
An Object-Oriented Refinement Calculus

Richard F. Paige and Jonathan S. Ostroff
Department of Computer Science, York University, Toronto, Ontario M3J 1P3,

Canada.fpaige,jonathan g@cs.yorku.ca �

August 28, 2000

Abstract

Design-by-contract has been used in the BON/Eiffel setting as an industrial-strength technique for building re-
liable, reusable, and maintainable software systems. We show that it provides a basis for refining object-oriented
specifications to programs on an industrial scale. We present a collection of algorithm refinement rules, in particular,
new rules for introducingfeature calls(which are the basis of object-oriented computing) that can be used to refine a
specification in BON to an immediately executable and correct program in Eiffel. We show how refinement of large
systems can be decomposed into an arbitrary number of small steps. And we describe how automated support for
such a process can be developed based on existing tools.

1 Introduction

A key goal of formal methods has always been to specify, design and verify large programs. While important theoreti-
cal gains and some practical benefits have been achieved, the actual application of these methods to industrial-strength
software development has been for the most part limited to critical components of fairly small subsystems.

Object-oriented (OO) software development has been suggested as a useful and important technique for building
large, reliable, and maintainable software systems [Lan95, Mey97]. However, the most popular formal notations and
methods such as Z [Spi92], VDM [Jon90], CSP [Hoa85] and B [Abr96] do not apply directly to OO software develop-
ment, since they lack fundamental features like the ability to specify classes, inheritance, and feature redefinition. OO
extensions of these languages, such as Object-Z [DR94] and VDM++ [Lan95], while eliminating many of these prob-
lems, do not have realistic associated implementation languages (and thus further translation is necessary to produce
executable code), nor have they completely worked out all the details inherent in refining object-oriented specifications
to programs. Yet many software developers either already are or plan on using OO programming languages for their
projects. What guidance can formal methodologists offer these developers?

There is a method and language already available that casts many of the benefits of conventional formal methods
— and refinement in particular — into the OO realm. This method and language is applicable to specification and to
the development of immediately executable code. The method is BON [WN95] and the language is Eiffel [Mey92].
Formal methodologists have paid little attention to BON/Eiffel despite the fact that it appears to be an ideal platform
for making formal methods directly usable in large-scale software development.

A common element shared by the BON method and Eiffel language isdesign-by-contract(DbC) [Mey97]. The
premise of DbC, in an OO setting, is that routines (e.g., functions or procedures) of a class are givencontracts. These
contracts precisely describe the services that classes offer to clients, and the obligations clients have when using the
services.

Contracts (a) describe the class interface, i.e., the benefits offered by the class to its clients without describing
how these benefits are delivered; (b) define the obligations of the author or supplier of the class to the clients, and the
obligations of the clients when using the class; (c) allow for better testing via assertion checking at runtime; (d) define
precisely what an exception is (behaviour that does not satisfy the contract); (e) allow for sub-contracting so that the

�The authors thank the National Sciences and Engineering Research Council of Canada for their support.

1

meaning of a redefined routine under inheritance remains consistent1; and (f) provide documentation to both clients
and suppliers of classes. By writing well-designed preconditions, postconditions and invariants, as well as carefully
choosing names for classes and routines, we get theself-documenting principle— the documentation of a class is
developed hand-in-hand with the class and is stored together with the class; documentation is automatically extracted
by tools from the class text itself at various levels of abstraction.

What is missing from DbC in BON/Eiffel is the notion of refining an abstract specification of a class down to an
immediately executable Eiffel program with a guarantee that the program satisfies the specification.

What is missing in conventional formal methods such as Z, B or tabular specifications [Par92] are methods for
structuring and packaging large specifications, in order to promote reusability and maintainability. Conventional
methods have notions of a schema or module, but not the benefits provided by object orientation, viz., the structuring
of large systems via classes and the client-supplier and inheritance relationships between classes (described in more
detail in the sequel). Object-oriented extensions of formal methods such as Object-Z, VDM++, and Larch/C++ do not
have comprehensive refinement rules that can be used to transform specifications into implemented code in an actual
OO programming language.

The purpose of this paper is to use the object-oriented features of BON/Eiffel to help structure the specification of
large systems with the addition of refinement rules for developing implemented Eiffel code from BON specifications,
and in particular refinement rules for feature calls, which is the basis for object-oriented computing. The development
of code iscompositional— the development of a class proceeds in an environment where only the specifications (and
not implementations) of dependent classes, defined in the sequel, need be used. A class itself is refined routine by
routine. This compositional property means that the process can potentially be applied in the development of large
industrial-scale software.

Informally, suppose that we have an OO system constructed from a universe of classes. One of these classes is the
root [Mey92]; all classes on which the root depends must be in the system. The root class provides a routine from
which execution of the OO system will commence. Any classC in this universe can be refined using only its contracts
and the contracts of the classes thatC depends upon via a restricted set of directed relationships.

Because of compositionality, we need only the contracts, and not the implementations, of a few classes to refine
the class specification ofC to an executable program. This is the OO version of the compositionality principle
of conventional program development: the correctness of a system can be determined from the correctness of its
parts without the need to know the internal structure of its parts. In the case of an OO system constructed from the
aforementioned universe of classes, it is sufficient to refine the root class of the system. Doing this will recursively
trigger a process wherein all other classes in the system are eventually refined. At each step of the process, the
compositionality principle applies, and we can refine a class by using only the contracts of related classes. Instead of
refining a large OO program all at once, we will have broken down the task into separate classes and features that are
annotated with contracts.

The main contribution of OO refinement is its structuring of specifications and programs into parts — viz., classes
— that enforce information hiding and encapsulation. The refinement method described in this paper uses the class
as the atomic notion of module to which composition, and thereby refinement, is applied. This is what makes OO the
ideal setting in which to carry out refinement.

As will be explained in the sequel, BON/Eiffel hasexpanded(sometimes referred to as “subobject”) types as
well asreferencetypes. In this paper, we limit ourselves to expanded types only, so as to concentrate on getting the
refinement rules right: we focus on the development of refinement rules for transforming BON specifications into
Eiffel programs that are suitable for mechanization using existing tools, e.g., in an industrial-strength theorem prover
like PVS [CO95]. Extension of the rules to reference types will be carried out once the rules for expanded types
have been developed and mechanized. For the extension to reference types, we can make us of the work on Object-Z
[DR94], JML [LB00], and the Larch formalization of the Eiffel reference type (which is identical to the BON reference
type) in [KM95]. Formalizing reference types will also benefit from our work on automating the refinement calculus
(see Section 7 and also [PO99]).

1If a client of classRECTANGLE (which inherits from classPOLYGON) calls a feature to calculate the perimeter, then we want to ensure
thatRECTANGLE does not redefineperimeterto calculate thearea instead. Redefinition could change the implementation of a feature but not
its essential meaning.

2

1.1 Organization of the paper

We first present an overview of design-by-contract, illustrating its principles and its use in the development of reliable
object-oriented software. Then we provide an overview of the Business Object Notation (BON), which supports DbC.
We summarize BON’s features, and provide a notion of the meaning of a contract, due to Meyer [Mey92]. We also
summarize the notation that we will use throughout the remainder of the paper. Sections 4 and 5 contain the main
contributions of the paper. In Section 4, we explain how to carry out algorithm refinement in BON, and provide a
collection of refinement rules. These rules include novel techniques specifically for object-oriented computing, in
particular, for introducingfeature calls, the basis of object-oriented specification and programming. In Section 5, we
explain the compositionality of refinement in BON, and provide a process for refining a BON specification into exe-
cutable Eiffel code. We illustrate the process with a short example, in Section 6. In Section 7, we discuss automation,
and our goal of supporting refinement and verification with BON/Eiffel using PVS. Finally, in Section 8, we discuss
related work.

2 Design-by-Contract

An object-oriented system (by which we mean a specification or a program) consists of a number of classes connected
by relationships. Each class consists of a number offeatures, which may be attributes (state) or routines (computa-
tions). The premise of design-by-contract is that each routine of a class should have a contract. The contract expresses
both constraints on when a routine can be used, and the results that calling a routine will produce, e.g., a returned value,
or a change to the state of an invoking object. In effect, the contract expressesobligationsthat are placed on any client
— any other feature that uses the routine — as well as thebenefitsthat the client can rely on by calling the routine.
Obligations on the client can be expressed as apreconditionto a routine, while benefits to the client are expressed as a
postcondition. Dually, the author of a routine is obliged to make sure that the postcondition is satisfied by the routine
implementation, and benefits by not having to deal with cases other than those covered by the precondition.

Consider thepush procedure of aSTACK class. As Fig. 1 shows, a client ofpush is obliged to call the routine
only when the stack is not full, and benefits by having the argument of the call put on top of the stack. Accordingly,
the author ofSTACK is obliged to make sure that their implementation ofpush puts the argument to the call atop the
stack, and benefits from the precondition by not having to treat the case when the stack is full.

on the top of the Stack

top of the Stack

need not treat the
AUTHOR
CLASS

OBLIGATION GAIN

CLIENT
call push(x) when

full

case when Stack is full

the Stack isn’t

make sure that x is

gets x added to the

Figure 1: Benefits and obligations for apushfeature of a stack class

A simple extension of DbC is to allow classes themselves to be annotated with assertions that apply to all features
of the class. Such assertions are calledclass invariants.

