement Hierarchy) (i) Standard Refinement is strictly
weaker than Simple Refinement. (ii) TP refinement is strictly weaker than
Standard Refinement.

Proof: (i) Proof of (a) in Definition (1) is by simple predicate calculus.
For the proof of (b) in Definition (1) just use the counter-example D2 :=
true , S1 := false ,D1 := false . (Note that we already saw in Section 3.2 that
DownInt refines Decrease under standard refinement but not under simple
refinement.)

(ii) Proof of (a) in Definition (1) is again by predicate calculus. For the
proof of (b) in Definition (1) use the counter-example D1 := true , S1 :=
true , S2 := false . ¤

Corollary (a) The TP refinement rule is weaker (and hence, is easier to
prove) than MRC, Z, LD, and simple refinement. (b) We can use all the Z
and MRC refinement rules (appropriately translated) for refinement in TP.

4.2 Specification and refinement by parts

It is often convenient to construct specifications by parts. Suppose we have
an array a where elements are numeric and thus comparable. We may want
to write a sort specification as follows.

sort(a′, a) =̂ permutation(a′, a) ∧ ordered (a′)

It is convenient to use ordinary conjunction P1 ∧ P2 when you want be-
haviour that simultaneously satisfies specifications P1 and P2. We can easily
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show from the definition of TP refinement that the rule

P1 v P2, Q1 v Q2
[ TPRP – TP refinement by parts ]

P1 ∧ Q1 v P2 ∧ Q2

is valid. Thus, we can do refinement by parts in the expected fashion.
There is no standard definition for specification by parts in MRC, in part

because MRC only provides program (and not specification) combinators. It
is also not immediately obvious how to put x : 〈| S1, D1 |〉 and y : 〈| S2, D2 |〉
together within the framework of MRC.

The definition of specification by parts in [29] is

x , y :〈|S1 ∧ S2 ∧ (∃ x ′, y ′ • S1 ∧ S3), D1 ∧ D2 |〉

The problem with this definition is that MRC refinement (vm) is not mono-
tonic with respect to specification by parts (i.e. the MRC equivalent to rule
TPRP above is not valid). However, using the translation of MRC specifica-
tions to TP and (17), below,

(S1
t ,t ′→ D1) ∧ (S2

t ,t ′→ D2) ≡ S1 ∨ S2
t ,t ′→ (S1 → D1) ∧ (S2 → D2) (17)

(which can be shown to be true by a simple argument), we get the following
definition for MRC specification by parts

x :〈|S1, D1 |〉 ∧ y :〈|S2, D2 |〉
=̂ x , y :〈|S1 ∨ S2, (S1 → D1) ∧ (S2 → D2) |〉

TP has given us the right definition because now MRC refinement by parts
is monotonic in vm, i.e.

P1 vm P2, Q1 vm Q2
[ MRCRP – MRC refinement by parts ]

P1 ∧ Q1 vm P2 ∧ Q2

is valid, where P1,P2,Q1,Q2 are MRC specifications.
MRC refinement by parts is more complex than the corresponding TP

rule, but at least it works in the expected fashion using the right definition
of specification by parts. But things do not work so well in Z.

In Z, two schemas (with predicates P1 and Q1 respectively) with type
compatible signatures can be combined with the schema conjunction operator
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to give a new schema with corresponding predicate P1 ∧ Q1 and signature
the result of joining the two component signatures (see [27], p32). The Z
refinement rule (15) has the same basic form as the MRC refinement rule,
and hence we would like to use MRCRP above for Z refinement by parts.
However, using the obvious choice of schema conjunction for specification by
parts means that MRCRP is not valid for Z, as the following counterexample
shows.

schema with predicate P1

x , x ′, y , y ′ : Z

x ′ = y ′ + 3

schema with predicate Q1

x , x ′, y , y ′ : Z

y ′ = 7

where we want to refine P1 by P2 and Q1 by Q2 with P2 and Q2 defined by

schema with predicate P2

x , x ′, y , y ′ : Z

x ′ = 10 ∧ y ′ = 7

schema with predicate Q2

x , x ′, y , y ′ : Z

y ′ = 7 ∧ x ′ = 9

For the above examples, the Z preconditions of P1,P2,Q1,Q2 and P1 ∧ Q1

are all true ; however, pre(P2 ∧ Q2) is false . Thus, P1 vm P2 and Q1 vm Q2

are true , but P1 ∧ Q1 vm P2 ∧ Q2 evaluates to

true → (false ∧ (P2 ∧ Q2 → P1 ∧ Q1))

which is false . In TP, the “miracleÔ false (although not implementable)
refines every program. However, in Z, false means “chaosÔ, i.e. arbitrary
possibly non-terminating behaviours (Table 2). Thus, P2 ∧ Q2 (which is
false) cannot refine P1 ∧ Q1.