Design-by-contract has been suggested as useful for a number of purposes.

� Reliability. Reliability is concerned with the robustness of software (i.e., reaction to abnormal conditions, such
as unexpected environmental changes or hardware faults) and its correctness (i.e., does a piece of software
satisfy its specification). DbC can make software more robust by explicitly delimiting what is an abnormal
condition (an unsatisfied precondition or postcondition) and who is responsible for dealing with the condition.
For example, if a precondition is unsatisfied, it is due to a bug in the client, and therefore the designer of the
client must deal with the bug.

� Reusability. By precisely specifying contracts for class features, the conditions under which a feature, and
thereby a class, can be reused can be explicitly codified. A discussion of some of the benefits of contracts in a
reuse situation can be found in [JM97].

3

� Maintainability. By keeping the contracts in place with their implementations, a maintainable software system
can be produced. Keeping contracts with implementations helps to keep specifications and programs in synch
over time. Having contracts for features can help in the process of finding errors in programs, thus aiding in the
process of corrective maintenance.

3 The Business Object Notation

BON is an object-oriented method possessing a recommended process as well as a graphical notation for specifying
object oriented systems. The notation provides mechanisms for specifying inheritance and client-supplier relationships
between classes, and has a small collection of techniques for expressing dynamic relationships. The notation also
includes anassertion language; the method is predicated on the use of this assertion language for specifying contracts
of routines and invariants of classes.

BON is designed to support three main techniques: seamlessness, reversibility, and design-by-contract. Seamless-
ness means that the same modeling abstractions can be used throughout the software development process, including
both specification and implementation. This allows the direct mapping of abstractions that are used in specification
to abstractions used when coding. Reversibility means that models can be automatically produced from programs;
BON models can automatically be extracted from Eiffel programs. BON provides a small collection of powerful
specification features that guarantee seamlessness and full reversibility when used with Eiffel.

The fundamental specification construct in BON is theclass. In BON, a class is both a module and a type. A BON
class has a name, an optional class invariant, and a collection of features. A feature may be aquery— which returns
a value and does not change the system state, i.e., a side effect-free function — or acommand, which does change
system state but returns nothing. BON, according to [WN95], does not include a separate syntax for the notion of
attribute. Conceptually, an attribute should be viewed as a query returning the value of some hidden state information.
For the purposes of this paper, we will define an attribute as aparameterless querywithout a contract.

In BON, all features are typed; routines may have (optional) domains and (in the case of queries) ranges. In
general, types may bereferenceor expanded. Where a reference type is expected, an address is to be provided; where
an expanded type is expected, an object of that type is expected.

Fig. 2 contains a short example of a BON graphical specification of the interface of a classCITIZEN ; the specifi-
cation uses both reference types and expanded types (though we will consider only expanded types in Section 3.1 and
thereafter). Class features are in the middle section of the diagram (there may be an arbitrary number of sections, each
annotated with preface listing the clients that may access the features in the section). Routines may optionally have
behavioral specifications, written in the BON assertion language in a pre- and postcondition form (in postconditions,
the keywordold can be used to refer to the value of an expression when the routine was called; similarly, the implicitly
declared variableResult can be used to constrain the value returned by a query). Procedure specifications (and loop
invariants, see Section 4) may be givenframes, indicating those attributes that may be changed by the specification.
Proceduredivorce shows an example of a frame. An optional class invariant is at the bottom of the diagram. The class
invariant is an assertion (conjoined terms are separated by semicolons) that must betrue whenever an instance of the
class is used by another object (i.e., whenever a client can call an accessible feature); thus, private features local to a
class may temporarily invalidate the class invariant. In the invariant, the symbolCurrent refers to the current object;
it corresponds tothis in C++ and Java.

The basic form of a BON assertion is

8 x : T j R � P

where variablex of typeT is the bound variable,R is the domain restriction, andP is the propositional part.
In Fig. 2, classCITIZEN has seven queries (name andsex , for example, are considered to be attributes) and one

command. For example,single is a query (which results in aBOOLEAN), whiledivorce is a parameterless command
that changes the state of an object. ClassSET [G] is a generic predefined class with generic parameterG and the usual
operators (e.g.,2; add). The classSET [CITIZEN] thus denotes a set of objects each of typeCITIZEN .

Short forms of assertions are permitted. For example, consider a querychildren : SET [CITIZEN]. Then
8 c 2 children � P is an abbreviation of8 c : SET [CITIZEN] j c 2 children � P . The “it holds” operator� is right
associative. The last invariant of Fig. 2 thus asserts that each child of a citizen has the citizen as one of its parents. The
first invariant asserts that if you are a citizen then you are either single or married to somebody who is married to you.

4

The second invariant asserts that a citizen has exactly two parents. An advantage of the object-oriented BON style of
specification is that as the class is enriched with new features (e.g.,children andsingle), the new features become part
of the specification language used for contracts.

single, spouseframe

spouse.spouse=Current;

p=Current

divorce

name, sex, age : VALUE
spouse : CITIZEN

single : BOOLEAN

Result <-> (spouse=Void)

children, parents : SET[CITIZEN]

single or
parents.count=2;

children

!

c ∃ p c.parents∀

CITIZEN

invariant

! singleand (old spouse).single

not single?

22

Figure 2: A citizen class in BON

BON specifications normally consist of multiple classes that interact via two kinds of different relationships.

� Inheritance: a child class inherits behavior from one or more parent classes. Inheritance is the subtyping
relationship: everywhere an instance of a parent class is expected, an instance of a child class can appear. The
inheritance relationship is drawn between classesANCESTOR andCHILD in Fig. 3, with the arrow directed
from the child to the parent class. In this figure, we have drawn the classes in theircompressed forms, as ellipses,
wherein details of the classes’ interfaces are concealed from the reader.

� Client-supplier: there are two basic client-supplier relationships, association and aggregation, which are used
to specify thehas-aor part-of relationships between classes, respectively. Both relationships are directed, from
a client class to asupplierclass. With association, the client class has an attribute that is a reference to an
object of the supplier class. With aggregation, the deletion of an instance of a client class also implies the
deletion of the corresponding instance of the supplier class; thus, the client class has an attribute that is an object
of the supplier class. Aggregation arrows visually depict the notion ofexpanded typediscussed earlier. The
aggregation relationship is drawn between classesCHILD andSUPPLIER in Fig. 3: we say thatCHILD is a
client ofSUPPLIER. In this paper, we will only use the aggregation relationship; thus, we will not formalize a
notion of reference type.

CHILD

ANCESTOR

SUPPLIER

Figure 3: Class relationships in BON

Information hiding is described by dividing the features of a class interface into sections, where each section is
prefaced by a list of client classes that may use the features contained in the section. Private features are described in
sections prefaced byNONE ; public features are in sections prefaced byANY . A feature accessible only to classes
A;B ; andC will be in a section prefaced by the listA;B ;C .

Often, especially when providing a view of a class suitable for specific clients, aflat form [Mey97] of a class is
provided. The flat form of a class consists of all features in the class and all inherited features, as well as their contracts.
As we shall see, the flat form will prove to be key to the development of a compositional refinement process.

5

a,b:ATTRIBUTE

! Qr (old

f (x:C) : D

? Pf

fQ!

? rP
local u,v:T
r (x:C)

d := e1.f1(e2.f2(c))

d := e.f (c)

e.r (c)

t

d:D

c:ATTRIBUTE

CLIENT

e:SUPPLIER

a, a, x, Current, old Current,

SUPPLIER

I
invariant

(a,x,t)

(a,x,t)

t, t)old

(Result, Current, a, x, t,old t)

Figure 4: Class diagram for terminology and context

3.1 Semantics and terminology

The formal meaning of routines with contracts has been given in [Mey92, Mey97] in terms of Hoare tuples. We shall
instead provide an equivalent meaning in terms of predicates. The reason for using predicates instead of Hoare tuples
is that the former leads to simpler refinement rules for developing code smoothly from specifications. The reason for
using predicates over, e.g., weakest preconditions or predicate pairs, is that predicates are immediately expressible in
the specification language of the PVS theorem prover, and our goal is the construction of a refinement calculus that is
amenable to automated support using existing tools.

Before presenting the meaning of a routine with a contract, we define some terminology and notation that we will
use throughout the remainder of the paper.

A double-state formulais a predicate in a prestate and a poststate. An example, in BON syntax, isx = old x + 1,
which is a predicate in the free variablesx andold x . Postconditions in BON are expressed using double-state
formulae. Asingle-state formula(or condition) is a predicate in a single state. An example isx > 0, which is a
predicate inx . Preconditions and class invariants in BON are single-state formulae.

Consider the class diagram shown in Fig. 4. We define the remaining terminology that we use throughout the paper
in terms of this diagram. We assume that for bothCLIENT andSUPPLIER, the interfaces shown in Fig. 4 are the
flat forms, i.e., all inherited features are shown.

ClassCLIENT of Fig. 4 possesses a parameterless proceduret . Within t , we have shown three statements:
the targeted procedure calle:r(c), the assignment statementd := e:f (c); and the assignment with nested calls
d := e1:f 1(e2:f 2(c)); we append numbers to the entitye and the functionf when we need to talk about different
versions of entities and functions. Thus,e1 ande2 are different entities of typeSUPPLIER. r is a procedure of
classSUPPLIER, while f (in all its versions) is a function ofSUPPLIER that returns a result of typeD . Class
SUPPLIER includes contracts for bothr and f . In particular, these contracts show that the preconditions of the
routines, namelyPr andPf , are given in terms of attributea, time variablet (defined in the sequel), and parameter
x (we discuss the relationship between attributes andCurrent shortly). Note thatPr andPf are not functions with
arguments:Pr , for example, is an assertion that makes reference toa andx . The postcondition ofr , namelyQr , is
a double-state formula that makes reference toold a, a, old t , t , old Current , Current andx . As we will discuss
shortly, there is a direct relationship between the attributea and the variableCurrent . The postcondition off is a
single-state formula inResult (an implicit variable that is local to the function, whose value is returned by the function
call upon termination),Current , a, t , old t , andx .

We treat theCurrent object associated with a class as an instance of a record containing one field for each attribute
of the class. Fields of theCurrent object can be accessed using the dot notation, e.g.,Current :a. We allow the
shorthand, used in object-oriented programming languages like Eiffel and Java, of droppingCurrent when accessing
features within their class. Thus, an occurrence of the attributea in the precondition of routiner is a shorthand for
Current :a. This short-hand may be used in a frame; thus, a procedure annotated withframe a is a short-hand for
frame Current :a. We allow the short-handframe Current which is a frame consisting of all attributes in the class.

We denote the attributes of classSUPPLIER by the bunchstate SUPPLIER; this bunch includes all attributes
in theflat form of SUPPLIER. For more on bunches, see [Heh93]; informally, a bunch is the content of a set. In this

6

example,state SUPPLIER = a; b. Each routiner of a class may introduce a bunch of local variablesvar r . For
the example in Fig. 4,var r = u; v . Note that normally the variables local to a routine would not be revealed in the
class interface. We show them for the routiner in Fig.4 only to define syntax and our terminology. For each routine
r with a contract, we can obtain the precondition by writingpre r , and the postcondition by writingpost r . In both
cases, the precondition and postcondition each include the class invariant. Finally, we denote the invariant of class
SUPPLIER by invariant SUPPLIER.

A special double-state formula associated with routiner in classSUPPLIER is aspecification; it is a predicate
with free variablesstate SUPPLIER, where a free variable may optionally be prefixed with the keywordold. This
formula, which we shall write asspec r , formally describes the meaning of the routine based on its contract (see
Table 1 for the differences between a specification and a postcondition).

It is convenient to use Morgan’sspecification statementsyntax for writing specifications [Mor94]. Morgan’s
syntax allows the separation of the precondition from postcondition, and introduces the notion of aframe— a bunch
of variables that may be changed — for a specification. A specification statement is of the formw : hj S ;D ji, where
w is the frame,S a precondition, andD a postcondition. We use the parentheseshj andji instead of the more common
[and] to distinguish between specification statements and the notion of textual substitution [GS93], which we shall
use later on.

In [Mor94], specification statements are given a semantics using weakest preconditions. We instead use specifica-
tion statements as a syntactic convenience, and give their meaning using the predicative notation of Hehner [Heh93].
We explicitly include time in the semantics, via time variablesold t andt , following Hehner:old t represents the
start time of a computation, whilet represents the time at which the computation finishes – nontermination is repre-
sented as the case wheret =1. Postconditions of specification statements may make mention of the time variables; if
they do not, the most that can be said about time is that it does not decrease. The meaning of a specification statement
is as follows.

Definition 1 Meaning of a specification statement. Let the state� consist of disjoint
bunches of variablesw andx (wherew or x , but not both, may includet). LetS (�) be
a single-state formula in�, andD(old �; �) a double-state formula in� andold �.
Then

w : hj S ;D ji b= (old S)! (D ^ x = old x ^ t � old t)

The predicate on the right hand side of Definition 1 is a double-state formula; it is a specification because it
characterizes a set of observations, i.e., the set of pre- and poststate pairs that satisfy the predicate. These observations
describe the system under description. If the preconditionold S is not satisfied by an observation, then any arbitrary
(terminating or non-terminating) behaviour is permitted. If the precondition is satisfied, then the postconditionD must
be established,x may not be changed, and time may not decrease.D itself may further constraint time, e.g., to require
a specific time bound for a computation to complete.

Here is an example of a specification: the value off is to be set to the factorial ofn, and no more thann units of
time can be taken.

f ; t : hj true; f = n! ^ t = old t + n ji

Using Definition 1, we see that the specificationw ; t : hj S ; true ji meanschancebehaviour, i.e., any prestate
satisfyingS has a corresponding poststate that may arbitrarily change the framew , and may or may not terminate.
The specificationw ; t : hj false;D ji meanschaos, i.e., it reduces to the predicatetrue which denotes totally arbitrary
behaviour — any change can be made to the variables including the frame, and the execution may be non-terminating.
A miracle, i.e., no satisfying behaviour can be specified withw ; t : hj true; false ji, which reduces to the predicate
false. We can now use specifications to give the meaning of a routine with a contract.

Definition 2 Meaning of a routine with a contract. The meaning of routiner in class
C is given by the predicatespec r .

spec r b= t ; state C : hj pre r ; post r ji

7

Table 1: Notation summary with reference to Fig. 4
state SUPPLIER b= a; b

var r b= u; v

invariant SUPPLIER b= I

a : hj S ;D ji b= (old S)! (D ^ b = old b ^ t � old t)
pre r b= Pr (a; x ; t) ^ I
post r b= Qr (old a;old t ; a; t ; x ;Current ;old Current) ^ I

P [x1 := e1; x2 := e2] b= contextual substitution [GS93]
old a b= a variable denoting the value of attributea in the prestate of a feature call
old S b= a predicate obtained fromS by prefacing all free variables ofS by old

We shall use this semantics in developing a collection of refinement rules in Section 4. Table 1 gives a summary of the
notation and terminology we have just presented, in the context of the class diagram in Fig. 4.

(Note thatt is not included instateSUPPLIER; time variables belong to no class.) We now show how to carry
out refinement with BON and Eiffel, and in the process demonstrate that efinement in BON is applicable to large
specifications. We do this by first showing how to refine a single BON class to an Eiffel program. Then, we present
a compositional process that shows how to refine classes related by aggregation and inheritance through to an Eiffel
program.

4 The Compositional Process for Features

Let us consider the case where we want to algorithmically refine a single BON class, consisting of a number of features
with contracts, to an Eiffel program. This is a routine-by-routine process, where we must refine each BON routine into
an Eiffel routine. The notion of algorithm refinement that we use is due to Hehner [Heh93]; refinement is just boolean
implication. The refinement relation that we define can be applied, in general, to any double-state formulae. We will
apply it to specifications written in the formw : hj S ;D ji.

Definition 3 Refinement. Let the state� include variablesw , and letS1 andS2 be
single-state formulae on�;old t , and letD1 andD2 be double-state formulae on
�;old t ; t ; andold �. The refinement relation,v, on specifications is:

w : hj S1;D1 ji v w : hj S2;D2 ji b= w : hj S1;D1 ji w : hj S2;D2 ji

The proof obligation to be discharged in such a refinement step is

((old S2)! (D2 ^ x = old x))! ((old S1)! (D1 ^ x = old x))

The statement of Definition 3 appears to imply that the two specifications in a refinement need to have identical
frames. The rule below (derived trivially from Definition 1) allows the frame to be expanded or collapsed. This rule is
similar to one found in [Mor94].

Rule 4.1 Frame Change Rule. Letw andx be disjoint bunches of variables.

w : hj S ;D ji = w ; x : hj S ;D ^ x = old x ji

Our goal is to refine BON specifications to Eiffel programs. We must therefore show how to refine BON routine
specifications into Eiffel routine implementations. The refinement process thus starts with a BON routiner with
specificationspec r , and ends in an Eiffel routine implementationProg . Along the way, intermediate double-state
formulae in the formw : hj S ;D ji may be introduced. The process can be depicted as

spec r

v w : hj S1;D1 ji

v if b then w : hj S2;D2 ji else : : :

8

Refinement is the process of implementing a specification. This process may not always succeed, because unimple-
mentable specifications may be expressible in the specification language. In BON, refinement involves implementing
routines of classes. The implementability of a routine can be shown in one of two ways. One approach is to actually
succeed, using the rules, in producing an Eiffel program. However, we might like to know in advance whether or not
our refinement attempts have the potential to succeed. We thus might like to know if our specifications have a valid
poststate, i.e., for a routiner , show:

implementable spec r b= 8old � � 9� � (spec r ^ t � old t) (1)

where the state� = state C ; t .
To make refinement more convenient to carry out, it is customary to define a collection of refinement rules, showing

how to refine specifications to programs. We summarize a collection of rules that apply to any double-state formulae
(and therefore, to any BON routine). In the following letQ ;Q1;Q2; andBody be specifications — written as spec-
ification statements — defined on variables�. For the following rules, we let� consist of the variablex and other
variablesw ; x andw may be local variables or attributes of a class.