Because of the unusual meaning that Z gives to false , the definition in
[27] of schema conjunction does not work in the intuitive fashion. Consider
two schemas, one with predicate skip and the other with predicate false .
According to schema conjunction [27], the predicate of the combined schema
is skip ∧ false which evaluates to false , i.e. chaos. This is clearly wrong
because the conjunction must behave in a way that is consistent simultane-
ously with chaos and skip. Thus the conjoined predicate should evaluate to
skip (which is also one of the possible behaviours permitted by chaos). This
is in fact what happens in TP where

skip ∧ chaos = skip ∧ true

= skip
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To make specification by parts work in Z, Hehner [12] suggests that you
can put P1 and Q1 together if and only if

pre(P1 ∧ Q1) ∨ ¬ (preP1) ∨ ¬ (preQ1)

holds, and the joined specification is then

(pre(P1 ∧ Q1) → P1 ∧ Q1) ∧ (¬ preP1 → Q1) ∧ (¬ preQ1 → P1)

This makes specification and refinement by parts quite complex, whereas it
as best to make specification and refinement as simple as possible.

4.3 Expressiveness

We need a formal definition of when one specification language L1 is more
expressive than another L2. Consider specification spec ∈ L where L is one of
the specification languages treated in this paper (UP, TP, MRC, Z and LD).
We can always translate spec to a predicate translate(spec) in TP using the
various translation formulas (13), (14), and (16) — UP and TP specifications
can be used as is.

In (2), we defined an observation as a program execution expressed as a
predicate. Let OBSERVATIONσ be the set of all observations corresponding
to a bunch of program variables σ. We can then define the set of observations
obs(spec) of a specification spec ∈ L over some state space σ by

obs(spec) =̂ {o ∈ OBSERVATIONσ | o → translate(spec)} (18)

We can think of a language L as defining possible sets of observations, as
described by L =̂ {obs(spec) | spec ∈ L}. Not all possible sets of observations
can necessarily be expressed in a given language [9].

Definition 2 (Language Expressiveness) (a) A language L1 is more ex-
pressive than L2 precisely when L1 is a superset of L2, i.e. L1 ⊃ L2. (b)
Two languages L1 and L2 are incomparable precisely when

(∃ s1 ∈ L1, s2 ∈ L2 • obs(s1) 6∈ L2 ∧ obs(s2) 6∈ L1)

Table 2 summarizes the relationship between the various specification
languages particularly by looking at extreme specifications. We showed in
previous sections that TP can be used to describe all the specifications of the
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TP

MRC LD UP

Z

Figure 1: Expressiveness of the various calculi

other languages. However, each of the other language cannot express some
property that TP can. MRC and Z cannot express abort . LD and UP cannot
express the standard notion of total correctness (LD has its own notion of
total correctness). In addition, none of the other languages can express real-
time (without further modification) . Hence TP is more expressive than the
other languages.

A Z specification with predicate P can always be translated to an equiv-
alent MRC specification via σ : 〈|preP , P |〉, where σ does not include time
t . However, Z cannot express a miracle , whereas MRC can. Thus, MRC is
more expressive than Z (MRC is more flexible than Z because its precondi-
tion can be chosen arbitrarily whereas in Z, the precondition is determined
from the predicate).

LD can describe abort whereas MRC and UD cannot. MRC can describe
the standard notion of total correctness, whereas LD and UD cannot. UP
can describe partial correctness whereas MRC and LD cannot. We thus have
the following theorem.

Theorem 3 (Expressiveness) (a) TP is more expressive than MRC, Z,
LD and UP. (b) MRC is more expressive than Z. (c) MRC, LD and UP are
incomparable with each other.

The expressiveness hierarchy is shown in Figure 1 where the calculus at the
top of a vertical line is more expressive than the one at the bottom. LD has
the interesting property that it can describe all the extreme specifications.
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TP MRCa Z LD UP

chaosb true σ :〈| false , D |〉 false false , true true
choosec t ′ 6= ∞ ∧ t ′ ≥ t σ :〈| true , true |〉 true true , true No

abortd t ′ = ∞ No No false , false No

miraclee false σ :〈| true , false |〉 No true , false false
PCf Yes No No No Yes

STCg S
t ,t ′→ D σ :〈|S , D |〉 Yes No No

real-time Yes No No No No

Table 2: Standard and extreme specifications in the calculi

aIn this column, σ excludes t
bTotally arbitrary behaviour including non-terminating executions.
cOnly the terminating executions; no result guaranteed.
dOnly the non-terminating executions.
eNo executions, i.e. no computer can execute it.
fPartial correctness, i.e. if the execution starts in S and terminates then D holds.
gStandard Total Correctness where S and D are contingent (neither true nor false).

5 Discussion and Conclusions

This paper was inspired by the surveys and semantic comparisons performed
in [13] and [8]. Both these papers treat the untimed predicative calculus
precursor to TP discussed in [10], and not the version of TP treated in this
paper.