The first rule we present, taken from [PO99], allows us to reuse refinement rules of Morgan [Mor94]. Effectively,
the rule states that a valid refinement rule in Morgan’s calculus is a valid refinement rule in BON. Note that in Morgan’s
calculus, refinement is defined in terms of weakest preconditions, whereas in our calculus, refinement is boolean
implication. This defines an ordering relationship between refinement relations; see [OP00] for further discussion on
this issue.

Rule 4.2 Reuse of Morgan’s Refinement Rules (from [PO99]). LetQ1 andQ2 be
specification statements, and suppose thatQ1 v Q2 according to Morgan’s definition
of refinement. Then, under a syntactic translation of the specificationsQ1 andQ2,
Q1 v Q2 according to the meaning of refinement in Definition 3.

This rule is proved in [PO99]. The implication of this rule is that, in our refinements (and particularly, in our example
in Section 6) we will be able to freely make use of refinement rules from [Mor94]. One such rule that we will apply in
Section 6 is theweaken precondition ruleof [Mor94].

Let us start by giving rules for introducing imperative language constructs — specifically, the assignment state-
ment, selection, loop, and sequential composition — in a refinement. For all statements but the loop, we define the
meaning of the language construct using a specification statement. Then, Definition 3 can be applied directly in
introducing language constructs in refinement.

First, we consider how to introduce a simple assignment statement (where the expression does not include a
function call) in a refinement. We do this by defining the meaning of the assignmentx := e using a specification
statement.

Definition 4 Meaning ofx := e. Lete be an expanded expression (that does not use
function callsa) with type compatible [Mey97] with variablex , and letde�ned(e) be
a single-state predicate that defines under what conditions expressione is defined.
Then

x := e b= x : hj de�ned(e); x = old e ji

aArbitrary expanded expressions with function calls will be treated in Definitions 8–15.

In a refinement, we may want to introduce an assignment statementx := e, say, by refining a specification
statementx : hj S ;D ji. By Definition 3, the proof obligation to be discharged in refining the specification statement
by the assignment statement is

(old de�ned(e)! x = old e ^ old S)! D

The next rule is for introducing a selection, which has the following syntax.

if b1 then Q1 elseif b2 then Q2 : : : else Qk end

9

where thebi are boolean conditions and theQi specifications. In the refinement rule, we consider the two-branch case,
which generalizes in the obvious way to the multi-branch setting.

Definition 5 Meaning of selection. Letb be aBOOLEAN expression. Then

if b then Q1 else Q2 end b= � : hj true; (old b) ^Q1 _ (old : b) ^Q2) ji

Selections are typically introduced in a refinement by cases. Thus, if during a refinement we want to refine specification
Q by the selection shown in Definition 5, then we will be required to prove the following two obligations.

Q v (old b) ^Q1

Q v (old : b) ^Q2

Refinement becomes more complicated when we consider sequencing and repetition, because of the need to introduce
intermediate states. First, the rule for sequencing. In the rule, we use the textual substitution notation of Gries and
Schneider [GS93]. The syntaxP [x := e] reads “replace all free occurrences of variablex in P with e”.

Definition 6 Meaning of sequencing.

Q1; Q2 b= 9 �̂ �Q1[� := �̂] ^Q2[old � := �̂]

where� is all attributes and local variables.

It is now possible to present a useful rule for simplifying a particular kind of sequential composition, where the
first specification is an assignment. Thesimple substitution ruleis derived from Definition 4 and Definition 6 and is
similar to a corresponding rule in [Heh93].

Rule 4.3 Simple substitution. For any variablex not in bunchw , and expressione
whose type conforms tox ,

x := e; w : hj S ;D ji � w ; x : hjS [x := e];

(D ^ x = old x)[old x := old e] ji

The refinement rule for loops in Morgan [Mor94] and Hehner [Heh93] involve a single-state invariant, whereas we
need a more general double-state invariant, e.g., for asserting that the loop does not change certain variables. The
corresponding Z rule is stronger than we need. Hence, we introduce a rule for loops in the sequel (see Rule 4.4).

Before we consider the rule for an initialized loop, we introduce some notation, allowing us to talk about the
intermediate states that arise through executing a loop. We annotate specifications with primes (e.g.,Q 0) to indicate
systematic addition of primes tofree variable namesused within the specification. This notation is borrowed from Z
[Wor94]. However, we must make one adaptation in BON, because of its use ofold to distinguish pre- and poststates:
a prime applied to anold expression removes theold keyword. Here is an example.

(x = old y ^ y = old (x + y))0

= (x 0 = y) ^ (y 0 = (x + y))

Thus, the prime moves the formula forward one state (i.e., from prestate to poststate). Now we can give a rule for
introducing an initialized loop. Loops in Eiffel have the following syntax.

Loop b= from Init

invariant I

variant v

until b

loop Body end

10

Init(old �; �), I (old �; �), andBody(old �; �) are specifications that will be refined to code.b is a condition,
andv(�) is a variant. In Eiffel, the invariant and variant must be boolean and integer expressions, respectively. In
refinement, we allow the invariant to include reference to the prestate, viaold. Thus, the invariant will also be a
specification, and so it may include a frame. The invariant must be established by the loop initialization, and must
be true after each execution of the body of the loop. Invariants that refer to prestate cannot be directly translated into
Eiffel, but they do provide advantages in refinement, in that they allow us to more easily ensure that a loop establishes
a postcondition that makes reference to pre- and poststate. This is similar to loop rules based on a two-state invariant
used with VDM [Jon90].

Here is the refinement rule for loops.

Rule 4.4 Introducing an initialized loop. Letb be a boolean expression,I a loop
invariant,v a loop variant, andLoop a loop as above. Then

Q v Loop

provided that

old pre Q ^ Init ! I ^ v � 0

I ^ b ! Q

I ^ : b ^ Body 0 ! I [:= 0]

I ^ : b ! v � 0

I ^ : b ! v < old v

(The notationI [:= 0] means “textually substitute primed versions of free variables
for unprimed versions (and don’t change theold variables)”.)

The first “provided that” clause says that when enabled, the initialization must establish the invariant, and must
set the variant to a non-negative value (as required by Eiffel). The second clause says that on exit the invariant must
establish the required specification under refinement. The third clause is a triple-state formula – it asserts that every
execution of the body begun with the invariant true must preserve the invariant (note that the invariant is a double-state
formula). The final two clauses assert, respectively, that every execution of the body must decrease the variant, and
that the variant must never be less than zero.

Finally, we present the means for introducing a variable that is local to the body of a routine. Local declarations in
Eiffel have the following syntax.

local v : T ;

(The semicolon separates the declaration’s type from the routine body to which the declaration applies.) A local dec-
laration is immediately followed by the body of a routine. Local variable introduction is just existential quantification,
as the following definition indicates.

Definition 7 Introduce local variable. Letx be a fresh variable name of typeT .

local x : T ; Q b= (9 x ;old x : T �Q)

The existential quantification is over both pre- and poststate because values ofold x may be used withinQ (Q may
be, for example, a sequence of specifications).

The mechanisms that we have presented so far are adequate for the refinement of specifications to imperative
programs. They are inadequate in an OO setting. In object-oriented programs, there are two fundamental instructions
– procedure and function calls – which are used to produce changes in the state of objects. Techniques are needed
for introducing procedure and function calls. We do this by providing a formal meaning to these two programming
constructs.

Recall Fig. 4, which we will use to again define the context for giving the meaning to procedure and function calls.
We start by dealing with the simple cases: a targeted procedure call where the argument is a primitive expression

11

(involving no function calls), and similarly for a function call. We then use the function call in defining a generalized
assignment law.

First, we define the meaning of the procedure calle:r(c), wheree is an object andc a primitive expression. We
assume that, in our BON specifications, all procedure calls are explicitly targeted, either with an objecte, or with the
current objectCurrent . The meaning of the call will be supplied by the contract ofr , with a slight twist: a substitution
must be made on the variables used in the contracts in order to indicate that the call tor uses the attributes of objecte.

Definition 8 Meaning of a targeted procedure call.

e:r(c) b= t ; e:a : hj Pr [a := e:a; x := c;Current := e];

Qr [old a := old e:a;old Current := old e; a := e:a;

x := c;Current := e] ji

The frame of the specification is the buncht ; e:a because, as the postconditionQr of routiner in Fig. 4 expresses,
only attributea and the global clock can be changed by the call.

Now we turn to function calls. The approach we take, for the purposes of generality, is to give a meaning to
a function call appearing in a program; then, we can use this meaning in defining, for example, the assignment of
a function result to an attribute. The specification that we provide will assert, under the assumptions of a function
precondition, what is true about theresultof a function call.

We first introduce a small piece of syntax. Lete be an object whose class has the functionf which takes an
argumentc. We lete:Pf (c) represent thepreconditionof f , ande:Qf (c) represent thepostconditionof f , with the
following substitutions.

Definition 9 Targeting pre- and postconditions for a function call. Consider Fig. 4.
For functionf , we define

e:Pf (c) b= (pre f)[a := e:a;Currente := e; x := c]

e:Qf (c) b= (post f)[a := old e:a;Currente := old e;

Resultf := e:f (c); x := c]

In other words,e:Pf (c) represents the precondition off , suitably instantiated for the objecte that is invokingf (and
similarly for the postcondition). The use ofold in the postcondition substitution is necessary to deal with cases like
the assignmentd := d :f (c), where a function result is used to effect a change in the state of the invoking object.

In Definition 9, we have added subscripts to the variablesCurrent andResult . This is primarily for conve-
nience and to promote readability, specifically in situations where we are dealing with several nested calls to the same
function. In such situations, when we are simplifying specifications and predicates, we may have several instances of
Result orCurrent , and it may be helpful to be able to distinguish instances. Where necessary (i.e., when manipulating
specifications with several instances ofResult orCurrent), we will always attach a unique distinguishing subscript to
each instance of these variables to help with the readability of the specifications we write: the distinguishing subscript
will be formed by combining the name of the object and the feature name, together with a unique digit; this mimics the
name manglingcarried out by compilers for object-oriented programming languages that replace method calls with
function applications. It is not strictly necessary to carry out such subscripting, sinceResult andCurrent will be
substituted away eventually (as demonstrated in Definition 9, and in the example of Section 6), but the subscripts will
help reduce confusion when carrying out the substitutions.

The meaning of the function calle:f (c) that appears in a program (wherec is an expression constructed solely
from primitive types) is similar to a procedure call. The meaning is again supplied by the contract off .

Definition 10 Meaning of a function call appearing in a program.

e:f (c) b= t :hj e:Pf (c); e:Qf (c) ji

12

This defines the meaning of a call that appears in a program; it is not to be used to substitute for any occurrences
of e:f (c) that appearwithin specification statements (such as in Definition 11 below). Notice that the frame of the
specification is justt ; the function call changes nothing but, potentially, the clock. The semantics of specification
statements given in Definition 1 ensures that a function call does not decrease time. With this specification, we can
now easily describe the meaning of an assignment involving a simple function call.

Definition 11 Meaning of an assignment involving a simple function call.

d := e:f (c) b= d ; t : hj e:Pf (c); e:Qf (c) ^ d = e:f (c) ji

The second conjunct in the postcondition is necessary for those functionsf that do not possess postconditions. An
example of such a function, the featureitem of classARRAY , will be used in the example of Section 6. Such features
often belong to implemented libraries, where the implementation language is not expressive enough to capture all the
requirements of the postcondition.

These rules suffice for all cases when the argument to the function or the procedure is simple, i.e., it does not
involve another function call. For nested function calls, the rule is more complex. We start by providing a rule that
gives a meaning to nested function calls of the forme1:f 1(e2:f 2(c)). From this, we produce a rule for a nesting of a
procedure and a function call.

Definition 12 Meaning of nested function calls.

e1:f 1(e2:f 2(c)) b= t :hj e2:Pf 2(c) ^

(e2:Qf 2(c)! e1:Pf 1(e2:f 2(c)))[old t := t];

e1:Qf 1(e2:f 2(c))[old t := t1] ^ e2:Qf 2(c)[t := t1] ji

This definition requires some explanation. The precondition of the specification is the conjunction of the precon-
dition of f 2 and an implication. The implication expresses that the postcondition off 2 must establish a state in which
f 1 is enabled (with the result ofe2:f 2(c) as its argument). The substitution on the time variables in the precondition is
so that the time for the inner call can be taken into account. The postcondition is the conjunction of the postconditions
for f 1 andf 2, where again we substitute the result of the inner-most call for the outermost call’s argument. In this
substitution, we add the time taken for the inner-most call to the time taken for the outer call (via the substitutions
involving the time variablest andold t).

Now we can use this rule in defining the effect of assigning the result of a nested function call to an attribute.

Definition 13 Assignment of the value of a nested function call.

d := e1:f 1(e2:f 2(c)) b= d ; t : hj pre e1:f 1(e2:f 2(c));

post e1:f 1(e2:f 2(c)) ^

d = e1:f 1(e2:f 2(c)) ji

The last rule we present is for a nesting of a procedure call with a function call as an argument, of the form
e3:r(e1:f 1(c)). The meaning is developed directly from the previous rules. First, we provide a definition similar to
Definition 9, but for procedures instead of functions.

Definition 14 Targeting pre- and postconditions for a procedure call. Consider
Fig. 4. For procedurer , we define

e:Pr (c) b= (pre r)[a := e:a;Currente := e; x := c]

e:Qr (c) b= (post r)[old a := old e:a;old Currente := old e;

a := e:a;Currente := e]

13

The main difference between Definition 14 and Definition 9 is that procedure postconditions can make reference
to old values of expressions. Now we can express the meaning of a nested procedure and function call.

Definition 15 Meaning of a procedure call with function result argument.

e3:r(e1:f 1(c)) b= e3:a; t : hj e1:Pf (c) ^

(e3:Qf (c)! e3:Pr (e1:f (c)))[old t := t];

e3:Qr (e1:f (c))[t := t1] ^

e1:Qf 1(c)[old t := t1] ji

The substitution on time variables in the postcondition is necessary to ensure that the time for the inner function
call is correctly substituted for the start time of the procedure call.

These rules suffice to generate a meaning for any composition of function calls and procedure calls.
We first attempted to write the rules for feature calls in the standard way by introducing local variables to do the

bindings from formal to actual arguments [Mor94]. This is more complicated for the purposes of automated reasoning
than the rules presented above, since each local variable declaration introduces existential quantifiers; our rules use
only contextual substitutions which are straightforward to automate (e.g., using lambda bindings or record overriding).
In some cases, rules for introducing procedure calls in refinement are hard to get right due to subtle interactions be-
tween the substitution operator that renames the free variables of a program and the rules for parameterized procedures
[CS99]. In our case, Eiffel has a rather simple rule governing what operations can be done to a formal argumentx :
the body of the routine may not apply any direct modification such as an assignment tox of the formx := : : :. This is
more restrictive than “call by value”. We can thus define the complete semantics of a call by the use of contextual sub-
stitution alone, without the need to use auxiliary local variables and existential operators. Contextual substitution can
be fully automated in a simple way, whereas the introduction of existential variables will often require user assistance
when theorem provers are used, in order to generate appropriate instantiations for bound variables.

4.1 Correctness of definitions and rules

Two kinds of rules are presented in the previous subsection. The first kind are definitions of the meaning of Eiffel
programming constructs. For example, Definition 5 defines the meaning of the selection construct by using a Hehner-
style predicate [Heh93]. The predicate characterizes all observable behaviours of the construct as executions of the
construct in terms of the prestateold � and the poststate�. These definitions can be checked for correctness by
examining the set of behaviours that satisfy the predicate to see if they are consistent with the model of execution
provided for Eiffel constructs in [Mey92]. Since the model of execution is presented only semi-rigorously, this process
cannot be fully formal. In fact, these definitions and rules may be seen as an attempt to rigorously specify the model
of execution in a way that also allows for program refinement. A further requirement of all definitions is that they be
implementable as described in equation (1). Definition 3 expresses what our notion of refinement is — it is simply
that any behaviour of the concrete program must also be a behaviour of the abstract specification.

The second kind of refinement rules are derivations such as simple substitution Rule 4.3. These derivations must
be produced from the definitions using predicate logic. There are many other helpful derived rules that can easily be
obtained (e.g., using Rule 4.2).

5 Class Compositional Process

Refinement, in a setting that combines object-orientation and design-by-contract, can be applied compositionally to
large software systems. To illustrate the process, we examine, without loss of generality, the following OO system
which possesses four classes and three relationships.

Consider Fig. 5, and suppose that we want to refine classA to code, whereA depends directly on classB and
classC , and indirectly on classD (via aggregation through classC). In order to refine features ofA to code, we will
need to know which features of classes thatA is related to can be used in the refinement process.A includes features
inherited fromB and all ofB ’s ancestors.A may make direct use of features ofC that are exported to it. It may also
makeindirect use of features ofD throughC , as follows. Suppose, as shown in Fig. 5, thatA has a featuref . Due

14

B

A

f
c : C

C D

d : D foo:INTEGER
AA

Figure 5: System structure for demonstrating the compositional process

to the aggregation betweenA andC , A also has a featurec : C ; the aggregation betweenC andD means thatC has
a featured : D . If featured of classC is exported toA, and featurefoo of classD is also exported toA, then the
following is an acceptable precondition forf (acceptable, in the sense that it obeys the BON metamodel).

c:d :foo � 0

Thus,A can make use of features ofD throughC ’s subobject, even though there is no direct relationship drawn in
Fig. 5 betweenA andD . So we will need to define a transitive closure of the inheritance and aggregation relation-
ships, which takes into account information hiding, in order to determine the features needed to correctly carry out
refinement.