[13] compares six specification methods with respect to extreme speci-
fications and properties such as skip, assignment, sequential composition,
deterministic and nondeterministic choice, specification by parts, ordering
(refinement) and recursion. The methods treated include Jones’s VDM, Di-
jkstra’s weakest preconditions, partial relations, LD and an early version of
UP. The comparison did not include TP, MRC and Z. In this paper we had
the advantage of Hehner’s TP that could serve as an underlying framework
for the semantic treatment of other languages which made the comparison
easier and allowed us to see that TP is more expressive, and its refinement
rule simpler than the other methods.

Grundy [8] surveys and compares three simple styles of programming
based on single predicates: the relational model (e.g. Z), partial models (i.e.
correctness under the assumption of termination), and total models (e.g. the
precursor to UP). Grundy shows that there is no commonly held understand-
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ing of what a predicate means as a specification of behaviour. Grundy does
not treat MRC and LD. Grundy’s conclusion was that the predicative models
all had difficulties, which is why single predicate methods “have been all but
abandoned in favour of specifications phased as pairs of predicates for work
in program refinementÔ. His criticisms of the precursor to TP were that se-
quential composition was not associative and nondeterministic choice of two
terminating behaviours can allow for non-termination. These deficiencies are
not present in TP. Our conclusion in this paper is that the single predicate
TP method is in fact superior to other methods when it comes to refinement
and specification by parts.

It is a surprising fact that a standard Z logic has only been proposed
recently [28], given the attention Z has garnered as a formal method. Early
attempts at a Z logic contained many ambiguities and even inconsistencies
[14, 19]. We refer the reader to [15, 16] for further discussion of the issues.
Some researchers are of the opinion that Z should remain a pure specifica-
tion language unrelated to questions of implementation. Others (ourselves
included) feel that Z’s lack of a standard development method is a problem.
What use is a pure specification without knowing what system behaviour is
being required? At the very least, we need a theory that links specifications
to the observations (or behaviours) of the system under description. We refer
the reader to ZRC [4] for a discussion of these issues; this paper also provides
a theory of refinement for transforming Z schemas into programs akin to that
of MRC.

Back [2] presents a refinement calculus for reasoning about total cor-
rectness and refinement of programs using lattice theory as the underlying
semantic foundation in which one can look at partial functions, relations and
predicate transformers as complementary methods for program derivations.

We have focussed on procedural refinement and the resulting notions of
termination. The authors of [26] compare various methods of data refine-
ment. They show that refinement proofs reduce to proving simulation, and
they compare 13 methods including TP, VDM, Z, and MRC for incomplete-
ness (the refinement holds but cannot be proved in the method). The au-
thors of [26] write about Hehner’s method (TP): “The introduction of data
invariants and/or initialization predicates then yields a stunningly simple
and elegant method for data refinement, which is completeÔ. By contrast,
the data refinement methods for VDM and Z are incomplete.

There have been extensions of Z [6] and MRC [20] to deal with program
refinement in the context of real-time systems. In both cases, the refinement
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rules have to be changed to accomodate the passage of time. In TP, the
refinement rules themselves remain the same. A further advantage of TP is
that refinement by parts works in the expected fashion. Thus, the timing
and partial correctness results can each be treated in their own right (e.g.
see page 57 in [11]).

To what extent can we extend the use of TP as an underlying framework
for other model-oriented methods? VDM is based on a three-valued logic;
we would thus have to extend the bunch bool in [11] with a third value which
would result in changes to many of the refinement rules. Thus VDM would
not be a suitable candidate for comparison with the methods of this paper.

The B method [1] has a notion of refinement based on first order logic.
The definition of refinement given in Chapter 11 of [1] is in terms of the set-
transformer semantics rather than weakest preconditions, although it appears
to be equivalent to the definition used by others who work with a weakest-
precondition semantics. The definition is higher order but Abrial uses the
neat trick of showing that it is equivalent to a first order definition [3]. It
would appear to be useful to extend the comparisons of this paper to B. But
B also provides a specification structuring mechanism (the abstract machine)
that goes beyond the structuring mechanisms provided by the methods in
this paper: abstract machines can group operations and state, whereas there
is nothing equivalent in Z, TP, MRC, or LD.

We now summarise the main conclusions of this paper:

• TP is a single predicate method that can be used to specify and refine
sequential and concurrent or real-time programs. It is more expressive
than the other methods treated in this paper, can serve as an underlying
semantic framework for them, and has the simplest refinement rule. As
a consequence, refinement rules of other methods such as MRC can be
used in TP. Specification and refinement by parts is simple and can be
done without the constraints of other methods.

• Predicates can have very different meanings in the various methods
and care must thus be taken in interpreting them. In particular, we
have some concerns with Z: there is no fixed standard for how the
specifications relate to programs; specification and refinement by parts
is complex; and refinement rules need to be changed when dealing with
real-time.

24



Our original motivation for this paper was work we have recently car-
ried out on developing a predicative refinement calculus for object-oriented
software development [23, 24] using BON/Eiffel. Our conclusion is that TP
provides the simplest basis for an object-oriented refinement calculus. And
because of the timed nature of TP, it has the built-in techniques that we will
need in extending the calculus to real-time object-oriented program refine-
ment.
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