Our composition process will hold for any software architecture that satisfies the following properties.

� All class relationships must be directed, from a source to a target class. Undirected relationships, as permitted
in UML, cannot be used.

� Routines must not change the value of attributes outside of their class, i.e., the only way to change the value of
attributes is by using commands associated with a class.

(We discuss the need for these properties after presenting the process.) Suppose we want to refineA to an Eiffel
program. We must carry out the following steps, in order.

1. Determineind A, the set of all classes thatA depends2 on by client-supplier or inheritance relationships. This
set consists of the following classes.

� Ancestors:all classes in theflat form ofA, i.e., all ancestors ofA. In Fig. 5, onlyB is an ancestor ofA.

� Direct suppliers: all classes with whichA has a client-supplier relationship drawn in the model. In our
example, this subset consists of classC . We call these classesdirect suppliers.

� Locals and parameters:all classes thatA uses to declare local variables or parameters associated with
routines. We need classes that are used to declare locals since the local variables may be used in a refine-
ment.

� Indirect suppliers: an indirect supplier ofA is a class for which an object of that class appears in any
contract of a feature in theflat form of A. In Fig. 5, this subset consists of classD . Note that this also
includes any indirect suppliers of ancestors ofA, because the flat form of a class includes all features
acquired from ancestors of the class (as well as all the features’ contracts).

For Fig. 5,ind A = fB ;C ;Dg— this is the set of classes that areindependentof A, whereasA itself depends
upon this set containingB ;C andD .

2. Determinespec A, the set of contracts for all routines in the flat form ofA that need refining. Only contracts
that are newly declared inA, as well as contracts that redefine ones inherited from ancestors, are included in
spec A.

2This is similar to Leino’s notion of dependency relation in [Lei95].

15

3. Show that each element ofspec A is implementable. To show implementability, we can prove

8 s 2 spec A � implementable s

Alternatively, refining each contract inspec A to an Eiffel program itself demonstrates implementability.

4. To refine classA to an Eiffel program, refine each specifications of spec A by refinement steps tocode s , an
Eiffel implementation. In other words, it must be shown that

8 s 2 spec A � s v code s

In the refinement, we need only use other elements ofspec A and any contracts in classes thatA depends upon,
i.e., contracts of routines from classes inind A. However, we do not needall the contracts from classes in
ind A, because of information hiding. BON and Eiffel allow one or more features of a class to be annotated
by a list of classes who can access the features. If a BON model properly obeys the information hiding rules of
BON described in [WN95] (i.e., features are only used by client classes who have been given access to them),
then we will need only the following restricted set of contracts from the classes inind A, in order to refine
elements ofspec A:

� the contracts of features belonging to ancestors ofA (including contracts used by the indirect suppliers of
the ancestors ofA).

� the contracts of features of direct suppliers ofA, which are exported toA.

� the contracts of features of indirect suppliers ofA, which are exported toA.

This calculation assumes that the BON model correctly obeys the information hiding rules of the language.

The important thing to note in this process is that to refineA to code, weonly needspec A and the contracts
of features belonging toind A. No implementations of the features ofind A are needed. In most cases, the entire
system need not be considered when refining a class, sinceind A will only involve the contracts of a subset of all
classes in the system. Thus, refinement can be done compositionally, class-by-class and feature-by-feature.

To refine an entire BON specification to an Eiffel program, we can start from the root class. The root is refined to
code, using only the contracts of the classes inind ROOT and the contracts ofROOT itself. Then, each class that
the root depends upon (i.e., all elements ofind ROOT) is refined to code, using only the contracts of the classes it
depends upon. This process recursively continues until all classes in the system have been refined to programs. In this
process, there is no system-level validity check that has to be discharged to show that the entire system is correct. Once
all classes have been refined, then the system is implemented and a proof has been discharged to show its correctness.

The efficiency and validity of this process hinges on usingdirectedobject-oriented relationships, andinformation
hiding [Par72]. In particular, information hiding as it exists in BON requires that only the procedures of a class can
effect changes in the state of objects of that class; clients of a class cannot change state directly via assignment to
attributes of an object. In other words, the attributes of a class are read-only to clients. If this level of information
hiding was not used in BON, then clients could change attributes of a class, and henceind A would possibly need to
contain all classes in the system. Similarly, if undirected relationships, as present in modeling languages like UML
[RJ99] were used, then it would not, in general, be possible to refine a class to code because no class would have been
given responsibility for the relationship – that is, neither class would be responsible for providing an attribute or a
routine to represent the relationship. Thus, refinement would have to be carried out after all undirected relationships
in the OO specification had been replaced by directed ones.

This style of compositional reasoning is also inherent in Object-Z [DR94]; in fact, the semantics of Object-Z has
been defined precisely for this kind of so-called modular reasoning. We discuss this more in Section 8.

6 Example

This section illustrates a simple example of refinement in BON, demonstrating the use of the class and feature compo-
sitional processes. The refinement will transform a BON specification into an Eiffel program.

The problem we will solve is a simple one, taken from [Wor94], to find the maximum of a non-empty arrays of
integers. This problem in fact illustrates the main feature call interactions including the subtle case in which the target

16

of an assignment invokes a function call on the target itself. We suppose that we have a class,FOO , that includes a
feature that will be used to determine the maximum of the array. We now provide the BON specification for the class
FOO .

s.item(j))j:INTEGER | s.valid_index(j)Result=(

s : ARRAY[INTEGER]

?

!

not ARRAY[G]

max_array : INTEGER

INTEGER

FOO

s.empty
s

Figure 6: ClassFOO for refinement example

We use" in the specification to represent themathematicaloperator that gives the maximum of two or more
integers. We use the generalized quantifier notation of Gries and Schneider [GS93] to take the maximum of a set of
integers; the postcondition of themax array routine given by

Resultmax array = (" j : INTEGER j s :valid index (j) � s :item(j))

demonstrates this syntax. For brevity we will useResultma as an abbreviation forResultmax array . The goal of the
refinement process is to implement the mathematical operator" by the routinemax .

ClassFOO has two aggregation relationships: with classARRAY (shown in Fig. 6) and withINTEGER, via
the return value of functionmax array , which calculates the maximum of the arrays . The function introduces a
local variable,i , as a loop index. A local variableResult , automatically declared for the function, will hold the result
of the computation. We make use of the following features of classesARRAY and INTEGER; for the sake of
completeness, we present fragments of the specification of each class.

class ARRAY [G] feature class INTEGER feature

lower ; upper : INTEGER max(x : INTEGER) : INTEGER
count ; capacity : INTEGER ensure Result = Current " x

end

valid index(x : INTEGER) : BOOLEAN
ensure Result = (lower � x � upper)

item(x : INTEGER) : G
require valid index (x)

empty : BOOLEAN
ensure Result = (count = 0)

invariant lower � upper

end

Figure 7: Excerpt from interfaces ofARRAYandINTEGERclasses

The notations :item(j) is the Eiffel syntax for the array index operation.s :lower ands :upper are the lower and
upper bounds of the arrays , respectively. Note thatitem, a function ofARRAY , has no postcondition; in this sense,
we can viewitem as an atomic specification unit, one whose meaning is not denoted by any other, perhaps more
concrete, representation.

We can now refine the specification ofFOO to code. In the process, we will use the contracts, but not the
implementations, of the classes on whichFOO depends. The process of Section 4 starts by calculating the independent

17

classes ofFOO . These areINTEGER andARRAY [INTEGER]. Then, we calculatespec FOO which consists
of the contract formax array . Now, we must refine each element ofspec FOO , i.e., spec max array , using the
contracts ofind FOO that are accessible toFOO (in this example, we have shown only publically accessible features
of INTEGER andARRAY [G] that will be needed in the refinement; in general, all publically accessible features
can be used in refinement of a client or descendent class).

First, we present the refinement tree formax array , shown in Fig. 8. In the refinement, we use the subscriptma

to indicate variables associated with the routinemax array .

spec max array

= < de�nition of max array >

Resultma : hj not s:empty;

Resultma = (" j : INTEGER j s:valid index(j) � s:item(j)) ji

v < (a) : introduce local variable (Def : 7); frame change rule (4:1) >

local i : INTEGER;

i;Resultma : hj not s:empty;

Resultma = (" j : INTEGER j s:valid index(j) � s:item(j)) ji

v < (b) : introduce loop (4:4) >

local i : INTEGER;

from P : i;Resultma : hj not s:empty; i = s:lower ^ Resultma = s:item(i) ji

invariant I : Resultma ; i : hj true; i � s:upper ^ s:valid index(i) ^

Resultma = (" j : INTEGER j s:lower � j � i � s:item(j)) ji

variant V : s:upper � i

until i = s:upper

loopW :

i;Resultma : hj s:valid index(i) ^ i � s:upper ;

i = old i + 1 ^ Resultma = old Resultma " s:item(i) ji

end

v < (c) : re�ne initialization P (see Fig: 7); re�ne loop body W (see Fig : 8) >

local i : INTEGER;

from i := s:lower ; Result := s:item(i)

invariant I : Resultma ; i : hj true; i � s:upper ^ s:valid index(i) ^

Resultma = (" j : INTEGER j s:lower � j � i � s:item(j)) ji

variant V : s:upper � i

until i = s:upper

loop

i := i + 1; Result := Result:max(s:item(i))

end

Figure 8: Refinement tree formax array (the last step produces executable Eiffel code)

In Fig. 8, we define several terms:P (defined in step(b)) is the specification for the initialization of the loop;I and
V are a loop invariant and variant respectively; andW is the specification for the body of the loop. The refinement
steps for implementing the loop initializationP and the loop bodyW are detailed in the appendix, along with proofs
of the resultant obligations.

Many of the proof obligations and refinement steps shown in Fig. 8 are very similar to refinement steps in im-
perative program design calculi. For example, the steps for introducing an initialized loop, or a simple assignment
statement, pattern those seen in [Heh93, Mor94]. The exact proof obligations required to discharge steps(a), (b), and

18

(c) can easily be mechanically produced by applying the quoted refinement rules. As examples, we discharge proof
obligations for the loop initialization refinement and the loop body refinement in Appendix A.

A novel refinement step, unique to object-oriented development, occurs in refining the loop body to the sequence
of assignments. The second assignment is:

Resultma := Resultma :max (s :item(i))

which is a nested function call. To introduce this assignment, Definition 13 must be applied. The refinement and proof
obligations are explained in detail in the appendix. However, we point out that in all of these proof steps, including that
for the function calls in Definition 13, no complicated mathematics is required: the proofs primarily use substitutions,
and there is only one quantifier – that to introduce the local variable. A theorem prover like PVS [CO95] would have
little difficulty discharging all the obligations for this proof automatically.

The last step of Fig. 6 produces executable Eiffel code. The subscript may be dropped fromResult asResult now
unambiguously refers to the result of functionmax array . The conjunct containing themaximum quantifier in the
loop invariant would have to be a comment. However, the latest versions of Eiffel support the notion of an “agent”
which can be used to equip assertions with executable predicates with quantifiers.

To complete the process, classesINTEGER andARRAY (and all their dependent classes) should now be refined.
However, these classes belong to a standard library, and so we can assume that they have been implemented and their
correctness ensured.

7 Automation

The discharging of the proof obligations that arise during a refinement of a specification can benefit from automated
support. We are currently experimenting with using PVS to reason about BON specifications. Our eventual goal is to
use PVS to discharge the (automatically generated) proof obligations that arise in a refinement of a BON specification
to an Eiffel program.

Currently, we have developed a mapping of BON specifications into PVS theories, based on a representation of
a class as a datatype, a representation of routines as PVS functions, and a representation of class invariants as either
subtype constraints or axioms (the latter being used whenever invariant clauses on self-referential classes occur). This
representation has easily extended to support client-supplier and inheritance relationships, and has allowed non-trivial
theorems to be discharged. A particular benefit of translating BON to PVS is that it lets us use the tool to deal with
reference types without difficulty. A new tool is being designed and implemented to automate the translation process.
Thereafter, a tool will be developed to assist in the refinement process. The tool will pass proof obligations generated
in refinement to PVS. This is discussed more elsewhere [PO99].

8 Related Work and Conclusions

Design-by-contract has been shown to be useful for producing reliable, robust, reusable, and maintainable software
[Mey97, WN95]. In this paper, we have provided novel rules for object-oriented refinement of specifications (con-
tracts) to code in the BON/Eiffel setting, including rules for feature calls and a new loop refinement rule for double-
state invariants. BON allows specifications to be structured using deferred classes, inheritance and the client-supplier
relationship. Refinement is compositional and works on the class as the unit of composition; only the contracts of
dependent classes are needed (not their implementations). Compositionality and the object-oriented structuring mech-
anisms make this process applicable to large systems.

Compositional refinement is critically dependent on the fact that all the BON relationships are directed (i.e., the
inheritance and various client supplier relationships are directed relationships). The direction indicates class dependen-
cies and thus defines the refinement context. By contrast, UML allows undirected relationships which will undermine
compositionality. Thus, to effectively carry out algorithm refinement with UML and its constraint language, OCL,
there will have to be restrictions on the modeling constructs that can be used, or on when refinement can be carried
out, e.g., after undirected relationships have been replaced by directed or navigable ones.

We are not aware of any other OO approaches that provide refinement rules down to an actual industrial-strength
programming language. Furthermore, there are several differences between the BON/Eiffel approach and alternative
OO approaches. Object-Z, for example, is solely a specification language, and contains no immediately executable

19

programming language. Algorithm refinement rules remain to be fully worked out for Object-Z, primarily with regards
to rules for introducing routine calls within a refinement. The semantics of Object-Z supportsstrict modularreasoning
[Gri97]: the meaning of an operation in an Object-Z specification is a transition on the local state of an object, together
with an external message. Modular reasoning is thus supported by the semantics, which provides object identities and
mechanisms for achieving independence of behaviour of operations. This kind of semantics is useful for reasoning
about the properties of an OO system as a whole [Smi95], but may not be as convenient for algorithm refinement, and
in particular producing executable code from specifications. Finally, the semantics of Object-Z is based on labeled
transition systems. The semantics of routines in BON is based on first-order logic, making it easier to support reasoning
via available tools, such as PVS.

The work on the Extended Static Checker [DL98] for Java has focused on the automatic verification of Java pro-
grams. This tool works by taking annotated Java programs, with specifications very similar to the contracts used in this
paper, and by checking that the programs satisfy the annotations. This approach focuses on verification of programs,
rather than refinement of specifications to programs. It handles reference types as well as primitive types. We view
such an approach as complementary to the refinement calculus in this paper: in some cases, we may want to refine
contracts or classes to programs; in other cases, we may prefer to use static checking to help find errors in programs.
The latter approach will likely be more appropriate when verifying library classes or pre-existing applications, rather
than when developing new classes or applications.

VDM++ is an OO dialect of VDM. It is based on a three-valued logic. [Lan95] presents data and algorithm
refinement rules for VDM++, but these rules focus on refinement of the imperative and concurrent constructs, and do
not present mechanisms for introducing procedure or function calls. Furthermore, the results of the refinement require
further translation to produce executable code in C++, Java, Eiffel, etc. [Lan95] also presents informal procedures for
carrying out these translations.

An approach to OO development similar to BON/Eiffel is Larch/C++ [Lea97], which aims at supporting for-
mal specification, as well as reducing the gap between specification and working code. A key distinction between
Larch/C++ and BON/Eiffel is that with Larch, a two-tiered approach is used. Specifications of mathematical toolkit
features (e.g., library modules such as arrays, lists, and function types) are provided algebraically using abstract data
types. These specifications can then be used in Larch/C++ behavioural interface specifications, wherein the abstract
data type functions can appear in preconditions, postconditions, and invariant clauses. By keeping the abstract data
type specifications separate from behavioural interface specifications, formal reasoning on the shared language speci-
fications can be carried out, and the formal specifications can be reused specifying for different behavioural interface
languages. BON/Eiffel uses only OO techniques: in place of the Larch Shared Language specifications, only classes
with contracts are used instead, including for the specification of mathematical toolkit features. By using only classes,
software development can proceed seamlessly (and if necessary reversibly) within the same semantic framework.
Larch/C++ does not support reversibility. Further, Larch/C++ does not have rules for refinement, though they could
in principle be developed. We would expect these rules to be more complex than those for BON/Eiffel because C++
is a hybrid language having both object-oriented and conventional constructs. Also, implementing a Larch/C++ spec-
ification will require the Larch Shared Language specifications to be implemented, perhaps using built-in libraries; an
impedence mismatch between abstract data types and C++ classes arises here. Larch/C++ does possess mature tool
support for formal manipulation and reasoning. Reasoning will typically be done within the algebraic framework,
using functions of the algebraic specifications. With BON and Eiffel, reasoning is done using first-order logic.

JML [LB00] is a modeling language for Java, with many similarities to Larch/C++. It supports the specification
of contracts in a pre- and postcondition style; class invariants can also be specified. JML has been designed to work
seamlessly with Java. Unlike BON, it is a text-based modeling language and is syntactically similar to Java. JML is a
richer language than BON, in that it supports history constraints and modeling exceptions. It has no refinement rules
defined. Work is underway on integrating JML with the Extended Static Checker [DL98].

This paper did not deal with reference types nor did it show how to automate the refinement procedures. Automa-
tion and the extension to reference types are currently under investigation; section 7 reported on the current status of
this work. We also intend to expand the framework to concurrent and real-time software. The use of the predica-
tive calculus of [Heh93], which supports concurrency and communication, as the underlying specification formalism
should make the extension to concurrent and real-time systems feasible.

20

A Proof of Refinement Steps

We present the refinement steps and corresponding proofs that are required in implementing the loop initialization
and loop body. These refinement steps were omitted, for the sake of brevity, from Fig. 8. It is useful to consider the
refinement steps, since they illustrate how to introduce the fundamental constructs in OO computing, namely feature
calls.

The first step is the refinement of the loop initialization,P , by the sequential composition

i := s :lower ; Resultma := s :item(s :lower)

The refinement will be by applications of Definition 13, Rule 4.3, and propositional logic. The proof thatP is refined
by the above sequence is shown in Fig. 9. The proof is carried out by expanding and simplifying the above sequence,
and then by showing that the expansion impliesP .

i := s:lower ; Resultma := s:item(s:lower)

= < Defn: 13 : assignment to function call >

i := s:lower ; Resultma : hj s:valid index(s:lower);

Result ma = s:item(s:lower) ji

= < postcondition of valid index >

i := s:lower ; Resultma : hj s:lower � s:upper !

(s:lower � s:lower � s:upper);

Resultma = s:item(s:lower) ji

= < propositional logic >

i := s:lower ; Resultma : hj true;Resultma = s:item(s:lower) ji

= < (4:3) simple substitution >

Resultma ; i : hj true;Resultma = s:item(s:lower) ^ i = s:lower ji

! < Defn: 3 :re�nement >

P

Figure 9: Proof of refinement for loop initialization

The final step in the refinement example of Section 6 is to implement the loop body specification,W , by an
assignment statement (which is a simple increment) and a procedure call. Fig. 10 shows the tree for the refinement of
W .

Most of the proof obligations that arise from this refinement tree are straightforward to discharge. The most
interesting, and challenging, obligation comes in the last step of the refinement, where we want to introduce a nested
function call in an assignment. We now demonstrate how to discharge this obligation. The approach we take is to
start with the assignment statement, apply definitions and rules of logic, and produce a new specification that logically
implies the original. The proof is shown in Fig. 11.

References

[AC96] M. Abadi and L. Cardelli.:A Theory of Objects, Springer-Verlag, 1996.

[Abr96] J.-R. Abrial.:The B-Book, Cambridge University Press, 1996.

[BH97] P.G. Bancroft and I.J. Hayes. Type extension and refinement. InProc. Formal Methods Pacific (FMP’97),
Springer-Verlag, 1997.

[CS99] A. Cavalcanti, A. Sampaio, J. Woodcock.: An inconsistency in procedures, parameters, and substitution
in the refinement calculus.Science of Computer Programming, 33 (87-96), 1999.

21

W

v < textual substitution [GS93] >

i;Resultma : hj (s:valid index(i) ^ i � 1 6= s:upper)[i := i + 1];

(i = old i ^

Resultma = old Resultma " s:item(i))[old i := old i + 1] ji

v < frame change (4:1); simple substitution (4:3) >

i := i + 1;

Resultma : hj s:valid index(i � 1) ^ i � 1 6= s:upper ;

i = old i ^ Resultma = old Resultma " s:item(i) ji

v < s:valid index(i � 1) ^ i � 1 6= s:upper ! s:valid index(i);

precondition weakening (Morgan Rule 1:2 [Mor94]) >

Resultma : hj s:valid index(i);

Resultma = old Resultma " s:item(i) ji

v < proof described in Fig: 11 >

Resultma := Resultma :max(s:item(i))

Figure 10: Refinement tree for the loop body

Resultma := Resultma :max(s:item(i))

= < meaning of a nested function call Defn: 13 >

Resultma : hj Resultma :Pmax (s:item(i)) ^ s:Pitem (i);

Resultma :Qmax (s:item(i)) ^ s:Qitem(i) ^

Resultma = Resultma :max(s:item(i)) ji

= < by Defn: 1 : Resultma :Pmax (s:item(i)) = true; and s:Qitem(i) = true >

Resultma : hj true ^ valid index(x)[Currentitem := s; x := i];

(Resultmax = Currentmax " x)

[Currentmax := old Resultma ; x := s:item(i);

Resultmax := Resultma :max(s:item(i))]

^ true ^ Resultma = Resultma :max(s:item(i)) ji

= < do substitutions; GS (3:39) identity of conjunction true ^ p = p >

Resultma : hj s:valid index(i);

Resultma :max(s:item(i)) = old Resultma " s:item(i) ^

Resultma = Resultma :max(s:item(i)) ji

! < transitivity of equality >

Resultma : hj s:valid index(i);Resultma = old Resultma " s:item(i) ji

Figure 11: Proof of final refinement step

22

[CO95] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas.: A Tutorial Introduction to PVS, inProc. WIFT
‘95, Springer-Verlag, 1995.

[DL98] D.L. Detlefs, K.R.M. Leino, G. Nelson, and J.B. Saxe. Extended Static Checking. SRC Research Report
159, December 1998.

[DR94] R. Duke, G. Rose, and G. Smith.: Object-Z: a Specification Language Advocated for the Description
of Standards. Technical Report 94-45, Software Verification Research Center, University of Queensland,
December 1994.

[GS93] D. Gries and F. Schneider.:A Logical Approach to Discrete Math, Springer-Verlag, 1993.

[Gri97] A. Griffiths.: Modular Reasoning in Object-Z. Technical Report 97-28, Software Verification Research
Center, University of Queensland, August 1997.

[Heh93] E.C.R. Hehner.:A Practical Theory of Programming, Springer-Verlag, 1993.

[Hoa69] C.A.R. Hoare.: An Axiomatic Basis for Computer Programming.Comm. ACM12(10), October 1969.

[Hoa85] C.A.R. Hoare.:Communicating Sequential Processes, Prentice-Hall, 1985.

[JM97] J.-M. Jezequel and B. Meyer.: Design-by-Contract: The Lessons of the Ariane 5.IEEE Computer30(2),
January 1997.

[Jon90] C.B. Jones.:Systematic Software Development Using VDM(Second Edition), Prentice-Hall, 1990.

[KM95] S. Kent and I. Maung.: Quantified Assertions in Eiffel. InProc. TOOLS Pacific 1995, Prentice-Hall, 1995.

[Lan95] K. Lano.:Formal Object-Oriented Development, Springer-Verlag, 1995.

[Lea97] G. Leavens.: Larch/C++ Reference Manual Version 5.14. Available at
www.cs.iastate.edu/�leavens/larchc++.html. October 1997.

[LB00] G. Leavens, A. Baker, and C. Ruby.: Preliminary Design of JML: a Behavioural Interface Language for
Java. Technical Report #98-06j, Department of Computer Science, Iowa State University, Revised May
2000.

[Lei95] K.R.M. Leino.: Toward Reliable Modular Programs. Ph.D. Thesis, Department of Computer Science,
California Institute of Technology, 1995.

[LW94] B. Liskov and J. Wing.: A Behavioural Notion of Subtyping.ACM Trans. Prog. Lang. Sys.16(6), Novem-
ber 1994.

[Mey92] B. Meyer.:Eiffel: the Language, Prentice-Hall, 1992.

[Mey97] B. Meyer.:Object-Oriented Software Construction(Second Edition), Prentice-Hall, 1997.

[Mor94] C.C. Morgan.:Programming from Specifications(Second Edition), Prentice-Hall, 1994.

[OP00] J.S. Ostroff and R.F. Paige.: The Timed Predicative Calculus as a Framework for Comparative Semantics.
Technical Report CS-2000-01, Department of Computer Science, York University, April 2000.

[PO99] R.F. Paige and J.S. Ostroff.: Developing BON as an Industrial-Strength Formal Method. InProc. World
Congress on Formal Methods (FM’99): Volume I, LNCS 1708, Springer-Verlag, September 1999.

[Par72] D. Parnas.: On the Criteria to be Used in Decomposing Systems into Modules.Comm. ACM15(12),
December 1972.

[Par92] D. Parnas.: Tabular Representation of Relations. CRL Report 260, Communications Research Laboratory,
McMaster University, October 1992.

23

[dRE98] W.-P. de Roever and K. Englehardt.:Data Refinement: Model-oriented Proof Methods And Their Com-
parison, Cambridge University Press, 1998.

[RJ99] J. Rumbaugh, I. Jacobson, and G. Booch.:The Unified Modeling Language Reference Manual,Addison-
Wesley, 1999.

[Smi95] G. Smith.: Reasoning about Object-Z Specifications. InProc. Asia-Pacific Software Engineering Confer-
ence 1995, IEEE Press, 1995.

[Spi92] J.M. Spivey.:The Z Reference Manual, Second Edition, Prentice-Hall, 1992.

[WN95] K. Walden and J.-M. Nerson.:Seamless Object-Oriented Software Architecture, Prentice-Hall, 1995.

[Wor94] J. Wordsworth.:Software Development with Z, Addison-Wesley, 1994.

24

